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Abstract

The Rayleigh—Taylor instability causes mixing in plasmas throughout the uni-
verse, from micron-scale plasmas in inertial confinement fusion implosions to parsec-
scale supernova remnants. The evolution of this interchange instability in a plasma
is influenced by the presence of viscosity and magnetic fields, both of which have the
potential to stabilize short-wavelength modes. Very few experimental observations
of Rayleigh—Taylor growth in plasmas with stabilizing mechanisms are reported in
the literature, and those that are reported are in sub-millimeter scale plasmas that
are difficult to diagnose. Experimental observations in well-characterized plasmas
are important for validation of computational models used to make design predic-

tions for inertial confinement fusion efforts. This dissertation presents observations of

v



instability growth during the interaction between a high Mach-number, initially un-
magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast cam-
era captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy,
photodiode, and magnetic probe diagnostics are employed to estimate plasma pa-
rameters in the vicinity of the collision. As the instability grows, an evolution to
longer mode wavelength is observed. Comparisons of experimental data with ideal-
ized magnetohydrodynamic simulations including a physical viscosity model suggest
that the observed instability evolution is consistent with both magnetic and vis-
cous stabilization. These data provide the opportunity to benchmark computational

models used in astrophysics and fusion research.
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Chapter 1

Introduction

1.1 The Rayleigh—Taylor Instability

The Rayleigh-Taylor instability is an interchange instability to which fluids are sub-
ject when the density gradient vector opposes the fluid-reference-frame acceleration
vector. When a denser fluid is placed above a less dense fluid, ‘spikes’ of the denser
fluid will fall as ‘bubbles’ of the less dense fluid rise. The nature of this instability

was first characterized by Lord Rayleigh in 1883 who derived the linear growth rate

(7),

2 P2 — pP1
= gk 1.1
=gk (1.1)

(where k is the wavenumber of the mode), for displacement of a boundary between
two fluids of different densities p; < py in a gravitational field g [1]. In 1950 Tay-
lor generalized understanding of the instability to apply to arbitrary accelerating
fluid interfaces [2]. Recent research interest in the Rayleigh-Taylor instability stems
from its prevalence both in astrophysical phenomena and its role in fluid mixing in

imploding fusion systems.
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In situations of interest in modern research, the unstable interfaces are often
interfaces between plasmas, which can be stabilized against the growth of certain
Rayleigh—Taylor-instability modes by the presence of magnetic fields or plasma vis-
cosity. Theoretical work by Chandrasekhar in 1961 characterized the effect of viscos-
ity and a magnetic field oriented parallel to the mode wavevector on linear growth
rate. Both were shown to be capable of preventing the growth of short-wavelength
modes [3]. Chandrasekhar linearizes the magnetohydrodynamic equations with a
transverse (z-direction) uniform magnetic field B, transverse to the direction of ¢
(y-direction), with zero viscosity and zero resistivity. Once the continuity, momen-
tum, and magnetic induction equations are linearized and combined, the dispersion
relation
212 2

gk
dy?

D (pDvy) + (D2 - kQ) vy — k*pv, = T2 (Dp) vy (1.2)

is produced, where D = d/dy and v, is y-direction velocity. The two uniform fluids
are separated by a horizontal boundary at y = 0 and this derivation requires that
v, and B are continuous at y = 0. Integrating Equation 1.2 across the interface and

simplifying gives the linear magnetic-Rayleigh-Taylor growth rate

— —»2
—gkA— 1 1.3
I T s (et o) (13)

in cgs units, A is the Atwood number given by (ps—p1)/(p2+p1), and B the magnetic
field vector. Comparing Equations 1.1 and 1.3, it is clear that the case of a conducting
fluid in the presence of a magnetic field introduces a stabilizing term which reduces
the linear growth rate for all wavelengths, and drastically so for short wavelengths.
While not unique to plasmas or conducting fluids, the presence of viscosity stabilizes

wavelengths shorter than a wavelength of maximum growth rate given by

12 1/3
=47 | — 1.4
ham =1 () (14)
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where v is the kinematic viscosity. Equation 1.4 is derived by Plesset and Whipple
by treating the fluid interface as a damped harmonic oscillation, and solving for
the fastest growing mode in the limit of short wavelength. Viscosity is particularly
important when studying Rayleigh-Taylor instabilities in fusion-relevant plasmas
because plasma viscosity is a strongly positive function of temperature. Further
work by Huba et al. extended the theoretical basis of Rayleigh—Taylor instabilities in
magnetized plasmas (field direction not linearly stabilizing) to show that for large ion
gyroradius, the instability grows much faster than growth in plasmas with smaller
ion gyroradius. Another significant result in the Huba work indicated that late-
time (nonlinear) behavior of Rayleigh-Taylor in plasmas with large ion gyroradii
is dominated by longer wavelength modes and the result is greater density profile

disruption than for the small gyroradius case [4].

1.1.1 Importance of Rayleigh—Taylor Instability in Physical

Processes

Observations of the presence of filaments in the Crab nebula by the Hubble Space
Telescope [5] (Figure 1.1) have been attributed to the growth of the Rayleigh—Tayor
instability in supernova remnants [6]. Other Hubble observations including the fa-
mous images of the “Pillars of Creation” in the Eagle nebula [7] have been postulated
to have originated as Rayleigh—Taylor-instability modes [8]. On much smaller spa-
tial scales, Rayleigh—Taylor instabilities are known to cause fluid mixing during the
deceleration phase of inertial confinement fusion implosions [9]. In this scenario cool,
dense material from the capsule shell interior slows on the hot, low density material
of the so-called ‘hot-spot’. This interface is susceptible to Rayleigh-Taylor mixing
of cold material into the hot-spot which is thought to prevent temperatures from
rising high enough to sustain a fusion burn wave [9]. Similar challenges are rele-

vant to cylindrical liners proposed for use in some magneto-inertial fusion concepts
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Figure 1.1: Hubble Space Telescope image of filaments in the Crab nebula, attributed
to spikes and bubbles. In the center of the image, the blue glow is synchrotron
radiation from relativistic electrons in the vicinity of a neutron star. At the edges,
blue indicates [O I] spectra, green indicates [S II] spectra, and red indicates [O III]
spectra. Image from NASA, ESA, Hester and Loll (ASU)I5].

where the inner surface of a solid-density liner slows on a much less dense magne-
tized plasma [10]. Likewise, in the earlier acceleration phase, the outer surface of
both cylindrical and spherical inertial fusion capsules are subject to Rayleigh-Taylor
growth as low-density, ablating material accelerates inward toward higher-density
material. Growth at this interface could break up the pusher material and prevent

compression of the fuel in the capsule.
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1.1.2 Recent Investigation of Rayleigh—Taylor Instability

There are few recent experimental investigations of the Rayleigh—Taylor instability
in plasmas with stabilizing mechanisms. A significant example includes experiments
in a regime with viscous stabilization conducted by Robey et al. at the OMEGA
laser facility, which gathered data from a linearly-translating plasma density inter-
face. Analysis of these data, some of which are shown in Figure 1.2, confirmed that
short wavelength Rayleigh-Taylor modes are affected by plasma viscosity, which is
often unaccounted for in radiation-hydrodynamic codes [11]. The perturbation wave-
lengths ranged from 22.5 ym to 180 um and reduced mode growth was found for
shorter wavelength perturbations. The authors point out that inviscid computa-
tional models will over-predict short wavelength mode activity, causing inaccurate
predictions of instability evolution. Recent computational study by Haines et al.
investigated the related phenomena of multi-species mass diffusion during Rayleigh—
Taylor growth. These simulations predicted that viscosity damps instability growth

in certain regimes relevant to inertial confinement fusion implosions [12].

In a regime where magnetic stabilization is relevant, a series of investigations at
the Z Pulsed Power Facility were conducted starting with work reported by Sinars
et al. in which the magneto-Rayleigh—Taylor instability was imaged on the surface
of an imploding cylindrical liner, without an applied axial magnetic field. These
results, shown in Figure 1.3, demonstrated mode growth which agreed well with the
predictions of hydrodynamic simulations and demonstrated azimuthal correlation of
mode growth [13, 14]. Very few examples of well-resolved observations of magnetic
Rayleigh—Taylor-instability growth are found in published literature, of which these
results are an exceptional case. Even so, the length scales (~ 100 pym) of the Sinars
results make it challenging to diagnose local plasma parameters. Further work at
the same experimental facility investigated the addition of a strong axial magnetic

field to the previously-reported implosions. The newly-applied field was oriented
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Figure 1.2: Multimode Rayleigh-Taylor growth in regime where viscosity stabilizes
short-wavelength modes. Initial perturbation contains 8 wavelengths varying by a
factor of 8, with random amplitude. Height of region imaged is ~ 500 pm. Image
from Ref. [11].

in a direction parallel to the previously observed mode growth, which according to
linear theory should provide a stabilizing influence. The results, reported by Awe et
al. showed suppressed traditional mode growth, while simultaneously showing the

growth of helical-type structures during the implosion [15].

Simulation results published in 2014 by Weis et al. examined the damping of
Rayleigh-Taylor modes as they propagated through a slab of magnetized plasma
[16]. In these simulations, magnetic fields of significant magnitude were included
such that a component of the pressure forces driving the instability were provided

by the magnetic pressure. The attenuation of instability modes by the slab was
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Figure 1.3: Magneto-Rayleigh-Taylor growth in imploding cylindrical liner perturbed
with A = 400 pum perturbations (top), A = 200 pum perturbations (bottom-middle),
and no perturbation (bottom-most 0.4 mm). Image from Ref. [14].

predicted to depend on the mode wavelength relative to the slab thickness. This
configuration was chosen for its relevance to the experimental results published by

Awe et al.

Finally, in 2012, an experimental campaign by Manuel et al. investigated mag-
netic fields self-generated by the growth of Rayleigh-—Taylor-instability modes on
~ 100 pm spatial scales. For the first time, the existence of such fields were con-
firmed and measurements of their magnitude were made and compared to computa-
tional models. While correlating, the computational predictions were outside of the
the error bars of the experimental data [17]. A theoretical and computational study
by Srinivasan et al. published the same year found that such self-generated fields,
while too small to impact mode growth, could exist of sufficient magnitude to inhibit

cross-field thermal conduction in inertial confinement fusion implosions [18].

Other modern research on Rayleigh—Taylor stabilization mechanisms and insta-
bility behavior in the presence of variously oriented magnetic fields relies heavily on

numerical studies and focuses heavily on the context of inertial confinement fusion.
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A detailed computational study conducted by Jun et al. showed that for multimode
Rayleigh—Taylor, magnetic fields oriented normal to the interface can enhance mix-
ing due to flow collimation along field lines [19]. This work also explored the role of
magnetic fields self-generated by turbulence, and found that such fields are prefer-
entially amplified on short length scales through stretch-and-fold mechanisms. More
computational studies by Stone and Gardiner showed that even small applied mag-
netic fields reduce mixing at small length scales and can enhance long-wavelength
mode growth by preventing secondary instabilities from slowing the progress of bub-
bles and spikes [20, 21]. Additionally these computations predicted that very strong

¢

magnetic fields can cause the formation of large scale “rope”- and “filament”-like
structures as the instability evolves. More recent research by Srinivasan and Tang
computationally predicted that the critical wavelength, below which all modes are
stabilized, changes locally during instability evolution as magnetic fields are amplified

and reoriented [22].

Other examples of data from experiments useful for code verification and valida-
tion are few. An experimental campaign at the OMEGA laser facility, where inertial
confinement fusion capsules were imploded in the presence and absence of applied
uniform magnetic fields showed an increase in temperature (15%) and neutron yield
(30%) [23, 24]. During the implosion, flux compression amplified the initially-applied
magnetic field by a factor of ~ 500, and the authors attributed the increased yield
to reduction in thermal conductivity across field lines. The possibility of Rayleigh—
Taylor-instability stabilization and associated reduction of hydrodynamic mix was

not discussed in this research.

Described in this dissertation are observations of instability growth consistent
with the Rayleigh—Taylor instability when a supersonic jet encounters a stagnated,
magnetized plasma. Experimental results presented in this dissertation include

macroscopic (multiple-cm scale) observations of Rayleigh—Taylor-instability growth
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in a readily diagnosable plasma regime. Sufficient data were collected to establish
that instability growth occurs in a plasma sufficiently magnetized and with sufficient
viscosity that both stabilization mechanisms are relevant to the observed dynamics.
This result is relevant to validation of computational models, and to the knowledge
of the author is unique — especially with regard to the level of plasma parameter

characterization.

1.2  Physics of Colliding Plasmas

An experimental campaign using the Plasma Liner Experiment [25] at Los Alamos
National Laboratory led to the observations of Rayleigh-Taylor instability growth
described in this dissertation. This series of experiments was initially motivated by
the study of magnetized interactions relevant to astrophysics [26]. In the course of
the investigation, the interaction of plasma jets with a background magnetic field
and with a magnetized background plasma became important to understanding the
physical processes present during plasma jet interaction. These topics are overviewed

in this section to provide context for the experiments described.

1.2.1 Plasma Collision with a Vacuum Magnetic Field

Previous observations of relevant phenomena include work by Baker and Hammel
examining the interaction of plasma jets with background magnetic fields. These
experiments detected evidence of charge separation as streaming particles deflect in
the presence of a magnetic field [27, 28]. This research showed that o' x B drift
caused the development of an electric potential in a direction transverse to the di-
rection of jet propagation. This in turn generated an E x B drift equal and opposite

in magnitude, which prevented stopping of the jet by the magnetic field in the ab-
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sence of wall interactions. The Baker experiments were conducted in two parameter
regimes, one with jet densities nj, ~ 10 cm™ and velocities vje, = 5 x 10° cm/s,
while the other had lower densities of nj, ~ 3 x 10'® cm™ and higher velocities
Vit & 4 x 107 cm/s. In both cases, penetration of the magnetic field by the jets
occurred due to self-polarization of the plasma jet causing an E x B drift. This
mechanism of jet propagation by generation of an E x B drift was corroborated in
results reported by Beckner [29]. Later research by Markovi¢ and Scott observed
a transition in plasma jet behavior in encountering magnetic fields of increasing
strength. A critical magnetic field magnitude of Beitical = 127Tpvj2et (cgs units)
was found, below which the incoming jet would exclude the ambient magnetic field
from its volume as it propagated, while above the critical magnitude, the magnetic
field extrudes the plasma jet into filaments as it enters the magnetic field [30]. The
authors speculate that this filamentation creates conditions susceptible to Rayleigh—

Taylor-instability growth.

