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1. Improved parallel mesh partitioning
Load-balancing, partitioning and matrix ordering are, perhaps, the most well-known examples of
combinatorial problems in massively parallel computing. CSCAPES researchers have developed
new techniques and software for these problems, including matrix ordering for non-symmetric
systems [26] and for parallel hybrid solvers [6], and hypergraph repartitioning [9, 10]. Mesh
partitioning is an area where hypergraph partitioning can have a significant benefit, impacting
a very wide array of applications.

Meshes play an important role in many scientific simulations, especially the numerical
solution of partial differential equations by finite element, finite volume and finite difference
methods. In parallel computations, high-quality mesh partitioning – dividing a mesh among
parallel processors – is crucial to ensure memory use and computational work are balanced
and interprocessor communication cost is low. A typical partition distributes mesh elements
equally among processors, enabling the matrix assembly or equation formation operations to be
well balanced. Mesh nodes are assigned to the processors owning their adjacent elements, with
“ghost nodes” (mesh node copies) replicating nodal data along processor subdomain boundaries.
The simulation’s degrees of freedom are typically associated with the mesh nodes, so the amount
of duplication via ghost nodes affects both the linear solver time and total memory usage.

The most commonly used approach to mesh partitioning [42] is to model the mesh using
the dual graph, where graph vertices represent mesh elements, and graph edges connect each
element with its adjacent elements (Figure 1, middle). Graph partitioners (e.g., Chaco [29],
ParMETIS [31], Scotch [37]) then partition this graph (and, thus, the mesh) so that each part
has an equal number of vertices (elements) while attempting to minimize the number of edges
(adjacencies) cut by processor boundaries. This model can be represented more accurately (with
respect to total communication volume) by a hypergraph – an extension of a graph that allows



 

 

 

 

	  

	  

Figure 1. (Left) An example mesh. (Middle) The dual-graph model (shown in red) typically
used in graph partitioning; graph vertices (circles) represent mesh elements, while graph edges
connect adjacent elements. (Right) New hypergraph mesh-partitioning model; each hypergraph
vertex (red circle) represents an element, while each hyperedge (blue square) represents a mesh
node, connecting all elements incident to it.

edges to contain two or more vertices; each hypergraph vertex represents a mesh element, and
each hyperedge connects a given mesh element and all elements sharing faces with that element.
However, this model does not control the number of ghost nodes needed along subdomain
boundaries.

CSCAPES researchers at Sandia National Laboratories developed a new hypergraph model
for partitioning computational meshes in parallel simulations [14]. The new model accurately
represents both interprocessor communication cost and the memory cost of ghosting mesh
entities. As in the dual-graph model, the new model partitions mesh elements. But the
new model uses hyperedges to additionally represent the dependence between mesh nodes and
their adjacent elements. Thus, hypergraph vertices represent mesh elements, and hyperedges
represent mesh nodes, with each hyperedge (mesh node) connecting the mesh elements incident
to that node (Figure 1, right). A hypergraph partitioner then assigns an equal number of
vertices (elements) to each part, while attempting to minimize the number of processors over
which hyperedges extend (the number of processors sharing mesh nodes). Unlike the dual-graph
model, this new model provides an exact measure of the communication volume associated with
boundary data exchanges for shared mesh nodes along processor boundaries.

In collaboration with members of DOE’s SciDAC Interoperable Technologies for Advanced
Petascale Simulations (ITAPS) Center at Rensselaer Polytechnic Institute, we tested this new
mesh-partitioning model on a 1.07 billion element mesh in an implicit finite element fluid-
flow simulation of blood flow in abdominal aortic aneurysms (see Figure 2). We used the
Zoltan toolkit [18], a widely used partitioning library that includes geometric, graph-based
and hypergraph-based partitioners. Zoltan’s parallel hypergraph partitioner [17] was used to
generate partitions for both models up to 131K processors. The resulting application run times
on the Intrepid BG/L are shown in Table 1. The time reductions were achieved by changing
only the partitioning model; no changes to the application code were needed. Because the solver
phase of the computation is node-based, it benefits most from the new model. Also shown
in Table 1, our new mesh-partitioning model reduces the average number of mesh nodes per
processor (including ghost nodes), reducing load imbalance in the solver, the total work done by
the solver, and memory used by the solver. Moreover, in this experiment, the magnitude of these
reductions grows as the number of processors is increased – an important feature in exascale



Figure 2. An example tetrahedral finite element mesh for modeling blood flow in abdominal
aortic aneurysms. (Image courtesy of the Scientific Computation Research Center at Rensselaer
Polytechnic Institute.)

