
Thrifty Report 1 
 

Thrifty:	An	Exascale	Architecture	for	Energy	Proportional	Computing	
Final	Progress	Report	

PI:	Josep	Torrellas	(torrellas@cs.uiuc.edu)	
		

DOE	Award	#:	DE‐FC02‐10ER25992/DE‐SC0005512	
Recipient	Institution:	University	of	Illinois	at	Urbana‐Champaign	

Termination	Date:	August	31,	2014	

1.	Introduction	
The objective of this project is to design different aspects of a novel exascale architecture called Thrifty. 
Our  goal  is  to  focus  on  the  challenges  of  power/energy  efficiency,  performance,  and  resiliency  in 
exascale systems. The project  includes work on computer architecture (Josep Torrellas from University 
of  Illinois),  compilation  (Daniel Quinlan  from  Lawrence  Livermore National  Laboratory),  runtime  and 
applications (Laura Carrington from University of California San Diego), and circuits (Wilfred Pinfold from 
Intel Corporation). More specifically, the aims of this project are: 
 
Power/Energy Efficiency:  Attain efficiency gains over current computer systems by developing: 
• Novel  circuits and architecture  technologies  for Near‐Threshold Voltage Computing  (NTC) and  fine‐
grain management of static and dynamic power. 
• A power/energy‐aware compiler for Fortran and C based on ROSE that uses static and dynamic code 
analysis to drive the power‐management hardware for power/energy efficiency. 
•Application  models  for  efficient  energy‐proportional  computing  and  a  means  to  insert  power‐
management pragmas in the application. 
 
Performance: Attain performance increases over current designs by: 
•Proposing  performance‐enhancing  architectural  features,  including  primitives  for  fine‐grain 
synchronization and communication. 
• Developing a compiler that efficiently drives these performance features. 
•  Identifying  application  Idioms  and mapping  them  efficiently on  Thrifty, using  them  to  insert  tuned 
libraries, and performing novel thread scheduling. 
 
Resiliency:  Reduce  the  waste  in  computing  due  to  faults  and  recovery  in  high‐end  systems  by 
developing: 
• Novel circuit technologies for high resiliency at low supply voltage. 
• New circuits and architecture technologies for efficient error detection and tolerance. 
• A novel architectural scheme for energy‐efficient, diskless, scalable check‐pointing. 
• Applications and compiler support to drive the novel check‐pointing scheme. 
 
In  this  report, we  focus on  the progress at  the University of  Illinois during  the  last year of  the grant 
(September  1,  2013  to  August  31,  2014).   We  also  point  to  the  progress  in  the  other  collaborating 
institutions when needed. 



Thrifty Report 2 
 

2.		Progress	During	the	Period	

2.1.	Overall	View	of	the	Effort	
This year we have written a paper that gives an overall view of the project.  It  is called “Extreme‐Scale 

Computer Architecture:  Energy  Efficiency  from  the Ground Up”,  and  it  appeared  in  the  International 

Conference  on  Design,  Automation  and  Test  in  Europe  (DATE),  March  2014  [4].  It  describes  the 

challenges faced by exascale architectures and how we are addressing them.  

The paper describes that, as we move to integration levels of 1,000‐core processor chips, it is clear that 

energy and power consumption are the most formidable obstacles. To construct such a chip, we need to 

rethink the whole compute stack from the ground up for energy efficiency ‐‐‐ and attain Extreme‐Scale 

Computing. First of all, we want to operate at  low voltage, since  this  is the point of maximum energy 

efficiency.  Unfortunately,  in  such  an  environment,  we  have  to  tackle  substantial  process  variation. 

Hence,  it  is  important  to design  efficient  voltage domains on  the  chip  that  can operate  at  the most 

efficient voltage and frequency point. At the architecture  level, we require simple cores organized  in a 

hierarchy of clusters. Moreover, we also need  techniques  to  reduce  the  leakage of on‐chip memories 

and  to  lower  the voltage guard‐bands of  logic. Finally, data movement  should be minimized,  through 

both hardware and software techniques. With a systematic approach that cuts across multiple layers of 

the computing stack, we can deliver the required energy efficiencies. 

