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Executive Summary

This report covers Phases Il and Ill of Department of Energy (DOE) award number EE-
0004680. The final report for Phase | is available at the DOE High PV Penetration Portal and
primarily covers PV power plant variability modeling tools and inverter models for power flow
simulation.

One of the significant objectives of the High Penetration solar research is to help the DOE
understand, anticipate, and minimize grid operation impacts as more solar resources are
added to the electric power system. For Task 2.2, an effective, reliable approach to predicting
solar energy availability for energy generation forecasts using the University of California, San
Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp
forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky
images taken every 30 seconds are processed to determine cloud locations and cloud motion
vectors yielding future cloud shadow locations respective to distributed generation or utility
solar power plants in the area. The performance of the method depends on cloud
characteristics. On days with more advective cloud conditions, the developed method
outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with
dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise
for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy
storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with
licensing information and was a Sunshot website highlight.

For the purpose of ramp mitigation, this report also presents detailed models developed to
model, interconnect and ultimately operate a photovoltaic (PV) power plant as anticipated in
the DOE SunShot initiative. Power models are used in power system analysis software
packages to assess the impact of the integration of PV systems into existing distribution
networks of power systems. The models presented herein are developed in Paladin
DesignBase software but frequently begin in a different modeling application and are then
converted to Paladin DesignBase. To make the models available to a wider engineering
community, several conversion routines were developed (e.g. conversion to OpenDSS,
Matlab®/Simulink®, etc.), discussed, and are reviewed in Chapter 6. The approach and
capabilities developed through the combined research, including the power modeling,
forecasting, ramp control and energy storage (battery charging/discharging), have already
been proposed in several projects for island communities including Puerto Rico, which is
widely considered the most stringent and difficult application for PV integration, control and
operation. This work was also largely presented in the Webinar provided by Power Analytics
and attended by over 120 individuals on March 27, 2013.

In Command, Control and Communications for Power Flow Management, the project team has
focused on implementing an approach that recognizes the dynamic nature of the
interoperability and capability communication requirements. The unique combination of
proposed standards in the system controller maximizes capability within an open architecture
that supports OpenADR, IEEE 2030, IEC 61850, and Legacy Protocols. The Inter-Control
Center Communications Protocol (ICCP) was implemented and was certified by Electric




Reliability Council of Texas (ERCOT), the first Independent System Operator (ISO). It must be
noted that the IEEE 2030 framework also anticipates the adoption of the Common Information
Model (CIM) as a next level of open standard that conforms with the overall strategy of Power
Analytics’ approach. Through an Inter-Control Center Communications Protocol connection it
was demonstrated that a virtual power plant (VPP) can participate in the power market as a
true generation resource for bidirectional communications (virtual point of common coupling).
Demonstrating this approach of generation-to-ISO communication reduces the barriers to high
PV penetration. For example, the Power Analytics’ proprietary communications interface and
microgrid power management tool was applied and tested through a market simulation with the
California Independent System Operator (CAISO). The use of ICCP as a method for
aggregating distributed generation of any source as developed in this grant is currently
implemented in the ERCOT ISO and has been proposed and reviewed for the Power Analytics’
program in the San Diego Naval district.

An energy storage controller function for the master controller that acts upon the forecast has
been completed and published on the High PV Penetration portal. The goal is to determine the
optimal energy dispatch schedule for the battery to achieve load peak shaving (resulting in a
reduction of demand charges), such that the net photovoltaic + storage (PVS) system power
output meets or exceeds the customer load peak. The optimization algorithm leverages day-
ahead PV power output and load forecasts to ensure that the customer load peak is eliminated
or reduced as much as possible, subject to electrical performance constraints of the battery.

In an example considering San Diego Gas & Electric (SDG&E) tariffs, the controller optimizes
battery dispatch based on load and PV forecasts to minimize demand charges. The optimal
storage dispatch schedule for a typical commercial scale PVS system was simulated during
one year, and compared to a simple off-peak/on-peak charge/discharge dispatch schedule that
was generated without any knowledge of future PV power output or customer load. The
analysis shows that the application of solar forecasting to the energy storage dispatch problem
results in significant financial savings when compared with a simple off-peak/on-peak scenario.
Financial savings are realized from a combination of demand charge reduction, time-of-use
price arbitrage and especially reduced battery cycling which results in extended battery
lifetime. A real-time dispatch method based on net-load outperformed the optimization for
small demand charge reduction objectives and large battery sizes. The algorithm was
implemented in a quasi-operational setting and proved to be robust.




1. Introduction

As photovoltaic systems continue to gain a more significant share of the U.S. electricity
generation mix, it becomes increasingly important to better understand the effects of
integrating higher penetrations of PV electricity on the reliability and stability of the electric
power system. DOE’s Funding Opportunity Announcement number DE-FOA-0000085 “High
Penetration Solar Deployment” is the basis of the work centered around real time solar
forecasting combined with highly accurate modeling and control to determine the effects of
high-penetration levels of PV on the system. The previous generation of analysis tools for
distribution system planning must be upgraded with appropriate PV performance models, and
the fidelity of modeling results must be validated using simulations and field data. The goal of
this project is to develop the needed modeling tools for high penetration scenarios of PV on
distribution feeder systems. Adopting suitable reliability criteria for PV generation technologies
on the power system is very important since many utilities in the US are receiving an
increasing number of requests for interconnection of PV plants in their respective power
systems.

The project’s objectives are to

Develop simulation tools for distribution feeder design by power system designers
Characterize PV variability and develop a cloud tracking and forecast model

Reduce integration costs and remove barriers to high PV penetration

Provide means for the customer to manage power flows and battery storage according
to economic conditions (e.g. dynamic price signals)

The research team consists of prime contractor UC San Diego (UCSD) and subcontractor
Power Analytics. UCSD is responsible for the overall project management and the modeling
and forecasting of the solar resource. Power Analytics is responsible for power systems
analysis and utility command and control interfaces (Task 3).




2. Accomplishments

The Statement of Project Objectives (SOPO) task statements are provided below.
Accomplishments are presented by subtask in italics.

PHASE Il (DE-EE0004680)

Subtask 2.2. Three-dimensional Cloud Tracking and Insolation Forecast Model: The
purpose of this task is to develop an energy storage controller function of the master controller
that will respond to the cloud detection and forecast system using a three-tiered mechanism.

The energy storage controller function has been completed and applied in a case study
of the Sanyo/Panasonic 30 kW/30 kWh PV Integrated Energy storage system (Chapter
5).

A real-time observation network of insolation measurements that operates continuously at high
temporal (1 second) and spatial (16 stations over 1200 acres) resolution will be utilized. It is
collocated with a Sky Imager, a ceilometer, and 1 MWp distributed solar PV array.

The sensing infrastructure has been operated and maintained during 2010-2013. The
data are used for validation of the solar forecast in Chapter 4.

Using existing infrastructure at UCSD a generalized real-time cloud tracking and forecast
model will be developed. The energy storage controller function of the master controller will
respond to the cloud detection and forecast system using a three-tiered mechanism. Tier 1 is
the real-time cloud detection, when on a clear day the detection of clouds by a Sky Imager or
satellite will signal the controller to start diverting an appropriate amount of the PV output to
charge the storage system. Conversely, the detection by the Sky Imager of a reduction in
cloud cover will signal the controller to start discharging the storage system in anticipation of a
rapid increase in solar power output. Tier 2 is the three-dimensional cloud position forecast
that uses pattern recognition algorithms to derive cloud motion vector fields from sequential
sky images and forecasts cloud positions for the hour ahead. Cloud height will be determined
by a ceilometer. Given typical reductions in solar irradiance due to clouds, the controller will
compute the amount of storage required to smooth out the PV power production curve. Tier 3
is the power output forecast, which is recomputed as cloud-related solar radiation reductions
are observed at the micro climate stations, the optical depth of each cloud will be computed
and used by the cloud position algorithm to determine expected solar power output at each PV
array for the following hour. This will result in a full three-dimensional model that tracks and
forecasts the movement, optical depth, and shadow locations of individual clouds with respect
to solar PV arrays on the ground.

A three-dimensional cloud forecasting model has been developed and validated at the
UCSD solar energy testbed (Chapter 4). From UCSD sky images, clouds are detected,
cloud velocities and optical depths are estimated, and cloud shadows are projected onto
maps of photovoltaic arrays. The cloud forecasting model has been implemented at
UCSD’s 2.0 MW distributed photovoltaic arrays on campus. The pre-commercial Sky




Imager solar forecasting algorithm was documented with licensing information and was
a Sunshot website highlight.

Task 3.0 Command, Control and Communications for Power Flow Management

Table 1 Definition of Terms

UCCI Utility Command/Control Interface

System Controller Communications master integrated into the micro grid master controller

oSl Open Systems Interconnection Model established by the International
Organization for Standardization

7 Layer Model OSI Standard abstracted into (1) physical, (2) data link, (3) network, (4)
transport, (5) session, (6) presentation, (7) application

SOA Service Oriented Architecture is principles and methodologies for
designing and developing software in the form of interoperable services

ERCOT Electric Reliability Council of Texas

The Utility Command/Control Interface (UCCI) establishes a common interface for bi-
directional communications between the system controller (SC) and the electrical power
service provider or utility.

A UCCI that establishes a common interface for bi-directional communications between
the system controller (SC) and the electrical power service provider or utility was
developed by Power Analytics. Each service provider and utility typically requires their
own certification process and agreement on the blocks supported. Power Analytics used
the ERCOT validation process for the first Inter-Control Center Communications
Protocol (ICCP) implementation, as the ERCOT definitions and performance
parameters are the most stringent and performance oriented. The ICCP connection is
primarily for the system controller to the utility or service provider. The device level
protocols are translated to the device (system controller to the device). ICCP is the first
level of system controller to utility or service provider in the IEEE 2030 framework. This
ICCP implementation is IEC 60870-6 TASE.2 Blocks 1, 2, 3, 4 & 5 and can be either
client or server.

The UCCI’s operation complies with the OSI seven layer model and utilizes non-proprietary
methods whenever possible. The UCCI application layer defines a structure and method to
process price signals from the utility or RTO/ISO, energy dispatch signals from the utility or
RTO/ISO, acknowledgements with the utility or RTO/ISO, system performance and status from
the PV system to the utility or RTO/ISO, metered performance to the utility or RTO/ISO and/or
third party certification, operating software upgrades from the utility or RTO/ISO to the PV
system, and the demand management gateway to the user premises. The UCCI also
incorporates other modes of operation depending on local and external conditions, including:

e Net Metering (when the utility grid is viewed as an infinite source or sink for power);




Power Analytics has implemented the ICCP testing and support for a specific
General Electric (GE) meter to validate the net-metering performance. The
primary goal of the service-oriented architecture (SOA) is to translate secure
requests and data from supported devices and protocols (including photovoltaic)
through the ICCP connection. This interconnect includes OpenADR (DRACS) for
OpenADR devices and as an emulation through to the service provider. In this
manner, Power Analytics maps the existing protocol and interconnect to the
device (PV inverter) through the ICCP connection. The Power Analytics SOA is
intended to directly support other emerging standards as part of the IEEE 2030
framework.

e Utility Dispatch Source (where the utility is always sourcing some energy to the local
load) and Utility Dispatch Sink (where the PV system is always sourcing some energy to
the utility grid, to the extent that local energy is available);

A primary capability of the system controller is to both optimize the energy
resources and provide a communications link directly to inverters (PV) and other
control devices. The following critical SOA elements reflect this capability:
connection to the utility or service provider (ICCP) and connection to the inverter
(IEC 61850, Modbus, OpenADR or proprietary device protocol). The targets and
the controls are defined in the utility or service provider connection and then
mapped to the device with control commands.

e Price Signal (which allows the PV system to determine when favorable economic
conditions warrant a particular energy flow action); and Override (when the customer
takes total control of operation regardless of utility dispatch of price signals).

The existing ICCP (IEC 60870-6 TASE.2) includes definitions for real-time price
signals, Locational Marginal Pricing and extended block support. The system
controller can virtualize the PV resources as well as storage and other
generation/load resources. The real-time optimization of these resources can be
represented to the utility or other provider in the form of specific resources or
virtualized resources depending on the level of control and interconnect to the
devices. Inherent in the architecture is the ability to automatically or manually
override automatic operation independent of the utility price signals. The
simulation environment (blackboard) of the system controller allows the operators
to simulate an override to see what the impact will be before executing the
override.
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PHASE Il (DE-EE0004680)
Task 4.0 Field Testing and Validation of the Suite of Models

The purpose of this task is to field-test and validate performance of the models and distributed
energy storage and PV to electric vehicle charging as mitigating measures at its existing 1 MW
(total at seven sites) and potentially at its 900 kW (total at five sites) of PV.

The BMW B2U installation at the UCSD campus is a 100kW, 160kWh battery energy storage
system with existing photovoltaic- system and inverter integration (AC) a battery backed up
Level Il EV charger. The system was used to demonstrate integrated operation of energy
storage with solar PV. If we are to enter into the new battery second use market segment it is
imperative that we understand the opportunities and challenges from a technical and
operational standpoint. Critical parameters within the value chain include the technical
requirements for system integration and secondary use. This includes component
requirements and control strategy of the system, and load profiles and market value of
stationary applications.

To better understand these requirements UCSD installed the first commercialized Battery 2™
Life system together with the California Center for Sustainable Energy (CCSE), and National
Renewable Energy Laboratory (NREL). The following objectives were addressed:

e |dentify use cases in various market segments

e Development of control algorithm for balancing and State of Charge (SOC) calculation
for second use systems.

After baseline health characteristics of the battery were established, energy storage application
duty cycles were tested. A regulation energy management (REM) duty cycle and a demand
charge management duty cycle were performed. For demand charge management, the system
responded in real-time to campus resources, particularly building loads and solar generation
resources. Further a solar PV firming application was demonstrated.

Energy storage controllers to firm demand charge savings of solar PV were tested in a
guasi-operational setting for two months.

The resource models developed under previous tasks will be used to predict solar electric
output under high PV penetration levels, and will be verified against actual PV system
performance based upon the micro climate stations’ forecast and resource models as well as
newly developed high resolution datasets. A comprehensive evaluation of a solar forecasting
method would require one year of data. However, compiling the Sky Imager forecasts is very
complex and time intensive. Different cloud heights, aerosol content of the sky, and instrument
limitations (especially the shadowband which blocks the sky view) require manual adjustments
and quality control of the forecast. UCSD is currently working on improvements to the method
that would allow more accurate ‘on-line’ forecasting. Under Phase 3, Task 4.0 Field Testing
and Validation of Suite of Models UCSD will conduct a more thorough evaluation using
forecasts at UCSD.
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Sky Imager forecasts were evaluated during two months, November 2012 and June
2013.

Task 5.0 Raise Situational Awareness of Virtual Power Plants and Microgrids by
Distribution Utilities and RTO/ISOs

The purpose of this task is to perform real-world simulations, evaluating and verifying microgrid
renewable integration operations in a controlled and well-instrumented environment and to
raise the awareness and understanding of the RTO/ISO operators.

Power Analytics has successfully implemented the VPP interface with one ISO as a
direct result of the goals of this program. The example of the ERCOT ISO represents a
step function in integration of a Virtual Power Plant in the North American networks.
This same capability has been proposed in other NERC/FERC related applications,
including the opportunity for situational awareness that does not require market
participation or control but represents secure communications via existing
communications standards and is based on the overall architecture provided by Power
Analytics and UCSD.

The anticipated proliferation of Distributed Energy Resources (DERS), including, but not limited
to, distributed energy storage and electric vehicles, has the potential to significantly complicate
or enhance the operation of local electricity distribution networks and transmission grids.
These DER resources are smaller than traditional central-station generating plants and are
frequently connected to the local distribution network, rather than to the transmission grid.
Some of them will be “behind the meter,” where they will not even appear as supply, but as
load reductions. Several issues need to be addressed to enable the distribution grid and
Regional Transmission Operators/Independent System Operators (RTO/ISO) to maintain the
appropriate level of situational awareness. With greater penetration of DERs, observability,
dispatchability, and permitted autonomous actions by DERs must be established. One
approach to addressing these issues is to organize the DERs into structures that can be more
easily characterized and understood. Three such structures are virtual power plants,
microgrids and aggregations.

The first and most extensive of these is aggregation as a demonstration for an 1SO.
Power Analytics has successfully deployed an aggregated virtual power plant (VPP)
with a municipality. A simple block diagram architecture is:

12
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Figure 1. Block diagram architecture.

This configuration has been operational for 12 months and illustrates the integration of
virtual resources into the mainstream of power generation and distribution at the retalil
level.

This project will raise the distribution and RTO/ISO operators’ understanding of Virtual Power
Plants (VPP) and microgrids to a level that will permit these resources to become competitive
operational assets for power generation, demand response and ancillary services responding
to dynamic price signals. This will be accomplished by performing real-world simulations,
evaluating and verifying microgrid renewable integration operations in the controlled and well-
instrumented environment on UCSD’s microgrid. The demonstration will incorporate renewable
resources including solar PV coupled with advanced energy storage and demand response to
test the ability of the microgrid to adjust its internal operations. Adjustments made will stabilize
the variable renewable generation and allow the local utility to better balance their networks
and the RTO/ISO to reliably schedule and dispatch the microgrid. A similar test will be
performed for a VPP, including storage and load management capabilities with local thermal
generation. This additional generation will simply appear to the system as supply and be
modeled and dispatched within the RTO/ISO systems in exactly the same manner as any
generation resource.

The primary accomplishments toward this goal have been in the simulation and
planning for the UCSD microgrid. All advanced capability required for controllable
resources is dependent on high quality, high availability of data streams at the Virtual
Power Plant. There are extensive upgrades and enhancements that are required to the
existing infrastructure of UCSD that are critical to increase the accuracy and reliability
of real time sensor and meter data from the existing infrastructure. As the infrastructure
is undergoing upgrade, focus has shifted to specific critical elements, including the

13



control and testing of energy storage integrated with photovoltaic power. That testing
and integration is also documented in the 2nd Life Battery program and integrated into
the UCSD Microgrid as a controllable resource.

The software infrastructure is in place at UCSD to enable VPP level integration for
ancillary services and dynamic price signals, but no contract is currently in place with
SDG&E for actual market participation except in the existing Direct Access program and
demand response.

The additional simulations and research have led directly to studies and capabilities
included in this report and are integral to the advanced modeling and forecasting.
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3. Command, Control and Communications for Power Flow Management:
Utility Command/Control Interface and Situational Awareness (Tasks 3 and
5, PA leads)

3.1. Introduction

In order for advances to occur, or to develop in power systems modeling and hardware
systems, a critical step is the communication or interconnects of these systems to the utility or
bulk grid. There are focused efforts by organizations such as National Institute of Standards
and Technology (NIST) (in particular the Smart Grid Interoperability Panel (SGIP)), IEEE, and
IEC, all working to address the depth and breadth of existing and proposed standards for
interoperability. A brief listing of the standards, options, agencies, and organizations that are
engaged in this effort is included in Appendix A.

This effort has been specifically focused on achieving and delivering an interconnect strategy
consistent with the requirements of Task 2, that includes implementation and verification in
Phase 3 of research. While implementation is the goal, it is also important to support specific
interoperability architectures that are consistent with the goals of the research and the goals of
the larger standards being proposed.

On September 10", 2011, the IEEE Standards Coordinating Committee 21 (Fuel Cells,
Photovoltaics, Dispersed Generation, and Energy Storage) published IEEE 2030™-2011,
representing what the authors believe is the most comprehensive architecture for
interoperability. The IEEE 2030 standard does not recommend specific technologies, but
rather it provides guidelines and use cases that are relevant and in sufficient detail to be used
in architecting a solution.
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PEV = Plug-in electric vehicle
N = Other smart grid applications

Figure 2 - Evolution of smart grid interoperability®

The specific requirements of this report and the implementation are a subset of the IEEE 2030
report with the significant additional elements that the system must be installed, operational
and capable in Phase 3 of the program. To accomplish this, the proposed implementation
addresses the following:

e Physical infrastructure is an existing microgrid with legacy equipment and networks that
cannot be removed or significantly modified as part of this research. Cost and time are
always barriers to advanced technology.

e The electrical power service provider (utility) is SDG&E. However, the solution must
have broad industry acceptance, leverage existing utility integration capabilities, and be
consistent with accepted standards and protocols.

e The microgrid system (or System Controller) must also meet the operational standards
of the UCSD cyber security, and performance of an existing mission-critical facility
without interruption.

The overall architecture being deployed treats the infrastructure of UCSD as a “Virtual Power
Plant” or VPP to aggregate the load and generation sources of UCSD, and present a single
point of interconnect for the bidirectional communications.

3.2. Virtual Power Plant (VPP)

Service Oriented Architecture (SOA) — “The interoperability services in the System
Controller (SC) is foundational to the VPP”.

Power Analytics software architecture is based on a Service-Oriented Architecture (SOA) that
connects services to analytics, devices, and systems.

12030-2011 - IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with
the Electric Power System (EPS), End-Use Applications, and Loads, ISBN 978-0-7381-6728-2, STDPD97148
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The elements of this architecture that are most relevant are the following:

e OpenADR — The OpenADR is an open standard for demand response in the California
electric market. OpenADR implements specific connectivity for server-based connection
to the ISO or utility (Demand Response Automation Server (DRAS)) and client
connection. Both OpenADR server and client protocols are being implemented by
Power Analytics as part of the Utility Command and Control Interface (UCCI)
development.

e |EC 61850 — The 61850 standard and related standards provide a highly functional
interoperable communications protocol. The original standard was intended for high-
speed, reliable communications with substations, but has expanded to including
mapping for other device level protocols. The IEC 61850 is also a focus of the UCA
International User Group (UCA-UG) in the standards for the Common Information Model
(CIM) for Smart Grid Interoperability. Power Analytics currently offers 61850 interface
capabilities as a part of the SOA architecture

e OPC - OLE for Process Control or OPC is a standard for open interoperability, originally
for manufacturing, but significantly expanded to include building management, process
control, discrete manufacturing, and others. Power Analytics currently offers OPC
connectivity directly to the SOA architecture.

¢ MODBUS - Modbus is a legacy communications standard still widely used in power
metering and process control systems. Power Analytics currently offers Modbus
interface as a part of the SOA architecture

e DNP3 — Distributed Network Protocol (DNP) is an advanced communications protocol
also prevalent in Supervisory Control and Data Acquisition (SCADA) systems in
particular, for utilities and process control. Distributed Network Protocol 3 is also
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published as IEEE Std 1815-2010. Power Analytics currently offers DNP3 interface as a
part of the SOA architecture

e |CCP — The Inter-Control Center Communications Protocol is used globally by utilities
and generators as a primary method for generation, transmission, and distribution data
exchange. What differentiates ICCP from other methods of communications is
addressed in detail within Section Il1.

One of the primary benefits of the virtual power plant concept is the ability to aggregate a wide
variety of generation and loads to provide a single representative stream of data from the
premise to the utility. The aggregated VPP information is of significantly greater commercial
value to the utility or power service provider when it can be treated like any other generation
source to the operator.

This distinction creates value to both the VPP owner/operator and the utility or service
provider. Since ICCP is an existing integration structure and is already well established, the
barrier of entry for the VPP unit for market participation is low. The relevance for high-
penetration solar is the operational and economic benefit derived from combining the VPP
capability with the bi-directional communications through the ICCP standard.
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Figure 4 - Virtual Power Plant Aggregation Figure 5 - ICCP Connection Controllable Load
Resource (CLR)
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The concept of a VPP is at the center of advanced planning and operational models for
utilities, generators, and retailers for a very good reason. A VPP can be an aggregation of
assets based on financial or physical resources, but the real benefit comes when both are
possible.

