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1. Introduction and Background

The Atmospheric Model Intercomparison Project
(AMIP) of the World Climate Research Programme’s
Working Group on Numerical Experimentation
(WGNE) is an ambitious attempt to comprehensively in-
tercompare atmospheric General Circulation Models
(GCMs). The participants in AMIP simulate the global
atmosphere for the decade 1979 to 1988 using a common
solar constant and Carbon Dioxide(CO, ) concentration
and a common monthly averaged sea surface tempera-
ture (SST) and sea ice data set. In this work we attempt
to present a statistical framework to address the difficult
task of model intercomparison and verification.

To begin we will attempt to summarize the as-
pects of the task of model intercomparison:

(a) We are required to compare a large number of
models. ( Some 30 modeling groups are participating in
AMIP, for example.)

(b) The model output in each case is a multivariate
vector of geophysical variables (temperature, wind, wa-
ter vapor, etc.) with a large number of components. (The
standard output of AMIP specifies some 15 variables.)

(¢) Each component is defined over a spatial grid
and hence is expected to have spatial autocorrelations of
varying magnitudes. This issue is further complicated by
the fact that the various models have different horizontal
and vertical grids and thus may have different underlying
correlation structures.

(d) The gridded data in each case has a temporal
evolution based on the underlying physical processes
and will in general have pronounced temporal autocor-
relations.

An effective intercomparison/validation method-
ology must first devise a parsimonious representation of
the spatio-temporal process(es) described above while
providing a framework for intercomparison/validation.

A significant amount of effort has been expended

by climatologists in the past to address this task.
Bretherton et al.(1992) provided an intercomparison of
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several methods of analysis using the covariance struc-
ture. Preisendorfer and Mobley(1982 a-c).provided a
comprehensive theory of data intercomparison by split-
ting the spatio-temporal 'distance’ between two data sets
into three parts based on the multidimensional geometric
configuration of the data sets. Among other workers are
Livezy (1985); Willmott et al.,(1985); Zwiers and Thi-
beaux (1987); Zwiers (1987); Wigley and Santer
(1990).

Two other methods that have been attempted to under-
stand this space-time structure are : multiple time series
(MTS),Lutkepohl (1991) and a space-time stochastic
process (STSP) approach with some representative
works being Niu and Stein (1990), Kim and
North(1992), Oshumi(1988), Martin (1990) and Basawa
et al. (1990). In the search for an effective intercompari-
son tool, there are two conflicting requirements. Firstly,
we need a parsimonious description of the data struc-
ture. Secondly, the results of the intercomparison should
maintain the space-time structure of the original data,
allowing for a physical interpretation of the results of
the analysis. While the MTS approach meets the second
requirement ,it is inadequate for the first.. A MTS based
on a full global grid is difficult to analyze due to its
computational complexity. Likewise, the STSP
approach offers parsimony at the expense of detailed
physical interpretation.In the pursuit of this dual objec-
tive, we may consider a reduced multiple time
series(tRMTS) where the number of components in a
vector time series under consideration is significantly
reduced. The most commonly used method for such a
reduction is by means of a principal component analy-
sis.

RMTS based on principal vectors: One may select a few
significant principal vectors and study the temporal evo-
lution of the corresponding principal components (PC)
which are obtained as projection of the data field for
each time instant onto the principal vectors.

Principal vectors use only linear functions of the vari-
ables. In many geophysical applications, the principal
modes of a space-time process may not necessarily be
expressible in terms of a linear set in the most parsimo-
nious way. In such cases, one may use an auto-associa-




tive neural network (AANN) to extract nonlinear
functions of the variables that may better summarize the
data . In sec 2. we introduce briefly such networks and
their use in data summarization..