Dual-graph Model New Mesh-Partitioning Model Reduction due to New Model
Number of Avg. nodes Application Application Avg. nodes Application Application Avg. nodes Application Application
Processors per proc. solver time total time per proc. solver time total time per proc. solver time total time

4,096 48,054 564.8 s. 966.2 s. 47,714 531.1 s. 935.3 s. 0.7% 6.0% 2.3%
32,768 12,822 77.3 s. 128.9 s. 12,495 73.8 s. 125.6 s. 3.7% 4.6% 2.6%

131,072 1,908 21.1 s. 34.1 s. 1,781 19.6 s. 32.6 s. 6.7% 6.7% 4.5%

Table 1. Application execution times and average number of mesh nodes per processor for
the implicit finite element code PHASTA [30] using a 1.07B element mesh. Our new mesh-
partitioning model decreases application execution time and the total number of mesh nodes
compared to a dual-graph model.

where millions of subdomains will be used. These experiments were performed on tetrahedral
meshes; we conjecture that the improvement may be greater for mixed-element meshes for which
the accuracy of the partitioning model is more important. Based on these promising results,
CSCAPES mesh-partitioning model has been adopted by ITAPS in its iZoltan mesh-partitioning
service.

1.1. Graph Coloring
Graph coloring is an abstraction for partitioning a set of binary-related objects (modeled as a
graph) into few groups of “independent” objects. Besides being an archetypal problem in discrete
mathematics, coloring, in some variant, is a critical computational enabler in many contexts in
computer science, scientific computing, high-performance computing etc. For example, it is used
to maximize exploitable parallelism in preconditioned iterative methods for sparse linear systems,
to quickly and approximately compute Schur complements, to determine task scheduling in
concurrent computation, to compute sparse Jacobian and Hessian matrices efficiently, etc.



Matrix 1d partition 2d partition Recovery
Jacobian distance-2 coloring star bicoloring Direct
Hessian star coloring NA Direct
Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

Table 2. Overview of graph coloring models in computation of derivative matrices. The Jacobian is represented
by its bipartite graph, and the Hessian by its adjacency graph. NA stands for not applicable.

1.1.1. New Algorithms for Jacobian and Hessian Computation In CSCAPES, we have been
developing algorithms and software for exploiting the inherent sparsity available in large-scale
Jacobian and Hessian matrices, to make their computation via automatic differentiation (or
finite differencing) efficient in terms of execution time, memory, and storage space requirements.

The framework we developed and employed for such a computation involves four steps:
(i) automatic sparsity pattern detection, (ii) matrix compression via graph coloring, (iii)
computation of the numerical values in the compressed matrix, and (iv) recovery of the numerical
values in the derivative matrix from the compressed representation. Each step involves problems
that come in several variations depending on whether the derivative matrix to be computed is
a Jacobian (nonsymmetric matrix) or a Hessian (symmetric matrix) and on the specifics of
the computational techniques used [20]. Table 2 provides an overview of the coloring problems
associated with the second step.

We have developed (and deployed) new algorithms for problems occurring in each of the four
steps of the framework outlined above, but we highlight only a few of them here.