In the physical model, the System Controller (SC) is the aggregation point for load and
generation resources including solar. More than just aggregation though, the detail or
granularity provided by the SC is exactly what is needed for the virtual power plant to operate,
or appear as a true generation resouce. A well-behaved VPP is an invaluable asset to the
utility or service provider because it can be more than a demand response. Since aggregation
results in more accurate net load forecasting, and the response time is within the requirements
of other physical generation plants, the VPP is also more highly compensated financially. In
fact, the appropriate level of interoperability allows the utility to interface directly with the VPP
SCADA (supervisory control and data acquistion) systems and DMS (distribution management
systems).

The SC is also the branch-off location of the power network model which includes the specific
inverter designs, and the aggregation point of the solar irradiance data. Again, it is this type of
granularity that not only increases the value to the utility or service provider, but concurrently
increases the financial value of the VPP to its owner, and by association, supports high
penetration solar. Increased accuracy, forecastability, and interoperability all directly serve to
increase the value of the VPP and renewable resources in particular, as a function of the
overall utility or service provider portfolio of available assets.

The combination of the real-time power model, the real-time solar irradiance data, and the rest
of the power infrastructure are all relevant to bi-directional communicatons. In effect, ICCP
from the System Controller to the utility or service provider is the interoperability equivalent of
point of common coupling to the same utility or service provider.

The SC also functions as the load/generation model balancing for photovoltaic on the virtual
power plant.
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Figure 6 - System Controller as Virtual Power Plant Figure 7 - Cost Advantages of a
Virtual Power Plant

Accurate net load forecasting is a difficult process under normal circumstances. The impact to
utilities and service providers is compounded with generation or loads that are not aggregated
because the burden falls almost exclusively on the utility or service provider. The market
structure and opportunities for generation and controllable loads reflect the risks for the utility or
service provider; therefore, any and all structures that minimize risks for the utility or service
provider are reflected in the market value of the resource. The promise of a virtual power plant,
regardless of how the VPP is organized (as an operational VPP or a financial VPP) is to reduce
the risks and increase the economic benefit for the VPP. Perhaps nothing demonstrates the
economic benefit more than the significant price differential between the normal curtailment
types of demand response, and the more lucrative generation programs.

Increasing the penetration of photovoltaic energy generation is impacted by many factors.

This research is concerned specifically with the definition, development, and implementation of
a secure, bidirectional, and open architecture communications capability for the command and
control of generation and load resources generally, and photovoltaic resources specifically.
The economic value of this has a quantifiable and direct economic impact on the level of solar
penetration, and an indirect impact on the adoption rate of distributed generation resources.
The intent is not to produce a pro forma financial model so much as to recognize that the
ability to allow the virtual power plant/microgrid to operate as a generator provides a structure
and economic incentive for increased photovoltaic penetration.

3.3. ICCP: Interoperability for Utilities and Service Providers

As important as the modeling for power impact, cost of deployment, and performance
capability of photovoltaic is, the method or methods of interconnecting with utilities is as
essential. The Inter-Control Center Communications Protocol (internationally IEC 60870-6 or
Tase 2) is unique in its widespread adoption and use globally. The critical elements include:
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e [CCP is capable of working across both LANS (local area networks) and WANS (wide area
networks)

e |CCP uses TCP/IP (OSI 7 layer communications standard)

e |CCP has secure options and the operational redundancy that is required for
communications and control of resources.

e |CCP “normalizes” the interconnect and interoperability of the controlling entity and the
virtual power plant. In effect, ICCP defines the “how”, so that all activity is focused on the
“what”.

e |CCP is supported in ALL tariff structures so that regulatory compliance is not a gating item
to implementing high penetration solar as part of a virtual power plant.

Power Analytics has implemented an ICCP interconnect (TASE 2) and achieved qualification
of this interface in 2012 as part of work with Consert and utilities in the Electric Reliability
Council of Texas (ERCOT) market. Power Analytics is also working towards certification with
additional utilities (SDG&E) or regulatory associations (PJM and CAISO). The capability
created by Power Analytics is broad and unique, as the SOA framework is deployed at UCSD
and in a network operations center in the Mid-Atlantic region.

A significant element of an ICCP connection is the creation of so called “Bi-Lateral Tables”
(BLT). The BLT is in essence the agreement between the two subscribing entities about what
information will be exposed by both parties. The Power Analytics ICCP supports multiple BLTs
so that a single instance of the Power Analytics ICCP interface can connect to multiple service
providers.

I
i
i

M

o i
Figure 8 - Power Analytics ICCP Multiple Bi-Lateral Figure 9 - CLR Control Block Successful
Table (LCRA) Transmission

A requirement of Power Analytics ICCP is to support Controllable or Curtailable Load
Resources (CLRs). The ERCOT definition of a CLR is a Load Resource capable of controllably
reducing or increasing consumption under dispatch control (similar to AGC) that immediately
responds proportionally to frequency changes (similar to generator governor action). This
requirement is fundamental to a high speed and secure connection because the CLR requires
a two-second response time.

21



Power Analytics has included management data to measure the network performance from
command issued to command received in less than two seconds. The responsiveness of the
system is a requirement for all ancillary services regardless of the location. For example, with
Frequency Response with ERCOT, generator turbines are required to operate with governors
in service that increase or reduce generation automatically (governor response) if and when
the ERCOT frequency deviates from 60 Hz by more than 0.036 Hz.

This responsiveness includes droop response (defined as the percentage of frequency decay
that will tend to cause a turbine generator to increase its output 100%). For example, if
frequency drops from 60 Hz to 59.7 Hz, a 100 MW turbine generator with a 5% droop setting
should increase its generation output by (0.3 Hz / 3 Hz ) x 100% x 100MW = 10MW. Similarly,
a VPP must be able to automatically, immediately, and proportionally respond to frequency
deviations while providing Ancillary Services.

3.4. Implementation and Validation

While not a requirement of the ICCP connection, the validation begins with the creation of the
target power network model including all the resources (generation and loads) that will be part
of the overall solution. This includes the solar inverter models specific to the manufacturers, and
the location of the PV on the power network. The overall capability of the virtual power plant is
what determines the participation of the VPP as an aggregated resource, and not necessarily
limited by any one resource (including all generation and load resources that will be part of the
ICCP commitment).

Definition of the Bi-Lateral Tables and ICCP Blocks supported: Every ICCP controlling entity
will have specific control blocks (Power Analytics supports IEC 608770-6 TASE 2, blocks
1,2,3,4 and 5) but the bi-lateral tables and the definitions must be created for each instance.
Power Analytics is both client and server for ICCP.

The process steps for creation and integration of a Power Analytics VPP are as follows.

(i) Create a model of the electrical network with all electrical characteristics of each component
as shown in Figure 10.

(i) Integrate the real-time data from the microgrid or VPP to become part of the forecast for
generation and load, the operator interface and contingency planning of the VPP. Connect to
the controlling operator via ICCP, or become situational awareness via the same IEC 608770-6
TASE 2 interface.

(iii) Initiate the process with the target Utility or Service Provider that will be the ICCP
connection. For illustrative purposes only, the initiating process for ERCOT is shown below:
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Figure 11 - Real-time data of the Power Network is translated through ICCP connection(s)

Market participants are required to use the ERCOT WAN for exchanging data with ERCOT via
ICCP. The data to be exchanged is defined in the ERCOT ICCP Communications Handbook
Version 3.02. In order to initiate the connection process, market participants must complete
and submit a “WAN application.”
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3.5. CAISO trial to raise situational awareness of Virtual Power Plants (VPP) and
Microgrids

The purpose of task 5 was to raise the situational awareness and understanding of the
RTO/ISO of solar distributed energy resources (SDER). SDERs are often “behind the meter,”
where they will not even appear as supply, but as load reductions. With greater penetration of
SDERs observability, dispatchability, and permitted autonomous actions by DERs must be
established. One approach to addressing these issues is to organize the DERS into structures
that can be more easily characterized and understood.

As part of this project UCSD provided the CAISO access to its OSI server database to monitor
microgrid operations. The purpose is to enable CAISO to achieve a Deep Situational
Awareness of the performance of UCSD’s distributed energy resources particularly during
demand responses called by CAISO and Critical Peak Pricing called by SDG&E. The fact that
both CAISO and UCSD utilize OSlsoft’s Pl software permits CAISO to be issued a UCSD user
password which enables CAISO personnel to observe the UCSD microgrid at any metered level
of granularity of distributed energy, resources including energy storage, that is typically not
observable since it is behind the utility meter. This top down vantage point provided to CAISO
also enables analysts to later request the data files of particular events or equipment through
secure data delivery protocols.

As part of the effort to understand how virtual power plants and microgrids with high PV
penetration would operate in within a RTO/ISO, UCSD completed a market simulation exercise
with the CAISO.

The CAISO is developing new markets for wholesale products and other California
opportunities for integrating their Microgrid as well as informing tasks identified in the DOE PV
High Penetration projects. UCSD received training, participated in CAISO market simulation,
and explored market integration opportunities.

UCSD’s stated objectives were to:

e Observe various market participation options for Microgrid capabilities with both Proxy
Demand Resource (PDR) and Non Generator Resource (NGR) including both NGR
options, Regulation Energy Management (REM) and Non-REM.

e Obtain a “clean” AGC data set for NGR operating in REM option for Frequency
Regulation participation.

e Obtain “Bid to Bill” data for various products on both resource types.

To fulfill these objectives, UCSD participated in CAISO market simulations. CAISO operates
these simulations on a periodic basis to test the deployment of new market features. Market
simulations utilize the Market and Performance Stage (MAP Stage) test environment and
typically run bid to bill scenarios to demonstrate the full integration of the new feature prior to
release to production. While the Fall 2013 market simulation was not specifically testing
specific features associated with microgrids, demand response or energy storage it provided an
opportunity to create pseudo-resources to best represent UCSD microgrid market capabilities
and see those resources in a near production environment from bid to bill. Participation in the
market simulation provided an opportunity to learn more about how UCSD microgrid and VPP
market capabilities could interface in the market without the risk and the expense of
participation in the production market.

24



The creation of the Non Generating Resources (NGRs) required inclusion in the full network
model that is used in the market simulation environment. CAISO personnel outside of the
modeling group assisted in development of NGR market models for UCSD for the market
simulation. Similarly the CAISO assisted UCSD and its consultant to develop the Proxy
Demand Resource Model (PDR) that was placed into the market simulation. The market
simulation of the UCSD microgrid was conducted during the months of September through
October of year 2013.

The results of the market simulation did provide a number of data points supporting basic
market familiarity and that begin to inform the potential of market participation. In specific, the
frequency regulation test of the UCSD NGR resource was completed successfully when it ran
on a simulated AGC signal and showed similar patterns as other AGC scenarios observed in
previous market simulations.

Results from the market simulation frequency regulation test provide insight into how an energy
storage resource might operate in the market when providing frequency regulation. Figure 1
shows a representative example of regulation dispatch during the period when the CAISO
operated the scenario. The AGC line shows dispatch within the discharge and charge range of
the resource while the green field shows how the result of the 50% rule under the Regulation
Energy Management (REM) option maintained the State of Charge near the midpoint of the
registered storage capacity of 20 MW.
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Figure 12: Energy storage state-of-charge (SOC) and CAISO AGC control signal and actual performance.

3.6. Conclusion

The ability to bring solar resources into a virtual power plant enables the VPP operator to
participate in the most significant financial structure defined in North America and beyond, when
the VPP can be operated as a true generation resource, and not a discounted connection due
to variability or intermittancy. While all the connectivity options are important toward the goal of
increasing solar penetration, none is more important than the ICCP connection for true
bidirectional communications. The distinction of using this existing standard in a new way
reduces the barriers of entry for solar energy, and facilitates the advancement of the science
and goals of the high penetration solar initiative. Power Analytics has implemented IEC
608770-6 TASE 2 standard in the RTO/ISO application and has proposed providing similar
capability for UCSD and the Department of Defense.
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4. Three-Dimensional Cloud Tracking and Insolation Forecast Model (Task
2, UCSD leads)

In this section a three-dimensional cloud forecasting methodology based on Sky Imagery and
its implementation at the UCSD campus is presented. Solar forecasts are used with a battery
dispatch controller to optimize the net present value of a PV+battery storage system.

4.1. Introduction

Integration of large amounts of photovoltaic (PV) systems into the electricity grid poses
technical challenges due to the variable nature of the solar resource. The ability to forecast
solar irradiation will allow grid operators to better accommodate the variable electricity
generation in their scheduling, dispatching, and regulation of power. Currently, physically
based forecasting is primarily conducted using numerical weather prediction (NWP) and
satellite cloud observations. NWP provides information up to several days ahead; however
there are significant biases and random errors in the irradiance estimates (Remund, Perez, &
Lorenz, 2008) (Lorenz, et al., 2009) (Perez, Kivalov, Schlemmer, Hemker Jr., Renné, & Hoff,
2010); (Mathiesen & Kleissl, 2011). The spatial resolution of NWP is coarse at about 100 km?,
but there is active research on high-resolution rapid refresh models with grid cell areas of less
than 10 km? (Benjamin, et al., 2010) (Lara-Fanego, Ruiz-Arias, Pozo-Vazquez, Santos-
Alamillos, & Tovar-Pescador, 2011). Either way, most clouds will remain unresolved in NWP.
Frozen cloud advection based on GOES satellites images can provide accurate forecasts up to
six hours ahead (Perez, Kivalov, Schlemmer, Hemker Jr., Renné, & Hoff, 2010) (Schroedter-
Homscheidt, Hoyer-Klick, Rikos, Tselepsis, & Pulvermiiller, 2009) at a resolution of 1 km?.

To achieve high temporal and spatial resolution for intra-hour forecasts, NWP and satellite
forecasts are currently inadequate. Ground observations using a Sky Imager present an
opportunity to fill this forecasting gap and deliver a sub-kilometer view of cloud shadows over a
central PV power plant or an urban distribution feeder. In this report, intra-hour cloud shadows
and irradiance forecasting is demonstrated for the UCSD microgrid.
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Figure 13 - Map of UCSD showing Sky Imager (USI) Figure 14 - UCSD Sky Imager (USI)

and weather stations. © Google Maps, 2013.

4.2. Three-dimensional Cloud Forecast Model

A rooftop mounted UCSD-designed and constructed sky imager (USI, setup at 32.8852°N,
117.2400°W, 124 m MSL) has taken images of the sky over UCSD since August 2009 (Figure
13). The instrument consists of a spherical mirror and a downward pointing camera. Images
are taken every 30 seconds when the sun is above an elevation angle of three degrees.

To obtain cloud locations in the image, a clear sky library (CSL) (based on (Shields, et al.,
Research toward Multi-Site Characterization of Sky Obscuration by Clouds, 2009)) as a
function of zenith and sun-pixel-angle was established from images on a clear day. A
background image that would be expected for clear skies is then generated for each sky image
based on the current solar zenith angle (Figure 15b). The CSL threshold is defined to be the
red-blue-ratio (RBR) in the clear sky background image in addition to a threshold value. A pixel
is classified as cloudy if its RBR (Figure 15c) is larger than this CSL threshold. In general, the
method using the CSL is able to detect white opaque clouds accurately. However, within the
circumsolar region, thick dark clouds cannot be identified since they have a lower RBR than
the CSL threshold. Therefore, a sunshine parameter (Pfister, McKenzie, Liley, Thomas,
Forgan, & Long, 2003) is used in addition to the CSL to improve cloud decision in the
circumsolar region. The sunshine parameter is computed as the average RBR of the pixel area
around the sun position (indicated in Figure 15a) and it is typically small when the sun is
obscured. Pixels with RBR > sunshine parameter are classified as cloudy even if the CSL
indicates otherwise. By adding the clouds detected using the CSL (Figure 15e) to the clouds
detected using the sunshine parameter (Figure 15d), the overall cloud decision image is
obtained (Figure 15f).
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Figure 15 - Processing chain of a sky image on October 4, 2009 15:45:30 PST (a) to obtain the cloud
decision image. The sunshine parameter is 0.85 and is evaluated around the sun position indicated by
the blue cross. The dotted black lines show the borders of the circumsolar region defined as solar
azimuth +£35° and the solid black line shows ZA at 65°. (b) Clear sky RBR (colorbar) background image
plus the threshold. (c) RBR (colorbar) image. (d) Pixels in (c) with RBR > SP or (e) RBR > CSL
threshold are assumed to be cloudy. (f) Shows the final cloud decision image. White areas are clouds
and blue areas are clear skies.

The cloud decision image is transformed to sky coordinates (X,y) to geolocate clouds for cloud
shadow mapping and forecasting using a geometric transformation that assumes constant
cloud base height (CBH, AH) throughout the image. The sky coordinate cloud decision image
(hereinafter cloud map) is restricted to ZA less than 65° since the coordinate transformation
near the horizon is not valid (Beaubien & Freedman, 2001).

Cloud velocity and direction of motion is determined through the cross-correlation method
(CCM) applied to two consecutive sky images (Hamill & Nehrkorn, 1993). Before applying the
CCM, images are projected into sky coordinates to remove geometric distortion. The projected
sky image is partitioned into subsets of pixels of equal size such that each subset is about 1%
of the sky image area. The CCM finds the position that best matches each given subset of
pixels in the previous sky image within the current image (Figure 16). The CCM yields a wind
vector (direction and speed) with the largest cross-correlation coefficient that specifies the
guality of the match. Assuming spatial homogeneity of cloud velocity, the vector field obtained
through the CCM is further processed using several quality controls to yield an average cloud
velocity across the image.
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Figure 16 - lllustration of the cross-correlation method using two images on October 4, 2009 at 16:18:30
(a) and 16:19:00 PST (b). Each subset of pixels from (a) is correlated to (b) within a search distance. The
location of the highest correlation is found and a motion vector is defined for each box. The cloud
velocity determined from this pair of images was 5.2 m s, While the method is illustrated here on a full
color sky image, the method is actually applied to the coordinate transformed red channel image.

To forecast cloud cover, the cloud map at time ¢, is advected at the speed and direction of the
global vector determined from cross-correlating the images at time t, and t, — dt (dt = 30
seconds). The quantity being forecast is the average GHI over one pixel of the Sky Imager.
The size of the pixel (and its corresponding footprint on the ground) linearly increases with the
cloud height and increases from the center of the image (straight overhead) to the horizon. For
typical cloud heights the pixels near the center cover about 5 x 5 m and the pixels near the
useable horizon (defined as 65° zenith angle) are about 100 x 100 m.

4.3. Error Metrics

Since many inputs contribute to USI forecast accuracy, forecast validation was conducted in
two parts in order to identify the main error sources and their effects on the final forecast. First,
outputs from steps which are based solely on image analysis were analyzed to assess
performance of the cloud decision and cloud motion algorithms. Second, time series
constructed from 0-, 5-, 10-, and 15-minute forecasts were validated against measured data
collected by the six ground stations. To avoid disproportional weighting of data near solar
noon, validation was performed on clear sky index kt rather than GHI. Ground station kt time
series were constructed by subsampling measured data at image capture times.

4.3.1. Validation using Actual Sky Image at Forecasted Time

As in (Chow, et al., 2011), two quantities were used to characterize the performance of image-
based algorithms: matching error and cloud-advection-versus-persistence (cap) error. The fh-
minute forecast cloud map generated at time ty was overlaid onto the actual cloud map at time
to + (fh min) in order to determine pixel-by-pixel forecast error, or "matching error.” No
distinction between thin and thick clouds was made in determining matching error; a pixel is
either cloudy or clear. Matching error was defined as:
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em = L2 % 100%, Equation 1
Ptotal
Cap error was computed in order to determine whether cloud advection improves forecast
performance by comparing the number of falsely matched pixels of the fh-minute advection
forecasts with those of an image persistence forecast, where the fh-minute persistence
forecasts are obtained by assuming the cloud map at to persists statically until fh minutes later.
Cap error was therefore defined as:

€cap = ;—mp x 100%, Equation 2
which describes the forecast error obtained by cloud advection (Figure 17d) divided by the
error obtained if the image at t, was assumed to persist until t, + dt (no advection). An

ecap < 1 implies that the cloud advection improves the forecast compared to persistence.

Figure 17 - The forecast cloud map (b) is produced by advecting the cloud map at time t, (a) in the
direction of the motion vector (indicated by the red arrow). To determine the forecast error (d), the future
cloud map at time t, + 30 seconds (c) is compared to the forecast (b). Blue and red colors in (d) show
forecast errors (blue: pixel forecast cloudy and but actually clear; red: pixel forecast clear but actually
cloudy) and white indicates accurate forecasts.

4.3.2. Validation using ground data

Four error metrics were used to assess the overall performance of the USI forecast system as
a function of forecast horizon: relative root-mean-square error (rRMSE), relative mean
absolute error (rMAE), relative mean bias error (rMBE), and forecast skill (FS). Relative
metrics were obtained by normalizing by the temporal and spatial average of the observed kt
for each day (kt°"). Each metric was computed for every whole-minute forecast horizon (fh =
0, 1, ..., 15 min) using instantaneous spatially averaged kt values averaged over the six
stations. In the following equations, N denotes the total number of forecasts generated on a
given day. The superscript "obs" denotes an observed value, and "fh" denotes forecast horizon

in minutes. Therefore, kt,’:h indicates the spatial average of the fh-minute-ahead clear sky
index kt forecasts generated at each ground station at time t, corresponding to the nth forecast
of the day.

rRMSE( fh) \ L\. Z: (Jﬂ'ff' - .n-’.'f'”'"‘)._ X —— Equation 3
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Equation 4

Equation 5

In order to quantify the performance of USI forecasts, a forecast skill was calculated for each
forecast horizon. (Marquez & Coimbra, Proposed metric for evaluation of solar forecasting
models, 2013) found that the ratio of forecast model RMSE to persistence model RMSE is a
measure of general forecast skill that is less affected by local solar meteorology and can
therefore be used to intercompare forecast results. The persistence forecast was generated by
assuming ground station measured kt at time t, persisted for the entire forecast window (i.e.
kt(persistence forecast) = kt°® (t,) ). Here, rMAE was used to compute forecast skill instead of
rRMSE due to the linear nature of rMAE. Thus, forecast skill FS was defined as:

FS(fh) = 1 - rIMAE(fh) / rMAE,(fh) Equation 6

Positive values of FS therefore indicate the USI forecast was superior to the ground station
persistence forecast, with a maximum possible value of 1. As an indicator of sample size, the
average number of ground stations covered by the shadow map for each forecast time series
was computed. Error metrics were not computed for time series showing average number of
stations covered less than 1, which indicates a lack of forecast data for the day and forecast
horizon in consideration. A small number of stations covered can occur due to low cloud height
or unfavorable cloud motion (fast speed or north-easterly direction).

