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Brown rot decay removes cellulose and hemicelluloses from wood, residual lignin contributing 

up to 30% of forest soil carbon, and is derived from an ancestral white rot saprotrophy where 

both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot” 

fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of 

both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and 

losses in specific protein families, suggesting adaptation to an intercellular interaction with plant 

tissue. Transcriptome and proteome analysis also identified differences in wood decomposition 
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in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode 

diversification suggests that the boreal forest biome originated via genetic coevolution of above 

and belowground biota. 

Many Agaricomycete fungi  have been sequenced to date (1) permitting comparative and 

functional genomic analyses of nutritional niche adaptation in the underground fungal networks 

that sustain boreal, temperate, and some sub-tropical forests (2). Through the sequencing of the 

brown rot wood decay fungus S. lacrymans, we conducted genome comparisons with sequenced 

fungi including species representing each of a range of functional niches: brown rot and white 

rot wood decay, parasitism and mutualistic ectomycorrhizal symbiosis.  

Only 6% of wood decay species are brown rots (3) but, being associated with conifer 

wood (4), they dominate decomposition in boreal forests. Their lignin residues contribute up to 

30% of carbon in the organic soil horizons (5). Long-lived (6), and with capacity to bind 

nitrogen and cations (7), these phenolic polymers condition the nutrient-poor acidic soils of 

northern conifer forests.    

Brown rot wood decay involves an initial non-enzymic attack on the wood cell wall (8) 

generating hydroxyl radicals (·OH) extracellularly via  the Fenton reaction:  

Fe2+ + H2O2 + H+  Fe3++ ·OH + H2O  

Hydrogen peroxide is metabolically generated by oxidase enzymes, e.g. glyoxal oxidases 

and copper radical oxidases. The hydroxyl radical has a half life of nanoseconds (8) and is the 

most powerful oxidising agent of living cells. However, we do not know how it is spatially and 

temporally targeted to wood cell wall components. Divalent iron is scarce in aerobic 

environments where the fungus is obligate and the trivalent ion is energetically favored. 

Phenolates synthesised by brown rot fungi, including S.lacrymans (9), can reduce Fe3+ to Fe2+. 

Such phenolates may be modified lignin derivatives or fungal metabolites (10). Following initial 

bond breakages in the cellulose chain, side chain hemicelluloses (arabinan, galactan) are 

removed, followed by main chains (xylan, mannan (11), with subsequent hydrolysis of cellulose 
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by synergistic glycoside hydrolases. Residual lignin is demethylated. White rot fungi, by 

contrast, decompose both cellulose and lignin, with free radical attack theorized to break a 

variety of bonds in the lignin phenylpropanoid heteropolymer.  

S. lacrymans is in the Boletales, along with several ectomycorrhizal lineages (12, fig 

1A). S. lacrymans is thus phylogenetically distant from brown rot P. placenta (Polyporales) 

(13), as well as other sequenced ectomycorrhizal fungi (14, 15), parasites, and white rot wood 

decomposers (16). We estimated divergence dates in fungal phylogeny using the data set of 

Binder et al. (2010) (17) (Supplementary Online Materials, Molecular clock analyses), with two 

well-characterized fungal fossils used to calibrate the minimum ages of the marasmioid (node 10 

in fig 1A) and suilloid clades (node 11 in fig 1A). The estimated age of the split between 

Serpula and its ectomycorrhizal sister-group Austropaxillus (53.1-15 Mya; fig 1A, table S20) 

suggests that transition from brown rot saprotrophy to mutualistic symbiosis occurred after 

rosids (Eurosids I) became widespread ((18), fig 1A). Diversification in fungal nutritional modes 

occurred alongside diversification of angiosperms and gymnosperms, as these fungi are 

currently associated with members of both gymnosperms (Pinaceae) and angiosperms (18).  

S. lacrymans comprises two subgroups, S. lacrymans var shastensis, found in montane 

conifer forest, and S. lacrymans var lacrymans, cause of building dry rot, which diverged in 

historic time (19). Two S. lacrymans var lacrymans complementary monokaryons (haploids of 

strain S7), S7.9 (A2B2) and S7.3 (A1B1) (20) were sequenced via Sanger and 454 pyro-

sequencing, respectively. The genome of S. lacrymans S7.9 was 42.8 Mbp, containing 12,917 

gene predictions.  For methodology, genome analysis and annotation, see supplementary 

materials (21). 