We developed novel star and acyclic coloring algorithms, useful for Hessian computation
[23]. The acyclic coloring algorithm is the first ever practical algorithm to be designed and
implemented for the problem. The crucial idea in both algorithms is the exploitation of the
structure of two-colored induced subgraphs, a collection of stars and trees, respectively. Taking
the advantages these structures offer further, we developed efficient recovery algorithms for the
computation of Hessians using direct as well as substitution-based methods [21]. We employed
the new coloring and recovery algorithms within an AD tool to compute sparse Hessians to solve
an optimization problem [21]. We showed, analytically as well as experimentally, that an acyclic
coloring-based recovery via substitution is numerically stable, in contrast to previously known
substitution methods where numerical stability was a major concern. We also provided new
analytical results on star and acyclic coloring of chordal graphs and cographs, important classes
of graphs with a wide range of applications in scientific computing [21, 33].

1.1.2. Ordering for Coloring and More Every one of the coloring problems listed Table 2 is
NP-hard to solve optimally. The algorithms we have developed for solving them are fast, yet
effective, greedy heuristics. They are greedy in the sense that vertices are colored sequentially
one at a time and the color assigned to a vertex is never changed. The order in which vertices are
processed in a greedy heuristic determines the number of colors used by the heuristic. We have
developed and implemented various vertex ordering techniques that are effective in lowering the
number of colors used by a greedy algorithm [24]. We characterized the ordering techniques
solely in terms of relative degrees in a manner independent of a coloring algorithm that could
use them. The decoupling helps achieve better software design, enables efficient implementation,
and makes it easier to discover applications outside coloring in which the orderings are useful.
All three of these advantages have been realized in our efforts.

1.1.3. ColPack Sofware We have assembled implementations of our coloring, ordering, matrix
recovery and other supporting algorithms for Jacobian and Hessian computation in a software



package called ColPack [24]. The package is written in an objected-oriented fashion in C++
using the Standard Template Library. It is designed to be efficient, modular and extensible. The
first version of ColPack was released for free public use under the GNU Lesser General Public
License in October 2008. Several improved and updated versions had been released since then;
the most recent release is dated March 2011. Download and other information is available at
http://www.cscapes.org/coloringpage.

In collaboration with Andrea Walther at Paderborn University, Germany, ColPack has been
interfaced with the operator overloading based automatic differentiation tool ADOL-C [25].
The latest version of ADOL-C has acquired new and more efficient sparsity pattern detection
capabilities (based on propagation of index domains) for Jacobian as well as Hessian matrices,
and we contributed to the development of these techniques [21, 22]. In a recent CSCAPES effort
[34], ColPack has been interfaced with the newly developed source transformation based AD
tool ADIC2 [35], a tool housed at Argonne. To make the interface with ColPack possible, new
automatic sparsity detection capabilities were added to ADIC2 [34].

1.1.4. Impact ColPack coupled with ADOL-C or ADIC2 has enabled a number of applications
and generated long-term collaborations. One example of an application enabled by a ColPack—
AD toolkit is a Simulated Moving Bed (SMB) process, a purification technique widely used in
the chemical, food, and pharmaceutical industry to separate liquid chemicals that are thermally
unstable or have high boiling points [32]. We considered a case where the objective was to
maximize throughput, which was modeled as an optimization problem with constraints given
by partial differential algebraic equations. These were solved by discretizing in both space and
time, which gave rise to Jacobians that are large and sparse. Using ColPack and ADOL-C, we
showed that the computation of such Jacobians (which have fairly complex structures) could
be reduced by several orders of magnitude relative to a computation that does not exploit
sparsity [22]. Recently, the SMB application was enabled in a similar manner in the context of
source-transofrmation based derivative computation via the ADIC2—ColPack integration [34].

Another example of application enabled by ColPack and ADOL-C involves the optimization
of electric power flow in a network. The network consists of observable parts (where measured
data is available) and unobservable parts (where data is estimated). The requirements here
were formulated as an unconstrained optimization problem and solved using an interior point
method, which relies on the provision of the Hessian of a Lagrange function. We showed that the
use of star and acyclic coloring in the Hessian computation reduces overall runtime by several
orders of magnitude [21]. This work on power optimization using ColPack and ADOL-C has
been used by a power agency in France for some of its routine operations.