4.4. Forecast Results

4.4.1. Image-based performance

Summaries of image-based forecast performance are presented in Table 2 for forecast
horizons of 30 seconds and 5 minutes, and in Figure 18 for all forecast horizons. The image-
weighted average 5-minute cap error is 91.9%, which implies 5-minute advection forecasts
performed better than image persistence over the entire month. Inspection of daily 5 min cap
errors reveals that 11 of 22 days exhibited cap errors higher than 100%. Ergo, pure advection
of clouds is not appropriate for all sky conditions. The image-weighted average 30-second cap
error of 67.0% is larger than cap errors in (Chow, et al., 2011), which ranged from 45.0% to
54.6%. The larger validation set analyzed in this paper (31 consecutive days versus 4 ideal
days) presented a wider variety of cloud conditions, causing a greater range in cap errors and
a larger (but more representative) average cap error. Additionally, new features of the USI
such as thin cloud detection and an unobstructed circumsolar region (area immediately
surrounding sun) result in more accurate kt assignment and greater visibility of the sky dome,
but increase cap errors. Since thin cloud detection is very sensitive to the CSL threshold, and
that threshold is not as distinct from typical clear sky RBRs as the thick cloud threshold, thin
cloud detection fluctuates more from image to image for example, due to sun obstruction or
stray light in the optics. Cloud decision errors in the circumsolar region,
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along with the sun obstruction CSL bypass, also cause fluctuations in the number of cloudy
pixels between images. These effects increase the total number of false pixels in both
advection and image persistence forecasts, causing their ratio to be closer to unity.

Table 2 Mean and standard deviation of matching errors, along with total daily cap errors (Equation 3 and
Equation 4) for fh =30 s and fh =5 min. Reported average cloud speed is a scalar average.

Date e (Vo) Std. e (%) Easpl o) Avg, cloud  Awvg. cloud Avg.

20s Smin 30s Emin  30s &5 min iractlon (%) speed{m/s) CBH {m)
Mow 01 4.6 1585 18 75 008 1020 45.0 3.5 1708
Mow 02 2.0 1232 190 8.8 008 08.0 12,0 147 5708
Mow 03 6.1 281 238 172 823 23708 a7 23.3 1340
Mow 04 - - - - - - 0.0 - -
Mow 05 - - - - - - 0.0 - -
Mo 06 - - - - - - 0.6 - -
MNowv 07 5.0 vl 18 184 855 2400 540 2.7 240
Mow 08 4.3 182 25 84 645 78.4 6.4 2.5 760
Mow 08 4.6 180 2.2 g4 407 787 62.8 g1 1522
Mow 10 4.1 181 17 g1 372 67.2 20.2 0.6 1372
Mow 11 - - - - - - 0.0 - -
Mow 13 - - - - - - 0.0 - -
MNowv 14 2.0 127 o7 6.3 5.4 57.4 5.5 20.2 RA&G
MNow 15 - - - - - - bod - -
MNov 16 2.4 s 1.7 5.0 4300 85.0 200 141 2R06
Mow 17 2.4 166 1.4 6.3 B33 83.7 27.9 4.8 1268
Mow 18 6.7 231 29 112 604 08.2 54.8 6.9 1058
Mow 19 - - - - - - 2.5 - -
Mow 20 7.5 o4 31 128 824 1102 7.2 62.4 2020
Mow 21 7.8 178 81 i1 328 005 27.0 275 6045
Mow 22 8.1 215 D8 1848 66,4 D648 14.8 2.4 402
Mow 23 108 W 48 120 1084 1170 40.1 7.8 1605
MNow 24 7.7 20 6.7 A5 100 1010 8.8 0.1 274
Mow 25 6.3 204 4.2 176 788 1081 44.7 2.4 400
Mow 26 4.7 186 32 82 835 1004 42.9 14.7 4268
Mow 27 2.8 87 A7 58 B83 48.0 86.8 0.9 488
Mow 28 5.6 213 854 118 981 1440 40.5 117 DEG3
Mow 20 - - - - - - by - -
Mow 20 - - - - - - 80,0 - -
Dec 01 8.3 1o 44 145 bEs% 103D RLD 28 .8 2584
Dec 02 3.6 156 128 2.4 50T 214 RE.6 2.5 R48
Mean® 5.0 189 238 104 870 019 26.8 112 1801

* Maan values are welghtad by numbar of mages.
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Table 3 USI nowcast aggregate error metrics. Average humber of stations covered by the nowcast shadow
map is listed in the second column. This value is an indicator of the sample size used in the computation of error

metrics. Average station cover of less than 1 is due to low clouds (small projected shadow map), large cloud

speed (advection out of domain), or unfavorable solar azimuth/zenith or cloud direction that project the cloud field
away from the area where ground stations are located. Days with average cloud fraction < 5% are indicated in

italics.

A M S tBMEE tMEE AR rMAE, =
Date 0 5] 0 5] 0 B 0 5] 5] 5]
Iewv 01 g.0 g.0 23,4  24.3 2.7 0.4 141 151 0.0 -5
Now 02 6.0 6.0 14,65 132.8 -0.1 -1.0 6.3 6.4 4.0 -0.3
ey 03 £.0 3.0 7.7 0.5 -0.7 0.2 3.8 4.5 3.8 -0.4
Moo 04 &0 4.5 282 i, 4 a0 oI 0.5 .5 .5 -8
MNow 08 & 0 a9 a9 o 0 8 .58 i 4 2 -1.4
MNaow 08 5.5 5.5 4.8 4.7 o & I ¥ o -1z
Iewv OF 4.1 2.6 1.1 18.0 10,9 4.6 123 114 7.3 -0.6
ey 08 B2 B2 384 428 10,8 5.7 287 3358 278 -2
ey 0O 6.0 5.2 26.6 204 -6.2 -6.6 iTE 218 24.7 0.1
Iaowy 10 6.0 5.2 5.4 17.B -2.2 2.3 100 112 15.8 0.3
MNaw 17 &0 &0 o& & -8 -8 &4 o & -IE
MNow 15 &0 &0 o o5 -8 -0 2.5 o8 .5 -1.g
Now 14 5.0 5.0 19.4 21.7 -5.32 -11.7 142 1856 128 -0.2
MNev 1E 6.0 6.0 21,2 27.8 -2.6 -3.2 6.8 16,4 13.7 -2
Moy 16 6.0 6.0 14.1 145 -2.5 -4.2 6.3 7.5 2.6 0.1
Iewv 17 B2 5.7 25,1 28,0 -1.0 -1.8 160 17.2 125 -0, 2
oy 12 £.0 5.4 23.0 24,5 -5.0 1.8 162 127 125 0.0
MNow I 5.4 48 wE &8 -0E a8 &0 2 4 8
Iaowy 20 5.5 0.2 10.8 - 0.1 - 4.6 - - -
Iewv 21 6.0 g.0 200 2148 3.4 4.0 6.3 8.2 4.0 -1.1
Now 22 5.1 4.6 10,2 10,8 1.0 -2.2 4.0 5.5 4.5 -0.2
ey 23 2.7 2.7 1.2 148 5.0 3.8 o 103 g.0 -0.8
Iewr 24 5.5 5.6 5.1 £.0 0.3 0.4 2.8 2.7 1.0 -0.4
INaov 28 4.8 4.1 105  17.0 1.1 0.5 4.2 2.5 4.1 -1.1
oy 26 6.0 5.2 1.4 22.4 1.0 -T.d 120 145 12.8 -0.1
oy 27 5.7 4.8 27.1  24.2 2.8 3.5 173 244 1z.2 -0.3
oy 28 6.0 5.0 148 182 0.6 -0.4 6.1 0.2 6.7 -0.5
ey 20 4.3 4.4 364 284 5.2 2.4 170 243 16.2 -0.5
ey 30 4.2 4.1 5268  &7.0 23.4 27.68 278 432 17.2 -1.8
Dec 01 ] 5.5 24.0 27.4 1.6 6.1 170 202 12.8 -0.5
Dec 02 B2 ] 11,4 127 2.0 0.7 5.6 7.7 6.5 -2
Mean™ 5.5 4.0 17,7 20,0 1.7 1.4 o1 111 2.8 -0.2

* Liean wvalues are weighted by number of forecast data points.
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These effects increase the total number of false pixels in both advection and image
persistence forecasts, causing their ratio to be closer to unity. Cloud map matching metrics are
shown in Figure 18 versus forecast horizon. Matching error can be seen to increase mostly
monotonically with forecast horizon as static cloud advection is increasingly less valid; cap
error also increases with forecast horizon, but exhibits a peak at a forecast horizon of 9 min.
The number of images containing partial overlap by the advected cloud map from fh min prior
is seen to decrease sharply from 8 min forecast horizon onwards. This decrease in image
sample size is attributed to advection of the cloud map out of the initial field-of-view. At a
forecast horizon of 15 minutes, approximately 30% of images have been advected out of
scene, indicating forecast horizon limitations of the USI technique. To identify regions of high
cap error, a map of monthly cap errors at 5 min on a projected cloud map is shown in Figure
19a. Plotting cap error vs. image zenith angle (1ZA) (Figure 19b) shows cap errors mostly
below 100% for all forecast horizons, with an approximately monotonic increase at IZAs > 70°.
Separating the cloud map into top and bottom halves (Figure 19c & Figure 19d), it is clear that
there is a cap error reduction between 10- and 15-min forecast horizons mostly in the bottom
half of the cloud map. Additionally, the bottom half of the cloud map exhibits higher cap errors
at high 1ZAs than the top half. This discrepancy can be attributed to difficulty in obtaining
accurate cloud decision within the circumsolar region. During the month of November, the
position of the sun is solely contained in the bottom half of the cloud map (extreme solar zenith
and azimuth angles are 47.6° and 116.8° - 244.6°, respectively). Morning cloud cover is
frequent in the San Diego region (e.g. marine layer clouds), so clouds frequently cover or pass
over the sun following sunrise, leading to concentration of cap errors in the southeastern
guadrant. Combined with prevailing westerly winds over San Diego, these high cap error
regions are often advected out of scene between forecast horizons of 10 and 15 min. This
corroborates the reduction in cap error after a forecast horizon of 9 min as previously observed
in Figure 18.

9 Cloud map mateching metrics vs, forecast horizon
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Figure 18 - Cloud map matching metrics versus forecast horizon. Metrics are averaged across all images
over 31 days, i.e. not the mean of the daily means in Table 2.

Considering high cap errors are concentrated at high IZAs (particularly in the southeast
guadrant), we arrive at an interesting conclusion: depending on the SZA, more accurate
regions of the cloud map may cast shadows on the footprint following advection, instead of
information from the higher-error cloud map perimeter. Furthermore, advection of high cap
error regions out of scene (e.g. advection of southeast quadrant by prevailing westerly winds)
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leads to an inability to ray trace clouds from the high cap error region, resulting in no forecast
for affected stations, rather than an erroneous forecast.

Despite the challenges presented by the situations outlined above, daily cap errors were below
100% for 20 out of 22 days for 30 second forecasts and 11 out of 22 days for 5-minute
forecasts. This suggests the underlying principles and assumptions of the cloud decision and
cloud velocity algorithms are consistently valid. Days with cap error exceeding 100%
demonstrated unfavorable phenomena, such as stationary conditions (advection performs
worse than persistence) and rapidly deforming clouds (cap error near 100%, as advection
performs just as poorly as persistence). On the other hand, the cumulus clouds present on the
day with the smallest cap error (Nov 10) presented heterogeneous cloud cover moving at
uniform velocities, which is the ideal scenario for the cloud motion algorithm, as the sharp
edges characteristic of cumulus clouds allow the cross-correlation method to obtain robust
results. Statically advecting cumulus clouds conform to the forecast assumptions, and cumulus
clouds are optically thick, so few thin pixels were present in each cloud decision image,
thereby minimizing the fluctuations in cloudy pixels caused by thin cloud classification. Hence,
Nov 10 was an ideal day for USI forecast performance, and its average 30 sec (5 min) cap
error of 37.3% (67.4%) is superior to the smallest cap errors for similarly ideal days in (Chow,
et al., 2011) of 45.0% (70.3%).

Cap error map (5 min) [%])

20 40 60 80

Image zenith angle [deg]
Figure 19 - a) Monthly cap error shown on projected cloud map for 5 min forecast horizon, with image
zenith angle isolines at 20°, 70°, and 80°. b) Cap error vs. image zenith angle for forecast horizons of 1

min (solid gray), 5 min (dashed gray), 10 min (solid black), and 15 min (dashed black). c) Same, but for top
region of cloud map. d) Bottom region of cloud map.

4.4.2. US| performance for irradiance forecasting

A graph of bulk error metrics as a function of forecast horizon for all 31 days is shown in Figure
20. The nowcast (0-minute forecast) shows an rMAE of 9% and forecast errors increase with

36



forecast horizon. Detailed error metrics for each day are tabulated in Table 3. Although ground
station persistence forecast outperforms the USI in terms of bulk error metrics, this is largely a
result of inaccuracies in estimating cloud optical depth in clear or cloudy conditions. On the
other hand, the USI offers the ability to predict ramp events. Graphical representations of USI
forecasts versus measured data are therefore more indicative of forecast value, as the ability
to forecast timing and magnitudes of ramp events can be shown. For this reason, daily
overviews of USI forecast bias errors have been graphically compiled for nowcasts and 5-
minute forecasts (Figure 25). Since we forecast the average GHI at all sites, large changes in
forecast GHI are due to sudden shading of many or all sites by thick clouds, while small
changes indicate shading of one site or that thin clouds are shading multiple sites. In the
following sections, forecast periods of various forecast horizons will be shown to critically
appraise Sky Imager forecasting.

Nowcast of sky conditions (0-minute forecast)

The 0-minute forecast, or nowcast is of particular interest in the validation process. Since
nowcasts are not influenced by cloud velocity, the accuracy of cloud decision and projection
algorithms can be verified. USI nowcast time series for two days demonstrating high irradiance
variability are shown in Figure 21. November 10 (Figure 21a) illustrates an accurate nowcast
which matches most of the day's variability in both timing and magnitude, indicating excellent
performance of the cloud decision algorithm, as well as accurate cloud projection as a result of
accurate METAR CBH and geometric calibration. November 17 (Figure 21b) also shows
agreement between USI nowcast and measured kt, save for some periods in the early morning
and late evening. Most of the errors from morning to afternoon can be attributed to cloud
decision errors (most notably the underprediction of irradiance between 08:00 and 08:40 PST),
when thin clouds were over-conservatively classified as thick clouds. The over- and
underprediction of kt after about 14:00 PST resulted from a CBH error. METAR suggested 457
m at both KNKX and KMYF stations while visual examination of the images indicated
altocumulus clouds that typically exist above 2 km. The result of an underestimated CBH was
a projection error leading to shadow map contraction, as shadow map extent = CBH cos 80°.
To illustrate this effect, a contracted shadow map generated at 14:07:30 PST at a CBH of 457
m (Figure 21d) is shown beside a correct morning shadow map (Figure 21c). In Figure 21c,
irradiance measurements reflect ground station cloud shadow cover. Figure 21d, however,
shows four stations in the north of the domain measuring lower irradiance than HUBB
(southwest), despite the shadow map showing clear skies over all stations. In this case, cloud
shadows were actually covering all four stations in the north, but cloud map projection at an
incorrect CBH led to an underestimation of cloud shadow coverage.
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US| forecast error metrics vs. forecast horizon
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Figure 20 - USI error metrics for all 31 days vs. forecast horizon.
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Figure 21 - USI nowcast and measured kt averaged across all ground stations covered by the shadow
map for (a) November 10, 2012 with cumulus clouds and (b) November 17, 2012 with cumulus clouds (< 2
km) followed by altocumulus (2 km to 7 km). Dashed lines indicate times corresponding to c) and d). c)
Shadow map (blue: clear sky, light gray: thin cloud, dark gray: thick cloud, black: no data) corresponding
to 09:07:30 PST illustrating accurate shadow map Ground station locations are marked by black boxes,
with measured irradiance printed nearby in W m™. Cloud velocity is indicated by a black vector extending
from the center of the shadow map. d) Shadow map corresponding to 14:07:30 PST illustrating
compressed shadow map due to low cloud height of 457 m.
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The primary factors affecting nowcast accuracy were found to be cloud decision within the
circumsolar region and CBH measurements. Due to the geometry of ray tracing, sky conditions
in the circumsolar region will always affect the region immediately surrounding the physical
location of the USI for nowcasts and short-term forecasts. An erroneous reduction in
assignment of "thin" to a thick cloud that occasionally occurs in the circumsolar region (detailed
in 5.1) therefore introduces a positive bias into nowcasts for stations in close proximity to the
USI. Nowcast errors may also result from an expansion or contraction of the cloud and shadow
maps caused by a CBH error in the METAR data. As measured CBH increases, the size of the
shadow cast by a cloud subtending a certain solid angle increases. A graphical overview of
nowcast GHI bias errors with respect to measured GHI for November 10 and 17 is presented
in Figure 22 to illustrate the relationship between kt and GHI. Similar plots for the entire data
set are compiled in Figure 25. Periods exhibiting a CBH mismatch between METAR data
(either due to multiple cloud layers or erroneous METAR data) and observed clouds are
explicitly marked by #, and overforecasts (black areas) appear more common during these
conditions. For Nov 17 in particular, the worst case occurs where the cloud projection error
causes the cloud field to be (i) out of phase and (ii) smaller than in reality causing it to cover
only one site at a time while the actual cloud field covered 4 sites during the episode around
14:20 PST. The error was further increased by significant cloud enhancement that is presently
not modeled in our algorithm.

11/10, rMAE: 10.0% 11/17, rMAE: 16.9%
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Figure 22 - Bias errors between USI nowcast GHI & Measured GHI

Figure 22 represents bias errors between USI nowcast GHI and measured GHI averaged
across all 6 ground stations for Nov 10 and 17, 2012. Labels are color coded based on rMAE,
ranging from 0% (white) to 20% (black). Note that while plots shown are of GHI, error metrics
reported were computed using clear sky index kt. Black regions represent overprediction, while
orange regions represent underprediction. The average number of stations covered by the
shadow map throughout each day is reported in the top right corner of each plot. A # marks
periods with significant mismatch between observed clouds and METAR CBH. Vertical dashed
lines divide days into morning, midday, and afternoon.
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4.4.3.5to 15-minute forecast

Five-, ten-, and fifteen-minute forecasts for four partly cloudy days will now be examined in
greater detail to examine the USI's ability to predict major ramp events and visualize error
patterns. Sky conditions on Nov 16 (Figure 23a, ecsp 0of 63.0% at 5 min) consisted of a mix of
clear skies and intermittent broken altocumulus clouds. Much of the variability in the morning
was captured, but most notably, the large ramp events at 10:30 PST (down ramp) and 11:45
PST (up ramp) were captured both in timing and magnitude (11:45 event only). A smaller
isolated ramp event around 15:30 PST was also correctly predicted. Nov 18 (Figure 23b, ecap
99.2% at 5 min) exhibited an average cloud fraction of 55%, but consisting of a mix of low-level
cumulus, mid-level altocumulus, and high-level cirrus clouds, as well as a brief overcast period
in the morning. Although many high-frequency ramps were missed, the 5 minute USI forecast
accurately predicted many of the larger ramp events well across such a large variety of sky
conditions. In addition to accurate cloud decision and CBH, forecast performance increasingly
depends upon accurate cloud motion as forecast horizon increases. Inaccurate cloud velocity
or changes to cloud velocity during the forecast will cause errors to increase. On the other
hand, a source of error reduction is that, depending on CBH and cloud velocity, circumsolar
cloud decision errors may be advected out of the footprint and no longer affect irradiance
estimates. Generally, we observed that provided a reasonably accurate nowcast was
produced, the performance of 5 minute USI forecasts is promising. Four out of 24 days
exhibited a forecast skill of O or greater (Table 3). A graphical overview of 5-minute forecast
bias errors is shown in Figure 25. Compared to nowcast bias errors, periods suffering from a
CBH mismatch showed a larger increase in bias errors than periods with more accurate CBH
measurements, further highlighting the importance of accurate CBH data.

The 10-minute forecast time series for Nov 14 (Figure 24a, ecap Of 67.7% at 10 min) shows
agreement between forecast and measured kt ramp shapes for most of the day. Many of the
timings of larger ramp events were predicted correctly, but the magnitudes of the ramps
showed occasional forecast underprediction caused by conservative CSL thresholds—most
notably between 11:00 and 12:00 PST, and especially after 13:30 PST.
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Figure 23- USI 5-minute forecast versus measured kt averaged across all ground stations for: a)
November 16, 2012. Clear skies, with intermittent altocumulus clouds. rRMSE: 14.5%, FS: 0.1. b)
November 18, 2012. Overcast, followed by varying partly cloudy conditions (cumulus, altocumulus, and
cirrus). RMSE: 24.5%, FS: 0.0. c) USI 15-minute forecast versus measured kt averaged across all ground
stations for November 16, 2012. Clear skies, with intermittent altocumulus clouds. rRMSE: 17.1%, FS: 0.3.

Despite small cap errors (ecap 0f 47.0% at 10 min), the performance of the USI on November
27 was especially poor, and the 10-minute forecast time series (Figure 24b) illustrates the
different types of errors that impact forecast accuracy. Although the high USI cloud fraction (>
95%) from morning until 10:00 PST indicated overcast conditions, the cloud field was visibly
textured and appeared to be moving with an apparent velocity (averaging about 4.6 m s™ at
457 m beginning around 09:00 PST as calculated by the cloud motion algorithm). The high
velocity relative to CBH caused the shadow map to be advected out of the sensor array
footprint at a forecast horizon of 10 min for most of the duration of overcast conditions. An
overprediction of kt occurred between 08:30 and 09:05 PST, because an erroneous METAR
CBH reading of 6096 m caused expanded shadow maps leading to thin clouds on the horizon
to be projected into the forecast domain.

The overcast conditions then cleared, revealing a layer of thin cirrus clouds which are typically
at a height greater than 7 km, but METAR CBH reports remained at 488 m for the rest of the
day, which were inconsistent with the cloud types observed. The resulting CBH mismatch
caused cloud cover to be inaccurately represented both in size and position, causing almost
every ramp event of interest to be missed. Hemispherical cloud coverage during this period
exceeded 95% (consisting of cirrocumulus and cumulus clouds), so the thick cloud class was
assigned the median measured kt of the past minute. With 95% cloud cover, forecasts are
almost entirely based on changes in cloud kt, so the resulting forecast is essentially a 10-
minute time shift of the measured kt (similar to persistence forecast). The high measured kt
values during this time indicate cloud enhancement with an increase in diffuse solar radiation
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caused by scattering of the solar beam on the base of the cloud field due to the sun's low
position on the horizon (solar zenith angle was about 73°).
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Figure 24 - USI 10-minute forecast versus measured kt averaged across all ground stations for: a)
November 14, 2012. Cirrus transitioning into cirrocumulus around noon. rRMSE: 23.4%. FS: -0.1. b)
November 27, 2012. Overcast in the morning, followed by partly cloudy conditions (cirrus, cirrocumulus,
and cumulus), with occasional presence of multiple cloud layers for the rest of the day. rRMSE: 40.2%,
FS: -0.3.

As discussed in Section 4.1, approximately 30% of images have been advected out of scene
at a forecast horizon of 15 minutes, leading to less forecast data points available. The
remaining images exhibited a monthly cap error of 93.7%, even showing slight improvement
over the 10 minute monthly cap error of 97.2%. When forecast data is available, 15-minute
GHI forecasts perform similarly to 10-minute forecasts. At a forecast horizon of 15 minutes,
persistence forecasts do not provide much valuable information, whereas the USI may be able
to forecast major ramp events 15 minutes in advance, as on Nov 16 (Figure 23, ecap Of 70.3%
at 15 min), wherein the large ramp event at approximately 10:45 PST (cf. 5 min forecast in
Figure 23) was predicted even at the 15 minute forecast horizon.