A series of experiments conducted by Jellison and Parsons imaged a barium
plasma expanding into a magnetic field. During expansion the plasma was observed
to compress the magnetic field, causing the plasma to have well-defined edges as
opposed to the diffuse images seen when no field was present [31]. Furthermore,
striations were observed in the portions of the barium plasma that expanded more
slowly. A development of this work involved the collisionless flow of a barium plasma
through a background xenon plasma magnetized with a field transverse to the barium
propagation. In these experiments, the streaming barium was observed to slow in
a manner consistent with streaming instabilities enhanced by the presence of the

magnetic field [32].

10
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1.2.2 Collisionless, Unmagnetized Jet Interactions

The Weibel instability arises when counterstreaming plasma flows interact at very
high relative velocities (2 1000 km/s) [33]. This interaction is thought to generate
magnetic fields and be responsible for high-energy particle phenomena in astrophys-
ical systems. Recent laboratory studies of this type of instability were conducted
with laser-produced plasmas and observations were consistent with the presence of

Weibel-generated fields [34].

At much lower relative velocities, recent experiments at the Plasma Liner Ex-
periment involve merging jets in semi-collisionless to collisionless regimes and in the
absence of a magnetic field. Initial results where the jets merged at an oblique angle
demonstrated a collisional interaction [35]. During further experiments where the jets
merged head-on, an ionization-mediated transition from collisionless interpenetration
to the formation of a collisional shock was observed [36, 37]. While initially colli-
sionless, the strong dependence of mean-free-path on mean ionization state (~ Z~%)

caused the nature of the interaction to change on experimental timescales.

Other recent research by Swadling et al. investigated the dynamics of imploding
jets formed by ablation of a cylindrical wire array. For most of the distance of
jet propagation, magnetic field was negligible. In these experiments, collisionless
interpenetration was observed between tungsten jets, while collisional oblique shocks

were observed in interactions between aluminum jets [38].

1.2.3 Collisionless, Magnetized Jet Interactions
An experimental campaign with the goal of studying astrophysically-relevant colli-

sionless shocks was undertaken at the Plasma Liner Experiment. These collisionless

shocks, commonly referred to as ‘cosmic’ shocks are of interest because they are

11
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thought to play an important role in astrophysical processes including the accelera-
tion of charged particles to very high energies. The flow transition in cosmic shocks is
mediated through charged particle interactions with an ambient magnetic field which
lead to magnetohydrodyamic turbulence at the shock front [39]. While these shocks
have been studied with computational tools [40] and evidence of their existence have
been observed in the universe [41], they have never been replicated in a laboratory
setting. In order to meaningfully study such shocks, an experiment must operate in
an unique parameter space, characterized by highly magnetized, high (3, collisionless

flows interacting at super-Alfvénic speeds, among other requirements [39].

In recent years a number of other experiments have probed magnetized, colli-
sionless interactions such as research by Courtois et al. where counter-propagating
laser-generated plasmas interpenetrate both in the presence and absence of a mag-
netic field. Although features in density were observed to uniquely occur in the

presence of the magnetic field, shocks were not detected [42].

1.3 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the
experimental apparatus and the diagnostics employed to capture and characterize
the reported observations of Rayleigh—Taylor-instability growth, and discussion of
data analysis methods. Chapter 3 discusses the details of a schlieren diagnostic that
was designed and constructed for use in plasmas with higher densities than those
reported on in this dissertation. This chapter is included as a guide for diagnostic
use with future experiments in those regimes. Chapter 4 reports the observations of
instability growth and analyzes the results in the context of theory and computational
modeling. Finally, Chapter 5 contains suggestions for future work and concludes the

dissertation. Appendices are also included with supplementary material.

12



Chapter 2

Experimental Apparatus

2.1 Experimental Facility Overview

The experiments described in this dissertation were conducted at the Plasma Liner
Experiment [43, 25] located at the Los Alamos National Laboratory. The experi-
mental apparatus is constructed around a 9 ft diameter vacuum vessel about which
plasma-armature railguns can be placed at any of 60 small 11-in. ports. The rail-
guns fire jets of plasma supplied by compressed gas bottles into the chamber where
an array of diagnostics with access through large 30-in. ports gather data on jet
propagation and interactions. An annotated photograph of this apparatus is seen in
Figure 2.1. Previous experiments conducted with this apparatus include character-
ization of a single jet [43], oblique merging of two jets [35], and head-on merging of

two jets in a semi-collisional regime in the absence of a magnetic field [36, 37].

For the experiments presented here, two plasma-armature railguns fired plasma
jets composed of argon and impurity materials which are ablated from the zirconia-
toughened-alumina insulator placed between the conducting rails. The railguns were

positioned such that jets were fired in a head-on configuration. A schematic and
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Laser
Magnetic probe interferometer
(receive)

High-speed
camera

Photodiodes

Plasma railgun
(second gun on
opposite port)

Laser
Interferometer
(launch) &
Mirror for Schlieren camera spectrometer

Figure 2.1: The 9 ft diameter vacuum vessel is equipped with 11 and 30 in diameter
ports. Most diagnostic access is provided by the large ports, and railguns are placed
at the desired 11 in ports. The high-speed camera called out here is a Dicam Pro
ICCD. For the experiments presented here, a multi-frame Invisible Vision UHSi 12/24
high-speed camera was placed at an 11-in port on the opposite side of the vacuum
chamber. Image from [44].

photograph of the railguns are seen in Figure 2.2. The two railguns were positioned
such that the jets merge head on after propagating approximately 1.1 meters to the

center of the 9 ft. diameter spherical vacuum chamber.

A recent addition to the experimental apparatus are the in-vacuum Helmholtz-
configuration magnetic field coils. These coils, designed and wound by Woodruff
Scientific Inc., were installed in the center of the chamber such that the magnetic field
generated would be oriented transverse to the propagation direction of the plasma
jets, as seen in Figure 2.3 [25]. The 30-cm radius coils are electrically connected in
series and have a combined inductance of 246 ;H. The capacitor bank which energizes
the coils has a capacitance of 4 mF, and the resulting RLC circuit has a rise time of

~ 1.3 ms which is very slow compared to the dynamics of the jet interactions (which
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Gas valve _—
Pre-ionizer

Rail electrodes (HD-17BB)
/Insulator (ZTA)

Nozzle (acrylic)

Figure 2.2: The plasma-armature railguns, produced by HyperV Technologies Corp.,
are built from two tungsten alloy (HD-17BB) rails insulated by zirconia-toughened-
alumina standoffs. Gas is puffed between the two rails before a pre-ionizer breaks
down the gas and a high-voltage, high-current discharge accelerates the plasma down
the rails. Image from [43, 44].

occur on ~ 10 ps timescales), and the Helmholtz field is considered to be steady state.
After installation of the coils, three concentric flux loops were placed on the symmetry
axis of the coils and the field and coil current was measured for applied voltages up to
4 kV. This enabled the characterization of magnetic field as a function of coil current.
For a broad range of Helmholtz coil currents, the installation generates approximately
270 G/kA at the center of the coils. Prior to the completion of Helmholtz coil
characterization and subsequent use in experimental campaigns, it was necessary to

design, fabricate, and install buswork based on 1” x 1/8" copper stock to supply
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current to the coils. The original plan to power the coils using 11 AWG copper wire
ran into trouble when the magnetic fields were found to have sufficient magnitude to
bend the wires and cause them to short on the conducting support structure. After
installing the buswork, coil operation was much more reliable except for occasional
arcing between the buswork and the support structure at high operating voltages
(in excess of ~ 1 kV). An attempt was made to insulate the buswork with fiberglass
braid, but this seemed to have little effect, and operating voltages on the Helmholtz
bank were kept below 1 kV.

Figure 2.3: View of the in-vacuum Helmholtz coils, with end-on view of far railgun
bore visible. Copper buswork, prior to insulation attempts, is visible in the bottom
of the image. Image from [25].
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In the experimental sequence, time ¢t = 0 references the time at which the railguns
are fired. The Helmholtz coil is energized at t ~ —1.3 ms, the valves which supply
gas to the railguns are opened at t ~ —300 us, and a pre-ionizing circuit in the
railgun breech is energized at t ~ —30 us. After the railguns are fired, the time
of flight of the jets from the nozzle affixed to the gun muzzle to their respective
edges of the Helmholtz coil is &~ 20 us, while it is not until ¢t ~ 30 us that the jets
begin to interact with each other. Due to underdamped ringing of the circuit which
provides current to the railguns, plasma jets are released from each gun in a series.
This ringing is seen in the two current traces in Figure 2.4. After the first two jets
collide, a second jet arrives in the interaction region as depicted in Figure 2.5, and
approximately 30 us later collides with the magnetized, stagnated plasma remaining
in the interaction region from the previous collision. It is during this secondary

collision that Rayleigh-Taylor instabilities are observed.

2.2 Diagnostic Overview

A suite of diagnostics, including a survey spectrometer, 8-chord visible wavelength
(561.3 nm) interferometer [45, 46], magnetic flux probes, and two fast cameras are
employed to study the interaction region. A cartoon of the arrangement of the
diagnostics within the vacuum chamber is shown in Figure 2.6. One of the fast
cameras, an Invisible Vision UHSi 12/24 captures 12 frames separated by 2 us per
experimental pulse in the experiments reported here (installation location not visible
in Figure 2.1). Each frame captures visible light with a 750 ns exposure time and,
after cropping the distorted edges of each frame, a maximum useful resolution of
1000 x 860. A visible wavelength spectrometer captures spectra from region ~ 7 cm
in diameter, centered at the location of an interferometer chord, for a short gate

time during the experimental pulse. During an experimental pulse, a gate valve
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Figure 2.4: Current in the circuit powering the rails of each railgun is shown. Ringing

is seen with a period of approximately 11 us.

isolates the vacuum chamber from the compound molecular pump. By measuring
the chamber pressure rise during shots during which only the gas puff valves are
fired, an the amount of injected gas in the jets is estimated. By comparing this case
with the pressure rise during “full” shots with the railguns energized, an estimate of

the amount of impurities which are ablated from the railgun insulation is made.

Plasma ion density n;, electron temperature 7., and mean-ionization state Z
are determined by an iterative process [43]. An initial value of n; - dl (where dl is
chord length through the plasma) is estimated from interferometer phase shift data
using an assumed value of Z. An approximate chord length dl is estimated from
fast camera images to estimate the ion number density. This density estimate is

used in concert with an estimate of the species mixture in non-local-thermodynamic-
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”

Incoming plasma jet

P~

~60 cm

Stagnated, magnetized plasma

T

Figure 2.5: Notional view of experimental setup. Two plasma jets launched by
oppositely positioned railguns collide in the presence of a magnetic field generated
by the Helmholtz configuration magnetic coils before a second jet arrives at the
remnants of the initial interaction. Note that only one of the two opposing plasma
guns is shown.

equilibrium spectral calculations performed by PrismSPECT software [47] to predict
profiles of spectral emissions for a range of 7, and Z. Comparing these predicted
spectra to experimentally recorded spectra enables estimation of T, and Z based on
the presence or absence of spectral lines. This estimate of Z is used to improved
the estimate of n;, and start another analysis iteration. The process is considered
complete for the purposes of the results presented here when the estimated ion density

is within ~ 10% of the value estimated in the previous iteration.

Magnetic field values at a position near the spectrometer view are determined by
integrating signals from an array of magnetic pickup coils, the construction of which
are detailed by Hsu et al. [25]. In addition to these interaction-region diagnostics, a
photodiode array [25] is employed to capture emissions from jet propagation between
the railgun nozzle and interaction region. Plasma jet velocity is estimated by calcu-

lating time-of-flight of features in both photodiode array and interferometer signals.
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Figure 2.6: Notional top view of experiment interior with diagnostic viewing chords
overlaid. The orange rectangle represents location of material from plasma jets as
they near the transverse magnetic field (orientation in dark green). The multi-frame
fast camera is at the top in this view.

Three photodiodes capture visible light from 1-cm field-of-view chords that intersect
with the ‘boresight’ axis (the axis aligned with gun bores) at positions located at 61,
86, and 111 cm from the center of the spherical chamber. As plasma jets travel from
the gun muzzle toward the center of the chamber, sharp increases in measured emis-
sion are interpreted to be the arrival of the leading edge of the jet, and jet velocity
is estimated from the time delay in these features. An example of photodiode data
is seen in Figure 2.8. Finally, an array of magnetic pickup coils affixed to the railgun
nozzle captures magnetic field decay in the jet after the jet leaves the railgun bore

35).
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Figure 2.7: An iteration method is employed to determine 7T, n;, and Z. Inter-
ferometer data is used to estimate density, which in turn is used by PrismSPECT
with an estimate of species mixture to estimate possible values of T,. Comparison of
PrismSPECT output with spectrometer data enables estimates of 7, and Z, which
allow more accurate estimations of n; from interferometer data. These data are
shown for example purposes and are not related to data presented elsewhere in this
dissertation. Image from [44].

