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Predicting degradative phenotype from lignocellulose generated, and the protein families were counted.
genes. Principal components analysis (PCA) was performed The figure illustrates that, in terms of protein family
using selected lignocelluose genes as features. Genomes are discovery, good gains are still being made from
Genomes overview. Genome size in basidiomycetes varies over an order of shown plotted on the first two principal components from PCA of genome sequencing of basidiomycetes.
magnitude with M. globosoa (9.0 Mb) and M. laricis-populina (101 Mb) at the the lignocellulose genes of the organisms. Note the separation
extremes. Repeat content varies from a few percent (M. globosa, S. roseus, U. of brown rots (brown), white rots (blue). We predict that B.
maydis, W. sebi), to ~40 percent (L. bicolor, F. mediterranea, P. graminis, M. botryosum and J. argillacea are white rots, and that
laricis-populina) Dacryopinax sp. is a brown rot. Our results also raise questions
about the traditional classification of S. commune as a white rot.
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