4.5. Summary of Sources of Forecast Error

Circumsolar region optical depth reduction: Cloud decision errors are more prevalent
within the circumsolar region. Since forward scattering of sunlight by aerosols causes clear sky
RBR to increase within the circumsolar region, the clear sky RBR stored in CSLs is elevated
within the circumsolar region. Additionally, the intensity of the solar beam causes saturation in
pixels immediately within the solar disk, resulting in a clear sky RBR of unity (which is much
larger than the clear sky RBR in other regions). These factors tend to reduce the ARBR of
clouds and therefore the detected optical thickness of clouds within the circumsolar region.
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Errors due to this effect are difficult to quantify, as thick clouds falsely classified as thin clouds
will not impact matching and cap errors (as defined here), though overprediction of forecast
irradiance results if circumsolar thin clouds cast shadows on the site footprint.

Cloud evaporation and formation: Periods of cloud evaporation and/or formation on
timescales of a few minutes are a common error source. Since the present advection algorithm
of the USI does not possess any ability to model these physical processes, these periods will
inevitably cause a larger matching error, as was the case on Nov 23, 26, and Dec 1.

Perspective errors: Occasionally, a cloud away from the image center may partially occlude a
cloud immediately behind, obstructing a small gap of clear sky. This “merged cloud" effect is
predominantly observed in low-level clouds of significant vertical extent, such as cumulus
clouds. A related source of error introduced by these types of clouds involves a slight
overestimation in cloud size of clouds farther away from the image center, due to the
assignment of cloud sides as cloud bottoms. These perspective errors, through obstruction
and distortion effects, slightly increase matching errors, and appear to be partly responsible for
the concentration of high cap errors at high IZAs shown in Figure 19. One could statistically
correct for these errors, i.e. shrink cloud sizes, if the vertical extent of clouds was known.

Heterogeneous cloud velocity: Errors are caused by the cloud motion algorithm when the
assumption of uniform cloud motion across the USI's field-of-view does not hold.
Heterogeneous cloud velocity is typically due to the presence of multiple cloud layers, but can
also be caused by variations in topography that cause channeling of flow or cloud turbulence.
The cloud vector quality control in the cloud motion method is designed to eliminate cloud
velocity vectors from the cloud layer with smaller sky coverage and represent the predominant
cloud velocity. More rarely, rotational motion (e.g. caused by horizontal shear, etc.), even over
the relatively small scale of the USI view, will cause the linear cloud advection hypothesis to
break down.

Stationary sky conditions: One albeit rare source of cap error was the presence of stationary
clouds caused by, for example, rapid formation of clouds in a fixed position in the sky and
subsequent evaporation occurring on timescales of a few minutes. Although clouds are
traveling with the velocity of the underlying flow field, strong updrafts (especially in weak
winds) can induce local forcing that balances the background flow, causing stationary clouds.
Another example of a stationary condition is the occurrence of haze, which typically forms in
calm conditions, when the lower atmosphere is poorly mixed. The relatively large aerosol
particles contained in haze scatter light similarly to water droplets in clouds. As a result, the
RBR signature of haze is similar to that of thin clouds, so haze is classified as such. Indeed,
ground station data shows measurable irradiance attenuation during hazy conditions.
However, due to the circumsolar cloud detection bias detailed in 5.1, a false clear region
almost always results near the solar disk, causing a large matching error when advected, as
well as a positive bias in irradiance forecasts. Because of the stationary nature of these cloud
decision errors, cloud motion cannot improve over persistence forecast, leading to cap errors
near or in excess of 100%, such as on Nov 24 and Nov 28.
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Influence of cloud base height: Accurate cloud base height (CBH) measurements are critical
to the accuracy of USI forecasts. Here, CBH was obtained from an off-site METAR station in a
heterogeneous coastal environment, which introduces errors. Instead, more accurate CBH
could be obtained from ceilometers or image stereography using two Sky Imagers. Erroneous
CBH values lead to both incorrect projection of cloud cover within the forecast domain and
incorrect physical cloud velocity. As the size of the shadow map scales linearly with CBH, and
CBH typically ranges by an order of magnitude, CBH introduces errors in both the size of the
cloud shadows within the forecast domain ("shadow map") and in the locations of clouds within
the forecast domain. Because the shadow map is always centered about the physical location
of the USI prior to advection, for nowcasts these cloud shadow errors more strongly affect
stations located farther from the USI. Since physical cloud velocity is determined by converting
cloud pixel velocity (approximately angular velocity with respect to physical location of USI)
into an equivalent ground speed based on CBH, the resulting physical velocity will be
overestimated if the METAR CBH is much higher than that of the clouds from which pixel
velocity was computed (and vice versa). This cloud speed error scales linearly with the ratio of
actual versus METAR CBH. Additionally, ground shadows obtained by ray tracing are affected
when combined with an erroneous CBH, leading to errors in both cloud shadow position
(dependent upon solar zenith angle) and size. An example was illustrated in (Figure 21c &
Figure 21d). Furthermore, because the UCSD footprint consisted only of six point sensors
(none of which were collocated with the USI) extremely low CBH measurements result in zero
station coverage and therefore no forecast data (gray areas in Figure 25), as on Nov 23.
However, the low CBH measurements on Nov 23 do not necessarily constitute a METAR
mismatch, as fog-like conditions were intermittently present at the USI.

4.6. Conclusions and future work

This paper comprehensively demonstrates Sky Imager irradiance forecasting using state-of-
the-art imaging technology for areas of = 5 km? at resolutions of 10s of meters and seconds.
Sources of error can be traced to image processing, cloud shadow projection, and kt
assignment. The analysis of forecast cloud maps versus actual images demonstrated forecast
skill. Excluding completely clear or overcast days, the USI's imagery-based forecast was
superior to image persistence forecast on 20 out of 22 days for 30 second forecasts, and 11
out of 22 days for 5-minute forecasts. Based on imagery alone, the optical depth (thick or thin),
percentage cloud cover, and mean velocity of clouds can be approximated at sub-kilometer
resolution.

This information regarding the properties of the cloud field above a solar power plant should
therefore serve as a valuable input for short-term irradiance forecasting. However, the
introduction of other variables (i.e. CBH data and measured irradiance or power output) which
are necessary to produce a site-specific irradiance forecast causes larger errors for
deterministic forecasting. Excluding clear days or days with small forecast sample size, bulk
error metrics showed USI forecast performance to be the same as or better than kt persistence
forecasts on 4 out of 24 days for 5-minute forecasts, 8 out of 23 days for 10-minute forecasts,
and 11 out of 23 days for 15-min forecasts. The typical low CBHs in coastal southern California
restrict the size of the cloud map and typically only allow forecasts up to horizons of about 15
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min. The upwind (westerly) location of the USI with respect to the ground stations contributed
to increase the forecast horizon.

Forecast errors during several periods were traced to inaccurate cloud base height (CBH). A
ceilometer will be installed to provide CBH measurements within the USI forecast area.
Additionally, an algorithm is currently being developed to calculate CBH by leveraging different
perspectives of the same cloud field provided by multiple Sky Imagers. The deployment of
more than one USI will also improve spatial coverage and maximum forecast horizon.

Another focal research area is the cloud velocity algorithm. (Huang, Yoo, Yu, Huang, & Qin,
2012) developed a hybrid cross-correlation and local feature approach which was found to
offer superior performance than phase-correlation, cross-correlation, and local feature
approaches alone. To address the current weakness in dealing with inhomogeneous cloud
velocities, a dense motion estimation method will be applied to detect differing velocities of
individual patches of clouds and segment them for individual advection. Lastly, more
pyranometers will be deployed throughout the UCSD campus to increase the coverage and
spatial resolution of ground sites within the USI footprint. Greater coverage would better
emulate the spatial averaging at a large power plant (Lave, Kleissl, & Arias-Castro, High-
frequency irradiance fluctuations and geographic smoothing, 2012) and reduce the sharp,
step-like jumps in irradiance often observed in current USI forecast time series. Alternatively,
models such as a wavelet variability model (Lave & Kleissl, Cloud speed impact on solar
variability scaling -- application to the wavelet variability model, 2013) (Lave, Kleissl, & Stein, A
wavelet-based variability model (WVM) for solar PV power plants, 2012) or a Poisson model
(Arias-Castro, Kleissl, & Lave, 2014) could be applied to pyranometer and USI forecast
irradiance time series in order to simulate the behavior of power output by large solar arrays.

The error values presented in this paper represent the aggregation of different error sources. A
comment on forecast error metrics is in order; RMSE, MAE, and MBE metrics alone (even if
normalized by average kt) do not provide much insight into the forecast skill. Forecasts for 30
sec intervals over kilometer-scale domains will naturally result in larger errors than, for
example, hourly average forecasts from numerical weather prediction. This is because the
variability is larger for 30 second averages, and some of the variability is essentially random
and difficult to forecast.

A forecast skill was therefore computed in order to compare the performance of the USI
against the baseline kt persistence forecast on the same forecast horizon and temporal
resolution, but kt persistence forecast is difficult to surpass on clear or overcast days, as an
error-free US| forecast would only produce approximately the same result. However, the
forecast skill metric also has limitations as the reference (persistence forecasts) cannot predict
ramp events caused by approaching cloud cover, which would be the main application of a Sky
Imager. Particularly, although a ramp event may be detected by the USI, errors in magnitude
and especially timing will serve to increase MAE and RMSE error metrics. With typical cumulus
cloud passages over the footprint lasting only 10s of seconds, phase-shifts in the forecast of
half a wavelength will be common and would actually cause negative forecast skill. Future
work will include designing an appropriate ramp forecast metric, but choices for ramp
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magnitude and duration are arbitrary. The forecast skill metric allows intercomparing Sky
Imager forecast results. However, to the best of our knowledge—with the exception of (Chow,
et al., 2011) which was already discussed in detail in Section 4.1—other investigators only
forecasted for the location of the Sky Imager which largely eliminates cloud base height errors.
(Marquez & Coimbra, Intra-hour DNI forecasting based on cloud tracking image analysis,
2013) found forecast skills of 0.2 to 0.4 for 3 to 15 min forecast horizons for 4 days of DNI
forecasts employing a TSI at Merced, CA.
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presence of multiple cloud layers.

Figure 25 - Bias errors between USI nowcast GHI (top) or forecast GHI (bottom) and measured GHI
averaged across all 6 ground stations. Labels are color coded based on rMAE, ranging from 0% (white) to
20% (black). Note that while plots show GHI, error metrics were computed using the clear sky index kt.
Black regions represent overprediction, while orange regions represent underprediction. Times when no
forecast data was available are shaded in gray. The average number of stations covered by the shadow
map throughout each day is reported in the top right corner of each plot. A 6= marks periods with
significant mismatch between observed clouds and METAR CBH, and a blue/red icon indicates the
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5. Development and Application of a Controller for Energy Storage

In this section dispatch strategies for a battery energy storage system (Section 5.1.) coupled to
a PV system are presented. The dispatch strategies range from simple off-peak/on-peak
constant charging to optimization methods using load and PV output forecasts (Section 5.2).
For illustration purposes results for one summer day are presented (Section 5.3). Simple
economic and battery lifetime metrics are computed in Section 5.4 and a parametric analysis
of net present value given battery storage size and demand charge reduction objective is
presented in Section 5.5.

Table 4. Nomenclature

Nomenclature

A annual energy bill savings Superscript
E energy DC rating DC nameplate rating of the PV
f objective function array
M number of forecast update times m forecast update index
N number of timesteps max maximum value
NCC number of charge cycles at 80% min minimum value
depth of discharge n time index
NPV net present value target target value, objective
oM operation and maintenance total total energy capacity of the
costs battery array.
P power (dE/dt)
R power ramp rate (dP/dt) Subscript
r discount rate 0 initial condition (n = 0)
T nominal battery lifetime I load
t time. If load forecast
0 PV+ output
Greek symbols opt computed with LP optimization
A discrete change routine, i.e. Egs. 1-3
e forecast accuracy (safety) p PV output
factor. pf PV output forecast
S battery (storage)
update time between forecast updates.
Symbols
<> denotes a time average.

5.1 PV-Storage (PVS) System Model

Ongoing advances in electrochemical battery technologies have dramatically increased the
energy density, reliability and product lifetime of batteries. These improvements have
translated to significant cost reductions in KW scale batteries, making battery energy storage
an attractive option to regulate the variable power output of PV systems. If a battery is
connected to the PV system behind the grid interconnect, the energy stored in the battery can
be dispatched “on demand” to modulate the net output of the combined PV-storage system
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(hereafter PVS system) to the grid. A simplified PVS system was considered, in which a PV
array and a battery are connected to the electricity grid via a lossless DC-AC inverter (see
Figure 26).

Figure 26 - A schematic of the
system model illustrating the
important components and power

: ] P o (T P,-P, + | Electric flows; the PV+ system is delineated
E PV Ll e— Tt " Grid by the dashed line. Positive and

! !,\1* ; l negative symbols indicate sign

' k]

________________________________

conventions for active power flows.
Because the inverter is assumed to

i
i : be lossless it is not shown in this
P+ Battery || Load diagram. The battery management
'System ! system is included in the battery,

which allows “black box” treatment
of complex electrical dynamics and
transients within the battery.

An idealized PV output forecast was obtained from one year of 15 min DC power output data
from the EBU2 rooftop PV array on the UCSD campus. The PV array has a DC nameplate
rating of 75 kW DC. A load forecast was generated from UCSD campus historical load data.
Uncertainty in the load forecast was simulated by incorporating random, normally distributed
fluctuations with a standard deviation of 5% of the magnitude of the peak load at any given
time. To simplify the analysis weekend and holiday loads were not considered in this paper.
The desired amount of customer peak load reduction (based on the load forecast) is a
parameter in the model and was set to 150 kW for the results presented herein. The energy
storage device was a Sanyo DCB-102 Lithium-ion type battery array consisting of 120 DCB-
102 batteries. A single Sanyo DCB-102 is specified to have an energy storage capacity of
1.59 kW and a lifetime of 3000 cycles at 80% depth of discharge (DoD). The retail cost was
assumed to be $1000/kWh. The battery array has a total energy storage capacity of EL°tal =
190 kWh and a maximum charging power P = 41.2 kW and discharging power P*** = 86.6
kW. Power requirements for active cooling of the battery array are not considered.

5.2 Energy Storage Controller Algorithm

5.2.1. Simple off-peak/on-peak schedule

The simplest way to operate the battery is to charge it off-peak and discharge it on-peak at a
constant charging rate such that the battery undergoes one complete cycle every day. This
strategy guarantees daily arbitrage revenue because of the price difference between peak and
off-peak. The strategy also guarantees a demand charge reduction; however the reduction is
relatively small since the battery is not discharged at the maximum rate during the demand
peak. Operating the battery in the charge off-peak, discharge on-peak schedule will usually
guarantee good correlation between the discharging profile and the load. Because of its
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simplicity, it is assumed that this simple strategy is used often in practice and therefore a
useful reference case.

5.2.2. Dynamic Real-Time Dispatch

The simple off-peak / on-peak constant charging makes excessive use of the battery, often
without a benefit. Unless the demand is actually larger than the demand charge target, the
battery should not be discharged during peak hours. Another scenario that avoids forecasting
and optimization yet is more sophisticated than simple off-peak / on-peak charging is to
dynamically dispatch the battery in real-time as a function of the net load. So, if the net load is
less than zero (PV is producing more power than the demand), the battery would sit idle. If net
load is greater than zero, the battery would discharge at a rate equal to the net load. If over the
peak-time the energy in the net load is less than the energy in the battery, this strategy will
achieve its objective to eliminate the load. However, if the battery becomes completely
discharged during the day, then no energy would be left to counteract any large net loads
during the rest of the day. In the latter case the demand charge would be very large, even
larger than for the simple charge off-peak, discharge on-peak scenario.

5.2.3. Optimization using Forecasted Demand and Solar Production

A nonlinear, mathematical programming routine with receding horizon optimization is applied
to compute the optimum dispatch schedule for the energy stored in the battery. Equation 7,
Equation 8 - Equation 10, and Equation 11 - Equation 13 are the objective function, system
dynamics and battery performance constraints, respectively.

N

min {f(Pl’}, pmy = Z (P — PX)At, while P > 0 and P > PX, Equation
k=1 7
S.t.
Equation
= a
EMt—E™ Equation
e F 9
pr+t — pn n Equation
R 10
min " k < fpmax Equation
EnS ) R+ Ey < a
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Variables E, P and R are energy, power and ramp rate. Variables with subscript s are related
to the battery array, subscript pf refers to the PV power output forecast, subscript If is the load
forecast, subscript o denotes power flows to and from the grid and 0 indicates an initial
condition. Superscript n is the current timestep and N denotes the maximum number of
timesteps over the forecast horizon (i.e. N=96 for a 24 h forecast horizon at 15 min sampling
rate). Superscripts min and max indicate performance limits of the battery.

5.3 Methods for Idealized Case Study and PV+ system cost-benefit analysis

There are three PV+ system parameters in our model: PV array DC nameplate rating (PpDC
aing) " energy storage capacity (Es®®) and the peak load reduction target (P29%). P49 was
chosen as a PV+ system parameter because the optimization algorithm targets demand
charge management, and P,** is linearly proportional to the customer’s demand charge (see
Appendix A). A more common choice to quantify the load capacity being managed by the PV+
system is battery capacity ratio, which is the quotient of the total energy storage capacity and
the average daily load energy capacity (Es®®/<E;>; [11]). It will be shown later (Figure 32a) that
P9 and E°®@/<E> are consistent and both are valid PV+ system parameters. To evaluate
feasible PV+ system designs a cost analysis was performed to determine the NPV of the
battery storage system by calculating energy bill savings attained over the lifetime of the
battery relative to capital costs of the storage system, annual operation and maintenance
(O&M) costs and the discount rate. The net present value is estimated from

T A-0M Equation
NPV = —_—
i=o (L+7)F 14

where A is the value of annual energy bill savings extrapolated from 2009 data, OM is the
annual O&M cost for operating the storage system (including energy costs for active cooling of
the battery array), r is the discount rate, t is the current year and T is the total lifetime of the
battery in years. For t = 0, OM is equal to the capital costs incurred on the purchase and
installation of the storage array and A = 0. In this study we assumed that annual O&M costs
were constant and equal to 3% of the capital cost of storage. Annual energy bill savings are
attributed solely to the use of energy storage in the PV+ system, and energy bill savings are
assessed in terms of the difference between the annual energy costs with and without the
application of battery energy storage. Electric utilities assess time of use (TOU) energy pricing
and demand charges for industrial customers. The energy bill was calculated using the San
Diego Gas & Electric (SDGE) AL-TOU rate schedule for industrial customers. The AL-TOU
tariff includes basic service fees, on-peak and non-coincident demand charges and TOU
energy pricing (Table 5; [16]). Non-coincident demand charges are assessed monthly based
on the utility customer’'s maximum load (15 min interval) during the current month, not
considering the rate periods. If the maximum load during the previous 11 months was greater
than the maximum load in the current month, the non-coincident demand charge is computed
from 50% of the maximum load during the previous 11 months. This rate structure incentivizes
customers to gradually reduce their monthly peak load in order minimize the non-coincident
demand charge portion of their energy bill.
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Table 5. San Diego Gas and Electric (SDGE) seasonal time-of-use rate periods for industrial customers
(Schedule AL-TOU).

Summer, May 1 - Sep 30 Winter, Oct 1 - Apr 30

On-peak 11:00 - 18:00, Weekdays 17:00 - 20:00, Weekdays

Semi-peak  6:00 - 11:00, Weekdays 6:00 - 17:00, Weekdays

18:00 - 22:00, Weekdays 20:00 - 22:00, Weekdays

Off-peak  22:00 - 6:00, Weekdays 22:00 - 6:00, Weekdays
Plus Weekends & Holidays Plus Weekends & Holidays

In order to quantify the financial advantages of our optimization strategy we compared the
optimized dispatch schedule (OPT) with two storage dispatch schedules that did not use any
PV output or load forecast information, a simple off-peak/on-peak, charge/discharge schedule
(OFFON) and a real-time dispatch scenario (RT). For the OFFON schedule the battery
undergoes one full charge cycle at 80% depth of discharge (DoD) per day. Charging and
discharging rates are constant over the off-peak and on-peak periods defined in Table 5;.
OFFON is often used in real applications because it is simple, guarantees reduction in net load
during the on-peak rate period, and maximizes off-peak, on-peak energy arbitrage. For the RT
schedule the battery is charged to full capacity during the off-peak rate period and discharged
to meet the customer’s actual net-load in real-time. RT is also simple and attractive because
the battery is only used when it is needed for peak load reduction thus increasing battery
lifetime.

5.3.1 Battery System

The energy storage device is a Sanyo DCB-102 Lithium-ion battery array (Sanyo was
purchased by Panasonic during the course of this research). A single Sanyo DCB-102 has
nominal energy storage capacity of 1.59 kwWh and minimum lifetime rating of 3000 cycles at
80% DoD. The DCB-102 has a maximum charging power of Ps™" = -340 W and a maximum
discharging power of Ps™® = 720 W. The capital cost of the battery array was assumed to be
$1000/kWh including installation costs. The number of charge cycles at 80% DoD over a
period of N timesteps was calculated from Equation 15

NCC =~ Z
2 n=1

where NCC is the number of charge cycles and Eg
array. To avoid overcharging or overdrawing of the battery array the model parameters Eg
and Es™ are set to 0.2Es°® and 0.99E,? respectively.

En 1
08Etotal !

Equation
15

©tl is the total energy capacity of the battery

min
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5.3.2 Solar and Load Data and Forecasts

One year (2009) of 15 min DC power output data
from one inverter of the EBU2 building rooftop PV
array on the University of California, San Diego
campus was used as the basis for P, and Py
(Figure 27a). The PV array has a DC nameplate
rating of 7.5 kW DC and the data was scaled to
approximate the output of a larger system with a
rating of P,°¢ """ = 500 kW DC; for 15 min averages
the relative variability of the output for a 500 kW or
7.5 kW are essentially identical [17]. The load data
were obtained from 2009 UCSD campus load
profiles (Figure 27b).

Real forecasts (e.g. from numerical weather
prediction) often produce large errors that are
weather and location dependent [18].To make our
results more generalizable and focus on the
performance of battery dispatch strategies, a PV
“forecast” was generated from the measured data.
The 15 min PV output was filtered using a 45 min
moving average window to generate the solar
forecast Ppr. During clear and overcast conditions P,
(the actual PV power output) and Py (the forecast
PV output) are very close since Py is smooth, but in
partly cloudy conditions P, fluctuates randomly about
<Pp>. Uncertainty in the load forecast was simulated
by incorporating random, normally distributed
fluctuations with a standard deviation of 5% of the
magnitude of the load in Figure 27b.

5.4. Results for Idealized Case Study

PV+ system performance was simulated for a wide
range of peak load reduction targets (P,*"9*' = 240-
1500 kW), battery storage capacities (Es®® = 240-
1270 kWh) and a PV array with a fixed nameplate

rating of P,°¢ "9 =
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Figure 27— Monthly climatologies (15 min
resolution) of a) the measured PV array DC

output normalized by the DC nameplate

rating; b) the total measured load

normalized by maximum annual demand
(33.8 MW in October). The peak load profile
is obtained by requiring that the maximum

monthly peak load is {P/"*}montiy - P
and the excess “peak load” is the input to
the optimization routine. Note that the peak

in the PV array output usually occurs
several hours earlier than the peak in the
customer load.