Our work on the SMB application inspired a collaboration with Prof. Larry Biegler (Carnegie
Mellon University) with whom we have an ongoing conversation to extend the work on SMB to
the related Pressure Swing Adsorption process, which is used in purification of gaseous mixtures
(e.g., removing carbon dioxide from flue gases). The work on ColPack and its distribution has
spurred a number of activities by various researchers internationally, including a PhD thesis at
Aachen University in Germany. The package has also been used by practitioners in industry,
including an energy firm in Portugal.

1.2. Distributed-memory Parallel Coloring Algorithms and Software
Development of parallel algorithms and software has been a central focus of our work on
coloring in CSCAPES. We developed a framework for parallelizing greedy distance-1 coloring
algorithms on distributed-memory computers [8]. The techniques employed in the framework
include: careful exploitation of features of the initial data distribution; speculation—maximizing
concurrency by tentatively tolerating inconsistencies and then detecting and resolving them;
randomization; and infrequent, coarse-grain communication among processors as opposed to



frequent, fine-grained communication. In [8], several specialized algorithms designed using the
framework have been presented, evaluated, and shown to be superior to previously known parallel
coloring algorithms. Experiments carried out on clusters consisting of a few hundred processors
demonstrated good scalability. In a recent work [11], the algorithms have been further optimized
and were shown to be scalable up to tens of thousands of processors of the IBM Blue/P.

In a related work [7], we extended the framework developed in [8] to design parallel algorithms
for coloring problems in sparse derivative computation. Specifically, we developed algorithms for
distance-2 and restricted star coloring of general graphs (for Hessian computation) and partial
distance-2 coloring of bipartite graphs (for Jacobian computation). No previous distributed-
memory parallel algorithms were known for these problems. In a distributed-memory parallel
distance-2 coloring algorithm, an efficient means for exchanging information between processors
hosting a pair of vertices two edges away from each other needs to be devised. Direct
communication between such a pair of processors would incur unduly high communication cost
and duplicating distance-2 neighborhood information would require unduly large storage space
and memory. Instead, we employed a strategy in which information is relayed via a third
processor (the processor owning a mutual neighbor of vertices two edges away from each other)
as needed. Experiments we run on various clusters showed that the resulting parallel distance-2
coloring algorithm scales well and gives a solution very close to the sequential variant, which is
often close to optimal.

MPI implementations of the distance-2 coloring algorithm as well as the distance-1 coloring
algorithm have been incorporated into and deployed via Zoltan. Zoltan interfaces for the partial
distance-2 coloring and restricted coloring implementations have been created.

1.3. Coloring on Multicore and Multithreaded Architectures
Our latest work on coloring has focused on the emerging and rapidly growing multicore and
massively multithreaded architectures. We have designed and implemented a set of efficient
multithreaded algorithms for distance-1 coloring on a collection of platforms with varying degrees
of multithreading capabilities [12]. The platforms we considered include a 128-processor Cray
XMT (supporting more than 10,000-way parallelism via multithreading), a 16-core Sun Niagara
2, and an 8-core Intel Nehalem system. We found that obtaining good performance on these
machines involves designing algorithms that pay careful attention to and take advantage of the
programming abstractions and hardware features the machines provide. In another recent work
[36], we have developed multithreaded algorithms for a collection of vertex ordering problems
and the distance-2 coloring problem.

2. Graph Matching
Background. Matching is a archetypical combinatorial problem for which we proposed to
develop parallel algorithms. When we began our work, there was no practical parallel algorithm
for matching, since the approach taken by most matching algorithms is inherently serial.

We have made progress in designing optimal and approximation algorithms for vertex-
weighted matchings (VWM), a variant of the matching problem that has not been studied much.
We have also developed a parallel 1/2-approximation algorithm for edge weighted matching
(EWM), and implemented it on both shared memory and distributed memory multiprocessors.
We have also begun to implement exact algorithms for computing maximum cardinality and
maximum edge-weight matchings on many-core processors.

