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Brown rot decay removes cellulose and hemicelluloses from wood, residual lignin contributing
up to 30% of forest soil carbon, and is derived from an ancestral white rot saprotrophy where
both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot”
fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of
both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and
losses in specific protein families, suggesting adaptation to an intercellular interaction with plant

tissue. Transcriptome and proteome analysis also identified differences in wood decomposition



in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode
diversification suggests that the boreal forest biome originated via genetic coevolution of above
and belowground biota.

Many Agaricomycete fungi have been sequenced to date (1) permitting comparative and
functional genomic analyses of nutritional niche adaptation in the underground fungal networks
that sustain boreal, temperate, and some sub-tropical forests (2). Through the sequencing of the
brown rot wood decay fungus S. lacrymans, we conducted genome comparisons with sequenced
fungi including species representing each of a range of functional niches: brown rot and white
rot wood decay, parasitism and mutualistic ectomycorrhizal symbiosis.

Only 6% of wood decay species are brown rots (3) but, being associated with conifer
wood (4), they dominate decomposition in boreal forests. Their lignin residues contribute up to
30% of carbon in the organic soil horizons (5). Long-lived (6), and with capacity to bind
nitrogen and cations (7), these phenolic polymers condition the nutrient-poor acidic soils of
northern conifer forests.

Brown rot wood decay involves an initial non-enzymic attack on the wood cell wall (8)
generating hydroxyl radicals (-OH) extracellularly via the Fenton reaction:

Fe*" + H,0, + H" — Fe*'+ -OH + H,0

Hydrogen peroxide is metabolically generated by oxidase enzymes, e.g. glyoxal oxidases
and copper radical oxidases. The hydroxyl radical has a half life of nanoseconds (8) and is the
most powerful oxidising agent of living cells. However, we do not know how it is spatially and
temporally targeted to wood cell wall components. Divalent iron is scarce in aerobic
environments where the fungus is obligate and the trivalent ion is energetically favored.
Phenolates synthesised by brown rot fungi, including S.lacrymans (9), can reduce Fe*" to Fe*”.
Such phenolates may be modified lignin derivatives or fungal metabolites (10). Following initial
bond breakages in the cellulose chain, side chain hemicelluloses (arabinan, galactan) are

removed, followed by main chains (xylan, mannan (11), with subsequent hydrolysis of cellulose



by synergistic glycoside hydrolases. Residual lignin is demethylated. White rot fungi, by
contrast, decompose both cellulose and lignin, with free radical attack theorized to break a
variety of bonds in the lignin phenylpropanoid heteropolymer.

S. lacrymans is in the Boletales, along with several ectomycorrhizal lineages (12, fig
1A). S. lacrymans is thus phylogenetically distant from brown rot P. placenta (Polyporales)
(13), as well as other sequenced ectomycorrhizal fungi (14, 15), parasites, and white rot wood
decomposers (16). We estimated divergence dates in fungal phylogeny using the data set of
Binder et al. (2010) (17) (Supplementary Online Materials, Molecular clock analyses), with two
well-characterized fungal fossils used to calibrate the minimum ages of the marasmioid (node 10
in fig 1A) and suilloid clades (node 11 in fig 1A). The estimated age of the split between
Serpula and its ectomycorrhizal sister-group Austropaxillus (53.1-15 Mya; fig 1A, table S20)
suggests that transition from brown rot saprotrophy to mutualistic symbiosis occurred after
rosids (Eurosids I) became widespread ((18), fig 1A). Diversification in fungal nutritional modes
occurred alongside diversification of angiosperms and gymnosperms, as these fungi are
currently associated with members of both gymnosperms (Pinaceae) and angiosperms (18).

S. lacrymans comprises two subgroups, S. lacrymans var shastensis, found in montane
conifer forest, and S. lacrymans var lacrymans, cause of building dry rot, which diverged in
historic time (19). Two S. lacrymans var lacrymans complementary monokaryons (haploids of
strain S7), S7.9 (A2B2) and S7.3 (A1B1) (20) were sequenced via Sanger and 454 pyro-
sequencing, respectively. The genome of S. lacrymans S7.9 was 42.8 Mbp, containing 12,917
gene predictions. For methodology, genome analysis and annotation, see supplementary
materials (21).