500 kW DC in order to evaluate model performance and quantify the

financial benefits that are realized when PV and load forecasts are applied to optimize the
charge/discharge schedule of the battery. In total 602 cases were simulated for one year.
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Figure 28— Sample timeseries of model output data on September o™ 2009 illustrating PV+ system
power flows (a,b,c), the battery charge state (d,e,f) and the net load on the electric grid (g,h,i). Figs.
a,d,g show model output when energy storage is dispatched according to the OFFON strategy, Figs.
b,e,h show model output for the RT strategy and Figs. c,f,i show model output for the OPT strategy.
Power flows in Figs. a,b,c are relative to the PV+ system so that P, > 0 indicates net generation by the
PV+ system and P, <0 indicates reverse power flow (i.e. the battery is charging from the grid). The fine
dashed horizontal lines in Figs. a,b,c, indicate the maximum charging and discharging power of the
battery array. The net load plotted in Figs. g,h,i is relative to the electric grid so that (P, —P,) >0
indicates power flow from the grid to the customer and vice versa. The dash-dotted vertical line in Figs.
g.,h,i indicate the range of the on-peak period as defined in Table 1. The PV+ system parameters for the
data shown in this figure are P,°“™"9 = 500 kW, E;®® = 1111 kWh and P,"*"**" = 1020 kW.
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Figure 28 shows exemplary time series of model output data from September 9™, 2009 for
P9t = 1020 kW and Es® = 1111 kWh. The columns in Figure 28 show PV+ system power
flows, battery charge state and net load on the electric grid for the OFFON, RT and OPT
dispatch schedules. Figure 28c,f,i illustrate superior performance of the optimized schedule
over the OFFON and RT dispatch schedules that do not use PV output and load forecasts. For
the given PV+ system parameters the battery undergoes one complete charge cycle per day
for all three dispatch schedules. Using the OFFON strategy, the energy stored in the battery is
dispatched concurrently with the peak load, but the output power of the battery is too low
during that time. Using the RT strategy the battery discharges too quickly leading to complete
discharge by the beginning of the on-peak rate period. With the OPT strategy the shape of the
battery discharge curve closely approximates the shape of the peak load, and the net load
during the on-peak rate period is relatively constant when compared with the off-peak/on-peak
and real-time strategies (Figure 28i).

Figure 28g,h,i show that the maximum net load on the electric grid during the on-peak rate
period (i.e. when higher demand charges are assessed by the utility) is smallest under the
optimized schedule. For the data shown in Figure 28 the optimization algorithm reduced the
maximum on-peak, net load by 26% (112 kW) when compared with the OFFON schedule, and
43% (237 kW) when compared with the RT schedule. The small peak near the end of the on-
peak rate period in Figure 28i is due to under-forecasting of the net load resulting from an
overestimation of the actual PV power output by the PV forecast and/or an underestimation of
the peak load by the load forecast. This leads to the battery becoming discharged just before
the end of the high load period.

5.4.1. Performance evaluation of the optimized dispatch schedule
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Figure 29 — Difference between the net present value (ANPV; Equation 14) of the OPT schedule and
(a) the OFFON schedule; (b) the RT schedule. The NPV difference for a broad range of battery
capacities (Es°™) and peak load reduction targets (P“°®) are shown. The PV array nameplate
rating was set to P,”° """ = 500 kW DC. The units of the color scale are $USD and the dashed
white line delineates the $0 contour.
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Results from 2009 model output were extrapolated over the lifetime of the battery (3000
charge cycles) to estimate the NPV of the battery array. Figure 29 shows the NPV gain of the
OPT dispatch schedule over the OFFON (Figure 29a) and RT (Figure 29b) dispatch schedules
for different battery capacities that were “tasked” with a broad range of peak load reduction
targets (P'*"®"). Total battery capacitg (E<®?) is plotted on the horizontal axis and the peak
load reduction target ratio (P9 P,°¢ "% is plotted on the vertical axis. Given that P,°¢ "
is 500 kW, P ranges from 250 kW to 1500 kW). The color scale is the increase in NPV
(ANPV) of the battery array in US dollars. Figure 29 shows that operating the battery on the
OPT dispatch schedule is more profitable than operating on the OFFON or RT schedules for
most battery sizes and peak load capacities modeled in this study. The OPT strategy provides
significantly more value than the OFFON strategy, especially in the range Es? > 500 kwh and
P r9ey p,P= i < 1 25 where the NPV of the battery increases in the range $150k-$450k (or
$220/kWh of capacity) under the OPT scenario. When compared with the RT dispatch
strategy, the OPT schedule increases the value of the battery array by about $100k - $400k (or
$270/kWh) for E<®® > 600 kWh and P9/ p,P¢ "9 > 1 5 (Figure 29b). In Figure 29a the
increase in NPV becomes independent of P/*%" for large values of P29 p,°¢ "9 phecause
the demand charge savings are ultimately limited by the total battery capacity regardless of the
dispatch schedule.

5.4.2. NPV of the battery array
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Figure 30— The NPV of the battery array operated on the optimized dispatch schedule assuming
an installed cost for storage of (a) $1000/kWh and (b) $200/kWh. The units of the color scale are
$USD and the dashed white line delineates the $0 contour.

Figure 30 illustrates the NPV of the battery array when operated under the optimized dispatch
strategy assuming different costs for the storage. Figure 30a shows the battery NPV assuming a
cost $1000/kWh, which is representative of the 2011 market price for large scale, Lithium-ion
battery arrays. At a price of $1000/kW all battery sizes have a negative NPV indicating that
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Lithium-ion type batteries are not a financially viable technology in demand side applications if
energy bill savings for the utility customer are the only value proposition considered in the
valuation of the storage array. The results of Figure 30a raise an interesting question: What is
the price at which Lithium-ion batteries become financially viable in demand side applications?
We estimated this price within our model framework by varying the capital costs in Equation
14. Figure 30b shows the NPV of the battery array at a cost of $200/kWh, the maximum price
at which the NPV > 0 for nearly all PV+ system designs modeled in this study. It is worth
noting that the NPV of the battery array became greater than zero for a limited range of PV+
system parameters at a price as high as $600/kwWh.

Figure 31 shows the maximum NPV in USD as a function of battery energy storage capacity
for three hypothetical storage costs $600/kWh, $400/kWh and $200/kWh. At an installed cost
of $600/kWh only the battery capacities less than 400 kWh are profitable over the lifetime of
the battery array and the marginal cost of storage is -123 $/kWh. At installed costs of
$400/kWh and $200/kWh all battery sizes are profitable and the marginal benefit of additional
storage is 70 — 270 $/kWh. In practice, when Es®® > E, (or P@%®' > sup{P}}) the slope of the
lines in Figure 31 becomes zero, because no additional demand charge savings can be
realized.
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Figure 31- The maximum NPV [$USD] as a function of battery energy storage capacity assuming
an installed cost for Lithium-ion batteries of a) $600/kWh, $400/kWh and $200/kWh. For example,
the data plotted as squares in this figure follow the maximum of the surface in Figure 30b. The
slope of the lines is the marginal cost of additional energy storage.

5.4.3. PV+ System Parameters at Maximum NPV

Figure 32a shows that the peak load reduction target ratio (P*9*'/P,°¢ ""%) and battery
capacity ratio (E<®®/<E;>; [11]) are linearly increasing functions of battery energy storage
capacity. P! is a relevant PV+ system parameter in the context of demand charge
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management because it is linearly related to the reduction in demand charges, however, in
practice E<'"?/<E;> is a more useful quantity for system design. Figure 32b shows the financial
value of the OPT dispatch schedule over the OFFON and RT dispatch schedules in terms of
the difference in the NPV of the battery array (ANPV) as a function of the battery capacity ratio.
ANPV in Figure 32b can also be interpreted as value of the PV power output and load
forecasts. Figure 32b shows that the value of the forecasts increases linearly with Es®@/<E;> in
the range $150k - $400k when compared to the ONOFF strategy. The trend in ANPV as a
function of Es®@/<E> is fairly weak for the OPT-RT data in Figure 32b, and is better
represented by the mean value of the data (<KANPV> = $51Kk) rather than a linear regression.
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Figure 32— a) PV+ system parameters as a function of the battery energy storage capacity (E<°™) and b) the value of the
optimized dispatch schedule (ANPV) as a function of battery capacity ratio (E<®/<E,>) along the maximum of the surface
in Figures 30a and b. <E,> is the average daily energy consumption during the peak period. The data in b correspond to
the maximum of the surface plotted in Figure 29.

5.4.4. Discussion

An important goal of this modeling effort was to demonstrate and quantify the value of applying
PV power output and load forecasts to inform energy dispatch optimization in PV+ systems.
The OFFON schedule maximizes price arbitrage in the time-of-use energy market, but its
success as a demand charge management strategy relies on a strong temporal correlation
between customer’s actual peak load and the peak load period defined by the utility (Table 5).
If the customer’s actual peak load occurs outside the peak load period defined in the utility rate
schedule the customer may incur high non-coincident demand charges. Because the peak
load is typically variable over the on-peak market period, constant output from the battery over
during the on-peak period market period is a robust yet suboptimal approach for demand
charge minimization (e.g. Figure 28a,d,g).

The effectiveness of the RT schedule primarily depends on whether the energy storage
capacity of the battery exceeds the daily energy requirement of the customer’s peak load
(<E;>). If the energy capacity of the battery is greater than the energy required to meet the
customer’s peak load, then energy stored in the battery can be dispatched in real-time and the
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entire peak load will be eliminated. If the battery capacity is less than the energy requirement
of the load, the energy stored in the battery will be depleted before the peak load event (Figure
28Db,e,h), and the customer incurs high demand charges. The optimization algorithm developed
in this paper improves on both the OFFON and RT strategies by using PV power output and
load forecasts to overcome the disadvantages of both approaches. The optimal scheduling
strategy targets demand charge management, because demand charges typically account for
the largest portion of a utility customer’s energy bill.

Figure 29 quantifies the financial advantages of using PV power output and load forecasts to
determine the optimal stored energy dispatch schedule in the PV+ system. We chose to
present results as absolute USD values rather than percent values because, for an NPV that
can be positive or negative, absolute USD values provide readers with a more tangible
quantity to interpret the relative value of different dispatch strategies. Figure 29a shows that
the largest financial gains from OPT strategy over the OFFON strategy occurred in the range
in the range Es®® > 500 kWh and P9 p,°€ 9 < 1 25 Those gains were attributed to
superior load following and reduced battery cycling characteristics of the optimized dispatch
schedule. In the range P@"%®/ p,°¢ ™" < 1 25 the battery array lasts 8.2 year under the
OFFON schedule compared to an approximately 10 — 16 year lifetime under the OPT
schedule. The OPT dispatch schedule significantly increases the value of the battery array
over the RT schedule for E<®® > 600 kWh and P29/ p,°¢ "9 > 1 5 These gains occur
because the optimization strategy uses forecast information to distribute the energy stored in
the battery over the duration of the peak load period, even when the energy capacity of the
peak load exceeds the energy capacity of the battery array (Figure 28 h,i). In the range P9/
P,°C "9 < 1 the performance of the OPT and RT dispatch strategies is similar because the
energy capacity of the battery is greater than the energy capacity of the peak load so the
amount of energy storage is sufficient to eliminate the peak load throughout the year, thus the
dispatch schedules for both strategies are similar.

Noise in Figure 29Figure 30 is due to errors in the simulated PV power output and load
forecasts relative to the actual PV output and load. Because forecasts are simulated using a
Monte Carlo technique, and a real-time dispatch strategy is used to respond to forecast errors
between forecast updates some random variability is expected across the range of simulations
modeled in this study. The implication of the PV+ system real-time response to forecast errors
is that, for erroneous forecasts that significantly and consistently under estimate the forecast
net load (P-P,), the OPT strategy reduces to the RT strategy as the forecast error becomes
large. The small peak in Figure 28i was found to be a common feature of the daily storage
dispatch schedules produced by the optimization routine that occurred when the actual net
load was underestimated by the forecasts. This finding is interesting because it suggests that
there is an incentive to overestimate the magnitude of the net load in the forecast to improve
performance of the battery. An alternative interpretation is that the financially optimal battery
capacity will change based on the nature of errors contained in the PV output and load
forecasts.

Generally the OPT schedule provides as much or greater value than the both the OFFON and
RT schedules (in terms of the NPV of the battery array), but the optimization algorithm is only
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superior if reliable, accurate solar and load forecasts are available. Due to the structure of the
demand charge tariffs, poor forecasts on only one day of the month could render the demand
charge reduction of the OPT strategy inferior to OFFON. When no forecasts (or unreliable
forecasts) are available, the PV+ operator must choose between the OFFON or RT schedule.
Our results are significant in that context because, a typical PV+ owner/operator needs to
purchase forecasts from a third party provider. The decision to purchase forecasts will depend
on the priority of the PV+ system owner/operator and trends observed in a plot similar to
Figure 29 and Figure 32b. Figure 29 illustrates that the most financially attractive energy
dispatch strategy for the PV+ system is a complex decision that depends on PV+ design
parameters, electrical and performance characteristics of the battery array and utility energy
prices.

Although the results of Figure 29 and Figure 32b are encouraging for the economics of solar
and load forecasting in demand side energy storage applications, Figure 30a indicates that at
current (2011) market prices, no dispatch strategy performs well enough to make large scale
Lithium-ion battery energy storage a financially viable option if monthly energy bill savings are
the only benefit associated with the operation of the energy storage. We employed our model
to estimate the price at which Lithium-ion energy storage would become financially viable for
the demand charge management application studied in this paper. Assuming a utility rate
schedule similar to the SDGE AL-TOU battery array owners can expect to break even over the
lifetime of the battery at an installed cost of $600/kWh for systems with batteries smaller than
400 kWh (Figure 31). Larger capacity batteries (up to 1.25 MW) generate profits in the range
$100k-200k (or $100-400 per kWh) at an installed cost of approximately $500-$400 per kWh
(Figure 31). This result is particularly relevant for the 2" life battery industry, which holds
promise for developing large scale Lithium-ion battery energy storage systems from used EV
batteries at a lower cost than new batteries. Perhaps the most interesting trend in Figure 30 is
that the PV+ system parameters which result in the most profitable design (in terms of the NPV
of the battery array) change significantly depending on the market price of the battery. At the
2011 price of $1000/kWh all battery sizes return negative profits over the battery lifetime so it
is logical that the most profitable battery size is the smallest size (Figure 30a). If the market
price for Lithium-ion batteries decreases sufficiently (Figure 30b) nearly all battery capacities
become profitable. In the price range of $200-$400 per kWh there is a marginal benefit
associated with increasing storage capacity (until demand charges are eliminated) so that
large capacity battery sizes have greater NPV than small capacity batteries, which is a
desirable property in the sense of economies of scale (Figure 31).

The similarity of the trends observed between the two variables plotted in Figure 32a suggests
that there is a strong correlation between the P9 and <E;>. This observation is an indication
that both P/9/p B¢ "0 and E*/<E> are consistent and robust PV+ system parameters.
The value of PV power output and load forecasts in demand side, energy bill management
applications for large scale, Lithium-ion batteries is $51,000 + $35,000 over the lifetime of the
battery array, where the error is represented by one standard deviation of the OPT-RT data in
Figure 32b.
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It is important for readers to realize that the results presented in this paper were based on site
specific PV power output data and load profiles, and the SDGE AL-TOU rate schedule (SDGE,
2011). Some variability in Figure 29 and Figure 30 is expected on site to site basis. It has been
noted that demand charges are typically higher in the state of California when compared to
other regions in the United States (T. Pietsch, Personal communication, 2011). It is highly
probable that a different rate schedule would produce different trends than those illustrated in
Figure 29 and Figure 30. However, all of these differences are not related to any of the
fundamental aspects of our model.

5.5. Field Testing and Validation of Demand Charge Management Algorithm

We considered a PV+ system consisting of a virtual 64 kW-rated PV array and a real 40 kWh
lithium-ion battery array with a 32 kWh maximum discharge capacity (i.e., 80% DoD)
connected to the utility electric grid. The PV array power output was taken from the 28.7
KWpc- and 24 kW c-rated solar array at UCSD’s East Campus Utility Plant (EC, 32.8803 Lat, -
117.2218 Lon). The array consists of Kyocera panels installed at 20° tilt and 180° azimuth
connected to SMA SB5000 and SB7000 inverters. The battery array specifications were
based on the second-life electric vehicle battery array installed at the Hopkins Parking
Structure (HPS) at UCSD. The array has a 40 kWh capacity, a £60 kW maximum
discharge/charge rate, and an aggregate one-way efficiency of 93% (AC to stored energy).
The maximum and minimum storage charges are set to 100 and 20% of total capacity (the
latter to avoid damaging deep cycles), giving a maximum DoD of 80%.

Real load and PV data were considered. 1 sec PV data from the EC solar array were
averaged to 1 min. Measured PV output was scaled to a nameplate rating of 64 kW to
simulate the output of a system that is more appropriately sized to meet the daytime peak load.
A meter of an office building adjacent to HPS was selected as the load which exhibits the
expected diurnal behavior. The histogram of the metered load is bimodal, with one mode
corresponding to the typical load during weekday working hours (typically 0700 to 1800 hours)
and the second to the base load of the building during “off-peak” hours. The behavior of net
load (i.e., load minus PV) is markedly different from that of the load. Once accounted for, PV
reduces the magnitude of the elevated daytime load, giving the net load histogram negative
skewness. The histogram of the net load is unimodal and the magnitude of the residual net
load spikes to be plateaued by the battery lay to the right of the single mode.
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Figure 33c, d) Histogram of load (red) and load minus PV (black) for the month of July (¢) and November (d).
The daily mean post-DCM peak demand is denoted with a dotted vertical line.

Daily minimization of non-coincident peak demand was sought to evaluate the robustness and
peak reduction capability of the dispatch algorithm. The goal of non-coincident DCM is to
shave the peak load, and relatively little energy is necessary to eliminate the loads constituting
the low frequency mode (greater than approximately 100 kW for both months (Fig. 4c,d).
Indeed, the average post-DCM peak demand on weekdays was 97.6 kW in July and 97.4 kW
in November (dotted vertical lines in Fig. 4c,d). On average, 184 kWh per weekday in July and
115 kWh per weekday in November were larger than the respective average post-DCM peak
demand on weekdays, which is much less than the combined PV generation and battery
capacity on most days.

The LP routine is run every hour beginning at midnight. The inputs to the midnight LP routine
are the day-ahead load and PV forecasts, the charge state of the battery at midnight, and the
physical constraints of the PV+ system. Subsequent LPs run each hour for the same midnight-
to-midnight time span replace forecasted data with measured data. The output is a day-
ahead, potentially multi-charge cycle dispatch schedule for the battery that minimizes non-
coincident metered load. At midnight, the dispatch schedule is used to set the initial peak
demand threshold, called the “target” or “load target”. The target is the minimum level to which
the forecasted load can be reduced for the day, given the charge state of the battery and the
load and PV forecasts. Given perfect load and PV forecasts, the algorithm guarantees this
optimal level of reduction; however, load and PV forecasts are inherently erroneous due to
variability in weather [8] and anthropogenic influence on the metered load.

Table 2 summarizes peak demand reduction against the baseline (i.e., against no DCM
mechanism) for weekdays in the simulation period; weekends are ignored because they do not
contain an elevated daytime load. Results are compared to a RT dispatch scheme, in which
net load exceeding a load target is shaved. The load target, which is set each day and, if the
battery does not fail, is constant during the day, is established using 14 day persistence, where
weekdays and weekends/holidays are considered separately; that is, for a given weekday, the
load target is set by: (i) generating a mean net load (load minus PV) profile using weekdays
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during the previous 14 days, and (ii) using the mean net load profile to calculate the maximum
demand reduction (i.e., minimum load target) possible. If running RT independently, factors of
safety would be used when setting the load target to prevent battery failure to a chosen
probability level; to facilitate comparison with the OPT scheme, factors of safety are added
such that the number of battery failures during each month are equal to that observed when
running the OPT scheme. This method of comparison produces a “best case” RT scheme
(i.e., the RT scheme with the best possible demand reduction statistics) for a permitted number
of battery failures.

Table 3 summarizes peak demand reduction against the baseline (i.e., against no DCM
mechanism) for weekdays in the simulation period for variations of the OPT scheme in which
error in the PV forecast at each timestep t has been reduced as in Pf,(t) = Pf(t) £ a*[Pf(t) —
P(t)], where Pf, is the forecast improved by the factor a, Pf(t) is the forecasted power, and P(t)
is the measured power; plus/minus is chosen depending on whether PV is over- or under-
forecasted. Factors of 0.25, 0.50, and 0.75 were used for a. The NAM forecast chosen for this
paper is freely and continuously available, but has been demonstrated to perform poorly; in
particular, it consistently struggles to predict the formation and dissipation of the marine stratus
layer present over Southern California during May to September, a primary cause of battery
failures in the July simulation. Many superior forecast products already exist and forecast
accuracy is expected to improve even more over the next few years due to market demand.
Because inaccurate forecasts (over-forecasted PV in particular) repress peak demand
reduction, it is prudent and justified to simulate DCM for PV forecasts with improved accuracy.

Table 4 summarizes battery discharge statistics for all variations of the OPT scheme.

Table 6 Summary of weekday peak demand reduction

July 2012 November 2012

Measure PV only PV+ @ RT ® PV only PV+? RT?

(%) (%) (%) (%) (%) (%)
Average 19.6 25.6 25.0 11.1 20.5 20.2
Standard 4.6 59 55 4.2 3.9 34
deviation
Maximum 26.5 32.6 29.9 18.3 27.4 25.1
Minimum 9.6 10.7° 7.9 5.7 13.6 13.2

 Percent reduction by both the PV array and battery array.

® The battery failed on the day for which the minimum reduction in peak demand by the PV+
system was observed. The minimum reduction in peak demand by the PV+ system for days
during which the battery did not fail was 21.8%. Thus it is clear that battery failure causes a
significant decrease in peak reduction potential.

63



Table 7 Summary of weekday peak demand reduction by PV+ with PV forecast improvement

July 2012 November 2012

Measure 25% 2 50% ? 75% ? 25% ? 50% ? 75% ?

(%) (%) (%) (%) (%) (%)
Average 25.7 25.6 25.7 20.3 19.7 19.9
g’taf‘df"“d 4.6 59 51 41 4.6 4.7

eviation

Maximum 26.5 33.3 32.4 27.9 28.0 28.1
Minimum 9.6 10.7 11.7 12.5 11.3 9.7

Table 8: Battery discharge statistics for all simulations

July 2012 November 2012
Measure Unit 0% 25% 50% 75% RT | 0% 25% 50% 75% RT
DoD, mean % 495 51.3 479 352 261|387 394 374 350 334
DoD, standard o' 517 190 196 154 208|212 201 19.9 18.9 26.6
deviation
NCC, mean —~ 127 128 127 113 084|107 1.08 1.04 0.99 1.00
NCC,
standard - 032 030 032 032 045|035 034 035 030 0.67
deviation
Change in
number of - +1 0 -3 0 ~ 41 +1 +1 0
battery failures
a

% Comparison of the net change in the number of battery failures between the simulation and the real
OPT scheme with no PV forecast improvement. The battery failed three times in July and zero times
in November when running the real OPT scheme. For example, four failures were observed in the
July simulation with 25% PV forecast improvement.