2.2.	Power/Energy	Efficiency	

2.2.1.	Energy	Management	API		
A significant contribution of the Thrifty project over these years  is that we have developed an Energy 

Management API[1] that enables the compiler or programmer to change chip configuration parameters. 

The goal is to execute in the most energy‐efficient manner. The API consists of library calls to: 

1. Select the Voltage and Frequency Bin for each of the processors and for each of the L2 caches in 

the chip. 

2. Turn‐off  (power‐gate)  and  turn‐on  various  resources  in  the  chip.  They  include  individual 

processors, caches, ways of associative caches, and functional units. 

 

The Thrifty hardware architecture is designed with the ability to change the voltage and frequency bins 

of  individual components, as well as to power‐gate  individual components of the hardware.   The SESC 

architecture simulator that we developed uses this API to reconfigure the hardware architecture. 

This API has been transferred to the Intel‐lead Traleika Glacier X‐Stack project. 

The ROSE compiler has been extended to be able to analyze the code and then call the API to configure 

the architecture in the most energy‐efficient mode. In particular, the ROSE compiler: 

1. Detects serial and parallel sections in OpenMP programs. Before the serial section starts, it calls 

the  API  to  power‐off  all  the  processors  that will  remain  idle  (and  their  caches).  Before  the 

parallel section starts, it calls the API to power‐on all the processors and caches. 



Thrifty Report 3 
 

2. Detects  at  the  source  code  sections of  the  code  that use different  functional unit  types.  For 

example,  it detects the use of floating point and  integer functional units. When such units are 

not used, it power‐gates them. 

 

The programmer is also allowed to call the API based on his/her knowledge of the program. 

2.2.2.	Cache	Hierarchy	Reconfiguration	for	Energy	Efficiency	
As  an  example  of  using  this  API  in  the  SESC  architecture  simulator,  we  have  performed  a  study 

reconfiguring the cache hierarchy of a large scale multiprocessor.  The cache hierarchy often consumes a 

large portion of a system's energy. To save energy  in high‐performance environments, we propose  to 

reconfigure the cache hierarchy by reducing the number of ways of associative caches and the sizes of 

the caches, with a software‐controlled adaptive runtime system. Our approach also lets the user specify 

the best cache hierarchy configuration for a given application. 

Our  approach  uses  formal  language  theory  to  express  the  application's  pattern  and  help  predict  its 

future. Furthermore, it uses the prevalent Single Program Multiple Data (SPMD) model of HPC codes to 

find the best configuration in parallel quickly. Our experiments using cycle‐level simulations indicate that 

67% of the cache energy can be saved with only a 2.4% performance penalty on average. Moreover, we 

demonstrate  that,  for  some applications,  switching  to a  software‐controlled  reconfigurable  streaming 

buffer configuration can improve performance by up to 30% and save 75% of the cache energy. 

This work appeared as “Using an Adaptive HPC Runtime System to Reconfigure the Cache Hierarchy” in 

the International Conference for High Performance Computing, Networking, Storage and Analysis (SC) in 

November 2014 [8]. 

2.2.3.	Reducing	the	Refresh	Energy	in	On‐Chip	eDRAM	Modules	
As  the  Thifty  chip  uses  dynamic  energy  ever more  efficiently,  static  power  consumption  becomes  a 

major concern. In particular, leakage in on‐chip memory modules contributes substantially to the chip’s 

power draw. This is unfortunate given that, intuitively, the large multi‐level cache hierarchy of a many‐

core is likely to contain a lot of useless data. 

 

An effective way to reduce this problem  is to use a  low  leakage technology such as embedded DRAM 

(eDRAM). However, such systems require refresh. In this work, we examined how to significantly reduce 

the refresh energy for large last‐level caches. In practice, it is well known that different eDRAM cells can 

exhibit  very  different  charge‐retention  properties.  Unfortunately,  current  systems  pessimistically 

assume worst‐case retention times, and end up refreshing all the cells at a conservatively‐high rate.  