2.3 Interferometer Improvements

Previously, an interferometer was designed and constructed for use at the Plasma
Liner Experiment [45, 48]. The 8-chord design was intended for use diagnosing
plasmas relevant to plasma liner formation with electron densities in the range
1016 < n, < 10 cm™3. In the existing system, a laser beam is split into probe
and reference beams which are modulated to have a frequency shift relative to one
another. As discussed in [48], after probing the plasma the beams are recombined
and the resulting high-frequency beatwave is mixed with a signal at the original
modulation frequency. This process yields signals related to the phase shift of the

probe beam relative to the reference beam, and independent of the power in either
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Figure 2.8: Time-of-flight features in photodiode traces enables velocity estimation.
Seen here, amplitude-normalized traces of visible light from viewing chords located

at r = 61, r = 86, and » = 111 cm show evidence the first jet arriving at ¢t = 21,
t =27, and t = 33 us, respectively.

beam. These signals, filtered prior to digitization, are the I and () signals from the
IQ mixer, where the [ signal represents the cosine of the phase shift, and the @)
signal represents the sine of the phase shift. Both I and ) continuously vary on
slow (millisecond) timescales due to the effect of mechanical vibrations, with signals
in the range 100 mV when the interferometer is well-tuned. The features in the
signals due to the presence of the plasma are smaller amplitude (=~ 40 mV) higher fre-
quency (~ 10° Hz) fluctuations that are separated from the background mechanical

fluctuations by an analysis algorithm.

The amplitude of the signal component attributable to the presence of plasma

22



Chapter 2. Experimental Apparatus

depends on phase shift of the plasma, and thus its electron density. When the
interferometer was employed to diagnose plasmas with densities in the range 10 <
ne < 10 em™3, the amplitude of the plasma component of the signals dropped to
~ 10 mV. However, the bit noise amplitude of the digitizers is £2 mV, and the useful
range of the signals for digitization is /= £2000 mV. In this regime, bit noise became
an unacceptably large fraction of the signal of interest, and the decision was made

to amplify the I and @) signals to improve the signal-to-noise ratio.

2.3.1 Design of Amplifiers

Two arrays of 8 amplifiers were constructed to amplify the raw [ and @ signals with
a gain of 6.1, which is capable of improving the signal-to-noise ratio by a theoretical
maximum factor of 37.2 with the assumption that the only source of noise is bit
noise. While in practice the improvement in signal-to-noise ratio was somewhat less,
as other sources of noise became more important when amplified, the improvement
was significant. In general terms, whereas prior to the addition of amplification,
phase shift could be measured in practice with an error of &~ +1 degree, the addition

of the amplifiers reduced phase shift measurement error to ~ 40.25 degree.

The amplifier model chosen for this purpose was the Analog Devices AD8130.
This model was chosen due to its low noise, large bandwidth (up to 270 MHz), and
stability at low gain. Evaluation boards (Analog Devices UG-133) were chosen to
build the amplifier circuits on an expediency and cost basis. Parts were selected to
build 16 amplifier circuits with gain 6.1 based on the Analog Devices datasheets.
The amplifiers have differential inputs, which are unnecessary for use with the in-
terferometer signals, and the spare input was shorted to ground and only a single
input was used. The parts used to build the amplifiers can be seen in Table 2.1. An

assembled array of 8 amplifier is seen in Figure 2.9.

23



Chapter 2. Experimental Apparatus

Table 2.1: List of parts for interferometer amplifiers.

Qty. Manufacturer Part Number Description

16 Johnson 415-0029-018 Coax cable assembly SMA

16 Analog Dev. UG-133 Evaluation board

16 Analog Dev. ADS8130ARZ-REEL Differential op-amp
4 CUI VESD2-S12-D12-SIP DC-DC converter -12/+12 V
2 Artesyn DA12-120US-M Wall wart power supply

16  Johnson 142-0701-801 SMA connector

32 Panasonic ERJ-S8ENF1001V 1.0 k€2 SMD resistor

16 Panasonic ERJ-S8ENF501V 5.1 k2 SMD resistor

32 Vishay 1206ZT0OR0O0 0.0 Q SMD resistor

48 Vishay 1206F TD49R9 49.9 Q2 SMD resistor

16 Bourns 3299W-1-102LF 1.0 k€2 trimming pot.

32 Kemet T494D106K025AT 10 uF SMD tantalum cap.

32 TDK C3216X7R1E105K085AA 1.0 uF SMD capacitor

48 TDK (C3216C0G1H104J160AA 0.1 uF SMD capacitor

16  Molex 0022112032 Molex header

16 Molex 0022012037 Molex connector housing

48 Molex 08-55-0131 Molex connector crimp pin

2.3.2 Interferometer Signal Processing

To process the raw interferometer data, three basic steps are taken. First the raw [
and @ signals for each chord are smoothed with a 5 point moving average (boxcar)
filter and the phase shift is calculated in the range [—m, 7] by computing the four-
quadrant inverse tangent of QQ/I. Second, the order of the phase is determined by
checking for discontinuities, assuming the phase shift is zero at the beginning of
the recorded data. The order of the phase shift is multiplied by 27 and added to
the phase, to obtain the continuous phase evolution. Finally, the component of the
phase caused by the presence of plasma along the chord is isolated from low-frequency
mechanical vibrations or other sources of phase change by fitting either a polynomial
or a spline to the portions of the phase before and after the time frame when plasma

is present. This low-frequency phase fit is subtracted from the measured phase, and
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Figure 2.9: A set of 8 amplifiers to amplify the I and @ signals of four interferometer
chords. Two such sets were built. The SMA terminals which are centered (near the
camera) are the outputs and the offset SMA terminals are in the inputs (far from
the camera).

the result is interpreted to solely represent phase shift caused by the presence of
plasma. The first and last stages were altered to improve the accuracy of the phase

shift calculation.

The raw data and the final stage in the analysis are shown in Figure 2.10. The
mostly horizontal blue and green traces show the raw I and @ before they have
been smoothed. The continuous phase evolution is shown as the cyan trace. A
polynomial fit of the pre- and post-plasma low frequency phase component is shown
as a magenta trace. To perform a spline fit (shown as noiseless blue trace), the
continuous phase evolution is heavily smoothed with a 100 point boxcar filter (red
trace) and subsample points (shown as blue circles) are selected along the smoothed
trace through which to fit the spline. In place of a traditional spline, a PCHIP
(piecewise cubic Hermite interpolating polynomial) was found to more smoothly and
reliably fit to the low-frequency phase shift component. The low-frequency phase fit
is subtracted from the continuous phase during the time period of interest and the

resulting component of the phase shift resulting from the presence of plasma along
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the chord can be seen in Figure 2.11.

It was necessary to improve the first stage of this process because of offset drift
of the amplifiers. The original interferometer analysis code assumed that all of the I
and () signals had no offset. This meant that the presence of offset would change the
amplitude of the calculated phase shift, dramatically so if the offsets were as large as
~ 100 mV. To tackle this problem, a MATLAB routine was written that found the
global minimum and maximum values of I and () for each chord across a number
of shots from a given day. This information is used by the main analysis routine to
compute and subtract off the offset for each I and @) signal. These routines and an

explanation of their use is found in Appendix A.

The final stage of the analysis was improved by the implementation of a spline-
fit routine to replace the fitting of a polynomial to the low-frequency phase shift
component. This greatly improved the fit quality and reliability of background phase
shift subtraction. The analysis routine was altered such that the user of the code
defines a period of time during which the plasma is expected to be present, and
the code automatically smooths, subsamples, and fits a PCHIP to the subsamples
in order to approximate the phase shift surrounding the user-defined time period,
correcting for fit offset. For all shot ranges, subsample spacing is set to 50 us for
post-plasma times, and subsample spacing ranges from 18-40 us for pre-plasma times,
depending on the number of samples available prior to t = 0. The number of post-
plasma subsamples increases with the length of time that the plasma is expected
to be present, so that Mgupsamples = 00T (1.5 - At present/50) for Atpesent in ps. The
smoothed phase shift is only used for the placement of the subsamples, and smoothing
of the final plasma-only phase shift is an option left to the user (off by default). The

code implementing this method can be seen in Appendix A.
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Figure 2.10: Overview of interferometer analysis, showing the raw I and () signals,
the computed phase shift, and the process of fitting curves to the low-frequency
component. These data are shown for example purposes and are not related to data
presented elsewhere in this dissertation.
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Figure 2.11: The final phase component from presence of plasma. This particular
trace came from a chord with a poorly tuned fiber coupler. These data are shown for
example purposes and are not related to data presented elsewhere in this dissertation.
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Schlieren Diagnostic

A schlieren imaging system, originally planned to diagnose plasma-liner formation
experiments [25, 49] with electron densities in excess of ~ 106 cm™3, was designed
and constructed with the objective of dual use in regimes relevant to the laboratory
study of shocks created during magnetized jet interactions. Such regimes were ex-
pected to have electron densities as low as ~ 10'* em~3. As shown in this chapter,
even though experiments were conducted in plasmas with densities ~ 10** cm =3, the
scale lengths of gradients in these plasmas were not short enough for the schlieren
diagnostic to have sufficient sensitivity. While the diagnostic was not used for the
experiments presented in this dissertation, information regarding the design and
construction of the diagnostic is included here as a reference for its future use in

higher-density regimes.

Schlieren imaging is a diagnostic technique that relies on refractive deflection of
collimated light in a test medium to generate light and dark regions (referred to as
‘contrast’) at the imaging plane that have irradiance proportional to the gradient
in the refractive index of the test medium. After the probe beam passes through

the test medium, it is focused to a point prior to arriving at an imaging plane.
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At this focal point, a portion of the beam is blocked which biases the contrast to
appear for refractive gradients in the image with direction perpendicular to the edge
blocking the beam. This imaging technique is distinct from shawdowgraphy, in
which refractive gradients create contrast in the shadow of a scene, without the use
of re-focusing and image cutoff edge for contrast enhancement. While shadowgraphy
captures contrast which is sensitive to the Laplacian of refractivity (V2N, where
N is the index of refraction of the scene medium), schlieren techniques capture
contrast which is sensitive to the gradient of refractivity (V.N). Schlieren imaging
is more sensitive and thus more capable of revealing detail of flow phenomena than

shadowgraphy, particularly for ‘shallow’ density gradients [50].

&
o —/—*ﬁ" SOURCE

/
SLIT

— 7\
IMAGE PLANE\/ KNIFE EDGE

Figure 3.1: Notional layout of Z-configuration schlieren system. A slit is illuminated
by a monochromatic light source and a knife edge is used to block light at focal point
of post-test mirror.

When the scheme described above is executed using parabolic mirrors to collimate
and refocus the probe beam, the result is a ‘Z-configuration’ schlieren system, notable
for its compactness and low cost of construction. Figure 3.1 shows the notional

layout of the Z-configuration schlieren system. Typically, light from a bright source
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is focused on a slit placed near the focal point of a parabolic mirror which collimates
the beam. The beam is then passed through a test medium before reaching a second
parabolic mirror which re-focuses the beam to a point where a knife edge blocks
all but a small portion of the probe beam. The unblocked beam passes on to the
imaging plane, where the contrast of the resulting image is recorded. For a schlieren
system of this type, the angular deflection € in a direction y of a ray passing through

the test medium is given by [50]

_Lay

= _—_ 3.1
N dy’ (3.1)

€y

where L is the distance along the optical axis along which the probe ray passed
through the test medium. When a portion of the image is blocked by a knife edge or
other object at the focal point of the second mirror, the contrast C' of the resulting

image is given by [50]

eL (3.2)

a

where fy is the focal length of the second mirror and a is the height of the image
which passes by the knife edge (original height of images less the amount blocked by
the edge). Combining Equations 3.1 and 3.2 shows that the contrast in a schlieren

image is proportional to the index of refraction gradient, seen here as

foL AN

In a plasma, the index of refraction N is usually dominated by free electrons, and

for this case is given by [48]
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Ne
N, = ,/1- ¢ 3.4
S (3.4)

where n. is the electron density and n. is the cutoff density at the frequency of
interest, which is given by eym.w?/e?, where ¢ is the vacuum permittivity, m, is
the mass of an electron, w is the angular frequency of interest, and e is the charge
of an electron. Taking the spatial derivative of Equation 3.4 reveals the relationship

between electron density and refractive index gradients in a simple plasma,

dne
dNe Ty (3.5)

dy 27%«/1—2—2

According to Equation 3.3, image contrast is proportional to the gradient of

refractive index, therefore image contrast is proportional to the gradient of electron
density, inversely proportional to the cutoff density, and increases dramatically as
the electron density approaches the cutoff density. For most cases, n./n. is small,

and the root term in the denominator of Equation 3.5 is approximately unity.

3.1 Schlieren Contrast Including Neutrals

To consider the case of a plasma that has a significant neutral gas density, the index
of refraction of the plasma will no longer solely depend on the index of refraction
of the free electrons. For this case the jets in the collisionless shock experiment are
modeled as containing partially ionized hydrogen plasma of uniform mean ionization
state Z. Neutrals are assumed to be monatomic, with their electron in its ground
state. Therefore two contributions to refractive index are considered; free electrons
and neutral hydrogen atoms. Protons are neglected under the assumption that they

are too massive to meaningfully contribute to the electric susceptibility of the jets.
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For the free electrons, the refractive index was previously given in Equation 3.4. For

the neutral hydrogen atoms, the Clausius-Mossotti relation states [51]

e—e M  4nNp«a

€ — 2¢ ? 3 (36)

where M is the molar mass, p is the mass density, N, is Avogadro’s number, and «
is the atomic polarizability. This can be rewritten in the following form to give an

expression for the refractive index of the neutrals;

3 + 8man,
Np=\/57——. 3.7
3 — 4man, (3.7)

For a ground-state hydrogen atom, the atomic polarizability is theoretically 9/2
times a cubic Bohr’s radii, which was converted to cubic meters to be compatible
with the density units used in the calculation. The total refractive index of the
plasma is a combination of the components from the free electrons and neutrals.
The Gladstone-Dale relation indicates the relationship between the total index of

refractivity and the constituents [52],

m

Niotar — 1 = Zklpz = Z (Nz - ) ) (38>

i=1 i=1
where k; is the specific refractivity for a given species. Given this it can be seen that

for the partially ionized hydrogen plasma,

Ntotal :N6+Nn_17 (39)

and that
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dN, dN, dN,
total _ e 4+ n . (3 10)
dy dy — dy

Finally, by differentiating Equation 3.7 an expression is obtained for the spatial

derivative of the refractive index,

dN, 187
_ & _ (3.11)
dy (3 —4man,)z(3 + 8ran,)?

where the neutral density n, = n.(1 — Z)/Z. Further, by taking the result from
Equation 3.5, Equation 3.10 becomes

dne dny
dNtotal _ T dy + 187Tad_y (3 12)
dy 2ney/T—=1 (3 —4wan,)? (3 + 8ran,)?