5.6. Field Testing of the BMW Mini-E Lithium Battery Pack

The BMW second life electric vehicle battery was installed and commissioned in December
2013. There are a total of four modes that the BMW system can operate in. They are DC
current, DC power, AC power, and frequency response. Figure 34 is a diagram representing
the system architecture and provides a communication map of the interaction between system
components during testing operation. The test plan includes basic system functionality testing,
such as discharging and charging at a variety of C-rates in both current and power modes.
Reference performance tests (RPTs) measure initial battery state of health and degradation
over time. The reference performance tests include pack-level and system-level C/6 constant
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DC current performance tests and a system-level only pulse characterization test. Also
included in the test plan are the EV charge control and solar PV firming algorithms. During the
course of each algorithm, regular periodic RPTs are conducted to measure battery degradation
under these grid applications. The RPTs are essential in evaluating battery performance and
stationary battery energy storage usability to mitigate peak loads from EV charging and make
PV generation more predictable.
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Figure 34: BMW System Architecture and Communications Map. Source: BMW and Electricore

5.6.1. Laboratory Testing of BMW Mini E Lithium lon Battery Pack

Initial laboratory testing to evaluate the performance of a Mini E Lithium lon battery pack was
conducted by AeroVironment at their Battery Test Lab located in Monrovia, CA. The battery
pack was sourced from BMW in Oxnard, CA, with engineering support from AC Propulsion and
EV Grid, manufacturer and designers of the Mini E battery pack. The battery pack was
directly removed from a BMW Mini E vehicle with approximately 25,000 road miles.

The purpose of the testing was to assess the battery pack’s performance and suitability for
potential use in second-life applications and stationary energy storage.
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Two tests were performed on the Mini E Lithium lon battery pack to characterize its state of
health and performance: a constant current performance test and a pulse power test were
conducted to measure the battery pack’s capacity and DC impedance, respectively.

The battery pack was also tested under a real-world stationary energy application test cycle,
specifically, a real-time market (RTM) 2-day power profile to study the battery pack’s potential
capability in participating in CAISO markets. The real-time power profile was developed by
consulting firm, KnGrid. The real-time market (RTM) power profiles for Day 1 and Day 2 are
shown in Figure 35a,b.

Mini E Battery Pack
RTM Power Profile Test
Day 2 - Power Profile

Mini E Battery Pack
RTM Power Profile Test
Day 1- Power Profile
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Figure 35a, b: RTM power profile for Days 1 and 2. Source: AeroVironment

Testing Results: Constant Current Performance Test

Results of the constant current performance test indicate that the Mini E Lithium lon battery
pack was at about 75% of its nominal nameplate capacity at the end of its automotive life
(25,000 Southern California road miles). The nameplate capacity is measured between a max
cell voltage of 4.2 VV and a minimum cell voltage of 3.0 V. For this test, the capacity of the pack
was measured from 4.0 to 3.3 V — per the OEM request. In this voltage range only about 80
percent of the pack energy is available. As a result, the estimated capacity loss due to the use
of the pack in automotive applications was measured at just 5 percent.

Table 9a Constant current performance test summary. Source: Aerovironment

103.35 Ah Nameplate C/s
C-rate used (A) 100
Discharge Rate (A) 20

Measured Capacity (Ah) 77.2
Energy (kWh) 26.7
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Recharge Energy (kWh) Chg1® | 1.194
Recharge Energy (kWh) Chg 2" | 26.606
Total Recharge Energy (kWh) 27.8
Energy Efficiency 96.0%

Max Min
BOD Temp °F (°C) 72.86 (22.7) | 69.08 (20.6)
EOD Temp °F (°C) 87.62(30.9) | 81.68(27.6)
BOC Temp °F (°C)* 71.6 (22.0) 68.36 (20.2)
EOC Temp °F (°C) 90.5(32.5) 86.76 (28.2)

Data presented in Figure 36-39 show the pack voltage, current and temperature as a function
of discharge (recharge) time. Also minimum and max cell voltages are presented. The spikes
in the graph are due to noisy measurements reported by the battery management system.

Mini E Battery Pack
C/5 Capacity Check - Discharge and Partial Recharge
Pack Voltage
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Figure 36: Pack voltage during the discharge and partial recharge portion of the C/5 capacity check

* Due to an AeroViroment requirement that this pack was not to be tested unattended, the recharge was stopped on a Friday afternoon
and resumed after a weekend break. Therefore, there was a 2.5-day rest period (weekend) during the recharge step of the C/5 test. The
BOC Temperature reading was taking after the 2.5 day rest period before the second recharge.
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Mini E Battery Pack
C/5 Capacity Check - Discharge and Partial Recharge
Max/Min Cell Voltages
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Figure 37: Max/min cell voltages during the discharge and partial recharge portion of C/5 capacity check

Mini E Battery Pack
C/5 Capacity Check - 30A Charge
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Figure 38: Pack voltage during the full recharge portion of the C/5 capacity check




Mini E Battery Pack
C/5 Capacity Check - 30A Charge
Max/Min Cell Voltages
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Figure 39: Max/min cell voltages during the full recharge portion of the C/5 capacity check

Testing Results: Pulse Power Test

Table 10: Pulse Power Test — Discharge Pulse Summary. Source: AeroVironment, Table 11,
and Figure 40 show the test results for the pulse power test. The discharge and charge pulses
were performed at different states of charge (SOC). Starting with a fully charged battery pack,
a 10 second 4-C (413.4 A) discharge pulse was performed. For each SOC step following that,
a 4-C (413.4 A) discharge pulse and a 3-C (310.1A) charge pulse were performed. When the
pack became fully discharged a 10 second 3-C (310.1A) charge pulse was done.

The Mini E battery pack was not able to deliver the requested 4C (413.4 A) and 3C (310.1 A)
current levels due to the current being limited by the pack voltage limits. Table 10: Pulse
Power Test — Discharge Pulse Summary. Source: AeroVironment and Table 11: Pulse Power
Test — Charge Pulse Summary. Source: AeroVironment. show the actual discharge and charge
current/power levels attained at each SOC step. Figure 40 shows the open circuit voltage
(OCV) and calculated DC discharge and charge impedance at each SOC step.

Table 10: Pulse Power Test — Discharge Pulse Summary. Source: AeroVironment

203:35A0 | 1y 0L ARGE PULSES

Nameplate

AH Requested Pulse Length | Pulse Stopped
Removed | Current (4-C | Actual (A)® | Power (kW) | (seconds) on

3 Current was limited by the ABC-170 hitting the lower pack voltage limit.

69



amps)

0
10.3
31
51.7
723
76.2

-413.4 -338.5 -107.2 1s Lower CV limit
-413.4 -243.0 -77.0 10S Time
-413.4 -171.5 -54.3 10S Time
-413.4 -144.4 -45.7 25 Lower CV limit
-413.4 -79.3 -25.1 25 Lower CV limit

Charge Pulse Only

Table 11: Pulse Power Test — Charge Pulse Summary. Source: AeroVironment.

103.35A0 | 1 \RGE PULSES
Nameplate

Requested
AH Current (3-C Pulse Length | Pulse Stopped
Removed | amps) Actual (A)* | Power (kW) | (seconds) on
) Discharge Pulse Only
10.3 310.1 81.2 31.2 3s Upper CV limit
31 310.1 161.1 61.8 <1s Upper CV limit
51.7 310.1 180.6 69.4 15 Upper CV limit
72.3 310.1 223.3 85.7 25 Upper CV limit
76.2 310.1 226.1 86.8 25 Upper CV limit

* Current was limited by the ABC-170 hitting the upper pack voltage limit.
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Figure 40: Open circuit voltage and DC Impedance versus Ah removed. Source: AeroVironment

Testing Results: Real Time Power Profile Test

The battery pack’s 100 percent SOC rating was based on the C/5 Capacity Check test results.
The 100 percent SOC capacity used for this test was 77.2 Ah. After fully charging the battery
pack, it was discharged to 20 percent SOC by removing 61.8 Ah. Day 1 started at 20 percent
SOC and Day 2 started at 24 percent SOC based on the power profile provide by KnGrid, so
there was a slight SOC adjustment needed between Day 1 and Day 2.

An SOC calculation was made by integrating the Ah in and out and using 77.2 Ah as the full
capacity divisor. The battery pack (VMS) also provided an estimated SOC based on the cell
voltage values.

The power profile used was intended to cycle the battery pack between 20 percent and 80
percent SOC. Table 12 shows the energy throughput and Figure 41 and Figure 42 show the
pack voltage, power, temperature and SOC (VMS estimated and integrated Ah), during the
power profiles. Charts were split into Day 1 and Day 2 data. The VMS estimated SOC is
labeled “batt_soc” and the software integrated SOC is labeled “ABCSOC” in the charts.

Table 12: RTM Power Profile — Energy Throughput and Efficiency. Source: AeroVironment

Discharge | Charge
(kWh Out) | (kWh In)
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Initial Discharge 21.6

SOC Adjustment Charge 0.2
(Between Days)
Cycling Discharge 43.2

(Cumulative)
Cycling Charge 43.7
(Cumulative)
Re-Charge 22.1

(Post-cycling to 100% SOCQ)

Total 64.8 66.0

Energy Efficiency 98.2%
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Figure 41 Left: Pack Voltage and Power. Right: SOC and Temperature during RTM Day 1. Source: AeroVironment
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Figure 42 Left: Pack Voltage and Power. Right: SOC and Temperature during RTM Day 2. Source: AeroVironment

Table 13 Summary of Energy Throughput and Round Trip Efficiency. Source: AeroVironment

kWh Out kWh In
(Dchq) (Chq)

Initial Discharge to 20%
SOC 21.6
Day 1 24.4 26.04
SOC Adjust 2.1
Day 2 18.8 17.6
Recharge to 100% SOC 22.1
Totals 64.8 67.8
Efficiency 95.6%

5.6.2. Discussion of Battery Test Results

The battery pack’s C/5 capacity was 77.2 Ah. This results in a 25 percent capacity loss from
the nameplate capacity of 103.35 Ah. Some of the capacity loss may be due to the fact that the
cells are not discharged in their full nominal voltage range, due to limits set on the test
equipment. There was a 46.4°F (8°C) temperature rise over the course of the discharge. Due
to an AeroVironment test requirement for this battery pack that did not allow unattended
testing, the battery was re-charged three days later and had time to cool back to room
temperature. The pack showed a 50°F (10°C) temperature rise during the 30A constant
current-constant voltage charge. The pack also stayed well balanced and had a Max/Min delta
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cell voltage of 29 mV at the conclusion of this capacity test. The pack also showed an energy
efficiency of 96 percent.

During the pulse power test, the discharge and charge power levels the test plan requested
were not achieved. Instead, the battery pack hit the minimum pack voltage limit during the
discharge pulses and the maximum pack voltage limit during the charge pulses. In each case
the current was tapered to hold the pack voltage at each limit. The discharge pulses were
stopped on time (10 seconds) or stopped when the minimum cell voltage reached the lower
cell voltage limit. At the 10 percent and 30 percent DOD test points, the pack was able to
complete a full 10 second discharge pulse, although at a limited current.

All the charge pulses were stopped due to the maximum cell voltage reaching the upper cell
voltage limit. The longest charge pulse lasted for 3 seconds.

A Real Time Market (RTM) Power profile test was also performed. The power profile was
generated by KnGrid and scaled to run on the Mini E battery pack. The profile was scaled
based on the results of the C/5 capacity test. The power profile was intended to run between
20 percent and 80 percent SOC based on the available derated capacity. The maximum
discharge power was scaled to be 5.46 kW for this test. The charge power, according to the
power profile was 85 percent of the discharge power, 4.641 kW. Prior to running the power
profile the pack needed to be discharge to 20 percent SOC, per the derated capacity. This
discharge caused the pack to reach 93.2°F (34°C) prior to running the power profile. After the
one hour rest period following the charge the pack cooled and the power profiles were started
with the maximum temperature at 91.4°F (33°C). The power profile caused very little heating
effects on the battery. Half way through Day 2 the battery pack was able to cool back down to
room temperature. A VMS, supplied by BMW, was used to retrieve the Max/Min/Avg cell
voltages and temperatures. It also reported an SOC based on the cell voltage readings. During
this test the VMS reported SOC was always higher than the Ah integrated SOC the test
software reported. This was due to the VMS not accounting for the battery pack’s capacity
loss, whereas the test software used the derated capacity to calculate the SOC percentage.

The Mini E battery pack seemed well suited for some RTM applications based on the power
profile tests. Based on the capacity test, the battery pack would also be ideal for demand
applications if the power requirement was 5 kW or less and there was 5 hours allotted to
recharge the battery pack.

5.6.3. Development of Control Algorithms
EV Charge Control / Demand Charge Management

Two important stationary applications that battery energy storage can provide to a commercial
customer or the utility grid include EV charge control for Demand Charge Management and
solar PV firming. With EV charge control, the battery energy storage system benefits the
commercial customer by reducing the peak demand coming from charging an electric vehicle.
With solar PV firming, the battery energy storage resource is used to provide a firm block of
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power to a utility customer. In this way, the utility is provided with predictable power over a
predetermined period of time.

For development of the EV charge control algorithm, BMW chose to work with the California
Center for Sustainable Energy. The California Center for Sustainable has been working with
UC San Diego researchers and graduate students to develop an operational demand charge
management algorithm. The operational algorithm has been tested in real-time on two battery
packs located at the Hopkins Battery Test Facility. The two packs that have been tested are an
A123 lithium iron phosphate ack (57 Ah nameplate) and an EnerDel manganese oxide pack
(72 Ah nameplate). In the current demand charge management algorithm, one of the inputs is
a building load from a meter at the UC San Diego microgrid. An EV charge control algorithm
works in a similar fashion, with the building load replaced with the electric vehicle charging
load.

The electric vehicle charging station co-located to the BMW Battery Container is separately
metered and data from this meter is sent into the campus data warehouse, PI. The demand
charge management algorithm tested and operated at the Hopkins Battery Test Facility, on two
different battery packs, will utilize the charging station meter demand input and dispatch the
BMW battery packs in a similar fashion to the A123 and EnerDel Packs.

Solar PV Firming

The solar PV firming algorithm was developed and tested on the A123 Battery Packs at the
Hopkins Battery Test Facility. The solar PV firming algorithm was implemented in the software
programming code Python and run through the Power Analytics software platform Paladin. The
algorithm is programmed to begin at 1:30 pm, just as the typical PV load is peaking. The PV
generation profile used in this algorithm is from a UC San Diego PV array located on its East
Campus. The PV array generally has a daily peak load between 22 and 25 kW. The algorithm
is programmed to respond to the fluctuating PV output and to provide the grid with a constant
17.5 kW. Therefore, the battery is required to discharge when the PV array drops below 17.5
kW and to charge when the PV array rises above 17.5 kW by the difference in PV load from
17.5 kw. At 1:30 pm, the battery typically begins charging, but as the day elapses, the battery
discharge as PV production ramps down. The algorithm is programmed to terminate when the
battery’s minimum cell voltage is 2.6 V (0.1 V above the minimum cell voltage limit).
Successful implementation of the solar PV firming algorithm is confirmed in Figure 43.
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Figure 43: East campus solar PV array output without (top) and with (bottom) firming.

5.7 BMW Energy Storage Project Status as of March 31, 2014
All communication systems have been verified including, BMW Battery Management Systems,

Super Battery Management System (SBMS), Site Controller and Princeton Power Systems
(PPS) inverter. Functional testing of the BMS to Super BMS and to the site controller has
been completed by EVGrid and UCSD. The functional testing of the inverter and

communications to the site controller needs to be completed in April 2014 by Princeton Power
Systems, the manufacturer of the 100 kW power inverter. Demonstration of the battery ground

fault detection and protection function remains to be tested, as of March 31, 2014, by

Princeton Power Systems as part of the inverter functional testing, and is required prior to full

power operation.
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Once the functional testing is completed in April 2014, the startup sequence will begin which
will include full power charge and discharge of the energy storage system, followed by direct
EV charging from a Blink Ecotality Level Il charging station via the BMW energy storage
system. This will complete all system commissioning and open the way for executing the test
plan. The test plan includes the Reference Performance Test (RPT), Demand Charge
Management (DCM), and Regulation Energy Management (REM). UCSD, BMW, EVGrid,
Princeton Power and CCSE will prepare an addendum to the DOE Final Report and post it to
the DOE High PV Penetration web portal.

5.8. Conclusions of field testing of demand charge management algorithms

UCSD developed a linear programming routine to optimize the energy storage dispatch
schedule for a grid-connected, combined photovoltaic-battery storage system (PV+ system).
The optimization strategy targets demand charge management through a targeted peak load
reduction, and leverages PV power output and load forecasts to determine the best trajectory
for the battery storage output power in order to minimize demand charges. We simulated a
broad range of PV+ system designs and performed a cost analysis to compare the financial
benefits of our optimized energy storage dispatch schedule with basic off-peak/on-peak
charging/discharging and real-time dispatch strategies. The performance and value of the
optimization method were quantified in terms of energy bill savings attainable over the lifetime
of the battery array. The net present value (NPV) of the battery array increased significantly (in
the range $100k - $450k — or $220/kWh to $270/kWh — for some PV+ configurations) when
energy storage was dispatched on the optimized schedule over the simple dispatch schedules
that did not use forecast information. Lithium-ion batteries are not a financially viable storage
technology in demand side, energy bill management applications at current (2011) market
prices. The estimated Lithium-ion batteries become profitable at an installed cost of about
$450/kWh, which is about 45% of 2011 market prices. The value of PV power output and load
forecasts for the application studied in this paper is $51,000 + $35,000. This study underscores
the need to develop tools and techniques for quantitative modeling and analysis to improve
estimates of the economic value of energy storage and forecasting for both utility and demand
side applications. The method is considered to be a simple yet feasible approach to that end,
which is useful for energy storage manufacturers, financiers and other industry professionals
seeking to quantify the value of their product and forecast investment returns.

Field testing showed that the PV+ system programmed with the operationally functional
dispatch scheme is successful as a non-coincident DCM mechanism given the nature of the
load and the sizing of the PV+ system. Disregarding weekends and holidays (omission made
throughout analysis), which do not contain a conspicuous daytime load spike (and hence
contain little or no load to be shaved), the PV+ system reduced the demand charge on every
day in the simulation. The daily measured load profile is similar during a given month, as is the
daily clear sky PV profile, so the potential for consistent peak demand reduction is high.
Indeed, the algorithm achieves a relatively consistent daily reduction in peak demand (25.6%
average and 5.9% standard deviation for July, 20.5% average and 3.9% standard deviation in
November); the standard deviation decreases to 3.4% in July when days during which the
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battery failed are omitted. Variation in daily reduction is caused primarily by differences in PV
generation and forecast accuracy, which drive long-term discharge (i.e., over a day); the
guantity and timing of quasi-random load and PV fluctuations (e.g., untimely load spikes that
stress the PV+ system when the battery capacity is low, or pre-sunrise load spikes that add
undesired conservatism), which drive short-term battery discharge (i.e., over a 15 min interval);
and the relative timing of the onset of PV and the elevated daytime load, which determines
how much load can be shaved by PV alone.
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6. Field Testing and Validation of Power Flow Models

6.1. Executive Summary

One of the significant objectives of the High Penetration solar research is to help the DOE
understand, anticipate, and minimize grid operation impacts as more solar resources are
added to the electric power system. This report presents detailed models developed to model,
interconnect and ultimately operate a PhotoVoltaic (PV) power plant as anticipated in the DOE
SunShot initiative. Power models are used in power system analysis software packages to
assess the impact of the integration of PV systems into power systems. The models presented
here are developed in Paladin DesignBase software but frequently begin in a different
modeling application and are then converted to Paladin DesignBase. To make the models
available to a wider engineering community, several conversion routines were developed (e.g.
conversion to OpenDSS, Matlab®/Simulink® etc.), discussed, and reviewed in this paper. The
approach and capabilities developed through the combined research, including the power
modeling, forecasting, ramp control and energy storage (battery charging/discharging) have
already been used in several commercial projects for island communities in Puerto Rico, which
is widely considered the most stringent and difficult application for PhotoVoltaic integration,
control and operation. This work was also largely presented in the Webinar provided by Power
Analytics and attended by over 120 individuals on March 27, 2013.
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6.2. PV Plant Power Flow Model

An appropriate steady-state model for PhotoVoltaic is implemented in the DesignBase
Advanced Power Flow software. The model is based on steady-state behavior of a PV plant
with sophisticated control strategy:

1.
2.

3.

A photovoltaic power plant modeled as a generator in steady-state analysis.

The aggregated MVA of the plant which must be specified as the sum of individual
inverter MVA ratings. (The active power dispatch is between 0 and the aggregate MVA.)
The default operating mode of the inverter is unity power factor (Qmax = Qmin = 0).
Some inverters operate with £ 0.95 power factor. Only 95% of the inverter current is
available for kW dispatch. The difference remains for reactive power control. Qmax and
Qmin should be provided and Q should remain within the limits.

If the inverter controls the voltage of a given bus, then the PV generator will operate in
P-V mode, and the controlled bus should be specified.

PV Output Power depends on irradiance. Therefore, the PV Active Power Output
depends on time. Variation of sun irradiance has to be considered as input power.

The following figures show the PV model load flow tab in both constant P-Q and constant P-V
modes.

Type of PV eneration Characteristic
, PaBus {* Generator
" Swing Bus
f‘” + PV Bus Schedule |
[Initz — Generation
. KW kovar Lirnits
/ * r‘1-|irllr M'u"ﬂr PG 13':":”:":”: l‘-'\l'l."'."I l'-.-'I Fll_,l |:|95|:| Mm
* GG 0.00000 lksar W pu 1.050 Max

Per Unit

Load Connected to Bus
FL 0.00000 ki

oL 0.00000 kwar [ Constant Impedance

Figure 44 - PV plant model as constant P-Q bus
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Figure 45 - PV plant model as constant P-V bus

Typically, special consideration is given to variable irradiance data. Multiple power system
studies are performed to evaluate the impact of volatile irradiance on PV plant ramp rates,
frequency support, etc. One of the ways to study this phenomenon is to perform consecutive
power flow studies by feeding the variable irradiance input to the system.

An example of doing this using Paladin Research Lab is presented next. The Paladin
Research Lab interface enables writing the data to the DesignBase database, running the
analysis and reading the results, all by using the custom tailored code in various software
platforms. Multiple software tools can be used to programmatically interface with the
DesignBase models. This example illustrates the use of MATLAB. The code presented next
reads the variable irradiance data (recorded in 5-second interval), applies a ramping algorithm
to maintain the ramp below the allowable level, and charges the battery where there is excess
of sun energy or discharges the battery where there is not enough sun energy.