 

In this work, we propose an alternative approach. We use known facts about the factors that determine 

the retention properties of cells  to build a new model of eDRAM retention  times. The model  is called 

Mosaic.  The model  shows  that  the  retention  times  of  cells  in  large  eDRAM modules  exhibit  spatial 

correlation. Therefore, we logically divide the eDRAM module into regions or Tiles, profile the retention 

properties of each tile, and program their refresh requirements in small counters in the cache controller. 

With  this architecture, also called Mosaic, we  refresh each  tile at a different  rate. The  result  is a 20x 



Thrifty Report 4 
 

reduction  in  the number of  refreshes  in  large eDRAM modules  ‐‐‐ practically eliminating  refresh as a 

source of energy consumption. 

 

This work appeared as “Mosaic: Exploiting  the Spatial Locality of Process Variation  to Reduce Refresh 

Energy  in On‐Chip eDRAM Modules”  in  the  International  Symposium on High Performance Computer 

Architecture (HPCA), February 2014. 

2.3.	Performance	

2.3.1.	API	for	Software‐Managed	Caches	
Another significant contribution of the Thrifty project over these years is that we have developed an API 

for  software‐managed  caches  (SMC).  It  enables  the  compiler  or  the  programmer  to  manage  the 

coherence of a multiprocessor cache hierarchy in software [2]. The goal is to execute in a more energy‐

efficient manner and still retain high performance.  

With  SMCs,  as  a  processor  references  a  variable,  the  memory  line  containing  the  variable  is 

automatically  brought  from memory  or  from  the  lower  layers  of  the  cache  hierarchy  (e.g.,  L3)  and 

copied  into  the  processor’s  local  cache.  However,  caches  are  not  coherent,  which means  that  the 

processor simply gets the value that  is currently  in memory (or  in the first  level of the cache hierarchy 

that it finds it in). If a processor P2 wants a value that another processor P1 wrote, then P1 has to first 

explicitly write back the variable to memory, and then P2 has to invalidate its own cached copy before 

reading the variable. 

 

The ISA can be used by the compiler or the programmer to make sure the correct data is accessed. The 

ISA  includes: 1) write‐back of a word  (or a  range of addresses)  from  the cache  to memory  (or shared 

caches), 2)  invalidation of a  cached word  (or  range of addresses), 3) write‐back and  invalidation of a 

word  (or  range  of  addresses),  and  4)  cache‐bypassing  loads  and  stores. When  a  processor  reads  a 

variable and  the data  is brought  from memory because  the word was  invalid  in  the cache,  the whole 

cache line is brought into the cache. When it writes back a line, only dirty words of the line are written 

back to memory in a writeback, reducing the traffic significantly. 

 

This API has been transferred to the Intel‐lead Traleika Glacier X‐Stack project. 



Thrifty Report 5 
 

2.3.2.	Compiler‐Driven	Software	Managed	Caches 

In collaboration with Professor Sadayappan from Ohio State University, we have developed a compiler 

algorithm  using  exact  polyhedral  dependence  analysis  to  optimize  coherence  instructions  for  affine 

computations  [9].  The  developed  approach  inserts  coherence  primitives  –  invalidate  and write‐back 

instructions – at a coarse granularity and combines invalidations and write‐backs of a number of words 

together,  to  reduce  both  the  frequency  of  coherence  operations  and  the  volume  of words moved 

between private caches and the shared level cache or main memory. The experimental evaluations over 

a number of benchmarks show that the developed system is effective both for energy and performance 

metrics.  

We develop  compiler  algorithms  for  two  types of  applications.  For  regular  applications, we precisely 

mark  variables  for  invalidation  in  a  processor's  private  cache  because  they  have  become  stale;  and 

accurately determine data that are to be written from the private cache of a processor to shared cache 

because other processors will access those data values.  

For  iterative  irregular applications, we present  inspector‐based schemes to exactly demarcate data for 

coherence.  Other  irregular  parallel  applications  are  handled  via  conservative methods  that  do  not 

preserve  cache  coherence  at  all  times, but  still  enable  coherent data  access  in  cache between  after 

synchronization points. 

Compared to prior works on compiler‐directed cache coherence, the compiler support developed in this 

paper  is more  general  as  it  is  applicable  to  a  larger  class  of  programs  and  it  is more  precise  as  the 

compiler analysis takes task‐to‐processor mapping into account. 