Nec

In cases with sufficiently large neutral species densities, Equation 3.12 is used with
Equation 3.3 to determine the relationship between schlieren contrast and electron
and neutral density. For most cases, the second term on the right-hand side of
Equation 3.12 is much less than the first, and a more simple (electron component

only) relationship exists between density gradients and refractivity gradient.

3.2 Schlieren to Diagnose a Low Density Plasma

A schlieren system, originally conceived to diagnose high-density plasma liner exper-
iments, was re-purposed in an attempt to detect collisionless ‘cosmic’ shocks in lower
density plasmas, the nature of which are discussed in Section 1.2. The thickness of
these shocks is thought to be on the order of the ion gyroradius. The initial experi-

mental design suggested that ion gyroradii would range from 0.2 — 1.4 cm and that
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experimental densities would be at least 2 x 104 cm™3

. To proceed with develop-
ment of the diagnostic, a design criteria was chosen that the system should be able
to detect a 10% change in electron density over a single ion gyroradius. The design
threshold for contrast detectability was chosen to be 5%, which is commonly consid-
ered the minimum practically detectable contrast [50]. Due to the unavailability of

highly sensitive or otherwise contrast-enhancing detecting methods, the traditional

minimum was adhered to.

Based on these considerations, and the relatively low density (~ 10°x lower
than atmospheric) of the plasma to be diagnosed, obtaining sufficient contrast was
determined to be the primary challenge. While the dominant contribution to the
electric susceptibility (and thus index of refraction) is from free electrons, the lowest
density neutral fluid flow features ordinarily observable by schlieren systems are at ~
100 x lower density than atmospheric. Based on the relationship in Equation 3.3, the
controllable, sensitivity-influencing components of the system are the focal length of
the second parabolic mirror, the amount of the image cut off by the knife edge, and via
the index of refraction, the frequency of the probe beam. As seen in Equation 3.4, the
index of refraction of the plasma (dominated by the contribution from free electrons)
decreases as the cutoff density n. decreases. Since the cutoff density is proportional to
w? of the probe beam, a low frequency (thus long wavelength) probe beam improves

contrast sensitivity.

The longest wavelength illumination source available and practical for construc-
tion of the schlieren diagnostic was an infrared Nd:YAG Coherent Infinity 40-100
laser (1064 nm). A pair of two-meter focal length, 10-inch diameter telescope mirrors
were employed to maximize contrast while maintaining affordability of the system.
The knife edge cutoff was left as a tunable parameter. Using this equipment, and
the previously described plasma parameters it was determined that a schlieren sys-

tem would theoretically be capable of capturing electron density fluctuations at the
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Figure 3.2: Useful parameter space of schlieren diagnostic. In black areas of the plot,
contrast will be less than 5%, whereas in white areas of the plot, contrast will be
greater than 5%, assuming second mirror focal length fo, = 2 m, L = 0.1 m, and
Gmin = 40 pm.

shock front. To study the theoretical performance of the diagnostic in the expected
parameter space the contrast was computed for a range of densities and ion gyro-
radii, as seen in Figure 3.2. From this contour, it can be seen that for gyroradii of a

few millimeters, contrast is sufficient for electron densities as low as 2 x 10 cm ™3,

whereas for gyroradii longer than a centimeter, densities in excess of 10> cm™3 are

necessary to detect density gradients.

To proceed with design and construction of the diagnostic an Apogee Alta U1109
imaging unit, intended to be a telescope camera system, was readily available at
no cost. From a technical perspective, this unit was chosen because the sensor, a

Hamamatsu S10140-1109, features a remarkable 8% quantum efficiency at 1060 nm,
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an unprecedented efficiency for a readily-available silicon CCD. The Apogee camera
contains no internal optics, solely consisting of a sensor, shutter, trigger, and readout
capability. An external enclosure was constructed to place two filters in the path of
the beam prior to arriving at the CCD. The first filter is a bandpass filter, that only
allows light at the laser wavelength to pass into the otherwise light-proof aluminum
enclosure. Immediately prior to the camera shutter is a mount for a neutral density

filter used as necessary to prevent damage to the sensor by the laser.

3.3 Construction of Schlieren System

In addition to the Alta camera and the Infinity laser, numerous other items were
necessary for the schlieren diagnostic, including a translatable knife edge, optical
mounts for parabolic mirrors, flat beam-folding mirrors for which custom mounts
were necessary to direct the beam through the spherical vacuum chamber, translation
stage optics to align, attenuate, and diverge the probe beam, and a visible-wavelength
alignment system. The optical components necessary are shown in Table 3.1. In the

following subsection, the systems that these components comprise are described.

To cut off a portion of the image at the focal point of the second mirror, a
razor blade was rigged in a lab clamp positioned atop a micrometer-adjusted linear
translation stage. This enables very fine control over the cutoff, and consequently
the brightness and contrast of the schlieren image, as seen in Figure 3.4. Optical
mounts for the parabolic mirrors were salvaged, however mounts for the flat 8 by 10
inch folding mirrors necessary to direct the probe beam through the spherical vacuum
chamber were designed and fabricated. The design for these mounts was complicated
by the geometry of the experiment. Since the probe beam needed to be directed
through the large, spherical vacuum chamber at a level nearly two meters above

the floor of the lab, custom rotating and tilting mounts were developed. Diagnostic
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Table 3.1: List of parts for schlieren system.

Qty. Manufacturer Part Number Description
3  Edmund NT40-067 Large flat mirrors
2 RF Royce CM-10.8 Conical section parabolic mirrors
1 Edmund A43-717 Opal diffuser
1 Edmund A49-157 Ground glass diffuser
1  Edmund NT55-292 IR indicator card
1  Edmund 48-766 2bmm focal length lens
2 Newport 9912 Bases
1 Newport 9607 Post holder
1 Newport 9608 Post holder
1 Newport SV-0.5 Adjustable width slit
1 Thorlabs PT1 Single axis translation stage
1 Edmund NT63-410 OD 1.0 NIR ND filter 25.4 mm
1 Edmund NT62-874 1064 nm bandpass (3 nm) filter 25.4 mm
1 Thorlabs KM100T Kinematic Mount
1 Thorlabs CPS5H32 Diode Laser
1 Thorlabs LDS5 Laser power supply
1 Newport 9891 Flipper mount
1 Edmund NT83-485 1”7 dia. mirror
2 Edmund 66-518 125 mm rotary stage
1 — — Lab clamp
1 — — Razor blade
1 — — Beamsplitter, 25.4 mm

access was provided via 11-inch ports located high above the optical tables that the
launch and imaging stages were mounted to. To effectively direct the probe beam
through these ports, the so called ‘periscope’ mounts were required to azimuthally
rotate around the ports and tilt at an angle relative to the axis of symmetry of each
port. The final design of the components of these mounts is shown in Appendix B.
Attached to the periscope mounts are lightweight rectangular mirror mounts and
associated mirrors, shown in Appendix C. A photograph of the complete assembly

is shown in Figure 3.3.

The primary purpose of the schlieren launch stage, seen in Figure 3.5 is to direct
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Figure 3.3: Each periscope mount consists of the custom parts shown in Appendix C
as well as an Edmund 66-518 rotary mount.

a diverging beam toward the first collimating parabolic mirror. This beam must
originate from a point one focal length from the mirror in the longitudinal direction
and slightly offset from the axis of symmetry of the parabolic mirror. Furthermore,
the amount of energy in each laser pulse must be large enough to obtain a useful
signal at the detector but not large enough to pose an eye safety hazard from specular
reflections of the expanded beam. To accomplish this, the beam from the laser is
first attenuated with a beamsplitter that directs 90% of the beam energy into a beam
dump and transmits the remaining 10% to a lens with a 25 mm focal length. This
lens expands the beam such that it has an approximate diameter of 250 mm at a
range of 2000 mm. At this distance, the beam encounters the parabolic mirror and

is collimated at a diameter of ~ 200 mm, and directed through the vacuum chamber
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Figure 3.4: The Apogee imaging unit is located on the back of the aluminum en-
closure containing two filters. The knife edge mount is translatable transverse to,
and along the beam at the focal point of the second parabolic mirror. The green
(532 nm) alignment beam is incident on the knife edge and filter.

by a series of flat folding mirrors. Additionally, to aid in alignment of the system,
a green alignment diode laser was added to the launch stage. The alignment laser
can be seen below the word “splitter” in Figure 3.5. The alignment beam is directed
toward a ‘flippable’ mirror that is usually in the down position, allowing the infrared
beam to pass. When the mirror is in the up position, it blocks the infrared beam and
instead directs the green alignment laser down the same optical path as the infrared

beam.
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Figure 3.5: Layout of schlieren system launch stage. Laser energy is reduced with
a beamsplitter before a lens diverges the beam as it propagates toward the first
collimating parabolic mirror.

3.4 Optical Aberrations

As mentioned previously, the optical path of the PLX schlieren system is rather
convoluted when compared to a traditional z-configuration schlieren system. After
the beam encounters the first parabolic mirror, three turning mirrors redirect the
beam through the spherical vacuum chamber and to a separate optical table which
contains the second parabolic mirror, knife edge, and the imaging unit. The coma
aberration arises when a parabolic mirror fails to focus collimated light to a point
due to the collimated light being incident to the mirror at an angle relative to the
axis of the parabola [50]. Traditional z-configuration schlieren systems (Figure 3.1)

are usually immune to coma aberration by virtue of the symmetry of the geometry—
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coma aberration induced at the first parabolic mirror is cancelled by the equal and
opposite coma at the second mirror. Due to the optical path at the experimental
facility, such symmetry was prohibitively difficult to achieve. Pains were taken to
reduce coma aberration by moving and elevating elements of the system as necessary,
but coma aberration was never completely expunged from the system, and as a result
the knife edge cutoff darkened and enhanced contrast of some portions of the image

more than others.

3.5 Alignment

To align the green alignment laser to the infrared beam, the diverging lens was
removed from the launch stage, and a beam block was placed at a location ~ 1.7 m
from the laser enclosure. A piece of thermally reactive paper was affixed to the beam
block, and a plastic beam tube was installed between the beam block and the laser
enclosure, as seen in Figure 3.6. Then, the infrared laser was fired, making a mark
on the laser paper, and the flippable mirror was placed in the up position and the
green laser was directed toward the mark on the paper by adjusting the pan and tilt
on the flippable mirror. Next, a piece of reactive paper was placed at the inside of
the laser enclosure, the flippable mirror was placed in the down position, and the
infrared laser was fired again, making another mark. This time, after raising the
flippable mirror, the alignment beam was directed to the mark by adjusting the pan
and tilt on the alignment laser mount itself. This process was repeated until the

alignment beam met both marks made on the papers without any adjustment.
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Figure 3.6: Position of beam tube for schlieren alignment. The laser enclosure ap-
pears at the left side of the photograph and the first parabolic mirror is visible on
the right side.

3.6 System Trials

The system was aligned as described above and directed at candles placed in the
beam path, as seen in Figure 3.7. Schlieren images were observed both with the
alignment laser and using the infrared laser. The system was tuned to improve the
quality of the schliere, to a moderate degree of success with the alignment laser,
and less so with the infrared laser. Using the alignment laser, coma aberration was
drastically reduced, and the presence of reflections propagating in the probe beam

was also eliminated.

However, serious challenges remain with the infrared laser. Perhaps due to the
lack of a spatial filter, beam illumination is very uneven, unlike the alignment laser.
This was attempted to be compensated for with the use of image processing tech-
niques with some success, but changes in beam intensity from shot-to-shot com-
plicated such efforts. Furthermore, diffraction patterns that were visible but not

extreme with alignment laser appeared in a pronounced fashion in images captured
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Figure 3.7: Schlieren image of candle plume with green alignment laser. This photo-
graph is of a projection onto a piece of black cardboard, captured during tests of the
system. During operation this image would be projected directly onto an imaging
sensor. The position of the candle is marked in orange, and the boundaries of the
image are seen in yellow. Note the difference between scene and image vertical.

of the infrared beam. Attempts to diagnose or correct these issues were hampered
by the low beam energy precluding the use of available IR-sensitive cards or paper

to visually check the alignment and illumination evenness of the infrared beam.

Since construction was completed, the system has not been used to diagnose a
plasma, as plasmas with sufficiently high density and sufficiently small gradient scale
lengths were not generated in experiments. Figure 3.8 shows the parameter space of
plasmas in the experiment (red oval) overlaid on the sensitivity contour map shown

earlier.
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Figure 3.8: Useful parameter space of schlieren diagnostic overlaid with experimental
operating space (in red). The z-axis of this plot can be read as “gradient scale
length”, to generalize to cases where a magnetic field was not present.

3.7 Image Processing

Simple image processing routines were developed to differentiate between contrast
from refractivity gradients and unevenness of beam illumination. The approach was
to subtract a background image from a scene image, and filter the resulting difference
with a Fourier-space filter to remove beam speckle and diffraction pattern artifacts.
This enabled schlieren and shadowgraph images of a test candle to be captured

unambiguously, as seen in Figure 3.9.
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Figure 3.9: Shadowgraph (knife edge is fully withdrawn, no cutoff effect) of candle
in 1064 nm laser light. The candle is visible as a shadow in the lower right part of
each image. The top is a background with no flame, the center is a scene image with
a candle flame, and the bottom is the difference. While the presence of the flame is
discernible, artifacts from the presence of diffraction patterns mar the image.
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Rayleigh—Taylor Instability at a

Decelerating Plasma Interface

During the course of experiments of the type shown in Figure 2.5, an unmagnetized
jet collided with a stagnated magnetized plasma, and instabilities were observed
which appeared to be stabilized by the presence of magnetic field. In this chapter
these results are presented and the instability is shown to be consistent with the
Rayleigh—Taylor instability in a regime where both magnetic and viscous stabilization

are relevant.