81



2/12/14 1:42 PM C:\Program Files\MATLAB\R2012a\bin\PVCase2.m Page |

I % function [Start,Obj,Text] = CasePV
2 clear

3cle

4 ckl=clock;

5 T=load('IRR.mat');

6 % case 1
7 clrr=T.covercast20121113;

8 Irr=T.overcast20121113;

9

10 % Instantiate the Model Object

11 model = actxserver('PA.ResearchLab.Model");

12 fprintf("\n ------ Creating Research-Lab Interface....\n");
13

14 % Open the MDB file, You need to set this path for MATLAB use

15 model.Open('C:\DesignBase5\Projects\PUERTORICO\PUERTORICO.MDB");

16

17 fprintf(\n connecting to DesignBase succesfully....\n');
18 %  fprintf(" Time(Hour) System Loss(kW)  Bus PCC Voltage(V)')

19

20 k=0; % counter

21 TotalPVGen=0; %PV MWh varaible

22 TotalPREPAGen=0; %PREPA MWh variable

23 TotalLoss=0; %System Loss Variable kWh

24 TotalBatteryPow=0; % Total Battery Power MWh

25 TotalBatteryLD=0; %Total Battery Power LDF Results MWh
26

27 % Sampling Information

28 samplingrate=5; %PV data sampling rate (=5 sec)

29 step=100; % down-sampling rate == step*sampling rate(=5 sec)
30 Nsample=24*60*60/samplingrate; % Number of total samples
31 nsample=Nsample/step; % Number of down-sampled data

32

33 % Battery

34 Nbatt=6; % Number of Battery Banks

35 SOCnom=Nbatt*1120; % Nominal SOC [kWh]

36 SOCmax=1*S0Cnom; % Maximum SOC [kWh]

37 SOCmin=0.7#SOCnom; % Minimum SOC [kWh]

38

39 SOC(1)=Nbatt*0.9%1120; % Primary State of the Charge of the Battery [KWh] (SOCmin< SOC< SOCmax)
40

41 % Set some values

42 for r = 4320:step: 13680

43 k=k+1;

45 Powerlrr(k)= Irr(r); % MW
46 Batt(k)= (cIrr(r)-Irr(r)); % MW: + Discharge - Charging

48 BattP(k)=min((max (Batt(k),-Nbatt*0.6)),Nbatt*1.1); % Battery Power Limitation [kW] + Discharge - Charging

50 BKWh(k)=SOC(k)-BattP(k)*(samplingrate*step/3600);

51 if BKWh(k) > SOCmax

52 BattP(k)=min((max ((SOCmax-SOC(k))/(samplingrate*step/3600),-Nbatt*0.6)),Nbatt*1.1);
53 end

54 if BKWh(k) < SOCmin

55 BattP(k)=min((max ((SOC(k)-SOCmin)/(samplingrate*step/3600),-Nbatt*0.6)),Nbatt*1.1);
56 end

57 SOC(k+1)= SOC(k)-BattP(k)*(samplingrate*step/3600);

58

59 model.SetBusPropertyValue('BAT-1:P', BattP(k)*1000/Nbatt);
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2/12/14 1:42 PM C:\Program Files\MATLAB\R2012a\bin\PVCase2.m Page 2

60

61 model.SetBusPropertyValue('PV-1:P', Irr(r)*1000/36):
62

63 9% Run an analysis (r)

64 model.PerformAnalysis(1);

65

66 % get some results

67 SystemLoss(k)=model.GetModelPropertyValue('T.ossKW'):

68 VoltageBusPCC(k)=model.GetModelPropertyValue('PCC:Volts')/115000;

69 PREPAP(k)=model.GetBranchPropertyValue('872:7')/1000;

70 PVP(k)= model.GetBranchPropertyValue('CB-PCC:7')/(-1000);

71 BATP(k)= (model.GetBranchPropertyValue('FD-BAT-| :7‘)+m0del.GetBranchPropertyVaIue(’FD-B.»\T-Z:'/')+model.l/
GetBranchPropertyValue('FD-BAT-3:7")+model.GetBranchPropertyValue('FD-BAT-4:7")+model.GetBranchPropertyValue('FD-BAT- v
5:7"y+model.GetBranchProperty Value('FD-BAT-6:7"))/(-1000);

72

73 Hour(k)=r/12/60:

74 fprintf("\n ==> Time=%2.3f Hour', Hour(k));

75 fprintf('----- PREPA Power= %3.3f MW----- PV Power=%3.3f MW----- Battery Power=%3.3f KW----- BATTERY S(’)(':‘.i,‘x,’sl’l/
MWh------ System Loss=%3.3f kW ----- PCC Voltage= %2.3f pu\n', PREPAP(k), PVP(k), BattP(k), SOC(k+1)/1000, SystemLoss(k).
VoltageBusPCC(k)):

76

77 TotalPVGen=TotalPVGen+(PVP(k)*samplingrate*step/3600);

78 TotalPREPAGen=TotalPREPAGen+(PREPAP(k)*samplingrate*step/3600);

79 TotalBatteryPow=TotalBatteryPow+(BattP(k)*samplingrate*step/3600);

80 TotalBatteryLD=TotalBatteryLD+(BATP(k)*samplingrate*step/3600):

81 TotalLoss=TotalLoss+(SystemLoss(k)*samplingrate*step/3600);

82 end

L T 515 1111 (I \n');

84  fprintf(\n Total PV Generation during Hour=%2.2f and Hour=%2.2f is ==>%3.3f MWh \n',Hour(1), Hour(k),TotalPVGen);

85 fprintf(\n Total PREPA Generation during Hour=%2.2f and Hour=%2.2f is ==>%3.3f MWh\n',Hour(1), Hour(k),
TotalPREPAGen);

86 fprintf(\n Total BATTERY Power during Hour=%2.2f and Hour=%2.2f is ==>%3.3f MWh\n',Hour(1), Hour(k), v
TotalBatteryPow);

87 fprintf(\n Total System Loss during Hour=%2.2f and Hour=%2.2f is ==>%3.3f KWh \n',Hour(1), Hour(k),TotalLoss);

88  fprintf(\n End \n');

89  hold all

90 subplot(2,2,1), plot (Hour, PVP,'r');hold on; title('PV Plant PCC Output Power');xlabel('Time [Hour]'); ylabel('Active Power ¥’

[MWT);
91 subplot(2,2.1), plot(Hour,Powerlrr,'b');
92 subplot(2,2,2), plot(Hour,SystemLoss/1000,''):title('PV Plant Loss"):xlabel('Time [Hour]'); ylabel('Active Power [KW]');

93 subplot(2,2,3), plot(Hour,BattP,'b"); hold on; title(BATTERY Power Output (+:Discharge & -:Charge)');xlabel('Time |Hour|'):l/
ylabel('Active Power [MWT');

94 %subplot(2,2.3), plot(Hour,BATP,'r'); hold on;

95 subplot(2,2,3), plot(Hour,Batt,'r'); hold on;

96 subplot(2,2.4), plot (Hour, SOC(1:k)/1000, 'd"); title(BATTERY State of Charge');xlabel('Time [Hour]'); ylabcl(‘Encrgyl/

[MWH]);
97  model.Close();
98

Figure 46 — Sample Code

Figure 35 is generated as one of the outcomes of the above code. It shows only one slice of
the analyzed day, including volatile irradiance ramps, curtailed PCC power, and battery
charging and discharging and its state of charge.
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6.3. PV Plant Transient Stability (Time Domain) Model

A generic PV/Inverter dynamic model has been implemented as a user-defined model in
DesignBase’s Advanced Transient Stability Program.

For most transient stability studies, the response of the plant to grid disturbances (faults) is of
most interest. For these studies, the model should calculate the initial solar radiation based on
the plant’s active power output in the power flow solution. This radiation can be kept constant
throughout the transient simulation time. The output power of the inverter and radiation result
in a DC voltage that is a predictable function of the PV characteristics with virtually no
dynamics. The DC voltage error is processed through a proportional-integral regulator whose
output is the inverter direct axis current that results in active power production. Additional
control for voltage regulation is also supported in this model.

The model also supports under/over-voltage protection in addition to under/over-frequency
protection. Three levels of under-voltage tripping and one level of over and under-frequency
tripping are included in the generic PV/inverter model. Each of these trip functions has an
independent associated time delay.

The control block diagram of the ‘Generic Photovoltaic/Inverter Model’ is shown in next page.
The following parts can be identified from this model:

Photovoltaic array models considering the Lorenz equation

Active and Reactive power controls

Under-Voltage Protection

Over/Under-frequency protection

Irradiance input control
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Figure 48 - Generic PV/Inverter Model
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6.3.1. Description of Functional Block within the PV Plant Transient Stability
Model

A simplified presentation of the PV/inverter dynamic model is shown in Figure 5 and
consists of a PV array model, Maximum Power Point Tracking system, voltage and
active power controllers, and an inverter.

The irradiance model includes inputs for solar irradiance and active power output. The
DC voltage is the only output. The DC capacitor is also included. The DC voltage
output of the PV array is then fed into the MPPT model to calculate the optimum DC
Voltage reference.

For most transient stability studies, the response of the plant to grid disturbances
(short circuits) is of most interest. For these studies, the model should calculate the
initial solar radiation based on the plant’'s active power output in the power flow
solution. This radiation should be kept constant throughout the transient simulation
time. The output power of the inverter and radiation results in a DC voltage that is a
predictable function of the PV characteristics with virtually no dynamics. The DC
voltage error is processed through a proportional-integral regulator whose output is
the inverter direct axis current |, that results in active power production.
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Figure 49 - PV/Inverter Model — Simplified Block Diagram
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Irradiance Model:

The PV current, Ipy, is a function of the array output voltage Vpy (V-I characteristic of
the array) which is calculated by:

log—2)
1-V, IR (VDC _VVR )
loy =P x1lg|1-€ 77" Equation 16

Where:
lir: Ratio of PV short circuit to peak power output current (Isc/Imp)
Vyr: Ratio of PV open circuit voltage to peak power output voltage (Voc/Vmp)
Vpc: DC Voltage
Po: Ratio of PV active power to Base Power (Inverter Rating)
lpv: PV output current

The following model presents the block diagram implemented this equation. In
addition, the simulation results for injected Vpc signal output PV current are shown. In
t=1 sec a disturbance (three phase bolted SC at PV terminal with At=0.1 sec) in the
network causes a DC voltage rise momentarily and the PV current follows this
disturbance according to its I-V curve.

ONE

L
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Figure 50 - PV Cell |-V characteristic implemented in DesignBase Transient Program
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Figure 52 - PV cell I-V characteristic output Ipytransient signal during the network disturbance at
t=1 sec

6.3.2. Transient simulation utilizing developed models

Several simulations in this section are used to illustrate the behavior of the model and
the types of problems in which this model can be utilized.

Protection Simulation

This simulation demonstrates under-frequency protection. The frequency at PCC is
decreased at t = 10 sec. As the system is working at the maximum power point, the
inverter is not able to increase MW production in an attempt to regulate the frequency.
Att=11.9 sec PCC frequency goes below 57 Hz and at t = 12.7 sec the trip signal
takes out PV system.
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Voltage Regulation Simulation

Demonstration of voltage regulation capability is shown next. During the under-voltage
conditions, the inverter supports voltage by injecting additional reactive power.
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Figure 55 - PCC voltage during a fault
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Figure 56 - Frequency support

Irradiance Variation Simulation

The figure below shows the impact of the variable sun irradiance on the power
production of the PV plant; data for this sun irradiance variation is recorded at UCSD
(real weather data). The data includes a fast transient from maximum power to 40% of
the maximum power within 5 seconds and several subsequent power swings.
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Figure 57 - Irradiance variability
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6.4. Battery/Converter Generic Model

A generic model of a Lithium-lon battery is included. The model can be easily adapted
to any other battery technology depending on the final choice of the manufacturer. In
addition the battery range of operation planned for the PV plant should be far from the
maximum charge and total discharge where battery technology plays an important
role. In other words, the model used here can represent different battery technologies
for range of our application. Based on various manufacturers’ data the following
battery parameters are used in the simulation. The battery bank consists of groups
wired both as series and parallel lithium-ion cells. The cell data are utilized to derive
the total storage battery parameters for transient study. For instance, the assumed
battery parameters based on the considered battery model for our study are
presented in following table.

Table 14. Assumed Battery Parameters

No. Parameter Value Unit

1 Rated Capacity @ time 30 min, 1 Hour, 800 Ah @ 30 min
etc.

2 Maximum Capacity (MWh) 0.56 MWh @ 30

min

3 Maximum Discharge Power (MW) 1.1 MW

4 Maximum Discharge Current (A) 1900 A

5 Nominal Charge Power (MW) 0.6 MW

6 Max. Short duration Charge Power (MW) 1 MW

7 Nominal Voltage (V) 700 V

8 Maximum Recharge Voltage (V) [Fully 812 \%
Charged Voltage]

9 Open Circuit Voltage (V) [No-Load Voltage] 696 V

10 Discharge Termination Voltage (V) 609 V

11 Internal Resistance (Q) 0.001 Q

12 Battery response time (sec) * 30 Sec

13 Exponential Capacity Qex, (MWh or Ah) * 240 Ah

14 Exponential Voltage (V) ° 657.7 V

1: The response time of the battery. This is the time at which the change in battery
voltage is 95% of its total charge due to a change in discharge current. It value
represents the voltage dynamics for a current step change.

2: The state of charge or the energy storage at the end of the exponential period .Qexp
should be less than Qnom.

3: The battery voltage at the end of the exponential period. This voltage should be in
between Viom and V.

Exponential Zone of Discharge Curve: The exponential voltage (Vex) and the
exponential capacity (Qexp) corresponding to the end of the exponential zone. The
voltage should be between V,on and Vi The capacity should be between 0 and

Qnom-
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The lithium-lon battery model is implemented in DesignBase software as shown in
Figure 26, and is based on the battery dynamic behavior during the
charging/discharging modes and system power request. This model receives the
battery DC current as an input and calculates the battery DC voltage. This model is
capable of tracking the state of the charge (SOC) of the battery during the simulation
time and in addition provides appropriate transient behavior of battery voltage during
charge and discharge modes by modeling the charge/discharge voltage curves versus
the energy usage. This feature is not included in steady-state battery models (as the
one depicted in Section 2) and therefore this will result in more precise simulation of
battery behavior during the system dynamics rather than the load flow study.

In order to demonstrate the model performance in transient analysis, a simple case is
run for switching between discharging to recharging modes by injecting the DC current
step change according to Figure 29. This figure shows that the DC current in battery
dynamic model is changed, for instance from 1378 A in discharging mode to 820 in
charging mode at t=50 sec. The transient simulation results in the battery voltage
changes in Figure 30. As shown in this picture the voltage starts to decrease during
discharge (746.7 V to 738 V) and then starts to increase during the recharging (738 V
to 750 V). The voltage changes are based on the charge/discharge curve versus the
lost energy in the battery.

Accordingly, the state of the charge of the battery is calculated during simulation time
and is shown in Figure 31. As is depicted in this figure, the state of the charge (SOC)
starts to decrease from an assumed 100% to 97.51% in the discharging period and
then starts to increase during the charging mode. Finally, the battery DC power output
is shown in Figure 32. The positive power represents the power injected to the AC
side (utility) and the negative sign is used to represent the power injected into the
battery.

The battery dynamic model is also integrated with a converter model which maintains
the output power in a desired value. As an application, the battery storage system is
utilized to decrease power ramp ratings of the PV plant output power generation.
Therefore, an appropriate power request signal is modeled as an input for the power
controller of the AC/DC converter. The converter AC voltage is measured from the AC
terminal to calculate AC current. This current in turn is converted to DC side current,
using a converter AC current exchange to DC current equation. Then, the battery
dynamic model results of the DC voltage are used to calculate DC side power as well.
Consequently, the AC power is achieved by converting DC side power considering the
converter efficiency. Finally, this power is injected by the Battery Model to the utility.
The left side of the Figure 28 shows this control block implementation on the Lithium-
lon Battery/Converter Model.
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Lithium-lon Battery Dynamic Model
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Figure 62 - Battery DC Power Output

6.5. Conversion of DesignBase Models into Other File Formats

BATTPV
100.00 —{ |+ —
AN soc
N
99.50 N
99.00 .
N
8} - )
o) ~
2} ~
S0l
.
\\
.
98.00 e e e et
~ |
N
97.50
I T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Time in Seconds(PV-G Bus: BAT-1)
Figure 61 - Battery State of the Charge
BATTPV
= PDC
1000000 \
800000 | \
600000 \
400000
o \
2 200000 \
3 \
200000 | \
400000 | \
600000 |
T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100
Time in Seconds(PV-G Bus: BAT-1)

96



There are multiple ways to transfer DesignBase models into different file formats and use the
data in different software packages. In general, most available power system software
packages have load flow modules and the load flow simulation presented here is possible in
most packages. One exception is the interface with MATLAB through the Paladin
ResearchLab module, which is not available in most commercial or off the shelf software
applications.

The power flow data exchange is also possible via the IEEE common data format which has
been a standard industry practice for decades. DesignBase can save the network data in IEEE
common data format and other software applications can be used to import the data (if an
import routine is available) or alternatively a network can be recreated based on the IEEE
common data. In addition to this functionality, Power Analytics has developed a conversion
routine that automatically transfers system data in OpenDSS. This process is explained in
detail in Section 6.

A somewhat bigger challenge is transfer of dynamic data (control data) into other software
applications. Most of the available power modeling software does not have the capability to
perform this type of simulation, or the ability is limited to basic control functions.
MATLAB/Simulink is typically the software of choice for control logic block diagrams; however
it is generic and cannot be used to perform power system studies on a complex model.
Nevertheless, researchers can design interfaces between MATLAB and commercial power
system analysis software as is explained in this report. To that end, Power Analytics has
replicated the general PV/Inverter model in Simulink as explained in Section 6.

6.6. Conversion to Open DSS

A conversion routine is created between DesignBase and OpenDSS. Any power system model
created in DesignBase can be automatically converted to OpenDSS format by utilizing this
tool. Figure 28 shows the interface for the conversion; the user has to choose the original
DesignBase file and name the converted file.
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The rest of this section explains the limitations of the conversion and the format of the
converted data.

The following are the limitations of the converted file because the functionality is very different
between the DesignBase and OpenDSS software:

e This conversion only addresses power flow / short circuit data (i.e. system impedances).
OpenDSS does not support complex control modeling as explained in Section 3. Power
Analytics has developed an appropriate Simulink model to provide a comparison or
validation with results matching the results obtained using DesignBase.

e OpenDSS does not support multiple scenarios. Only the first DesignBase scenario is
converted in OpenDSS.

e DesignBase supports multiple temperatures (power flow temperature, short circuit
temperature, impedance display temperature). Conversion to OpenDSS converts all
resistances based on power flow temperature (typically this is 40°C).

e OpenDSS supports only a single swing bus. Multiple swing buses are handled in the
following way: only the first swing bus is converted to OpenDSS; every subsequent
swing bus will be converted as PQ generator with P=Q=0 and will be commented out as
shown below:

/I More than one swing bus detected; additional swing buses model as PQ buses with 0
injection and commented out:
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/I New generator.DBBusName Busl1=DBBusName kV=DBActualkV Model=1
kw=DBPG Kvar=0

e If any equipment being converted is “opened” (e.g. open switch) in DesignBase, the
following message will be provided:
/I Equipment “DBName” is opened in DesignBase. Please review OpenDSS data.

e In case any equipment used in DesignBase is not covered by the conversion routine
(e.g. duplex reactor, zig-zag grounding, etc.) the following command line will appear in
OpenDSS:

/I Equipment “DBName” is not covered with this conversion. Please enter it manually.
The following subsections show the conversion details for common power system elements.
Voltage Source:

The following DesignBase fields are used in conversion:

o Bus Name (DBBusName)
o System kV (DBSystemkV)
o Actual kV (DBActualkV)

o Voltage Angle (DBANgle)

o Max 3P MVA (DB3PMVA)

o Max LG MVA (DBLGPMVA)
o X/R1 (DBX/R1)

o X/RO (DBX/R0)

Conversion syntax is:

New Circuit. DBBusName Bus1l=DBBusName BasekV=DBSystemkV pu=(*) Angle= DBAngle
Frequency=(**) MVASC3= DB3PMVA MVASC1= DBLGMVA x1r1= DBX/R1 x0r0= DBX/R0O
BaseFreq=(**)

* - pu is calculated as pu=DBActualkV/DBSystemkV
**) - 60 for ANSI files, 50 for IEC files
Loads:

This section applies to all types of load and all types of motors available in DesignBase (load,
mixed load, induction motor, synchronous motor, etc.).

The following DesignBase fields are used in conversion:
o Bus Name (DBBusName)

Rated kV (DBRatedkV)

kW & kvar  (DBkW & DBkvar)

Load Type (DBLoadType)

o O O
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Conversion syntax is:

/I Declare Loads
New Load.DBBusName Busl=DBBusName kV=DBRatedkV kW=DBkW Kvar=DBkvar
Model=(*)

* - If DBLoadType = constant kVA, Model=1
If DBLoadType = constant impedance; Model=2

Messages on unsupported DesignBase data:

o If “Reactive Power Compensation” is used as a function within a DesignBase
load, the following message will be provided:

Il “Reactive Power Compensation” is ignored. This function should be modeled
manually.

o If DBLoadType = “constant current”, the following message will be provided:

// Unsupported load type; converted to a constant kVA load.

o If DBLoadType = “functional load”, the following message will be provided:

/I Converted to a constant kVA load. Research Open DSS for instruction how to
model ZIP loads;

Lines:

This applies to all types of feeders available in DesignBase (feeder, feeder in magnetic
conduit, bus duct, transmission line, etc).

The following DesignBase fields are used in the conversion:

o Branch Name (DBBranchName)

o From Bus (DBFrom)

o ToBus (DBTo)

o R+ X+ R0 X0 (DBR+ DBX+ DBR0O DBXO0)
o C1CO (DBC+ DBCO0)

o Cable Length (DBLength)

o Ampacity (DBAmMp)

Conversion syntax is:

/I Declare Lines
New Line.DBBranchName Busl1=DBFrom Bus2=DBTo Length= DBLength/1000 R1=DBR+
X1=DBX+ R0=DBR0O X0=DBXO0 C1=(*) CO=(*) Normamps=DBAmMp BaseFreq=(**) Units=none

™ - Capacitance is transferred in nF per unit length.
When DesignBase uses uF/1000’, the value is multiplied by 2,000
When DesignBase uses mF/1000’, the value is multiplied by 2,000,000
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) -

When DesignBase uses mMhos/1000’ the value is multiplied by 1,000,000/pi/f
For 60Hz files this step is omitted. For 50Hz files BaseFreq=50

Messages on unsupported DesignBase data:

(@]

If DBLength = 0, the following message will be provided:
/I Per unit impedances used in DesignBase. Please review line data for line
DBBranchName.

If “mutual coupling” exists in DesignBase, the following message will be
provided:

/I Mutual coupling used in DesignBase. Please review line data for line

DBBranchName.

Transformers:

The following DesignBase fields are used in conversion:

o

O O O OO0 O OO0 0o o0 o0

Branch Name (DBBranchName)

From Bus (DBFrom)

To Bus (DBTO0)

From Winding (DBFromWind) (e.g. delta, Y, etc.)
To Winding (DBToWind)

From Voltage (DBFromV) (nameplate voltages and not system voltages)
To Voltage (DBToV)

kVA Rating (DBKVA)

Primary Tap (DBPTap)

Secondary Tap (DBSTap)

R+% (DBR+%)

X+% (DBX+%)

Conversion syntax is:

/I Declare Transformers

New Transformer.DBBranchName Phases=3 Windings=2 XHL=DBX+%

~wdg=1 bus=DBFrom Conn=DBFromWind(*) kV=DBFromV kVA=DBkVA %R=DBR+%/2
Tap=DBPTap

~wdg=2 bus=DBTo Conn=DBToWind(*) kV=DBToV kVA=DBkVA %R=DBR+%/2
Tap=DBSTap

~ Basefreq=(**)

* -

‘Wye” or “Delta”

If winding is grounded through impedance, the following should be added to it:
rneut = grounding resistance in ohms

Xneut = grounding reactance in ohms

If a winding is ungrounded, the following should be added to it: rneut = -10
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** - For 60Hz files, omit this step. For 50Hz files, use BaseFreq=50

Generators:
Generators operating as swing buses are not considered here (see section Voltage Source).