We also find that it is best to write applications for SMC from scratch, rather than simply taking existing 

codes and  translating  them. By writing  from scratch,  the programmer can  take advantage of  the data 

that can remain in the caches across barriers (or synchronizations) because the same processor will use 

it next. There is no need to move such data. In addition, data that will not be used by anyone any more 

can be discarded silently. This work is submitted for publication [9]. 

2.3.3.	User‐Driven	Software‐Managed	Caches	
We  have  also  attempted  to  rely  on  the  programmer’s  knowledge  of  a  program  to  use  this  API  for 

software‐managed  caches  (SMC).   We  insert write‐back  and  self‐invalidation directives  in  the  source 

code  of  non‐trivial  parallel  code. We  show  the  subtle  issues  that  these  instructions  need  to  face, 

including  reordering  in  the  pipeline,  and  effective  use  of  caches  organized  in  clusters  for  energy 

efficiency. 

We show a simple approach  that the programmer can use to orchestrate the movement of data.  It  is 

based  on  exploiting  the  synchronization  points  in  the  program  and  the  type  of  synchronization 

operations. Moreover,  if  the programmer provides additional communication pattern  information, we 

can improve the performance in a cluster‐based hierarchy. 

Our  simulation  results  show  that  the  execution  of  applications  on  incoherent  cache  hierarchies  can 

deliver reasonable performance. For execution within a single cluster, the performance is comparable to 



Thrifty Report 6 
 

simple  support  for  hardware  coherence.  For  execution  across multiple  clusters,  the  performance  is 

lower, but  it  scales with  the processor count.  In  the general case, programming  for performance  is a 

challenge. This work is submitted for publication [10]. 

2.4.	Resiliency	

2.4.1.	Coping	with	Parameter	Variations	
By  lowering the supply voltage to be slightly above the threshold voltage (Vth), we reduce the energy 

per operation substantially. This regime of operation, called Near‐Threshold Voltage Computing (NTC), 

allows many more cores to operate under a given manycore power envelope. 

Unfortunately, with voltage in close proximity to Vth, devices have a higher susceptibility to parametric 

variation ‐‐  i.e., the deviation of device parameters from their nominal specifications. Variation creates 

substantial  differences  in  speed  and  power  across  the  cores  in  the  chip.  Relying  on  the worst‐case 

margins does not represent a practical design option, as the nominal frequency of operation is already 

low.   As a  result, we may  suffer  timing errors, and we need  to design  techniques  that guarantee  the 

resilience  of  processors  and memories  in  the  presence  of  these  errors  ‐‐‐  for  example,  by  designing 

stronger  ECC  schemes  for  memories.  A  further  difficulty  stems  from  the  diminishing  efficacy  and 

increasing  cost  of  state‐of‐the‐art  variation mitigation  techniques  for  conventional  operation  when 

applied  to NTC.  These  techniques  rely heavily on  voltage  tuning  in  independent  voltage  domains on 

chip. 

As  part  of  this  grant, we  have  addressed  variation  at  the  architecture  level.  First, we  introduced  an 

architectural model of parameter variation at NTC. We used  the model  to  show  the  shortcomings of 

adapting state‐of‐the‐art techniques for variation mitigation to NTC. Finally, we show how we can tailor 

variation mitigation to NTC, with the use of a many‐core organization called EnergySmart. 

While we have published  several papers on  this  topic over  the  last  three  years, we  summarized  the 

relevant contributions  in a paper that we recently published  in the  IEEE Micro Magazine, Special  Issue 

on  Reliability‐Aware  Microarchitecture  Design,  in  July‐Aug.  2013.  The  paper  title  is  “Coping  with 

Parametric Variation at Near‐Threshold Voltages” [3]. 

2.4.2.	Reliable	Energy‐Efficient	On‐Chip	Networks	
To  build  a  power‐efficient  Thrifty  chip, we  reduce  the  supply  voltage  and  operate  the  chip  at  near‐

threshold voltage. However, in an NTC environment, there are significant variations in speed and power 

consumption across the chip. In particular, the on‐chip interconnection network is especially vulnerable 

to variations. This  is because  the network connects distant parts of  the chip which, due  to variations, 

exhibit different  speed and power  characteristics. The network has  to be designed  conservatively,  to 

work under the most unfavorable parameter values in the chip. This results in energy‐inefficient designs. 