4.1 Observations of Rayleigh—Taylor Growth

When the second jet arrives at the interaction region the growth of fingers are ob-
served in visible emission as the material in the newly arrived jet encounters the
stagnated plasma, shown in Figure 4.1. A portion of the Helmholtz coils are visible
as arc-shaped structures in the right part of each frame, where the right-hand coil

is closer to the camera than the left-hand coil. The stagnated plasma is dark (not
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emitting), and located in the vicinity of the spectrometer view, which is in the center
of the Helmholtz coils. The second jet is seen as the bright material moving from
right to left. The location of interferometer chords at the mid-plane of the Helmholtz
coils are shown as small white squares. The chords are not situated normal to the
mid-plane, rather from the perspective of the images in Figure 4.1, the chords origi-
nate from the lower left of the visible region and into-the-page and and terminate at
a location above, to the right, and out-of-the page. The location of the intersection
of the spectrometer view with the midplane is shown as a circle, and the absolute

location of the magnetic probe is shown as a ‘plus’ (4) symbol.

As the incoming jet impacts the stagnated plasma the jet slows down. Rayleigh—
Taylor -like instability fingers are clearly seen in the images. To estimate the ac-
celeration to which the interface is subject, the location of a bubble is tracked in
successive images, as shown in Table 4.1. Additionally, the location of a spike is
tracked in successive images, shown in Table 4.2. In both tables, difficulties in pre-
cisely choosing the location of the bubble and spike cause erratic calculations of
corresponding velocities. The resolution of the images was such that each pixel cor-
responds a distance of only 0.075 cm, affording a theoretical velocity resolution of
~ 1500 m/s. Rather, difficulties arose from changes in exposure of successive im-
ages, the presence of background reflections, and general lack of clarity. This meant
that in practice feature locations were picked within only 3-4 pixels giving a velocity
resolution of only 4500-6000 m/s. In an attempt to determine the largest possible
acceleration at the interface the kinematic relation vj% = v? 4+ 2aAz was employed to
determine the average acceleration between the position of the largest and smallest
inferred velocities. This result is shown in the right-most column of both tables, and
for both bubbles and spikes is ~ 10° m/s?. This calculation of the average accel-
eration over the sequence of frames is most sensitive to the initial velocity, which
has the largest magnitude (since a ~ v?). For this reason, all physically relevant

approaches to calculating acceleration based on the data in Tables 4.1 and 4.2 result
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Figure 4.1: Six frames from a single shot capturing instability growth over 10 us
as the second jet enters the region containing stagnated plasma. The location of
diagnostic measurements are called out in frame (a), and reiterated in frame (f).
The arc-shaped structures visible in the right side of each image are the Helmholtz
coils. Chord positions are measured with respect to the boresight axis, which is
aligned with the railgun bore.

in an acceleration magnitude O ~ 10? m/s?.

As mentioned previously, time-of-flight of features in photodiode and interferom-
eter traces are used to estimate jet velocity. Examples of these features are found
in Figures 2.8 and 4.5. To corroborate the acceleration estimate based on the cam-
era images, an estimate is made of the acceleration required to stop the jet over a
distance corresponding to the length scale of the interaction. For the purposes of

this estimate, the velocity of the incoming jet is assumed to be lost in a distance of
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Table 4.1: Estimation of velocity and acceleration from bubble position

Time (pus) | Pixel Location (cm) Velocity (m/s) Acceleration (m/s?)
67 259 -15.2 — —
69 215 -11.9 16500 —
71 181 -9.3 12800 —
73 152 -7.1 10900 —
75 107 -3.8 16900 —
7 88 -2.3 7130 —1.17 x 10°

Table 4.2: Estimation of velocity and acceleration from spike position

Time (pus) | Pixel Location (cm) Velocity (m/s) Acceleration (m/s?)
67 303 -18.5 — —
69 265 -15.6 14300 —
71 229 -12.9 13500 —
73 194 -10.3 13100 —
75 175 -8.8 7130 —1.19 x 10°
7 147 -6.8 10500 —

30 cm, which corresponds to half the diameter of the region containing the applied
magnetic field. Jet velocity was characterized for the railguns in previous study [43]
and was found to be in the range 40-70 km /s based on photodiode and interferometer
data for the operating parameters of these experiments. This suggests an accelera-
tion ranging from 2.7-8.2 x 10° m/s?>. While this estimate is somewhat higher than
the image-based estimates, both are within an order of magnitude, and 10 m/s?
is taken to be the nominal acceleration for the purposes of analyzing the observed

phenomena.

The view of the frames in Figure 4.1 is nearly perpendicular to the plane of each
coil, thus the view is oriented nearly parallel to the vacuum magnetic field generated
in the center of the coils. In the context of the dynamics of jet interaction, the

initially applied field is steady state, but the arrival of the first jets causes the field
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to evolve on microsecond timescales in the 30 us leading up the observed phenomena.
An insertable magnetic probe is placed in the interaction region (position indicated
in Figure 4.1) to measure the evolution of up to three local magnetic field components
during the interaction of the second jet with the stagnated plasma. Magnetic field
directions are reported with respect to the coordinate system of the Helmholtz coil,
such that ‘axial’ refers to a direction nearly into-and-out-of-the-page in the images,
‘azimuthal’ refers to a direction nearly vertical, and ‘radial’ refers to a direction nearly
horizontal. Data from this probe, seen in Figure 4.2, indicate that the stagnated
plasma from the initial interaction becomes magnetized prior to the arrival of the
second jet. In the 12 us prior to the arrival of the interface at the location of the
probe, the axial magnetic field in the stagnated plasma increases to the steady-state
magnitude, approximately 300 G. In the few microseconds prior to the arrival of the
interface, the magnitude briefly peaks at 370 G, suggesting some field compression
immediately prior to the arrival of the still-supersonic jet. As the leading edge of the
second jet sweeps across the position of the magnetic probe, the measured magnetic
field drops dramatically, from over 300 Gauss to only a few Gauss by the time of the
last camera image. This rapid drop suggests strong advection of magnetic field by

propagation of the field-excluding second jet.

As reported in previously published work [35], magnetic fields of 750 G are present
at the gun nozzle, and decay with an e-folding time of 5.6 us which would suggest a
magnitude of & 10 G by the time of arrival at the interaction region. Measurement of
local magnetic field upon jet arrival with the insertable B probe (location specified in
Figure 4.1) without energizing the Helmholtz coils suggests that there is no advection
of magnetic field with the second jet. Thus for the purposes of this investigation,
the second jet is considered to be unmagnetized as it arrives in the vicinity of the

Helmholtz coils.

Spectra snapshots are collected over a series of shots covering times both before
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Figure 4.2: Signals from the insertable B probe are integrated and added to the
steady-state field to determine magnetic evolution. The coordinate system references
the Helmholtz coil, thus the axial component is approximately into-and-out-of-the-
page in Figure 4.1, while the azimuthal component is nearly vertical. The radial
component (not shown here) show insignificant activity during the time frame of
interest. The vertical dashed lines indicate the beginning of each exposure in Figure
4.1. The horizontal dashed line corresponds to a 15 G field measured by the azimuthal
probe.

and after the interface is in the location of the spectrometer view. Comparing Prism-
SPECT spectral calculations with these experimental spectra enables bounding of
T, in both the stagnated plasma and second jet. Prior to the arrival of the second
jet, the appearance of line emission near 497.2 nm and the lack of line emission at
520.8 nm indicate a peak T, ~ 2.3-2.4 eV in the stagnated plasma, an example of
which is seen in Figure 4.3. After the interface passes the spectrometer view, the
appearance of line emission near 490.6 nm and the lack of line emission at 453.1 nm
indicate a peak T, ~ 2.7-2.8 eV in the second jet, an example of which is seen in
Figure 4.4. For the range 2.3 < T, < 2.8 eV the corresponding values of mean

ionization state are calculated using PrismSPECT to be 1.2 < Z < 1.6.
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Figure 4.3: Spectra captured from a shot (#3330) with the same parameters as
that shown in Figure 4.1. Prior to the arrival of the second jet (¢t = 65 us) spectra
shows emission consistent with T, ~ 2.3-2.4 eV. Example PrismSPECT output is
prediction of line emission wavelengths consistent with 7T, = 2.8 eV.

Seven chords from the 8-chord interferometer are used to measure the spatial and
temporal evolution of phase shift A® from free and bound electrons in the plasma
[45, 46]. The chord-integrated density is related to the measured phase shift by the
expression [ nrdl = AP/ [Ce (Z — Err)}, where nyo is the total ion-plus-neutral
density, C. = (Aprobe€?)/(dmegmec?) = 1.58 x 1072 rad - m? is the phase sensitivity
to electrons, Aprobe = 561.3 nm, and Err < 0.08 is an upper limit on the contribution
from bound electrons [35], which for cases of interest is small compared to Z. The
temporal evolution of phase shift of each chord is computed and averaged over a
number of shots, as seen in Figure 4.5. Spatial profiles are determined by comparing

the phase shift of different chords at a given time. Figure 4.6 shows the spatial profile
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Figure 4.4: Spectra captured from a shot (#3332) with the same parameters as that
shown in Figure 4.1. At the time of the arrival of the second jet to the spectrometer
viewing chord (¢ = 67 us) spectra shows emission consistent with 7, ~ 2.7-2.8 V.

Example PrismSPECT output is prediction of line emission wavelengths consistent
with T, = 2.8 eV.

of Nyt (Z — Err) (with an assumed chord length of 30 cm) at time ¢t = 77 us, from

which an experimental number density nit ~ 10'* cm ™2 is inferred.

The progression of images in Figure 4.1 appears to show an increase in wavelength
as the interface penetrates further into the stagnated plasma. To quantify this change
in wavelength, ten adjacent lineouts are added together from the region of frames
(c) and (f) containing the left edge of the second jet (indicated in the figure). These
summed lineouts are shown in Figure 4.7, and clearly show that 10 fingers appear at
t = 71 ps, while in the same vertical height, only 6 fingers appear at ¢t = 77 us. While

the displayed length scales are uncorrected for parallax, this effect is computed to
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Figure 4.5: Temporal evolution of chord-integrated phase shift averaged over 28
shots. A chord length of 30 cm is estimated from camera images for all seven in-
terferometer chords. Early-time rise in phase shift between adjacent outer chords is
interpreted as a feature indicating jet leading edge arrival.

be negligible, as the camera is situated approximately two meters from the jet, and
the camera line-of-sight is nearly perpendicular to jet propagation. This increase
in wavelength over 6 us suggests that a stabilizing mechanism may be damping the

growth of short-wavelength modes.
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Figure 4.6: Spatial profile of chord-integrated density n;,; ~ n./Z at t = 77 us, using

a chord length of 30 cm estimated from camera images, along seven interferometer

chords. Because the contribution from ions and neutrals is small, this plot represents

the plasma electron density distribution multiplied by local mean charge state. Error-
bars indicate the standard deviation over multiple shots.

4.2 Comparison with Theoretical and Computa-

tional Models of Rayleigh—Taylor Growth

When the Helmholtz coils are not energized, no instability is observable on the fast
cameras, indicating that growth either does not occur, or occurs at wavelengths too
small to be resolved. However, for the case presented here, the Helmholtz coils are
initially energized with a 1.1 kA current, generating an ~ 290-Gauss vacuum mag-
netic field. However, the magnetic field generated by the Helmholtz coil is initially
oriented into-the-page, in a direction which would be inconsistent with the stabiliza-
tion mechanism of the magnetic-Rayleigh—Taylor instability seen in Equation 1.3.

The k - B term provides stabilization of short wavelength modes, but depends on
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Figure 4.7: Summed emission lineouts from frames (c) and (f) of Figure 4.1. Pixel
intensity of 10 adjacent (300-pixel high) columns are summed together across the
regions of each frame containing the observed fingers. The locations of the bright
fingers are highlighted with arrows. The wavelength of the observed modes decreases
by a factor of 5/3 over the course of 6 us.

a component of the magnetic field which would be vertical in the images of Figure
4.1, and be perpendicular to the applied vacuum magnetic field. Calculating linear
growth rate versus mode wavelength (using Equation 1.3) for a variety of magnetic
field values relevant to the experimental parameter space results in the curves shown
in Figure 4.8. The observed modes have wavelengths of ~ 2 cm, a wavelength which
corresponds to the peak growth rate for a magnetic field component of about 15
Gauss aligned with the instability wave vector and growth on ~ 10 us timescales.

As seen in Figure 4.2, the azimuthal probe, which captures vertical field activity
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(that is, aligned with l;) at a single location in the interaction region, shows activity
of sufficient magnitude to account for magnetic stabilization for a period between
68 and 75 pus during the interaction. This 7 us period corresponds to about 3/4
of a growth time. Due to the dynamic pressure (¢ = pv?/2, where p and v are jet
mass density and velocity, respectively) of our plasma jets being ~ 30 times greater
than the magnetic pressure, it is plausible that the applied vacuum field can be par-
tially reoriented into the needed vertical (azimuthal) component through advection

at other locations in the vicinity of the interface.
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Figure 4.8: Linear growth rate of magnetic-Rayleigh-Taylor instability for the ob-
served parameter space.

