skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration

Technical Report ·
DOI:https://doi.org/10.2172/1165568· OSTI ID:1165568

Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overlie injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.

Research Organization:
Colorado School of Mines, Golden, CO (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
FE0002059
OSTI ID:
1165568
Country of Publication:
United States
Language:
English