On‐chip networks can already consume a substantial fraction of the on‐chip power ‐‐‐ potentially up to 

30‐‐40%, according to the literature. Conservative future network designs, needed to tolerate parameter 

variations, may be unable to reduce the value of this fraction much. 



Thrifty Report 7 
 

Fortunately, the voltage guard‐bands present  in the network to tolerate parameter variations offer an 

opportunity for energy savings: due to variations, the guard‐bands in some areas of the chip are likely to 

be significantly over‐provisioned. The insight in our work is to reduce these guard‐bands to save energy, 

while  being  mindful  not  to  reduce  voltage  so  much  as  to  cause  timing  errors  in  the  network. 

Interestingly, well‐known error detection and tolerance mechanisms in the network can be used to find 

out when voltage has reached a tolerable lower bound. 

Finding  which  groups  of  routers  should  lower  their  voltage  and  by  how  much  in  a  distributed 

environment  is  not  trivial.  Thus,  in  this  work  we  have  proposed  a mechanism,  called  Tangle,  that 

dynamically measures  the errors of messages and scales  the voltage of groups of routers  to an error‐

free minimum. The frequency of the network remains unchanged. 

Tangle augments a multi‐ or many‐core  chip  that has multiple voltage domains and  the  capability  to 

perform dynamic voltage scaling. Tangle monitors the errors of messages as they traverse the network. 

If  errors  are  observed,  Tangle  dynamically  increases  the  voltage  of  the  router  groups  used  by  the 

erroneous  messages.  Tangle  also  periodically  decreases  the  voltage  of  all  the  routers.  With  this 

approach,  the  voltage  values  applied  to  different  groups  of  routers  progressively  converge  to  their 

lowest,  variation‐aware,  error‐free  values.  This  saves  substantial  network  energy.  Tangle  has  no 

noticeable performance overhead because it does not reduce frequencies and keeps the error rate to a 

bare minimum. 

We evaluate Tangle with simulations of a variation‐afflicted 64‐router network. With 4 voltage domains 

in the network, Tangle reduces the network energy consumption by an average of 22% with negligible 

performance impact. In a future network design with one voltage domain per router, Tangle lowers the 

network voltage by an average of 21%, reducing the network energy consumption by an average of 28% 

with negligible performance impact. 

We  published  this  work  as  “Tangle:  Route‐Oriented  Dynamic  Voltage  Minimization  for  Variation‐

Afflicted,  Energy‐Efficient  On‐Chip  Networks”  in  the  International  Symposium  on  High  Performance 

Computer Architecture (HPCA), February 2014[6]. It was one of the Best Paper Nominees. 

2.5.	Outreach	
As part of  this grant, we have made  substantial efforts  in outreach,  including giving  talks, organizing 

panels and workshops, and  teaching  courses.  In  this  last  year of  the grant, we note  three  important 

outreach activities. 

 

We organized the “2013 Illinois Symposium on Parallelism: Current State of the Field and the Future” on 

September  2013,  at  the  Siebel  Center  for  Computer  Science  of  the  University  of  Illinois  at Urbana‐

Champaign [7]. We had talks, discussions and panels related to exascale computing and energy‐efficient 

computing.  Program director Dr. Sonia A. Sachs attended the symposium. 

 

We organized and participated  in the Second Workshop on Near‐threshold Computing  (WNTC), which 

was held in Minneapolis, MN, in June 2014. 

 



Thrifty Report 8 
 

As  part  of  The  23rd  International  Conference  on  Parallel  Architectures  and  Compilation  Techniques 

(PACT), we invited Dr. Sacks to give a talk on DOE’s Exascale effort. The talk was on tuesday, August 26 

and was titled “Exascale Software Stack: Present, Future”. 