While a RMTS derived by using either the PC or the
AANN approach may be satisfactory for the under-
standing of a single model behaviour, it is inadequate
for an intercomparison of several models and observa-
tions. In sec. 3 we motivate the use of common principal
components (CPC) for such an intercomparison. Sec. 4
gives a description of the data and principal results. Sub-
section (a) describes the data and analysis showing an
application of the nonlinear principal components by an
auto-associative neural network and subsection (b) the
same for an application of the method of common prin-
cipal components. Finally, section 5 concludes with
indications for future work.

2. Artificial Neural Network

Connection with Principal Component Analysis (
PCA)

PCA is an essential technique in data compres-
sion, feature extraction, compact coding and
computational efficiency.In the context of cli-
matological data analysis the constraints and

interdependency of spatio-temporal data can

be identified and redundancy eliminated by the
use of PCA. For example, the use of PCA is
commonplace in climatological literature (Pre-
isendorfer, 1988) and MPEG Video Compres-
sion is based on the same principle (LeGall,
1991).Briefly speaking, if x is a centered n-
dimensional vector, PCA extracts p (<=n) lin-
ear combinations W x of the components of x
where W is a p x n matrix of weights subject to
the constraints that (a) the variance of each lin-
ear combination appearing as elements of W x
1s maximized and (b) the extracted linear com-
binations are mutually orthogonal.In practice
one solves the eigensystem for the sample
covariance matrix say, C with the resulting p
dominant eigenvectors representing the princi-
pal vectors. Several workers in the Neural Net-
work community have related (Bourlard and
Kamp, 1987;Baldi and Hornik, 1989; Sirat,
1991, Oja, 1992) multilayer perceptron learn-
ing by back propagation algorithm with princi-
pal components extraction in classical
statistics. Becker (1991) gives a comprehen-

sive survey relating PCA models to unsuper-
vised learning neural networks. While neural
networks can derive the principal components,
the self-organizing rules of PCA perform very
poorly when outliers are present. Xu and
Yuille (1995) discusses the problem and
present robust self-organizing rules of PCA
extraction based on statistical physics
approach. In suggesting a transition from lin-
ear to ‘nonlinear’ principal components
(sometimes called ‘principal manifolds”),
Demers and Cottrell (1992) argues that PCA
finds an optimal linear subspace on which one
projects the data with minimum loss of infor-
mation (in the sense of ‘explained’ variance in
the data). However, if the data lie on a nonlin-
ear submanifold of the feature space, then the

number of dominant PCs will overestimate the
dimensionality. Take for example data from a
sampled from a 3-d helix. The covariance will
have a full rank (=3) with 3 distinct eigen-
value/eigenvector pairs leading to 3 distinct
principal components. However, the intrinsic

dimensionality of any 3-d curve such as a helix
is one since it can ordinarily be parametrized
by a single parameter.Furthermore, as has been
observed by other authors (Kramer, 1991; Oja,
1991; Usui, Nakauchi and Nakano, 1991 and
Demers and Cottrell, 1992), the addition of
hidden layers between the inputs and the repre-
sentation layer as well as between the repre-
sentation and the output layer provide a
network which is capable of learning nonlinear
representation also.In the process, one
achieves what may be termed a nonlinear ana-
logue of PCA In the following we present the
sketch of such a network.(Fig. 1) The network
consists of five layers which are fully intercon-
nected. In addition to the input and output lay-
ers which are identical since the network is
made to be auto-associative, we have a central
representation layer (where the principal mani-
folds or nlpcs are generated as outputs) and
two identical layers placed on the two sides of
the representation layer.These last two layers
as described above are called the encoding and



decoding layer respectively. The training algo-
rithm which is essentially adjustment of the
connection weights to minimize the vector dif-

ference between the target and the network
output is based on the back propagation of
error algorithm.(Rumelhart and McClelland,

1986)

Network Architecture

Although there are no specific guidelines for the choice
of the number of nodes in the encoding and the decod-
ing layer, Kramer (1991) provides bounds based on the
principle that the number of weights in the network
should be a fraction of the number of constraints
imposed by the data set. A few simplifying assumptions
then lead to the constraints

Ml+M2<<p, Ml>fand M2>f

where M1, M2 are respectively the sizes of the encoding
and the decoding layers, n is the size of the training set,
and f is the number of nodes in the bottleneck layer.