Viscous stabilizing mechanisms could also contribute to the suppression of short-
wavelength mode growth, as seen in Equation 1.4. For the experimental regime
here there is weak electron magnetization in the arriving jet since electron gyrora-
dius rp. ~ 0.27 cm and Hall parameter we.7. ~ 0.3 (where w,. is electron cyclotron
frequency in rad/s and 7. is electron-electron collision time). This means that gy-

roviscosity is not significant because w7, is less than one and the large ion mass
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m; (m;/m, =~ 33.5, where m, is the mass of a proton) indicates that ion viscosity
dominates plasma viscosity. For this case dynamic viscosity (@ = pr) is given in cgs

units by [53, 54]

wh = 0.96nkTiT;, (4.1)

where

3y (KT
e 4y/mnIn Ae* Z4’

(4.2)

where In A is the Coulomb logarithm, k is Boltzmann’s constant, 7; is ion temper-
ature, n is plasma number density, and 7; is ion-ion collision time. Thus Apax ~
Tf/ 37-8/3. The energy equilibration time of the second jet upon arrival at the in-
teraction region is =~ 30 us, after expanding during flight from the railgun nozzle
to the interaction region. On exit from the gun nozzle ~ 30 us earlier, the highly
collisional jet was ~ 100x as dense and at nearly the same temperature [43], thus
having a sub-microsecond energy equilibration time. Since T, = T; at the nozzle,
and the equilibration time is still on the order of the plasma lifetime after expansion,

the assumption that T, = T} is quite reasonable at the time of interaction.

As mentioned previously, temperatures in the vicinity of the accelerating interface
are in the range 2.3 < T, < 2.8 eV, and corresponding ionization states are in the
range 1.2 < Z < 1.6. This means that dynamic viscosities in the range 5.2 x 107> <
p < 1.1 x107* g/(cm -s) are possible, which for acceleration g = 10° m/s? and
density py = 2p; = 1.12x 1078 g/cm3 can stabilize modes with maximum wavelengths
in the range A &~ 1.7-2.9 cm. These wavelengths are consistent with the size of

the observed growing wavelengths.

To explore the effects of viscous and magnetic stabilization in the experimental
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regime, two-dimensional simulations of magnetic-Rayleigh—Taylor-instability growth
were computed using the code WARPX [55, 56, 57]. In these simulations, a mag-
netohydrodyanmic model with viscosity was solved with a 2"¢ order discontinuous
Galerkin method. The equation system neglects electron physics (velocity v = ;)
and resistivity in Ohm’s law (E = —UX é), such that continuity, momentum, energy,

and Faraday’s law appear as [58]

a—p+v-(p17):0 (4.3)
A5
8pv+v (pvv—i—p[———i——]—i—ﬁ) (4.4)
ot Ho
e B2 B-7
g Zi— BB b = =g 4.
8t+v ((e+p—|—2u0) o + v) pg - U (4.5)
0B Lo
E—Vx(va)fo, (4.6)

where total energy € = ¢€; + €., pressure p = p; + pe, o is the permeability of free
space, [ is the identity matrix, and ﬁ) is the viscosity tensor. Due to the presence
of ion viscosity, the momentum equation includes the divergence of viscosity tensor
V- ﬁ) and the energy equation includes a viscous heating term V - ﬁ - U, on the
left-hand-side of the equations. The body forces due to gravity appear on the right-
hand-side of the momentum and energy equations. The form of viscosity tensor is

given by [54]

[THRPATA (4.7)

where

W, =vi+ (Vo) - gamv (4.8)
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These simulations were initialized with a uniform acceleration oriented adversely

to a smooth density gradient between a light and heavy fluid given by

_ Mo 24 o (QY) e 24
n= tanh( )+21_A+n0, (4.9)

where ng is number density of the lighter fluid, A is the Atwood number, « is the
length scale over which the gradient occurs, and L, is the height of the computational
domain. In order to ensure that the un-perturbed profile is in equilibrium, the

pressure profile was initialized to

_ _gmi | (no 2A 1\ L, ay ny 2A
P = P 5 [(21_14) alncosh 7 + 21_A+n0 Y|+

(4.10)

where P, is a constant chosen to prevent the initial condition from having zero or
negative pressure, kg is the Boltzmann constant, and 7j is the temperature, which
for the purposes of these simulations is arbitrary. The horizontal density profiles are

uniform except for cosine-form density perturbations at the fluid interface described

by

2

dn = any |cos (1 - 2#%) + cos (5 - ZWLiI) + cos (20 - 2%%) exp (;—52), (4.11)

T

where 1, is the vertical region of the fluid interface where the perturbation is applied
smoothly and L, is the horizontal domain size. The coefficients 1, 5, and 20 in the
cosine terms seed the perturbation with wavelengths corresponding to 20 cm, 4 cm,

and 1 cm across the domain. The simulations are performed on a Cartesian grid with
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200 x 300 cells with 1 mm resolution to capture the smallest scales we can observe
experimentally. The horizontal domain size L, is 20 cm and the vertical domain size
L, is 30 cm. Periodic boundary conditions are employed in the horizontal direction
and the top and bottom boundaries are conducting walls. Additionally the Atwood
number is 1/3 (which corresponds to a factor of 2 in density), the acceleration g is
10° m/s?, ion mass m; = 33.5m,, (estimated via chamber pressure rise, as described
in Section 2.2), and mass density p, = 2p; &~ 1.12 x 1078 g/cm?® (where p; = m;ng).

The initial condition is shown in Figure 4.9.

T —0.0120

0.10 T 40.0114
410.0108

0.05 T 40.0102
10.0096

0.00 0.0090

Y (m)

0.0084

—0.05 0.0078

0.0072

—0.10 0.0066

0.0060

-0.1 0.0
X (m)

Figure 4.9: Detailed view of simulation initial condition, showing perturbed interface
between heavy and light fluids. Force from acceleration is directed downward.

The domain was initialized with an array of different uniform horizontal mag-

netic fields and viscosities to isolate the effects of each on Rayleigh—Taylor-instability
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growth. Field values of 0, 2, and 15 Gauss were run as well as the dynamic viscosities
computed above. Simulations were run on a MacBook Pro computer equipped with
a quad-core, hyperthreading (8 virtual cores), 2.66 GHz Intel i7 processor. Inviscid
cases ran for ~ 13 minutes per output (10 us of simulation) and cases with viscosity
ran for &~ 40 minutes per output. Figure 4.10 compares the results after 10, 20, and

30 ps of growth for six cases, including one with both magnetic field and viscosity.

The top most-panel in each column in Figure 4.10 shows simulation results with
no physical viscosity or magnetic field. For this case, short-wavelength modes grow
rapidly and saturate. The second and third cases from the top also have zero physical
viscosity, and show that a horizontal magnetic field of 2 G is incapable of stabilizing
even 1-cm modes, while a field of 15 G is capable of stabilizing 1-cm but not 4-cm
modes. The fourth and fifth simulations from the top have no magnetic field but
have viscosities corresponding to 7. = 2.8 ¢V, Z = 1.6 and T, = 2.3 eV, Z = 1.2,
respectively, from top to bottom. Interestingly, while both cases are capable of
stabilizing 1-cm modes, the 2.8-eV case does so poorly, while the 2.3-eV case is
qualitatively similar to the 15-G magnetic-field-only case. Finally the bottom-most
case shows a simulation with both high viscosity and a 15-G magnetic field, and the
results are quite similar to the 15-G field-only case. These simulations suggest that
our experiments are in a regime in which both magnetic and viscous stabilization are

capable of stabilizing short-wavelength Rayleigh—Taylor-instability growth.
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Time = 1.0e-05 Time = 2.0e-05 Time = 3.0e-05

B,=0, p=0

B,=2, u=0

15, =0

B,=

5.2e-5

1.1e-4 B,=0,u

B,=15, yu=1.1e-4 B,=0, u=

Figure 4.10: Ideal 2D MHD simulation of RTT evolution at a plasma interface. Case
with no magnetic field does not show stabilization of any modes (top) after 30 us of
growth, while cases with magnetic field of sufficient magnitude (middle-top) or ion
viscosity (middle-bottom) show stabilization of short-wavelength RT modes. A case
with viscosity and magnetic field (bottom) shows similar growth characteristics as
solely magnetic stabilization. Units are Gaussian except for domain size in meters.
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Conclusions and Future Work

To summarize, observations of Rayleigh-Taylor-instability growth at the interface
between magnetized, stagnated plasma and a decelerating, unmagnetized plasma jet
have been observed and characterized. The observed instability wavelength (~ 2 cm)
and growth time (~ 10 us) are consistent with the fastest-growing wavelength pre-
dicted by linear magnetic-RTT theory in the presence of a 15-G field aligned with the
instability wave vector. A field with this magnitude and direction was measured in
our experiment for an ~ 7 ps time period during instability growth. Furthermore,
spectroscopic analysis suggests that plasma temperatures and ionization states are
capable of supporting a plasma viscosity which could contribute to stabilization. The
captured images of instability growth show a progression toward longer wavelengths
by a factor of 5/3 over 6 us, consistent with the presence of stabilizing mechanisms.
Finally, a computational study of instability growth in the presence of these stabiliz-
ing mechanisms was conducted with a magnetohydrodynamic model in the WARPX
code. These investigations of the damping effect of magnetic field and viscosity on the
instability led to the conclusion that both could be contributing to the observation

of mode evolution toward longer wavelength.
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5.1 Improvement of Cosmic Shock Experiments

Study of cosmic shocks was the original motivation for the experimental campaign
described in this dissertation, and the effort continued throughout investigation of
the Rayleigh-Taylor instability. However the results, based on analysis so far, have
been inconclusive. A particularly significant difficulty is the lack of magnetization of
the incoming jets. Rather than dynamics between two magnetized collisionless flows,
experiments appear to be dominated by dynamics between unmagnetized jets and a
vacuum magnetic field. This issue could possibly be addressed by larger magnetic
field coils to magnetize the jets while still in flight to the interaction region, or possibly
by exploring the use of more resistive jets. Another problem was the presence of
impurities in the jets which enabled the mean ionization state to increase and cause
a transition from a collisionless to collisional regime. To tackle the impurity problem,
improved plasma gun designs should be investigated, either with contoured rail cross

sections to prevent high current near the insulator, or perhaps a coaxial gun.

5.2 Suggestions for Interferometer Diagnostic

Several further improvements could make the interferometer an even more effective
diagnostic at the Plasma Liner Experiment. First, the installation of the Helmholtz
coils in the vacuum chamber interfered with the beam path for chord 3 of the in-
terferometer. It is recommended that positioning of the chords be adjusted so that
chord three has a clear path between the launch and receive stage. Second, the
author recommends finding a replacement for the Thorlabs PAF-X-18-PC-A fiber
couplers at the vacuum-chamber mounted receive stage. While these couplers have
several advantages as discussed in [48], including compact size and good stability

(even when removing and attaching fibers), the author found them to lack mechan-
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ical robustness. The extremely small set screws used to adjust the alignment of the
couplers were easily and frequently stripped, and the adjustment mechanism itself
began to show signs of malfunction in multiple couplers (with varying degrees of
severity) by the completion of the research presented in this dissertation. Also, not
insignificant was the amount of time necessary to adjust the couplers when compared

to the couplers employed in the beam path of the reference beam.

Finally, the AD8130 amplifiers were found to suffer from offset drift over time.
Even after calibration, within a few weeks the zero offsets were found to be as much
as several hundred millivolts. From an operational standpoint, keeping the amplifiers
calibrated was infeasible, and the previously-described changes to the analysis rou-
tines were employed to correct for this issue. The cost, however is that data analysis
takes approximately twice as much time with the amplifiers than for data collected
without amplifiers. Also, the data analysis routines rely on analyzing a significant
number of shots with the same settings to compute accurate phase shifts. If budget
and time allow, the author recommends researching methods of preventing offset in
the amplifier circuit, or replacing the amplifiers with another model less prone to

drift.

5.3 Suggestions for Schlieren Diagnostic

For future work on the schlieren diagnostic, the author recommends adding a spatial
filter to the beam path of the infrared laser to improve the uniformity of the beam
illumination. This was considered but due to budget constraints and limited useful-
ness of the diagnostic for the experiments conducted, was not implemented. Another
highly recommended improvement would be to develop a method of visualizing the
location of the infrared beam, even at its expanded, low intensity. This would aid in

tracking down reflections, checking alignment with the visible beam, and speeding
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up determination of the exact location of the focal point of the second parabolic

mirror.

Finally, an issue that was avoided in the initial trials of the diagnostic is the
benefit of using an extended light source and consequently having a finite depth of
field in the system. This issue is discussed in detail in Settles [50]. In terms of ap-
plicability to the existing system, the presence of the diverging lens in the schlieren
launch stage makes the laser light a point source for the parabolic mirrors, and in
the absence of optical aberrations, the probe beam is perfectly collimated and will
focus to a point at the focal point of the second mirror. While this has advantages
in terms of aligning the system and for initial trials, it has the disadvantages that all
phenomena along the probe beam are equally in focus (making it difficult to distin-
guish experimental from ambient phenomena) and that at the knife edge the entire
image is at a single point, making attempts to block only a part of the beam either
impossible or doing so makes the scene unevenly cut off. A variety of diffusers and an
adjustable slit were purchased in order to create an extended light source at the exit
of the laser enclosure, but attempts to do this were not completed due to challenges
in obtaining sufficient brightness to complete alignment. The author believes that
tackling this challenge would me most fruitful in improving the diagnostic, as meet-
ing this challenge successfully would likely solve other problems such as unevenness

of illumination and the presence of diffraction patterns.