2.6.	Contributions	of	the	Collaborating	Institutions	
Our  partner  institutions  are  Lawrence  Livermore  National  Laboratory  (LLNL)  and  The  University  of 
California San Diego (UCSD). While they have submitted their final reports separately, their work is fully 
integrated with the work presented here. In particular, PI Quinlan from LLNL has been in charge of the 
compilation  aspects,  while  PI  Carrington  from  UCSD  has  been  in  charge  of  the  applications  and 
scheduling work. At the same time collaborator Pinfold from Intel has been advising on circuits work. 
 
This  last  year of  the project, PI Quinlan  from  LLNL has extended ROSE's OpenMP  implementation  to 
work with our architecture simulator, has developed a new Thrifty specific source‐to‐source translator 
that can  translate directives  to call Power API  functions provided by  the simulator, and has created a 
NUMA‐aware  runtime  library.  This  last  year,  PI  Carrington  from UCSD  has  evaluated  and  compared 
scratchpads  and  caches,  analyzed  co‐scheduling  of  applications,  and  proposed  application‐aware 
reconfiguration of the cache hierarchy. 
 
One of the contributions of the Thirfty project has been the construction of an extensive tool chain that 
includes  application  instrumentation,  compilation  analysis,  and  architecture  simulation,  all  integrated 
into a  large software system.   This software  is currently being used  in the Intel‐lead Traleika Glacier X‐
Stack project, and is available for use in other DOE projects. 

References:	
 

[1] Aditya Agrawal and Josep Torrellas , “Power API for Thrifty”, Technical Report, University of Illinois at 

Urbana‐Champaign, December 2013. 

 

[2] Wooil Kim and Josep Torrellas, “Programmer Managed Caches: Concepts, APIs and Example Codes”, 

Technical Report, University of Illinois at Urbana‐Champaign, February 2014. 

 

[3]  Ulya  Karpuzcu,  Nam  Sung  Kim,  and  Josep  Torrellas,  “Coping with  Parametric  Variation  at  Near‐

Threshold Voltages”, IEEE Micro Magazine, Special Issue on Reliability‐Aware Microarchitecture Design, 

Volume:33 Issue:4, July‐Aug. 2013. 

 

[4]  Josep  Torrellas  ,  “Extreme‐Scale  Computer  Architecture:  Energy  Efficiency  from  the  Ground  Up”, 

International Conference on Design, Automation and Test in Europe (DATE), March 2014.  

 

[5] Aditya Agrawal, Amin Ansari, and Josep Torrellas, “Mosaic: Exploiting the Spatial Locality of Process 

Variation  to  Reduce  Refresh  Energy  in On‐Chip  eDRAM Modules”,  International  Symposium  on  High 

Performance Computer Architecture (HPCA), February 2014.  

 

[6] Amin Ansari, Asit Mishra, Jianping Xu, and Josep Torrellas, “Tangle: Route‐Oriented Dynamic Voltage 

Minimization  for Variation‐Afflicted,  Energy‐Efficient On‐Chip Networks”,  International  Symposium on 



Thrifty Report 9 
 

High Performance Computer Architecture (HPCA), February 2014. Best Paper finalist. 

 

[7] Josep Torrellas, Sarita V. Adve, Vikram S. Adve, Danny Dig, Minh N. Do, Maria Jesus Garzaran, John C. 

Hart, Thomas S. Huang, Wen‐mei W. Hwu, Samuel T. King, Darko Marinov, Klara Nahrstedt, David A. 

Padua, Madhusudan Parthasarathy, Sanjay J. Patel, and Marc Snir, “Making Parallel Programming Easy: 

Research Contributions from Illinois”, September 2013.  

 

[8] Ehsan Totoni,  Josep Torrellas, and  Laxmikant V. Kale,  “Using an Adaptive HPC Runtime System  to 

Reconfigure  the  Cache  Hierarchy”,  International  Conference  for  High  Performance  Computing, 

Networking, Storage and Analysis (SC), November 2014. 

 

[9]  Sanket  Tavarageri,  Wooil  Kim,  Josep  Torrellas,  and  P.  Sadayappan,  “Automatic  Generation  of 

Coherence Instructions for Software‐Managed Multiprocessor Caches”, in submission. 

 

[10] Wooil Kim and Josep Torrellas, “Architecting and Programming an Incoherent Multiprocessor Cache 

Hierarchy”, in submission. 

 

  