Optimal and Approximation Algorithms. We have discovered a property of optimal
vertex-weighted matchings called the reachability property that leads to the design of optimal
algorithms for VWM. We have also designed new 2/3-approximation algorithms for VWM on
bipartite graphs [19, 27] that are faster than the optimal algorithms, while guaranteeing a weight
for the approximate matching that has at least 2/3-rds of the weight of an optimal matching. The



approximation algorithm reveals further properties of the VWM problem. We have implemented
the approximation algorithms for VWM and EWM, and show that the approximation algorithms
can be faster by several orders of magnitude relative to the optimal algorithms. Computationally
the weights of the computed matchings are higher than 95 percent of the weight of the optimal
matchings on a large set of test problems.

Parallel Approximation Algorithms. Approximation algorithms for matching are much
more amenable to parallelization since they search for short augmenting paths in the graph
to increase the size of the matching. We describe results from a parallel 1/2-approximation
algorithm for the EWM problem implemented on [11, 27]. The algorithm finds locally
dominating edges, i.e., edges which are heavier than other edges incident on their endpoints,
adds them to the matching, removes the matched edge and its neighboring edges, and iterates.
We have implemented this algorithm on several thousands of processors of a Cray XT-4 at
NERSC and an IBM Blue Gene/P at Argonne’s Advanced Leadership Computing Facility. On
these machines, we have computed matchings for graphs with hundreds of millions of edges and
demonstrated strong scaling for graphs with good edge separators.

Matching on Multithreaded Processors. We have implemented the parallel half-
approximation algorithm on multithreaded architectures such as the Intel Nehalem, the Sun
Niagara, the massively multithreaded Cray XMT, and the Nvidia Fermi GPU [28]. A dataflow
algorithm that exploited the low cost hardware-based synchronization gave the best results for
the XMT. We obtained good strong and weak scaling for several classes of graphs on all these
architectures.

Exact algorithms for maximum cardinality and maximum weighted matchings are amenable
to parallelization on multithreaded processors. We are currently designing and implementing
such algorithms. A maximum cardinality matching also enables the computation of the block
(upper or lower) triangular decomposition (BTF) of sparse matrices, which has been used by
Rob Hoekstra, David Day and colleagues at Sandia to solve circuit modeling problems in their
Xyce tool for modeling circuits under extreme conditions. In one of the instances, BTF enabled
the solution of a problem 200 times faster; it also enabled solution of this ill-conditioned problem
(with condition number about 1030) to be computed more accurately.

Our matching software is being interfaced with Trilinos, and is being used by our colleagues
at Sandia, and the University of Bergen in Norway.

3. Multiscale graph algorithms
The Multiscale method is a class of algorithmic techniques for solving efficiently and effectively
large-scale computational and optimization problems. This method was originally invented
for solving elliptic partial differential equations and up to now it represents the most effective
class of numerical algorithms for them. Whereas the variety of continuous systems’ multiscale
algorithms turned into a separate field of applied mathematics, for combinatorial optimization
problems they still have not reached an advanced stage of development, consisting in practice
of a very limited number of multiscale techniques.

The main objective of a multiscale algorithm is to create a hierarchy of problems (coarsening),
each representing the original problem, but with fewer degrees of freedom. For the graph modeled
problems, this hierarchy may be viewed as a process of learning of a graph topology prior to
applying any approximation method. The construction of hierarchies at different scales ends
up at the level with a very small number of degrees of freedom (coarsest level) that allows
to get a first approximation to the original problem at very large scale within an insignificant
running time (even for exact algorithm) in comparison to the size of original problem. Then, the
obtained approximation is sequentially projected along all levels of the hierarchy (interpolation
or projection) until it reaches the original problem with some approximation for it. The
projection stage can be reinforced at each level by refinement algorithms that improve the



quality of approximation before further projection. The projection reinforced by a refinement
method is called uncoarsening. Multiscale representation of a manifold on which a combinatorial
optimization problem is formulated allows to apply different approximation or exact methods
at all scales. Adapting these methods for working at local domains only can improve the overall
complexity significantly while applying them at different scales implies the preservation of large-
scale solution features inherited from coarser scales.