In determining the size of the representation layer three
different approaches have been indicated in the litera-
ture. Demers and Cottrell (1992) suggest a ‘pruning’
method based on successive elimination of representa-
tion nodes by penalizing variances. This results in
encodings of minimum dimensionality with respect to
allowable reconstruction error. Kramer (1991) on the
other hand introduces a sequential determination of the
nlpcs one at a time similar in spirit to its linear counter-
part, namely the PCA extraction algorithm. Applied in
this context, it amounts to using in a recursive manner
the same network in fig. 2 except with a single node in
the representation layer and in each recursion feeding
the residual matrix obtained from the previous stage as
the 1/O pair. The residual matrix is simply the error
matrix obtained by subtracting the output of the trained
network from the input. The procedure stops when
either a desired number of nlpcs have been extracted or
a desired level of accuracy has been attained in the
residual matrix.In yet a third method, instead of a
sequential procedure, we may simply decide to use a
fixed number p say, of nodes in the representation layer
and extract the p nlpcs. This will however preclude any
ranking of these nlpcs. In our work, we have used the
last two methods only.

3. Common principal components (CPC): A tool for
studying common covariance structure

To motivate the idea of common principal compo-
nents in the context of climate models/observation inter-
comparison,we briefly indicate here how PCs are
normally used in the intercomparison of two or more

temporally evolving climatological fields. We first com-
pute the dominant principal vectors (ranked by eigenval-
ues) for the data fields under comparison. Then
intercompare the time series resulting from the projec-
tion of the data on the principal vectors. We also inter-
compare the fields of ranked principal vectors of each
data set with their counterpart in another data set. A po-
tentially serious problem in this approach is that the prin-
cipal vectors for different fields under comparison,
ordered by the respective principal values, may not nec-
essarily be representing the same physical processes
(when such underlying processes can be identified)in
that order. It is this difficulty that motivated us to seek a
common frame of reference, the common principal vec-
tors, for the purpose of intercomparison of such fields.
The common principal vectors identify the principal
(spatial)modes of variation that are common to the data
sets under comparison. For a detailed model intercom-
parison, one needs also to study the similarities in the
temporal evolution of the data sets along the identified
common principal modes. To do this ,we will look at the
projection of all data sets on each of the common prin-
cipal vectors getting as many sets of time series as the
number of dominant common principal vectors. Each
such set consists of one time series for each model under
intercomparison as well as one for the observations.
The discussion above leads to the following line
of enquiry. First, given two or more multi-dimensional
data sets does their exist a common set of orthogonal
eigenvectors? Second, if a complete set of common
eigenvectors does not exist, is there a partial one? The
questions can be addressed in a more general context by
considering the covariance structures of these data sets.
Specifically, let there be k fields under comparison with
p components each. Let S;, i=1,2,. k, be their respective

sample covariances. One of the most important ques-
tions in the intercomparison of these fields is: Are the

corresponding population covariance matrices Z . sim-
1

ilar in any meaningful way? Flury(1988) has provided
the following levels of hierarchy of similarity of covari-

ance matrices: 2 .»1=1,2, ... k. : equality, proportional-
1

ity, having common eigenvectors and having partially
common set of eigenvectors. In this paper, we shall re-
strict ourselves to the third level, namely the commonal-
ity of the eigenvectors.One major advantage in using the
CPC model is that one can compare corresponding prin-
cipal components. A formal test of significance for the
hypotheses of (partial) commonality of the principal axes

of representation of two(or several) fields of data along
the line given in Flury(1988) is however not possible to
implement directly. These tests of significance require
that the sample fields (over discrete time instants) be in-



dependent. This, in most cases, is not a valid assumption
since fields over successive time instants are in fact cor-
related. This problem itself does not preclude the use of
common principal components as a diagnostic tool for
understanding the commonality of the fields.