5.4 Future Research Directions

In addition to the growth of Rayleigh-Taylor instabilities, other phenomena were
observed during the experiments discussed including the presence of striations, jet
stopping, and the appearance of large-scale structure uniquely present when jets

interact with the magnetic field. For example, the image shown in Figure 5.1 shows
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striations that appear when argon jets encounter a magnetic field with magnitude
~ 440 G. This observation is reminiscent of observations in barium plasmas reported
in [31]. Examples of jet stopping can be seen in the image sequences in Figures 5.2
and 5.3. These sequences are captured during shots in which hydrogen gas was
injected into the railguns instead of argon. The Helmholtz coils were energized with
the same initial field (= 300 G) as in the shot shown in Figure 4.1. The frames
are taken at the same late times as those previously shown as well, capturing the
arrival of a secondary jet. Instead of the instability growth observed previously,
what appear to be jet stopping and the counter-propagation of a bow-shock like
structure are observed (presumably from the opposing jet). The physics of these
phenomena are open research questions at the time of this writing. Additionally,
the experimental apparatus employed to conduct the research in this dissertation
is capable of accessing physics regimes relevant to the results reported in [30]. As
discussed in Subsection 1.2.1, the behavior of plasma jets changed dramatically when
encountering a magnetic field above a critical value Betica1. The author estimates for
the argon jets reported on in this dissertation, the critical magnetic field magnitude

is Bcritical ~ 780 G
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Figure 5.1: Striations appear (left side of image) when argon jet encounters ~ 440 G
magnetic field. Photograph captured by Dicam Pro camera on shot 2959.
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Figure 5.2: Late-time arrival of second hydrogen jet at interaction region in shot
3457. The right-hand jet appears to stop near magnetic probe tip as a shock-like
structure forms. In the final two frames, a bow-shock like structure arrives from the
left.
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Figure 5.3: Late-time arrival of second hydrogen jet at interaction region in shot
3458. The right-hand jet appears to stop near magnetic probe tip as a shock-like
structure forms. In the final three frames, a bow-shock like structure arrives from
the left.
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Appendix A

Interferometer analysis codes

The MATLAB function ‘chord_data’ contained in ‘chord_data.m’ returns the raw [
signal, () signal, and time domain given a shot number and a chord number. This
function is designed to have pre-defined digitizer configurations built in for most shot
numbers. If there is not a pre-defined digitizer configuration, the code reverts to a

default configuration. This function is shown below.

function [I,Q,t] = chord_data(shot_number, chord_number)

mdsconnect (’localhost’);
mdsopen (’plx’,shot_number) ;

p0 = ’devices:screen_box:camac_1:jrg_tr_’;
t0 = ’dim_of (devices:screen_box:camac_1:jrg_tr_’;
p2 = ’:input_’;

if shot_number < 79

di = [1 0; % CHORD 1 I
1 1; % CHORD 1 Q
1 2; % CHORD 2 I
1 3; % CHORD 2 Q
1 4; % CHORD 3 I
1 5; % CHORD 3 Q
1 6; % CHORD 4 I
17; % CHORD 4 Q
1 8; % CHORD 5 I
19; ... % CHORD 5 Q
1 10; ... % CHORD 6 I
1 11; ... % CHORD 6 Q
1 12; ... % CHORD 7 I
1 13; ... % CHORD 7 Q
1 14; ... % CHORD 8 I
1 15]; % CHORD 8 Q
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27 elseif (shot_number >= 79) && (shot_number < 670)

28 di = [1 0; % CHORD 1 I

29 1 1; % CHORD 1 Q

30 1 2; % CHORD 2 I

31 1 3; % CHORD 2 Q

32 1 4; % CHORD 3 I

33 1 5; % CHORD 3 Q

34 2 6; % CHORD 4 I

35 2 7; % CHORD 4 Q

36 2 8; % CHORD 5 I

37 2 9; ... % CHORD 5 Q

38 1 10; ... % CHORD 6 I

39 1 11; ... % CHORD 6 Q

40 1 12; ... % CHORD 7 I

41 1 13; ... % CHORD 7 Q

42 1 14; ... % CHORD 8 I

43 1 15]; % CHORD 8 Q

44 elseif (shot_number >= 670) && (shot_number < 2505)
45 di = [1 0; % CHORD 1 I

46 1 1; % CHORD 1 Q

47 1 2; % CHORD 2 I

48 1 3; % CHORD 2 Q

49 1 4 % CHORD 3 I

50 1 5; % CHORD 3 Q

51 2 0; % CHORD 4 I

52 2 1; % CHORD 4 Q

53 2 8; ... % CHORD 5 I

54 2 9; ... % CHORD 5 Q

55 1 10; ... % CHORD 6 I

56 1 11; ... % CHORD 6 Q

57 112; ... % CHORD 7 I

58 1 13; ... % CHORD 7 Q

59 1 14; ... 7 CHORD 8 I

60 1 15]; % CHORD 8 Q

61 elseif (shot_number >= 2505) && (shot_number < 2552)
62 di = [1 0; % CHORD 1 I

63 1 1; % CHORD 1 Q

64 1 2; % CHORD 2 I

65 1 3; % CHORD 2 Q

66 1 4; % CHORD 3 I

67 1 5; % CHORD 3 Q

68 1 6; % CHORD 4 I

69 1.7; % CHORD 4 Q

70 1 8; % CHORD 5 I

71 1 9; ... % CHORD 5 Q

72 1 10; ... % CHORD 6 I

73 1 11; ... % CHORD 6 Q

74 1 12; ... % CHORD 7 I

75 1 13; ... % CHORD 7 Q

76 1 14; ... % CHORD 8 I

77 1 15]; % CHORD 8 Q

78 elseif (shot_number >= 2578) && (shot_number < 2587)
79 di = [nan nan; ... % CHORD 1 I
80 nan nan; ... % CHORD 1 Q
81 1 2; ... % CHORD 2 I
82 13; ... % CHORD 2 Q
83 1 4; ... % CHORD 3 I
84 1 5; ... % CHORD 3 Q
85 2 0; % CHORD 4 I
86 2 1; % CHORD 4 Q
87 2 8; % CHORD 5 I
88 2 9; % CHORD 5 Q
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89 1 10; ... % CHORD 6 I

90 1 11; ... % CHORD 6 Q

91 1125 ... % CHORD 7 I

92 1 13; ... % CHORD 7 Q

93 1 0; ... % CHORD 8 I

94 1 1]1; % CHORD 8 Q

95 elseif (shot_number >= 2591) && (shot_number < 2653)

96 di = [nan nan; ... % CHORD 1 I

97 nan nan; ... % CHORD 1 Q

98 nan nan; ... % CHORD 2 I

99 nan nan; ... % CHORD 2 Q

100 1 4; ... % CHORD 3 I

101 1 5; ... % CHORD 3 Q

102 2 0; ... % CHORD 4 I

103 2 1; ... % CHORD 4 Q

104 2 8; ... % CHORD 5 I

105 2 9; ... % CHORD 5 Q

106 1 10; ... % CHORD 6 I

107 1 11; ... % CHORD 6 Q

108 1 12; ... % CHORD 7 I

109 1 13; ... % CHORD 7 Q

110 1 0; ... % CHORD 8 I

111 1 1]; % CHORD 8 Q

112 else

113 % DEFAULT CONFIGURATION

114 di = [1 0; % CHORD 1 I

115 1 1; % CHORD 1 Q

116 1 2; % CHORD 2 I

117 1 3; % CHORD 2 Q

118 1 4; % CHORD 3 I

119 1 5; % CHORD 3 Q

120 2 0; % CHORD 4 I

121 2 1; % CHORD 4 Q

122 2 8; ... % CHORD 5 I

123 2 9; ... % CHORD 5 Q

124 1 10; ... % CHORD 6 I

125 1 11; ... % CHORD 6 Q

126 1 12; ... % CHORD 7 I

127 1 13; ... % CHORD 7 Q

128 1 14; ... % CHORD 8 I

129 1 15]; % CHORD 8 Q

130 end

131

132 if chord_number == 1

133 I = mdsvalue ([p0 num2str(di(1,1)) p2 num2str(di(1,2),’%02.0£’)]1);
134 Q = mdsvalue([p0 num2str(di(2,1)) p2 num2str(di(2,2),’%02.0£°)1);
135 t = mdsvalue ([t0 num2str(di(1,1)) p2 num2str(di(1,2),’%02.0f°) ’)’1);
136 elseif chord_number == 2

137 I = mdsvalue ([pO0 num2str(di(3,1)) p2 num2str(di(3,2),’%02.0£°)]1);
138 Q = mdsvalue([pO0 num2str(di(4,1)) p2 num2str(di(4,2),’%02.0£°)1);
139 t = mdsvalue ([t0 num2str(di(3,1)) p2 num2str(di(3,2),’%02.0f’) ’)’1);
140 elseif chord_number == 3

141 I = mdsvalue([p0 num2str(di(5,1)) p2 num2str(di(5,2),’7%02.0£°)1);
142 Q = mdsvalue([p0 num2str(di(6,1)) p2 num2str(di(6,2),’%02.0£°)]);
143 t = mdsvalue ([t0 num2str(di(5,1)) p2 num2str(di(5,2),’%02.0f’) ’)’1);
144 elseif chord_number == 4

145 I = mdsvalue ([p0 num2str(di(7,1)) p2 num2str(di(7,2),’%02.0£°)]1);
146 Q = mdsvalue([p0 num2str(di(8,1)) p2 num2str(di(8,2),’%02.0£°)]1);
147 t = mdsvalue ([t0 num2str(di(7,1)) p2 num2str(di(7,2),’%02.0£’) ’)’]1);
148 elseif chord_number == 5

149 I = mdsvalue ([p0 num2str(di(9,1)) p2 num2str(di(9,2),’%02.0£)]1);
150 Q = mdsvalue([pO0 num2str(di(10,1)) p2 num2str(di(10,2),’%02.0£f°)]1);
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t = mdsvalue ([t0 num2str(di(9,1)) p2 num2str(di(9,2),’%02.0f°) ’)’1);
elseif chord_number ==

I = mdsvalue ([p0 num2str(di(11,1)) p2 num2str(di(11,2),’%02.0£°)1);

Q mdsvalue ([pO0 num2str(di(12,1)) p2 num2str(di(12,2),’%02.0£°)]1);

t = mdsvalue ([t0 num2str(di(11,1)) p2 num2str(di(11,2),°%02.0£°) ’)’]1);
elseif chord_number ==

I = mdsvalue([p0 num2str(di(13,1)) p2 num2str(di(13,2),’%02.0£°)1);

Q mdsvalue ([pO num2str(di(14,1)) p2 num2str(di(14,2),’%02.0£°)]1);

t = mdsvalue ([t0 num2str(di(13,1)) p2 num2str(di(13,2),’%02.0f’) ’)’1);
elseif chord_number ==

I = mdsvalue ([p0 num2str(di(15,1)) p2 num2str(di(15,2),°%02.0£°)1);

Q = mdsvalue([p0 num2str(di(16,1)) p2 num2str(di(16,2),’%02.0£°)]1);

t = mdsvalue ([t0 num2str(di(15,1)) p2 num2str(di(15,2),’7%02.0£f’) ’)’1);

I = [0];
Q = [0];
t = [0];

end

mdsclose;
mdsdisconnect;

The MATLAB function ‘find_IQ_envelopes’ contained in ‘find_IQ_envelopes.m’
returns minimum and maximum values of the I and () signals for given a range of
shots and chord numbers. When analyzing interferometer data from a given shot,
a group of other shots from the same day should be passed to ‘find_I1Q_envelopes’
so that the function ‘calculate_phase_shift_amplified’ can correct for offsets. This

function is shown below.

function IQ_min_max = find_IQ_envelopes(shot_group, chords)

% Determines the envelope of I and Q values for each chord of interest
% in the shot group of interest (usually from the same shot day)

% IQ_min_max = calculate_phase_shift (shot_group, chords)

% Arguments: shot_group is an array of shot numbers for which the envelope

yA of possible I and Q values is computed

"

yA chords is an array of chord numbers for which the envelope
% of possible I and Q values is computed

IQ_min_max = zeros(length(chords), 4);
disp([’Pre-analyzing ’ num2str(shot_group(1))])
for j = 1:1:1length(chords)
[I,Q,t] = chord_data(shot_group(1l), chords(j));
I_smoothed = fastsmooth(I,5,1,1);

Q_smoothed = fastsmooth(Q,5,1,1);

IQ_min_max(j,1) = min(I_smoothed);
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IQ_min_max(j,2) = max(I_smoothed);
IQ_min_max (j,3) min(Q_smoothed) ;
IQ_min_max (j,4) max (Q_smoothed) ;

end
clear I Q t I_smoothed Q_smoothed
for i = 2:1:length(shot_group)
disp([’Pre-analyzing ’ num2str (shot_group(i))])
for j = 1:1:length(chords)
[I,Q,t] = chord_data(shot_group(i), chords(j));
I_smoothed = fastsmooth(I,5,1,1);
Q_smoothed = fastsmooth(Q,5,1,1);
IQ_min_max(j,1) = min([I_smoothed IQ_min_max(j,1)1);
IQ_min_max(j,2) = max([I_smoothed IQ_min_max(j,2)]1);
IQ_min_max(j,3) = min([Q_smoothed IQ_min_max(j,3)1);
IQ_min_max(j,4) = max([Q_smoothed IQ_min_max(j,4)]1);

end

clear I Q t I_smoothed Q_smoothed
end

if sum(sum((abs(IQ_min_max) > 1.9))) > 1.0
disp (’WARNING: Problem detected with shot(s) in group, IQ_min_max values invalid
D)

end

The MATLAB function ‘calculate_phase_shift_amplified’ contained in
‘calculate_phase_shift_amplified.m’ returns the plasma component of phase shift and
time domain given a minimum of a shot number. For more accurate results, the user
is encouraged to also provide the desired chord numbers, the start time and end time
of the presence of plasma, and the output matrix from ‘find_IQ_envelopes’. The use
of smoothing at various stages in the analysis are also built-in options. This function

is shown below.

function [time_save phase_save] = ...
calculate_phase_shift_amplified(shot, chords, t_start, t_end,
offset_compensation, IQ_min_max, IQ_smoothing, phase_smoothing)

% Calculates the phase shift measured by the interferometer
% [time phase] = calculate_phase_shift (shot)

% [time phase] = calculate_phase_shift (shot, chords)

% [time phase] = calculate_phase_shift (shot, chords, t_start, t_end)
% [time phase] = calculate_phase_shift(shot, chords, t_start, t_end,
% offset_compensation, IQ_min_max)

% [time phase] = calculate_phase_shift(shot, chords, t_start, t_end,
% offset_compensation, IQ_min_max, IQ_smoothing,

yA phase_smoothing)
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Appendix A. Interferometer analysis codes

)
% Optional arguments: chords is an array of chord numbers for which phase
% information will be returned
% default value of chords is [4]
yA
% t_start and t_end are times (in microseconds)
% bounding the phenomena of interest
% default values t_start = -20
yA t_end = 350
)
% offset_compensation is a boolean which indicates
% whether to compensate for offset variation in the
% raw I and Q signals, default value of true
yA
% IQ_min_max is an array containing the maximum and
% minimum values of I and Q for the shot range of
% interest, as generated by ’find_IQ_envelopes’
h
% IQ_smoothing is a boolean which indicates whether to
% peform smoothing of the raw I and Q signals, default
yA value of false
)
% phase_smoothing is a boolean which indicates whether
% to peform smoothing of the final calculated phase,
yA default value of false
if isempty(shot)
shot = 2407;
end
if isempty(chords)
chords = [4];
end
if isempty(t_start)
t_start = -20; % START OF TIME FRAME OF INTEREST (MICROSECONDS)
end
if isempty(t_end)
t_end = 300; % END OF TIME FRAME OF INTEREST (MICROSECONDS)
end
if isempty(offset_compensation)
offset_compensation = true; % BY DEFAULT PERFORM OFFSET SUBTRACTION
end
if isempty(IQ_smoothing)
IQ_smoothing = false; % BY DEFAULT NO RAW IQ SMOOTHING
end
if isempty(phase_smoothing)
phase_smoothing = false; 7 BY DEFAULT NO FINAL PHASE SMOOTHING
end
% PROCEED WITH ANALYSIS
t_save = 50;
Zeff = 1.0; ) ASSUMED VALUE OF IONIZATION FRACTION
dL = 1; % ASSUMED CHORD LENGTH
c = 2.9979%107°8; % SPEED OF LIGHT [m/s].
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Appendix A. Interferometer analysis codes

e = 1.6022410°-19;
9.1094%10"-31;
4*%xpi*1%x10"-7;
1/(mul0*c~2) ;
561.3%10"-9;

me =
mu0 =
epsilon0 =
lambdal0 =
for i =
chord = chords(i);
% RETRIEVE I AND Q
[1,Q,t] =

time = t*1076;

chord_data(shot,

% CHARGE OF AN ELECTRON [C].