The multiscale framework has two key advantages that make it attractive for applying on
modern large-scale instances: it can exhibit a linear complexity, and it can be relatively easily
parallelized and implemented by using standard matrix-vector operations. Another advantage
of the multiscale framework is its heterogeneity, expressed in the ability to incorporate external
appropriate optimization algorithms (as a refinement) in the framework at different scales. Below
we present examples of problems and multiscale techniques designed by CSCAPES members.

3.1. Relaxation-based coarsening of graphs
At each level of coarsening one needs to define the set of coarse variables and the equations (or
relations) that they should satisfy. Each coarse variable is defined in terms of the next-finer-
level variables and each coarse level equation is based on the set of next-finer-level equations.
Determining the set of coarse variables and equations is the central task of any multiscale scheme
as the quality of approximation (and, thus, of the solution) strongly depends on them. In the
process of defining the set of coarse variables and in constructing an explicit interpolation, it
is important to know how close two given fine-level variables are to each other at the stage
of switching to the coarse level. We need to know, in other words, to what extent the value
after the refinement of one variable implies the value of the other. If they are sufficiently close,
they can, for example, be aggregated to form a coarse variable. In [39] and [13] we introduced
and analyzed a measure of closeness between two nodes in a given graph. More generally,
we defined the distance of one variable x from a small subset S of several variables, in order
to measure how well x can be interpolated from S. We demonstrated the effectiveness of the
measure in multiscale frameworks (for (hyper)graph partitioning and linear ordering) and several
well-known greedy algorithms on graphs where a “greedy decision” depends on the strength of
connection between two nodes. The proposed measure can be easily calculated and parallelized.

3.2. Network compression-friendly ordering
Finding a suitable compressed representation of large-scale networks (or matrices) has been
intensively studied in both practical and theoretical branches of data mining [16, 2, 15, 5, 43]. In
particular, the success of applying some of the recently proposed compression schemes [15, 5, 3]
strongly depends on the “compression-friendly” arrangement of network nodes. Usually, the
goal of these arrangements is to order the nodes such that the endpoints of network links
(edges) are located as close as possible. Doing so leads to a better performance of compression
schemes and network element access operations. Our multiscale algorithm [41] for “compression-
friendly” arrangement is a linear solver for the minimum logarithmic arrangement problem [15].
It is based on the algebraic multigrid methodology for graph linear ordering problems [40] and
local kernel density estimation used as a relaxation. We demonstrate significant improvement
for minimization of logarithmic arrangement for various families of networks, including social
networks and other (ir)regular instances. The comparison was performed with several methods
recently introduced in [1, 5, 4, 15]. In almost all cases, our solver exhibited better numerical
results than previous best-known results (up to 80% of imptovement).

3.3. Optimal location of two-dimensional objects
The optimization problem we addressed in this work [38] is to find an optimal location of two-
dimensional (2D) objects such that (a) the total length of the given connections between these



objects will be minimal, (b) the overlapping between objects will be as little as possible, and
(c) the 2D space will be efficiently utilized. This class of problems can be modeled by a graph
in which every vertex has a shape and area and each edge has a weight. In many theoretical
and applied fields, this class of problems is often addressed and actually poses a computational
bottleneck. Examples include problems such as graph visualization, facility location, wireless
network coverage, and optimal VLSI placement. The corresponding optimization problem
consists of quadratic utility function (other functionals can be used via quadratization) and
linear inequality constraints. It is succesively approximated by the system of equations and
solved by a combination of two multigrid techniques, namely, the correction scheme for the
utility minimization and the full approximation scheme for the inequality constraints dened over
the 2D squares. The entire algorithm solves the nonlinear minimization problem by applying
successive steps of corrections, each using a linearized system of equations to define a “pseudo-
Lagrangian”.