Time series prediction and intercomparison

One way of comparing two (or more) time series
resulting as the common principal components is to
check how well the identification of parameters in one
can be used to predict the other. This notion of predict-
ability of one series in terms of the other can be extended
one more step by regarding the two series in a bivariate

context. More precisely, one may consider one series as

a (linear)filtered version of another and estimate in an
‘optimal’ way the filter coefficients(Newton 1988). One
may expect to do a little better if one allows for nonlin-
earity in the filter. We indicate below an implementation
of this process in a a nonparametric setting by using an
ANN directly for the prediction, bypassing the need to
identify the model first as in the ARMA approach and
avoiding the linearity restriction in the latter.

The fundamental problem in a one-step prediction
of one time series in terms of another can simply be stat-
ed as the estimation of a mapping f as in

Y(t+n)=£(X(t),X(t+1),...,X(t+n) (1)

where X(T), Y(T),T =t, t+1, ..., t+n denote respectively
the values of two time series at time T. In the context of
the problem of model intercomparison, one can look at
two time series X(T), Y(T) of a specified CPC pair re-
sulting from two model outputs( or a model output and
observations) and find a predictive function of the form
(1) for the Y(T) series. This function is encapsulated in
the form of weights of the ANN trained by 'examples' se-
lected as time segments of fixed length n from the series
X(T). These weights are analogous to the regression co-
efficients in a regression model. The input (X(t), X(t+1),
- » X(t+n-1)) is a segment of length n, and the output is
Y(t+n-1) for t=1,2,..N-n+1. The inputs are taken from
the time series segment X(1),X(2),...,.X(N) . This esti-
mated function can then be used to predict Y(t+n-1)
based on an input segment (X(t), X(t+1),..., X(t+n-1)) for
different values of t. The corresponding ANN output is
the predicted value of the Y(t) series based on the X(t)
series. A widely used measure of skill of a predictor is
the correlation coefficient R between actual and predict-
ed values (Anthes 1984). This or other measures of pre-
dictive skill can then be used to validate the similarity of
the two models(or the model and the observations). The
process can of course be repeated for the comparison of
all leading CPCs.

An overall intercomparison strategy

Common principal vectors (CPV) provide a
means of representation of data from multiple fields in a
common frame of reference. They in turn lead to groups
of time series of principal components where the time se-
ries within each group need to be intercompared. A
method of intercomparison by traditional methods as
well as methods based on ANN has been introduced in
the last paragraph. Now we combine the two steps to
outline an overall strategy of space-time field intercom-
parison.

1. For a given meteorological/oceanographic variable
over k space-time fields, determine if the mean fields un-
der comparison are very much alike. If they are, one may
consider the comparison of anomaly fields. For example,
one might consider monthly temperature anomaly pat-
terns over a certain period as given by observation, GCM
output, or analysis derived from an incomplete set of ob-
servations.

2.Compute the common principal vectors based on the
covariance matrices under study retaining only the
dominant ones based on some heuristic criterion such as
the size of the eigenvalues.

3. For each CPV, project each of the k space-time fields
on the CPV by taking the scalar product of the CPV and
the sample field at each time instant to get k univariate
time series.

4. Using the methods indicated earlier in this section, the
k univariate time series can now be intercompared with
regard to their evolutionary patterns.

Thus, in the search for a coupled set of patterns one first
looks at the similarity in the spatial distribution through
the orthogonal common principal vectors and then in the
temporal characteristics of the derived principal compo-
nents. The latter task can be accomplished by traditional
methods based on linear regression or nonlinear methods
based on artificial neural networks.

In the context of model intercomparison, two data sets
(model/model or model/observation) would be consid-
ered as 'similar’ with increasing degree of similarity in
the order indicated below, if:

(i) The significant common principal components within
each pair under comparison explain a 'large' portion of
the variations in the fields under comparison.