We analysed 19 gene families of enzymes for lignocellulose breakdown: carbohydrate
active enzymes (CAZy, http://www.cazy.org/, (22) (glycoside hydrolases and carbohydrate
esterases) and oxidoreductases (table S9). Losses and expansions in these families were

compared across 10 fungi including Agaricomycetes with a range of nutritional modes (fig 1B &
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C, table S9). Convergent changes in enzyme complement were found in the two independently-
evolved brown rot species, with parallels in the ectomycorrhizal Laccaria bicolor (fig S9, table
S9). The inferred most recent common ancestor of the Agaricales, Boletales and Polyporales is
predicted to be a white rot with 66 to 83 hydrolytic CAZy genes and 27-29 oxidoreductases (fig
1B & C). Brown rot and ectomycorrhizal fungi have the fewest hydrolytic CAZy genes. Brown
rot fungi have fewest oxidoreductases, due, not to gene losses, but to gene duplications in white
rot species.

Both brown rot and ectomycorrhizal fungi lacked class II peroxidases, used by white rot
fungi in depolymerising the non-utilisable lignin matrix of wood to unmask utilisable cellulose
embedded within it. This family was expanded in the white rots Coprinopsis cinerea,
Phanerochaete chrysosporium and Schizophylum commune, with 29, 43 & 24 genes
respectively, with only 19 each in S.lacrymans and P. placenta. Oxidoreductases conserved in
brown rot fungi included iron and quinone reductases, and multicopper oxidases (fig S9, table
S8). Absence of ligninolysis in brown rots raises the question of how they achieve pervasive
cellulolysis in wood with the lignin matrix intact.

Glycoside hydrolase (GH) gene families had parallel patterns of losses and expansion in
both brown rots and ectomycorrhizas. CAZy families GH5 (endoglucanases, hydrolysing
cellulose) and GH28 (pectinases, hydrolysing intercellular cohesive polysaccharides in plant
tissues) were expanded in both brown rot species, where they might facilitate intercellular
enzyme diffusion, and retained in L. bicolor, where they might facilitate intercellular penetration
of living roots. Both brown rot species lacked GH7 (endoglucanase/cellobiohydrolase CBHI),
and GH61 genes, with unknown function but recently implicated in oxidative attack on
polysaccharides (23), were reduced. Interestingly, GH6 (cellobiohydrolase CBHII) and cellulose
binding modules (CBM1), absent from P. placenta (13), were present in S. lacrymans. One
CBM was associated with an iron reductase in a gene (452187) originally derived from a

cellobiose dehydrogenase (fig S10).
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The general utility of the conserved suite of glycoside hydrolase genes in wood decay by
S. lacrymans was supported by transcriptomic and proteomic analysis. Carbohydrate active
enzymes accounted for 50% of proteins identified (table S22) and 33.9% of transcripts regulated
more than 20-fold by S. lacrymans growing on pine wood compared with glucose medium (fig
S11). Cellulose-, pectin- and hemicellulose-degrading enzymes (GH families 5, 61, 3 and 28)
were prominent, and GHS endoglucanase (Prot id: 433209) and GH74
endoglucanase/xyloglucanase (453342) were upregulated > 100-fold.

We conclude that brown rot fungi have cast off the energetically expensive apparatus of
ligninolysis and acquired alternative mechanisms of initial attack. Wood decomposition by S.
lacrymans may involve metabolically driven non-enzymatic disruption of lignocellulose with
internal breakage of cellulose chains by highly localised -OH radical action. Mycelia in split
plates mimicking realistic nutrient heterogeneity (fig S1), produced variegatic acid (VA), an
iron-reducing phenolate (fig 2A-C) via the Boletales atromentin pathway, recruited in S.
lacrymans for the Fenton’s reaction. The genome was rich in secondary metabolism genes
(table S24), including a putative atromentin locus (24). Mycelium imports amino acids to sites
of wood colonisation (25) , consistent with observed upregulation of oligopeptide transporters
on wood (table S21). Localising variegatic acid production to well resourced parts of the
mycelium could enhance Fenton’s chemistry in contact with wood.