4. Education and Outreach
4.1. Education and Training
Along with performing research and enabling applications in petascale simulations, CSCAPES
had a goal of educating the next generation of researchers in combinatorial scientific computing.
Toward that end, CSCAPES has sponsored four post-doctoral researchers. Cedric Chevalier
(Sandia) performed research in sparse matrix ordering, graph coarsening, and mesh partitioning;
he is now a staff scientist at Commissariat à l’énergie atomique (CEA) in France. Michael
Wolf (Sandia) studied two-dimensional matrix partitioning and multicore solvers; he is now
employed by MIT Lincoln Laboratories. Sivasankaran Rajamanickam is Sandia’s current
CSCAPES postdoc, studying sparse hybrid solvers. Ilya Safro is currently Argonne’s CSCAPES
postdoc, where he studies the application of algebraic coarsening to graphs. CSCAPES has
also supported five summer interns at Sandia and Argonne, working on matrix partitioning,
hypergraph coarsening graph matching, and automatic differentiation.

In addition to the four post-doctoral scientists mentioned above, the following graduate and
undergraduate students were advised by CSCAPES personnel.

• The following three PhD students graduated during the period of the CSCAPES Institute.
Michael Wolf (Illinois), postdoc at Sandia; Mahantesh Halappanavar (Old Dominion)
Research Staff member at Center for Adaptive Supercomputing at PNNL; Doruk Bozdag
(Ohio State), currently at Google.
The following PhD students are pursuing their PhD degrees. At Purdue: Ariful Azad, Duc
Nguyen (Ross Fellow), Arif Khan. Ahmet Sariyuce is at Ohio State, and Andrew Lyons
(Argonne) at Vanderbilt.

• CSCAPES researchers also worked with the following summer students: Aydin Buluc
(Sandia), currently the Luis Alvarez fellow at LBL. Nana Arizumi (Argonne); Heather
Cole-Mullen (Argonne); Michael Wolf (Sandia); and Arif Khan (Sandia).

• Visiting international PhD students: Johannes Langguth, Mohammed Mostafa Ali Patwary
(both from Bergen, Norway, visited Purdue). Patwary is now a postdoctoral scholar at
Northwestern University.

In addition, Sandia sponsored a Harvey Mudd College Computer Science Clinic team. Clinic
teams consist of four college seniors who work together for an entire school year on a research
problem designated by the sponsoring institution. Sandia’s team (see Figure 3) investigated the
feasibility of two-dimensional matrix partitioning for a wide class of problems, implementing two-
dimensional Cartesian and Recursive Bisection methods in the Trilinos library and evaluating
the methods on parallel computers at NERSC. This clinic project provided the students’ with
their first exposure to parallel computing and large-scale software projects.



Figure 3. Sandia’s Harvey Mudd College Computer Science clinic team (Michael Leece, Joe
DeBlasio, Audrey Lawrence, and Katie Ewing) studied the feasibility of two-dimensional matrix
partitioning; they are shown here with their poster on project presentation day – a college-wide
event for seniors and sponsors – in May 2011.

4.2. Outreach: Conferences
The CSCAPES Institute participated in a number of outreach events from 2007- 2010. All
of them are listed on the cscapes web page, so we will mention a few highlights here. We
organized seminars among our institutions (roughly once a month for the initial three years and
a few times a semester after that) using the Access Grid and other remote conferencing tools.
The premier conference in the area is the SIAM Workshop on CSC, and these workshops were
held in 2007, 2009 and 2011. CSCAPES researchers serve on the steering committee of the
CSC community that organizes these workshops, and also served as Chairs of the organizing
committee. CSCAPES funding was used to enable graduate students and post-doctoral scholars
to attend these workshops. A CSCAPES software tools workshop was held in Santa Fe, NM
with tutorials on the use of Zoltan, ADIC, OpenAD, Colpack, and talks from the developers
of the tools and the user community. A Dagstuhl workhop on CSC was held in February
2009 in Dagstuhl, Germany, where CSCAPES researchers gave a number of plenary talks and
again offered tutorials on the software tools developed by us. A book on CSC was published
based largely on papers presented at this workshop, and CSCAPES researchers contributed to
x chapters in this book. We also participated in the AD2008 conference, and also contributed x
papers to the Proceedings of the conference. Finally, we organized four minisymposia with 16
talks on CSC at the International Conference on Industrial and Applied Mathematics (ICIAM)
2011 in Vancouver.
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