(ii) A high degree of predictive skill is demonstrated
when one of the series is used in the prediction of anoth-
er. A widely used measure of skill of a predictor is the
correlation coefficient R between actual and predicted
values (Anthes 1984)).

4. Data and Results

(a) Data for neural network
The data used in this part of the study consists of precip-



itation observations gridded to a 4degree by 5 degree
latitude, longitude lattice. The observations are from
surface stations over land and satellite MSU estimates,
Spencer(1993), over the oceans. The bulk of the analy-
sis grid used here is over the United States where the
observational network provides reliable precipitation
fields. The data are monthly averages for the 120
months from January 1979 to December 1988. The 120
month mean was subtracted from each gridpoint to form
the deviations. The seasonal cycle was retained since it
was of interest to compare how well the GCMs simu-
lated this cycle. The data comprised a matrix of 120
time points at 95 space points. Figure 3 shows the spa-
tial coverage of the data.

Analysis:

The PC analysis used the standard routine, PRINC from
IMSL (1994) to compute the principal components from
the covariance matrix computed from the data consist-
ing of the 120 time points at 95 space points.

The same data were used as input to the neural net
described above.

Resuits:

The results will focus on the first components of each
method since these represent the seasonal cycle and
allow a fairly direct interpretation in the limited space
available in this paper.

Figure 3 shows the projection of the first nlpc onto the
data. This spatial distribution allows for some physical
insight into the components. The projection for the first
PC was very similar overall, with some differences in
detail. From the times series in Figs. 4 and 5. it can be
seen that these first components are a representation of
the seasonal cycle. Figure 3 clearly shows the character-
istic west and east coast wintertime maxima in precipi-
tation due to cyclonic storms, while the mid-continent
has a summertime maximum which is attributable to
convective, severe storms.

Both the PC and nlpc techniques capture the bulk of the
seasonal oscillation but the nlpc displays a somewhat
sharper distinction and transition from the winter to
summer precipitation regimes. This is shown in the
spectra of Figs. 6 and 7. The PC analysis has a signifi-
cant contribution from the second PC at 12 months ( 1/
12 = 0.083) while the nlpc has virtually all the seasonal
contribution in the leading component. The extra free-
dom allowed by the non-linearity permits this more dis-
tinct characterization. This property would be of use
when the comparisons are made with GCM output. The
proper simulation of the seasonal cycle is an essential
benchmark for an acceptable integration.

On the other hand, the close resemblance of the analo

gous PC figure( not shown )to Fig. 3 indicates that the
linear PC does capture the essence of the spatial distri-
bution and might well be adequate for most purposes.

(b Data description - CPC

The data sets used for the example application of
the CPC methodology are the 200 hPa velocity potential
fields from two sources. The 200 hPa velocity potential
is a scalar potential for the divergent component of the
horizontal wind. The divergent wind is directly linked to
the upward motion in the atmosphere and thus to regions
of precipitation. The 200 hPa level is located at about 12
km in the atmosphere. This is approximately the level of
strong outflow from deep tropical convective storms.
One set of data are from the monthly mean wind fields
from five simulation of ten years in duration. Each of
these simulations was for the decade 1979 to 1988. The
model used was the ECMWF GCM cycle 36. This is an
atmospheric GCM so the sea surface temperatures must
be specified. The model has 19 levels in the vertical and
a horizontal resolution of T42. The model is in almost all
respects the same as that described by Miller et al.
(1992). The sea surface temperatures are specified in ac-
cordance with the AMIP guidelines (Gates, 1992). The

surface land temperatures are allowed to vary in accor-
dance to the surface parameterizations employed.

In these five cases the observed sea surface tem-
peratures for the decade were used. The integrations only
varied by the initial conditions used, all boundary forc-
ings and other external parameters were identical. The
injtial conditions for the first run were the observed data
for 1 Jan 1979. The initial conditions for the subsequent
runs were taken from the ending state of the previous
run.In this decade The atmosphere has been shown to be
chaotic in the sense that the simulations are sensitive to
the initial conditions. However, in the experiment de-
scribed here the specification places a strong constraint
on the path of the simulation in phase space. It is known
that the specified SST will leave an imprint on the simu-
lations, what needs to be determined is to what extent the
various simulations have a common component, presum-
ably due to the boundary forcing by the SSTs. There will
also be a component due to the seasonal changes of inso-
lation but in this analysis the seasonal cycle has been re-
moved from the data.