We analysed 19 gene families of enzymes for lignocellulose breakdown: carbohydrate 

active enzymes (CAZy, http://www.cazy.org/, (22) (glycoside hydrolases and carbohydrate 

esterases) and oxidoreductases (table S9).  Losses and expansions in these families were 

compared across 10 fungi including Agaricomycetes with a range of nutritional modes (fig 1B & 
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C, table S9).  Convergent changes in enzyme complement were found in the two independently-

evolved brown rot species, with parallels in the ectomycorrhizal Laccaria bicolor (fig S9, table 

S9).  The inferred most recent common ancestor of the Agaricales, Boletales and Polyporales is 

predicted to be a white rot with 66 to 83 hydrolytic CAZy genes and 27-29 oxidoreductases (fig 

1B & C).  Brown rot and ectomycorrhizal fungi have the fewest hydrolytic CAZy genes. Brown 

rot fungi have fewest oxidoreductases, due, not to gene losses, but to gene duplications in white 

rot species. 

Both brown rot and ectomycorrhizal fungi lacked class II peroxidases, used by white rot 

fungi in depolymerising the non-utilisable lignin matrix of wood to unmask utilisable cellulose 

embedded within it.  This family was expanded in the white rots Coprinopsis cinerea, 

Phanerochaete chrysosporium and Schizophylum commune, with 29, 43 & 24 genes 

respectively, with only 19 each in S.lacrymans and P. placenta. Oxidoreductases conserved in 

brown rot fungi included iron and quinone reductases, and multicopper oxidases (fig S9, table 

S8). Absence of ligninolysis in brown rots raises the question of how they achieve pervasive 

cellulolysis in wood with the lignin matrix intact. 

Glycoside hydrolase (GH) gene families had parallel patterns of losses and expansion in 

both brown rots and ectomycorrhizas. CAZy families GH5 (endoglucanases, hydrolysing 

cellulose) and GH28 (pectinases, hydrolysing intercellular cohesive polysaccharides in plant 

tissues) were expanded in both brown rot species, where they might facilitate intercellular 

enzyme diffusion, and retained in L. bicolor, where they might facilitate intercellular penetration 

of living roots.  Both brown rot species lacked GH7 (endoglucanase/cellobiohydrolase CBHI), 

and GH61 genes, with unknown function but recently implicated in oxidative attack on 

polysaccharides (23), were reduced. Interestingly, GH6 (cellobiohydrolase CBHII) and cellulose 

binding modules (CBM1), absent from P. placenta (13), were present in S. lacrymans.  One 

CBM was associated with an iron reductase in a gene (452187) originally derived from a 

cellobiose dehydrogenase (fig S10). 
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The general utility of the conserved suite of glycoside hydrolase genes in wood decay by 

S. lacrymans was supported by transcriptomic and proteomic analysis. Carbohydrate active 

enzymes accounted for 50% of proteins identified (table S22) and 33.9% of transcripts regulated 

more than 20-fold by S. lacrymans growing on pine wood compared with glucose medium (fig 

S11). Cellulose-, pectin- and hemicellulose-degrading enzymes (GH families 5, 61, 3 and 28) 

were prominent, and GH5 endoglucanase (Prot id: 433209) and GH74 

endoglucanase/xyloglucanase (453342) were upregulated > 100-fold.  

We conclude that brown rot fungi have cast off the energetically expensive apparatus of 

ligninolysis and acquired alternative mechanisms of initial attack. Wood decomposition by S. 

lacrymans may involve metabolically driven non-enzymatic disruption of lignocellulose with 

internal breakage of cellulose chains by highly localised ·OH radical action.  Mycelia in split 

plates mimicking realistic nutrient heterogeneity (fig S1), produced variegatic acid (VA), an 

iron-reducing phenolate (fig 2A-C) via the Boletales atromentin pathway, recruited in S. 

lacrymans for the Fenton’s reaction.  The genome was rich in secondary metabolism genes 

(table S24), including a putative atromentin locus (24).  Mycelium imports amino acids to sites 

of wood colonisation (25) , consistent with observed upregulation of oligopeptide transporters 

on wood (table S21). Localising variegatic acid production to well resourced parts of the 

mycelium could enhance Fenton’s chemistry in contact with wood. 