% MASS OF AN ELECTRON [kgl.

% PERMEABILITY OF FREE SPACE [H/m].

% PERMITTIVITY OF FREE SPACE [F/m].

% 0XXIUS LASER WAVELENGTH IN FREE SPACE

1:1:1length(chords)

SIGNALS FOR EACH CHORD

chord) ;

% figure (shot*100+60+chord)

% hold on
% plot(t, I, ’c:’,
% title(’Raw I and

if IQ_smoothing ==

t, Q, ’g:’)
Q’,’FontSize’,18)

true

% SMOOTH THE RAW I AND Q SIGNALS WITH FASTSMOOTH
% WIDTH 5, RECTANGULAR BOXCAR, ENDS HANDLED
I_smoothed = fastsmooth(I,5,1,1);

Q_smoothed = fastsmooth(Q,5,1,1);

% % SMOOTH I
% n_smooth = 5;
% I_smoothed =
% Q_smoothed =

% plot(t,
else
% BYPASS I

I_smoothed
Q_smoothed

I;
Q;

end

clear I Q

I_smoothed,

AND Q WITH MATLAB SMOOTH FUNCTION

smooth(I,n_smooth,’moving’);
smooth (Q,n_smooth, ’moving’);

’b-’, t, Q_smoothed, ’k-7)

AND Q SMOOTHING

% DETERMINE INDICES BOUNDING TIME FRAME OF INTEREST

dt =
n_start =
n_end =
n_zero = n_start

n_save =

(max (time)-min(time))/(length(time) -1);
floor ((t_start
n_start + floor ((t_end-t_start)/dt);

- floor(t_start/dt);

n_start + floor ((t_save-t_start)/dt);

- min(time))/dt) + 2;

% AMPLIFIER OFFSET COMPENSATION

if offset_compensation

true

if isempty(IQ_min_max)

I_lower_bound

I_upper_bound

Q_lower_bound

Q_upper_bound
else

min(I_smoothed) ;

= max (I_smoothed);

min(Q_smoothed) ;
max (Q_smoothed) ;
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138 I_upper_bound = IQ_min_max(i,1);

139 I_lower_bound = IQ_min_max(i,2);

140 Q_upper_bound = IQ_min_max(i,3);

141 Q_lower_bound = IQ_min_max(i,4);

142 end

143

144 I_smoothed = I_smoothed - (I_upper_bound + I_lower_bound)/2;
145 Q_smoothed = Q_smoothed - (Q_upper_bound + Q_lower_bound)/2;
146

147 % plot(t, I_smoothed, ’b-’, t, Q_smoothed, ’k-’)

148

149 % hline (I_upper_bound, ’c:’)

150 % hline(I_lower_bound, ’c:’)

151 % hline (Q_upper_bound, ’g:’)

152 % hline(Q_lower_bound, ’g:’)

153 end

154

155 % CALCULATE PHASE SHIFT FROM AMPLITUDE-CORRECTED I & Q

156

157 I_amplitude = I_upper_bound - I_lower_bound;

158 Q_amplitude = Q_upper_bound - Q_lower_bound;

159

160 phase(:,i) = atan2(Q_smoothed/Q_amplitude,I_smoothed/I_amplitude) ;
161

162 clear I_smoothed Q_smoothed

163

164 % DETERMINE THE ORDER OF PHASE SHIFT

165 order = zeros(length(phase(:,1i)),1);

166

167 for j = 1:1:length(phase(:,i))-1

168 if phase(j+1,i) - phase(j,i) < -pi

169 order (j+1:length(phase(:,i))) = order(j) + 1;

170 elseif phase(j+1,i) - phase(j,i) > pi

171 order (j+1:length(phase(:,1i))) = order(j) - 1;

172 end

173 end

174

175 % ASSUME THE PHASE SHIFT STARTS AS ORDER O AND MAKE CONTINUOUS
176 phase(:,i) = phase(:,i) + 2xpi*order;

177

178 figure (shot*100+50+chord)

179 plot (t,phase(:,i),’c’)

180 % title(’Phase Calculation and Spline Subtraction’,’FontSize’,18)
181 % hold on

182

183 %hhhhhh%% THIS SECTION OF CODE FOR POLYNOMIAL SUBTRACTION %%%%h%hhhh%
184

185 fit_interval = 0.7; % FRACTION OF THE TIME FRAME TO USE FOR FIT
186 % p_order = 4; % ORDER OF THE POLYNOMIAL TO FIT BASELINE PHASE
187 %

188 % % SELECT PORTION OF CALCULATED PHASE SHIFT TO CALCUATE BASELINE
189 % n_fit_end = floor(n_end + fit_interval*(n_end - n_start));

190 % t_baseline = time(l:n_fit_end);

191 % phase_baseline = phase(l:n_fit_end,i);

192 %

193 % % ISOLATE BASELINE PHASE SHIFT

194 t_baseline(n_start:n_end) = [];

195 % phase_baseline(n_start:n_end) = [];

196 7

197 % % FIT THE BASELINE PHASE SHIFT TO A POLYNOMIAL

198 % phase_fit = polyval(polyfit(t_baseline’,phase_baseline,p_order), time);
199 %
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200 plot(t, phase_fit,’m’)

201 % x1im ([-25%10"-6 600*%10~-6])

202

203 %hhh%h%h%%% THIS SECTION OF CODE FOR SPLINE SUBTRACTION %%%%%%%%%
204

205 fit_interval = 1.5; % FRACTION OF THE TIME FRAME TO USE FOR FIT
206 n_fit_end = floor(n_end + fit_interval*(n_end - n_start));

207

208 % SMOOTH, SUBSAMPLE, AND SPLINE THE BASELINE PHASE SHIFT

209 % phase_smooth = smooth(phase(:,1i),300, sgolay’);

210 phase_smooth = fastsmooth(phase(:,i),100,1,1);

211

212 if shot < 2408

213 phase_sub = phase_smooth([n_zero-floor (20/dt):floor (18/dt):n_zero
214 n_end:floor (50/dt):n_fit_end]);

215

216 time_sub = time([n_zero-floor (20/dt):floor (18/dt):n_zero
217 n_end:floor (50/dt) :n_fit_end]);

218 else

219 phase_sub = phase_smooth([n_start-floor (90/dt):floor (40/dt):n_start
220 n_end:floor (50/dt):n_fit_end]);

221

222 time_sub = time([n_start-floor (90/dt):floor (40/dt):n_start
223 n_end:floor (50/dt):n_fit_end]);

224 end

225

226 phase_spline = interpl(time_sub, phase_sub, time, ’pchip’)’;
227

228 % plot(t, phase_smooth,’r’, time_sub/1076, phase_sub, ’bo’)
229 % plot(time/10°6, phase_spline, ’b’)

230 % x1im ([-100/10"6 700/10°6])

231

232 % axis ([-100/10"6 300/10°6 1.2 1.7])

233 xlabel (’Time (s)’,’FontSize’,16)

234 ylabel (’Phase (rad) ’,’FontSize’,16)

235 % title(’Plasma Phase Shift Isolation’,’FontSize’,18)

236 legend (’Raw Phase’,’Filtered Phase’,’Fit Points’,’Background Spline’,0)
237 % hold on

238

239 clear t

240

241 % SUBTRACT BASELINE

242

243 phase(:,i) = phase(:,i) - phase_spline(:);

244

245 % CALCULATE AND SUBTRACT 0OUT AVERAGE OFFSET, FROM T=-10 TO O.
246

247 phase(:,i) = phase(:,i) -

248 sum (phase(n_zero-floor (10/dt) :n_zero,i)) /...
249 (1+floor (10/dt));

250

251 % EXTRACT DATA FROM TIME FRAME OF INTEREST, PAD BY 10 MICROSECONDS
252 time_save = time((n_start-10/dt):(n_end+10/dt)) ’;

253 phase_save(:,i) = phase((n_start-10/dt):(n_end+10/dt) ,i);

254

255 clear phase

256

257 % PLOT PRE-SMOOTHED PHASE TRACE

258 figure (shot*100+70+chord)

259 % plot(time_save, phase_save(:,i),’b’)

260 % hold on

261
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262 if phase_smoothing == true

263

264 % SMOOTH THE TRACE 10 TIMES WITH WIDTH 10 BOXCAR

265

266 for k = 1:1:10

267 phase_save(:,i) = fastsmooth(phase_save(:,1i),10,1,1);
268 end

269 end

270

271 % plot(time_save, phase_save(:,i),’r’)

272 % axis ([-50 200 -0.025 0.11)

273 % xlabel (’Time (\mus)’,’FontSize’,16)

274 % ylabel (’Phase (rad) °’,’FontSize’,16)

275 %title (’Boxcar Smoothing of Phase Shift’,’FontSize’,18)
276 title(’Signal-To-Noise Ratio as Little as 6’,’FontSize’,18)
277 %legend (’Unsmoothed’,’Smoothed’,0)

278 % hold on

279 %

280 shalsm

281

282 end

283

284 % figure(4)

285 % plot(time_save,phase_save)

286

287 disp(’Phase is’);

288 disp(num2str (phase_save(n_save - n_start + floor (10/dt))))
289 disp(’at time’);

290 disp(num2str(time_save(n_save - n_start + floor(10/dt))))
291

292 Ce = (lambdaO*e~2)/(4*pi*xepsilonO*mex*c”~2)

293

294 CO_aluminum = (2%pi/lambda0)*(0.063163)/(2.503*x10°25); 7 PROBLEM HERE?
295

296 Ce/CO_aluminum

297

298 ne_lower = (phase_save(n_save - n_start + floor (10/dt))/(Ce*xZeffx*dL)) /1074
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Appendix B

Schlieren periscope mount

Figure B.1: The base for the ‘periscope’ mount bolts directly to the 11-in flange and
acts as a ‘rotor’ on which the ‘slider’ is mounted. This part was silver plated to
reduce surface friction.
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Figure B.2: Drawing of the base for the periscope mount. This part was silver plated

to reduce surface friction.
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Appendix B. Schlieren periscope mount

Figure B.3: The lower portion of the slider for the periscope mount. Together with
the upper portion, slides in the azimuthal direction around the port. This part was
silver plated to reduce surface friction.
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Figure B.4: Drawing of the lower portion of the slider for the periscope mount. This

part was silver plated to reduce surface friction.
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Appendix B. Schlieren periscope mount

Figure B.5: The upper portion of the slider for the periscope mount. Together with
the lower portion, slides in the azimuthal direction around the port. This part was
silver plated to reduce surface friction. Conformable soft-tip (silver-tip) set screws
were used in the azimuthal array of tapped holes to securely clamp the slider to the
base without damaging the surface of the base.
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Figure B.6: Drawing of the upper portion of the slider for the periscope mount. This
part was silver plated to reduce surface friction. Conformable soft-tip (silver-tip) set
screws were used in the azimuthal array of tapped holes to securely clamp the slider

to the base without damaging the surface of the base.
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(silver-tip) set screws were used in the azimuthal array of tapped holes to securely
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Figure B.7: Drawing of the back of the upper portion of the slider for the periscope
clamp the slider to the base without damaging the surface of the base.

mount. This part was silver plated to reduce surface friction. Conformable soft-tip



Appendix B. Schlieren periscope mount

Figure B.8: The rotary mount of the periscope mount. This is a bracket to which a
rotation stage is mounted.
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Figure B.9: Drawing of the rotary mount of the periscope mount.
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Figure B.10: The mirror adapter for the periscope mount bolts to the rotation stage
and provides a mounting point for the lightweight rectangular mirror mount.
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Figure B.11: Drawing of the mirror adapter for the periscope mount.
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Schlieren lightweight mount

Figure C.1: The front of the lightweight mount. This bolts to the back of the
lightweight mount to hold mirror in place.
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Figure C.2: Drawing of the front of the lightweight mount.
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Figure C.3: The back of the lightweight mount. This bolts to the front of the
lightweight mount to hold mirror in place.
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Figure C.4: Drawing of the back of the lightweight mount.
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Appendix C. Schlieren lightweight mount

Figure C.5: The assembled lightweight rectangular mount. Note the recommended
use of hemispherical soft rubber bumpers to cushion mirror (in circular depressions).
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