The decade 1979 to 1988 had two very prominent
El Nino / Southern Oscillation (ENSO )events in 1982/
83 and 1986/87. These events are manifested by an ex-
trusion from the South America coast of anomalously
warm SSTs in the ropical Pacific. It is well documented
that these warm ocean temperatures lead to an enhance-
ment of tropical convection and precipitation in the
Tropical Eastern Pacific. The 200 hPa divergent wind



will be a useful measure of the dynamic response of the
model atmosphere to the varying SST.

The monthly mean velocity potential fields for the
5 simulations had their seasonal cycle removed. The
mode] output the data on a global grid of 128 longitudi-
nal points and 64 latitudinal points. These data were
ansformed to the orthogonal spherical harmonics nad
the spherical harmonic series was truncated at T10. This
limits the results to large scale features but allows a fit in
the spatial domain since there are 110 spatial coordinates
( 110 coefficients of the spherical harmonics decomposi-
tion) and 120 time points. From these data were then
formed the covariance matrices for input into the CPC al-
gorithm.

The algorithm used for determining the common
eigenstructure was that of Flury and Gautschi (1986).
The code was tested against the IMSL (1991) routine
KPRIN and the results were identical. The IMSL rou-
tines were not used because we wanted to have access to
some intermediate results and the IMSL routines were
unable to permit this.

Table 1 : Percent variance explained by

CPC:s for the 5 simulations.

run CpC1 CpC2 CPC3
1 37 31 7
2 39 28 9
3 41 25 9
4 38 28 7
5 43 24 8
Results - CPC

Figure 8 is a plot of the Southern Oscillation Index
(SQOI) from the Climate Analysis Center. This index is
the difference in atmospheric pressure between Darwin,
Australia and Tahiti. It is tightly linked to the cycle of
SST and the atmospherics response the SST. The two
distinct dips in 1982/83 and 1986/87 represent two
strong ENSO events, the 82/83 event being the strongest
on record. The smooth curve in Fig. 8 is the result of an
8 point gaussian filter. This filter is often used by the
CAC to emphasize the component forced by the SST
variations which have somewhat longer timescales than
the atmospheric variations. Figure 9 present the leading
CPC for the 200 hPa velocity potential five simulations.
Table 1 gives the precent variance explained by the lead-
ing 3 CPCs. All the simulations share the same leading
three CPCs. Two things are evident. First, the simula-

tions are all follow a similar time evolution which clearly
reflect the pattern of the ENSO activity for the decade.
This shows the influence of the SSTs common for all the
simulations. Second, the curves are not identical. There
is quite a bit of variation especially in the first three
years. This is an indication of the chaotic noise. Notice,
that after the onset of the first ENSO event in 1982 there
is a better phase Jocking of the simulations. Figure 9 is a
geographical plot of the divergence pattern of the leading
CPC. It should be noted that most of the amplitude of the
signal is over the Tropical Pacific and the pattern is
broadly consitent with that expected from observed pre-
cipitaion anomalies associated with ENSO events.
Figure 10 used the same data as in Fig. 8 except
that is shows the differences in each simulation from the

mean of all the simulations at each time point. These
curves are in a sense a measure of the non-deterministic
component of the flow. The data are quite variable but
the mean amplitude remains relatively constant over the
decade with little obvious dependence on the ENSO cy-
cle. There is also some hint at a systematic component of
the differences linked to the magnitude of the differences
in the initial conditions. The models maintain the rela-
tive ordering of the first month ( which would he most
strongly influenced by the initial conditions ) for the en-
tire 120 month length of the simulations.