Wood colonisation is presumably followed by co-ordinated induction of the decay 

machinery revealed in the wood-induced transcriptome (fig 3, fig S11). Glycoside hydrolases 

and oxidoreductases accounted for 20.7% of transcripts accumulating > 4-fold on wood relative 

to glucose medium (fig S11, table S21). Iron reduction mechanisms included an enzyme 

harboring a C-terminal cellulose binding module (Prot id 452187, fig S10), upregulated X122 on 

wood substrate (fig S11, table S21). This enzyme, present in Ph.chrysosporium but absent from 

P. placenta (26), is a potential docking mechanism for localizing iron reductase activity, and 

hence ·OH generation, on the surface of microcrystalline cellulose. Cellulose-targeted iron 
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reduction, combined with substrate induction of variegatic acid biosynthesis, might explain the 

unique ability of brown rot fungi in Boletales to degrade unassociated microcrystalline cellulose, 

without the presence of lignin (27).  

Thus comparative genomics helps us understand the molecular processes of forest soil 

fungi that drive the element cycles of forest biomes (28).  Sequenced forest Agaricomycetes 

revealed shared patterns of gene family contractions and expansions associated with emergences 

of both brown rot saprotrophy and ectomycorrhizal symbiosis. In Boletales, loss of aggressive 

ligninolysis might have permitted brown rot transitions to biotrophic ectomycorrhiza, promoted 

in soils impoverished in nitrogen by brown rot residues, and by the nutritional advantage 

conferred by the connection to a mycorrhizal network. S.lacrymans and other fungi cultured 

with conifer roots (29), ensheath Pinus sylvestris roots with a mantle-like layer (fig S12), 

suggesting nutrient exchange. 

The chronology of divergences in extant fungal nutritional mode (fig 1A) matches the 

predicted major diversification in conifers (18), suggesting that the boreal forest biome may 

have originated via genetic coevolution of above and belowground biota. 
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Figure 1. Molecular phylogeny and lignocellulose active gene evolution in the 

Agaricomycetes A: Chronogram of Agaricomycetes inferred from a combined six-gene data set 

using Bayesian relaxed molecular clock analyses. Time divergence estimates (in Mya) are 

presented as 95% highest posterior density (HPD) node bars in light blue color, which describe 

the upper and lower boundaries of time estimates, and as mean node ages (numbers in bars). The 

HPD of nodes that were calibrated with fossil ages are in red color and the Serpula-

Austropaxillus split is highlighted by a black node bar. The numbering of nodes in bold type 

corresponds to the tMRCA statistics (time to Most Recent Common Ancestor) summarized in 

Table S20.  B & C: Patterns of gene duplication and loss in 12 lignocelluloseactive CAZy (B) 

and 7 oxidoreductase (C) gene families estimated by gene tree/species tree reconciliation 

analysis (fig S9). Red, blue, and black branches indicate lineages with net expansions, net 

contractions, or no change in copy number (respectively). Numbers at nodes and along branches 

indicate estimated copy numbers for ancestral species, and ranges of gains and losses 

(respectively), estimated using 90% and 75% bootstrap thresholds for gene trees in 

reconciliations. Bars indicate copy numbers in sampled genomes. 

 

Figure 2. : A: Proposed chemical reaction demonstrating iron redox cycling by S. lacrymans 

secondary products, B: Comparison of HPLC chromatograms of S. lacrymans ethyl acetate 

extracts as a function of nitrogen supply. Red trace: nitrogen rich medium (+N), black trace: 

nitrogen depleted minimal medium (-N). The identity of the compounds was confirmed by mass 
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spectrometry and by their UV-VIS spectrum (1: variegatic acid, 2: xerocomic acid, 3: atromentic 

acid), C: Iron reduction capacity of S. lacrymans ethyl acetate extracts (60% variegatic acid, 

15% xerocomic acid) measured by the Ferrozine assay (21) and compared with 2,3- 

dihydroxybenzoic acid (DHBA), a redox chelator used to stimulate Fenton systems. 

 

Figure 3: Schematic overview of the proposed mechanism of wood decay by S. lacrymans. 

Scavenging mycelium colonises a new food source inducing variegatic acid (VA) production 

and expression of oxidoreductase enzymes which drive hydroxyl radical attack on the 

lignocellulose composite. Carbohydrate active enzymes (CAZy) gain access to the weakened 

composite structure and breakdown accessable carbohydrates. Cellulose-binding iron reductase 

targets ·OH-generating Fenton’s reaction on cellulose chains, releasing chain ends for hydrolysis 

and assimilation. IR = iron reductase, HQ = hydroxyquinones, CBM = cellulose binding 

module. 