Wood colonisation is presumably followed by co-ordinated induction of the decay
machinery revealed in the wood-induced transcriptome (fig 3, fig S11). Glycoside hydrolases
and oxidoreductases accounted for 20.7% of transcripts accumulating > 4-fold on wood relative
to glucose medium (fig S11, table S21). Iron reduction mechanisms included an enzyme
harboring a C-terminal cellulose binding module (Prot id 452187, fig S10), upregulated X122 on
wood substrate (fig S11, table S21). This enzyme, present in Ph.chrysosporium but absent from
P. placenta (26), is a potential docking mechanism for localizing iron reductase activity, and

hence ‘OH generation, on the surface of microcrystalline cellulose. Cellulose-targeted iron



reduction, combined with substrate induction of variegatic acid biosynthesis, might explain the
unique ability of brown rot fungi in Boletales to degrade unassociated microcrystalline cellulose,
without the presence of lignin (27).

Thus comparative genomics helps us understand the molecular processes of forest soil
fungi that drive the element cycles of forest biomes (28). Sequenced forest Agaricomycetes
revealed shared patterns of gene family contractions and expansions associated with emergences
of both brown rot saprotrophy and ectomycorrhizal symbiosis. In Boletales, loss of aggressive
ligninolysis might have permitted brown rot transitions to biotrophic ectomycorrhiza, promoted
in soils impoverished in nitrogen by brown rot residues, and by the nutritional advantage
conferred by the connection to a mycorrhizal network. S.lacrymans and other fungi cultured
with conifer roots (29), ensheath Pinus sylvestris roots with a mantle-like layer (fig S12),
suggesting nutrient exchange.

The chronology of divergences in extant fungal nutritional mode (fig 1A) matches the
predicted major diversification in conifers (18), suggesting that the boreal forest biome may

have originated via genetic coevolution of above and belowground biota.
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Figure 1. Molecular phylogeny and lignocellulose active gene evolution in the

Agaricomycetes A: Chronogram of Agaricomycetes inferred from a combined six-gene data set

using Bayesian relaxed molecular clock analyses. Time divergence estimates (in Mya) are

presented as 95% highest posterior density (HPD) node bars in light blue color, which describe
the upper and lower boundaries of time estimates, and as mean node ages (numbers in bars). The

HPD of nodes that were calibrated with fossil ages are in red color and the Serpula-

Austropaxillus split is highlighted by a black node bar. The numbering of nodes in bold type

corresponds to the tMRCA statistics (time to Most Recent Common Ancestor) summarized in

Table S20. B & C: Patterns of gene duplication and loss in 12 lignocelluloseactive CAZy (B)

and 7 oxidoreductase (C) gene families estimated by gene tree/species tree reconciliation

analysis (fig S9). Red, blue, and black branches indicate lineages with net expansions, net
contractions, or no change in copy number (respectively). Numbers at nodes and along branches
indicate estimated copy numbers for ancestral species, and ranges of gains and losses

(respectively), estimated using 90% and 75% bootstrap thresholds for gene trees in

reconciliations. Bars indicate copy numbers in sampled genomes.

Figure 2. : A: Proposed chemical reaction demonstrating iron redox cycling by S. lacrymans
secondary products, B: Comparison of HPLC chromatograms of S. lacrymans ethyl acetate
extracts as a function of nitrogen supply. Red trace: nitrogen rich medium (+N), black trace:

nitrogen depleted minimal medium (-N). The identity of the compounds was confirmed by mass
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spectrometry and by their UV-VIS spectrum (1: variegatic acid, 2: xerocomic acid, 3: atromentic
acid), C: Iron reduction capacity of S. lacrymans ethyl acetate extracts (60% variegatic acid,
15% xerocomic acid) measured by the Ferrozine assay (21) and compared with 2,3-

dihydroxybenzoic acid (DHBA), a redox chelator used to stimulate Fenton systems.

Figure 3: Schematic overview of the proposed mechanism of wood decay by S. lacrymans.
Scavenging mycelium colonises a new food source inducing variegatic acid (VA) production
and expression of oxidoreductase enzymes which drive hydroxyl radical attack on the
lignocellulose composite. Carbohydrate active enzymes (CAZy) gain access to the weakened
composite structure and breakdown accessable carbohydrates. Cellulose-binding iron reductase
targets -OH-generating Fenton’s reaction on cellulose chains, releasing chain ends for hydrolysis
and assimilation. IR = iron reductase, HQ = hydroxyquinones, CBM = cellulose binding

module.