The points to be made here is not the discovery of
new relatinships but a measure of the impact of the SSTs
on the simulations with varying initial conditions. Such,
ensemble integrations are now commonplace among the
major weather forecasting centers. The CPC methodolo-
gy provides a framework for combining these ensembles
into a single field. This combining is necessary since the
number of members of the ensemble is often greaten than
20. This provides more information than can be easily
used by a forecaster.

There is some indications that the SST are predict-
able a month or a season in advance. The large time
scales associated with the ocean compared to the atmo-
sphere makes this possible. If the atmospheric models
are then driven by these SSTs, then a climate prediction
can be made. A CPC analysis of an ensembie of such at-
mospheric predictions would be an efficient way of pro-
ducing a robust climate forecast.

The figures indicate that beyond the ENSO signal
the model and the observations atmosphere do not have
a great deal in common. Each has a different response
givena common SST forcings of the decade. This is not
unexpected since on the global scale a great many more
variables influence the variability of the integrated tem-
perature field besides the SSTs. The CPC analyses does
allow this difference in the model and observation to be
seen clearly. The CPC approach allows one to see that
the ENSO response plays a greater role in the model than



the atmosphere. In addition the approach clearly shows
the two data sets have little in common beyond the
ENSO response. One does not have to hunt through
fields of PCs looking for similar or dissimilar compo-
nents, the CPC technique has essentially done this in a
convincing fashion. Figures 10b,c,d graphically show
that the two data sets evolve through the decade with lit-
tle correspondence.

5.Conclusions and further research

A parsimonious representation of the spatio-tem-
poral data derived from the observations or as model out-
puts is a necessary first step in understanding the
complex data sets obtained as model output or from ob-
servations. To achieve this, in addition to the traditional
method based on principal components, we have consid-
ered the use of AANN as a possible tool. For model val-
idation/intercomparison on the other hand a
straightforward application of the PCA does not seem to
work as well as the CPC based approach especially when
there are several models under comparison.The latter
starts with a reduced data set in the form of a MTS con-
sisting of a few orthogonal common principal compo-
nents for the data sets under comparison. The use of
CPCs are not limited to model intercomparisons only. In
fact, it is a powerful tool in detecting coupled patterns in-
volving several simultaneous spatio-temporal fields of
meteorological variables. This last feature makes it a po-
tentially valuable tool in understanding the physical pro-
cesses associated with these fields. We have indicated
briefly a method based on ANN that is capable of being
used for the intercomparison of the PCs resulting from
different models as time series. Developing a test similar
to Flury (1988) when the data fields are temporally cor-
related will help determining the statistical significance
of the commonality
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Figure 1 A fully interconnected ( connections not
shown) auto-associative neural network. The
representation layer is shown with two (nlpc) nodes.

Ry

Ro=X R, Rpn |
] 0| o[ 21] - = = o [Ap1]

Figure 2. Sequential selection of non-linear principal

components showing a sequence of p .
auto-associative networks Ay Ay, ... A | with each A;

configured like A in Fig. 1 (except with a single
node in each representation layer). The I/O pair
within each A; guring training are the

successjve residuals Rg, Ry, ...Rp. with the original
data matrix in Ry,
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Figure 4. First nlpc of precipitation data.
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Figure 6. Spectra of first nlpc using maximum
entropy estimation.

Figure 3. Projection of the first
nlpc. The data is the observed
precipitation. The analysis grid
is a 4 x 5 latitude longitude
grid over the US. Dashed lines
indicate negative deviations,
solid lines positive deviations.
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Figure 5. First PC of precipitation data.
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Figure 7. spectra of first PC using maximum
entropy estimation
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Figure 10. Leading CPC for the five ensmble
simulations for the 200 hPa
velocity potential.
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Figure 11 The difference from the mean for

simulations. The dashed contours
indicate anomalous divergence for
times when the curve in Fig. 1 is
negative.

the five curves shown in Fig. 2.