The following DesignBase fields will be used in conversion:

o Bus Name (DBBusName)

o Generator Actual V (DBGenAVolt)

o Generator Type (DBGenType) (PV or PQ)

o PG (DBPG)

o Max Q limit (DBQMax) (used only for PV type)
o Min Q limit (DBQMIn) (used only for PV type)
o Desired Volt (DBDesiredV) (used only for PV type)
o MaxV (DBVMax) (used only for PQ type)
o MinV (DBVMin) (used only for PQ type)
o QG (DBQG) (used only for PQ type)
o kVA Rating (DBKVA)

o GrndR & X (DBGrR & DBGrX)

o %Xd” %Xd %Xd (DBX” & DBX & DBX)

Conversion Syntax for PV generators:

/I Declare PV Generators

New generator.DBBusName Bus1=DBBusName kV=DBGenAVolt Model=3 kW=DBPG
kVA=DBKVA Rneut=(*) Xneut=(*) Vpu=DBDesiredV Maxkvar=DBQMax Minkvar=DBQMin
Xd=DBX Xdp=DBX’ Xdpp=DBX”

Conversion Syntax for PQ generators:

/I Declare PQ Generators

New generator.DBBusName Busl=DBBusName kV=DBGenAVolt Model=1 kW=DBPG
Kvar=DBQG kVA= DBkVA Rneut=(*) Xneut=(*) Vminpu= DBVMin Vmaxpu=DBVMax Xd=DBX
Xdp=DBX' Xdpp=DBX"

*) - For Solidly grounded generator this is omitted

For ungrounded generators this is set to -10

For generators grounded through impedance, this is set to DBGrR & DBGrX
Messages on unsupported DesginBase data:

o If “Load Connected to Generator Bus” # 0, the following message will be
provided:
/I “Load Connected to Bus” is ignored. This function should be modeled
manually.

o If “Controlled Bus” # “Generator bus”, the following message will be provided:
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/I “Control bus set to Generator bus”. Please research OpenDSS help on how to
control a distant bus.

Switches, fuses, breakers, relays:

This applies to all types of switching devices in DesignBase: fuse, switch, circuit breaker (LV
and HV) and relay. These devices are modeled as branches with finite impedances in
DesignBase and represented as dummy lines in OpenDSS.

The following DesignBase fields will be used in conversion:

o Branch Name (DBBranchName)
o From Bus (DBFrom)

o ToBus (DBTO0)

o R&X (DBR & DBX)

o Amp Rating (DBAmMpRating)

Conversion syntax is:

/I Declare Dummy Lines — switching equipment is represented in DesignBase as branches
with

/I finite impedance. In OpenDSS this equipment is shown as dummy lines with the appropriate
impedance

New Line.DBBranchName Bus1=DBFrom Bus2=DBTo Length=1 R1=DBR X1=DBX R0=DBR
X0=DBX Normamps= DBAmpRating Units=none
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6.7. Conversion to MATLAB/Simulink

In order to create an opportunity for further study and collaboration with other researchers, the
dynamic model of a photovoltaic system is also implemented in MATLAB-Simulink software.
The implemented model is shown n Figure 55 on the next page, and includes all the functions
and logic presented in section 3.

As MATLAB Simulink is not designed for core power system studies (it is not capable of
running different load flow algorithms and short circuit studies based on IEEE standards on the
large and complex networks), we have implemented the dynamic control model with no power
system interface. Connection of that model to OpenDSS or another software package is left for
researchers interested in these studies.

The output of this dynamic model is the controlled active and reactive power. One can use the
Simulink blocks to create a proper power source and connect it to his/her power system model
inside of the power system toolbox MATLAB. Therefore, the best method for testing this model
and verifying the results with DesignBase software is to use DesignBase closed loop
(integrated power system-controller model) results as inputs for an open loop test (no power
system interface) of the MATLAB-Simulink model. This procedure is depicted in following
figure:

Load Flow Initial

\oltage Transient

(PV- Dynamic Model
with Power System Freauencv Transient (PV Dynamic Model)
Interface)

Transient Active

Figure 64 - Open loop testing of developed Simulink model
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Figure 65 - Generic Model of PV/Inverter Developed in Simulink
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As a test case, an SC event is considered on the PV bus in the DesignBase transient module
and the voltage and frequency transient signals are transferred to the MATLAB Simulink
model. Hence the closed loop behavior of the PV in DesignBase should be achieved by the
open loop MATLAB simulation results. Finally the comparison between MATLAB Simulink and
DesignBase is presented in the following figures. An SC fault event in the PV terminal bus for
0.3 sec duration is simulated and the models active and reactive power outputs are shown for

result comparison. The models behaviors are identical. Therefore, the implemented MATLAB
and DesignBase models are identical.
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Figure 66 - DesignBase and MATLAB comparison — Active Power Output during the SC at PV bus
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Figure 67 - DesignBase and MATLAB comparison — Reactive Power Output during the SC at PV bus

6.8. Benchmark Study for a use case 50 MW PV Power Plant

As we discussed in previous sections, two types of models are developed by Power Analytics

to help in analysis and design of typical PV plants: a power flow model of the entire plant and
the generic control models of the PV/Inverter and Battery/Converter.
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The use case model of the PV Power Plant consists of 6 blocks, each containing 6x1.5 MW
PV systems and one 1.1 MW battery (36 PVs and 6 batteries total). The 480V output of the PV
and battery systems are stepped up by 42x36/0.48 kV transformers and all are brought to the
same 36 kV bus. The voltage is increased once more by the 115/36 kV transformer and the
plant is connected to the utility via a three mile-long transmission line. Expected system
impedances (feeder size and lengths transformer impedances, etc.) are obtained from the
practical network.

For the purpose of transient simulations the utility network is modeled as a set of swing buses
(500MVA) and a load (100MW + 50 Mvar). Droop frequency control is assumed at the utility
swing bus in order to be able to demonstrate the droop control feature of the PV plant. Generic
controls models are developed for the PV/Inverter and PV/battery blocks. The controllers are
explained in detail in the previous sections.

An example of the minimum requirements for interconnection of PV facilities to utility is listed
below along with analysis results typically required for the interconnection agreement:

a) Low Voltage ride-through: all generation should remain online and be able to ride-
through faults down to 0.0 per-unit or up to 600 ms.

b) Overvoltage ride-through: all generation should remain online and be able to ride-
through overvoltage conditions specified by the following values:

Table 15. Overvoltage values

Overvoltage (pu) | Minimum time to remain
online (seconds)

1.4-1.25 1
1.25-1.15 3
1.15 or lower Indefinitely

c) Voltage regulation system: Constant voltage control shall be required.

d) Reactive Power Capability and Minimum Power Factor Requirements: The total power
factor range shall be from 0.85 lagging to 0.85 leading. The +/- 0.90 power factor range
should be dynamic and continuous.

e) Short Circuit Ratio (SCR)

f) Frequency ride through:

e 57.5-61.5Hz No tripping (continuous)
e 61.5-62.5Hz 30 sec

e 56.5-57.5Hz 10 sec

e <56.50r>62.5 Hz Instantaneous trip

g) Frequency response/regulation: the PV facility shall provide an immediate real power
primary frequency response, proportional to frequency deviations from scheduled
frequency, similar to governor response. The rate of real power response to frequency
deviations shall be similar to or more responsive than the droop characteristic of 5%
used by conventional generators.

107



h) Ramp rate control: The PV facility shall be able to control the rate of change of power
output. A 10 % per minute rate (based on nameplate capacity) limitation shall be
enforced.

i) Power Quality

]) Special Protection Schemes

k) Transient mathematical model

We are addressing these minimum technical requirements with proper modeling and
simulation of the PV power plant using steady-state power flow calculations and dynamic
transient simulation results.

6.8.1. Power Flow Calculations

This section summarizes the loss calculation in this typical PV system. These calculations are
based on a power flow algorithm applied to the model as explained before and the irradiance /
kW data is assumed to be real sun irradiance (obtained form UCSD) data which are separated
into three categories: sunny, overcast and partly cloudy days. Representative sunny, partly
cloudy and overcast days are chosen for further power flow analysis. Power flow analysis is
performed for all three days in 5-second intervals. For each of these days two cases have
been studied:

e Raw data (no curtailment and no ramping limitation)

e The best possible curtailment algorithm.

The first case is useful to quantify thermal losses in the system (RI2). The second case helps
to quantify the minimum possible loss due to the optimal ramp-rate curtailment; in other words
we quantify the energy that could not be captured in the battery due to its maximum charging
rate limitation. It should be understood that the second case puts a lower bound on the losses,
meaning the losses may be significantly higher depending on the goodness of the forecast and
control algorithm.

In next sections, two simulations are performed to show the effectiveness of using a battery for
decreasing the power ramp rating of the PV plant power output. The PV irradiance data for 300
seconds of a partly cloudy day is considered for every PV transient model as an input signal.

Case 1

Power flow calculations are performed using the raw data as presented in the previous section.
The irradiance data is transferred into kW output based on the size of the plant and the
efficiency of inverters. Battery and PV curtailment were not considered in this case. The goal of
the simulations is to estimate the level of thermal losses in the power system — losses in
transformers, cables and transmission lines between the inverters and the point of common
coupling.

Based on the data summarized in following table, distribution system losses vary between 0.8
and 1.6%; the sunnier the day, the more current is injected in the system — and the losses are
higher.
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Table 16. Power Flow Results for the Case 1

Load Flow Study Sunny Day Overcast Partly Cloudy

Results Day Day

Daily Energy 348.786 145.518 275.553

at PCC MWh MWh MWh

Maximum 47.81 49.042 52.52

Power at PCC MW MW MW

Daily System o575 L1914 025 (1.44)

Losses (L5 (@) MWh (%)
MWh (%) MWh (%)

Total Available 354.361 146.709 279.578

Energy MWh MWh MWh

Figures 57provides visualization of the results, showing the power at PCC (green area) and
the losses (red area).

PV Power Output at PCC (@ 11/13/2012) PV Power Output at PCC (@ 10/15/2012)

. L L L L L L L L L r r =1 - -
6 8 10 12 14 16 18 6 8 10 12 14 16 18 6 8 o mel(:w)
Time (Hours) Time (Hour)

Figure 68 - Power and Losses for clear, overcast and partly cloudy days

Case 2

Power flow calculations are performed next utilizing both a curtailment algorithm and batteries.
The storage battery is selected according to 10% of the PV plant nominal power. Six batteries
with the following characteristics are used in the simulations:

Capacity (MWh- 30 min) = 0.56 MWh

Max Discharge Power =1.1 MW

Max Charge Power = 0.6 MW

Assumed Maximum Depth of Discharge = 70% [784 KWHh]
Assumed Maximum Charged =100% [1120 KWh]
Assumed Initial State of Charge =90% [1008 KWh]

The best possible curtailment algorithm is assumed by fitting the desired PV production in
between the raw data, maintaining the slope of fitted data below + 5SMW/1min. An example of

109



data fitting is shown below. The blue curve represents the expected raw power plant
production in MW and the green curve represents the fitted data that will never exceed the
ramping requirements. It should be understood that the above algorithm is the best possible
and hard to implement in real-time: it assumes a perfect forecast and a perfect controller.

Figure 69 - PV Curtailment

It has also been assumed that during the period where extra energy is available (the blue
curve is above the green curve), the energy is stored in the battery with the maximum charging
power being 0.6 MW. When the additional energy is needed (the blue curve is below the green
curve), the battery has been discharged with the maximum discharging power being 1.1 MW.
No case is observed (within these 3 days) where the battery has reached the maximum
discharge limit; several cases have been observed where the battery has reached its
maximum charging limit. The latter case contributes to the increase in system losses as extra
sun energy was available but could not be stored.

Results of the simulations are presented in the following table. As expected no changes were
observed for the sunny days as no curtailment was necessary. Increased level of losses on
other days is attributed to the period where more energy was available than could have been
stored. However, this increase is very small due to the curtailment algorithm applied.

Table 17. Power Flow Results for the Case 2

Load Flow Study Results Sunny Day Overcast Day Partly Cloudy Day

110



Daily Energy

348.786
at PCC MWh
Maximum Power at PCC 47.81

MW

: 5.575
Dail tem L

aily System Losses (1.57)

MWh (%)
Daily Battery Usage 0
Maximum Battery Power 0
Dissipated Sun Energy (not 0
stored)

: 354.361
Total Available Energy MWh

145.611
MWh

48.9
MW

1.194 (0.81)
MWh (%)

+ 0.076
MWh

[-3.77, 4.3]
MW

0.02 (0.013)
MWh (%)

146.709
MWh

274.704
MWh

52.6
MW

4.039 (1.44)
MWh (%)

-0.799
MWh

[-3.6, 6]
MW

0.036 (0.012)
MWh (%)

279.578
MWh

The following pictures provide the visualization of the results.
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Figure 70 - Plant Output and Loss, Battery Output and Loss for Overcast Day
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Figure 71 - Overcast Day Zoomed In
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Figure 72 - Plant Output and Loss, Battery Output and Loss for Partly Cloudy Day
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Figure 73 - Partly Cloudy Day Zoomed In

6.8.2. Transient Stability Studies

Multiple transient stability studies are performed to demonstrate the capability of the system
to satisfy a utility’s minimum technical requirements (MTR).

The model considered here is not an as-built power system model, and does not consider
models of the particular PV, battery, inverter and controller. The simulations also do not
consider a faulty weather forecast, all the possible weather patterns, etc. These types of
simulations will be possible after the particular equipment is chosen, the plant layout and
rating is finalized and more information on the weather forecast becomes available.

The simulations shown in this section are based on generic PV/inverter and battery/inverter

models developed by Power Analytics. The models and power system are explained in the
previous sections.

The model explained above had to be enhanced to include the following control functionality
required by utility MTRs:

e Frequency droop controller (“governor”)
e Power ramp down and rate limiter
e Tuning of the parameters of the previous model
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The final PV/Inverter control model is given in Figure 8.0. The additions to the model do not
represent control logic by any particular manufacturer but they do include basic control
circuits developed by Power Analytics. Power Analytics expects that commercial inverter
controllers will have the level of sophistication at or beyond the level presented here.
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Figure 74 - Generic PV/Inverter Control Model

117



6.8.3. Frequency Response and Frequency Ride-Through

Compliance with these utility requirements is used to demonstrate the following simulations:

Over-frequency Instantaneous trip

Based on most utilities requirements the plant should trip instantaneously if the frequency
exceeds 62.5 Hz. The following simulation demonstrates the capability. The frequency at PCC
is increased by dropping 120 MW load at t = 10 sec. At t=14.8 sec the PCC frequency goes
above 62.5 Hz and the trip signal takes out all the PV systems. The MW output of the PV
system goes to zero even before the trip signal as the frequency droop control was faster than
the protection. Following the frequency event, the 120MW load is switched on and the
frequency is stabilized at PCC; the frequency is below 60 Hz as all the PV systems are out.
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Figure 76 - MW Output and Trip Signal at PV/Inverter
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Under-frequency Instantaneous trip:

Based on MTR requirements the plant should trip instantaneously if the frequency drops below
56.5 Hz. The next simulation demonstrates this capability. The frequency at PCC is decreased
by adding 200 MW load at t = 10 sec. As the PCC frequency goes below 56.5 Hz the trip signal
takes out all the PV systems. As the system was already working at the maximum power point,
the inverter was not able to increase MW production in an attempt to regulate frequency.
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Figure 78 - MW Output and Trip Signal at PV/Inverter
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Over-frequency Delayed trip:

Based on MTR the plant should trip after 30 seconds if the frequency stays between 61.5 and
62.5 Hz. The following simulation demonstrates this capability. The frequency at PCC is

increased by dropping load att = 10 sec. Att =12 sec the PCC frequency goes above 61.5 Hz
and at t = 42 sec the trip signal takes out all the PV systems.
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Figure 80 - MW Output and Trip Signal at PV/Inverter
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Under-frequency Delayed trip:

Based on MTR the plant should trip after 10 seconds if the frequency stays between 56.5 and
57.5 Hz. The following simulation demonstrates this capability. The frequency at PCC drops
below 57.5 Hz at t = 11.5 sec but recovers above 57.5 sec at t = 15.5 sec. Since the event
lasted less than 10 seconds no trip has been initiated. At t =18.3 sec the PCC frequency again

goes below 57.5 Hz and stays there over 10 seconds. Consequently at t = 28.3 sec the trip
signal takes out all the PV systems.
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Figure 82 - MW Output and Trip Signal at PV/Inverter
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Frequency Response:

Based on MTR the plant should provide an immediate real power frequency response
proportional to the frequency deviation and similar to governor response. The following
simulations demonstrate the capability.

Figures 72 and 73 show the event caused by dropping 30% of the load in the system. The
frequency is regulated by the droop controller at all inverters and by the assumed droop
controller at the utility bus. The controller brings the PV away from the maximum power point
and hence reduces the active power injected in the system. Table 13 demonstrates the
required droop response for the range of frequency events.
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Figure 84 - MW Output of PV/Inverter
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Table 18. Frequency Regulation

Load Frequency Utility Power PV Plant Utility PV
. (Hz2) [MW] Power [MW] Freq. Plant
Shedding L Power
Percentage Deviation Share Power
0 Before | After | Before | After | Before | After | Af[HZz] 0 Share
[%] % %
10 59.99 [ 60.10 [ 54.2 | 46.8 | 45.9 | 43.3 0.11 74 26
20 59.99 [ 60.21 | 54.2 | 39.5 [ 459 | 40.7 0.22 73.8 26.2
30 59.99 [ 60.31 | 54.2 | 32.3 [ 45.9 38 0.32 73.4 26.6
40 59.99 [ 60.41 | 54.2 | 248 | 459 | 354 0.42 73.68 | 26.32
50 59.99 [ 60.52 | 54.2 | 175 | 459 | 32.7 0.53 73.5 26.5
60 59.99 [ 60.62 | 54.2 | 10.1 | 459 | 30.1 0.63 73.6 26.4
70 59.99 | 60.73 | 54.2 2.8 459 | 274 0.74 73.53 | 26.46

Figures 74 and 75 demonstrate the capability of the system to regulate under-frequency
events if the PVs are kept away from the maximum power point. In this simulation frequency is
reduced by bringing back 20% of the load that caused the PV plant to its increase power

output.
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6.8.4. Voltage Regulation and Voltage Ride-Through

Compliance with these MTRs is demonstrated by the following simulations:

Overvoltage Instantaneous trip:

Based on MTR the plant should trip instantaneously if the voltage exceeds 1.4 pu. The
following simulation demonstrates this capability. The voltage at PCC is increased by
introducing a large capacitive load and the PV systems are disconnected instantaneously.
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Figure 87 - PCC Voltage
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Figure 88 - MW, Mvar and Trip Signal at PV/Inverter

Overvoltage delayed trip:

Based on MTR the plant should trip after 3 seconds if overvoltage between 1.15 and 1.25 pu is
observed; or, it should trip after 1 second for overvoltage between 1.25 and 1.4 pu. The
following simulations demonstrate the capability. Figures 78 and 79 show a 3-second delayed
trip; at t = 10.8 sec voltage at PCC goes above 1.15 pu and PV/Inverters are tripped att = 13.8
sec. Figures 82 and 83 show a 1-second delayed trip.
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Figure 89 - PCC Voltage
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Under-voltage delayed trip:

The utility requires continuous voltage ride through the curve which is modeled and verified as
four step V-t function. Figures 82 through 84 show tripping the plant at V<0.1pu after 600ms, at
V<0.225pu after 1s, at V<0.53pu after 2s and V<0.85pu after 3s. Higher resolution is certainly
possible and will be verified when the particular inverter is selected.
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Figure 93 - PCC Voltage — at 3s goes to 0
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Voltage Regulation:

- T
oout

= POLT

= THIFY

Demonstration of voltage regulation capability is given in figures 90 and 91. During the under-

voltage conditions the inverter supports voltage by injecting additional reactive power. The
simulation is similar to one shown in Figures 8.19 and 8.20 but in that case terminal voltage

was depressed to zero and no voltage support was possible.
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6.8.5. Ramping Capabilities

Compliance with the ramping MTR is demonstrated by the following simulations.

Figure 92 shows ramp with the slope of 6 MW/min; ramping command is given at time t=5sec
and the ramping level is define as 0.45 MW. The simulation is done on a single PV/Inverter
(out of 36 systems). Power at PCC is decreased by 1.05 MW within 10.5 seconds. Sun
irradiance is considered constant during this simulation.
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Figure 103 - 6 MW/min ramp

Figure 93 shows the impact of the variable sun irradiance on the system; data for this sun
irradiance variation was recorded at UCSD (real weather data). The data includes fast
transient from maximum power to 40% of the maximum power within 5 seconds and several
subsequent power swings.

Figure 94 shows superposition of the ramping command and irradiance data. It demonstrates
that the controller will work as desired. Ramp is applied before the weather event and system
reaches requested point (0.75 MW per one PV/Inverter unit for this simulation). Subsequent
weather variations will not increase the production as long as the ramping signal is present.
Certainly, weather can cause the system to reduce the production if there is not enough sun
energy available.
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Figure 104 - Impact of Weather Variability on PV Production
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6.8.6. Transient Simulation of Battery/ Converter Model

The battery parameters in Table 14, which are based on various manufacturers’ data, are used
in this simulation. This data is extracted from the Intensium Max energy storage system for
Saft Company. The battery bank consists of 174 series and 20 parallel lithium-ion VL41M cells
with the parameters shown presented in Table 15 and Figure 95. These data are utilized to
derive the total storage battery parameters for the transient study and the resulting parameters
are shown in Figure 88.

Table 19. Energy Storage System Parameters

Energy min (MWh] 0.56
Max discharge power [MW) 1.10
Nominal charge power (kW) 255
Max charge power (kW) 350
Current max [A) 1900
Nominal voltage (V] 700
Minimum voltage (V] 609
Maximum voltage (V) 812

134



A0 o
ELIL
an <
A7 o
38 o
ELE
A -
33 o
EE
a1l o
an o
20 o
20 =
27 o
26 o
28

Voltage [V]

LBl

. 3C

— BEC

T T T T T
2 25

=
e
=]
a

Capacitv [Ah]

Figure 106 - VL41M Cell capacity and voltage according to current @ 20°C

Table 20. Electrical characteristics of VL41M Battery Cell

Electrical characteristics

VL 41M

Marminal voltaga (V] 36
Myerage capacity C/3 aftar

charga to 4.0V /cell (4h) 41
Mirmimumn capacity C/3 after

charge to 4.0 V. cell [Ah] 39
Specific energy after charge

to 4.0 Vi cell [Whkg) 136
Energy density after charge

to 4.0 Vi cell Wh/dmd) 285
Specific power [30s peak S0 DOD] W/ kgl 794

Power denaity [30s peak S50% DOD) (W dm”) 1BE67
Mechanical characterstbics

Diamater [mm) 543

Height [rmm] 222

Typical weight [kgl 1.07
‘Violume: [dm?] 051
Voltage limits

Charge [V] 4.0 [4.1 far pesak]
Discharge [V) 2.7 (2.3 for peak)

Current limits

Max continuous current [A)

150

Max pesk current during 30 s [A)

300

LL
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Nominal Current Discharge Characteristic at 3.7975C (3000A)
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Figure 107 - VL41M Cell capacity and voltage according to current @ 20°C

6.9. Case A: PV Plant without Battery Storage

In the first case, batteries are not considered and there is no control on the PV Plant output
power. Figure 97 shows one of the PV’s input irradiance signal (pu), active power output (MW),

voltage terminal (pu) and frequency (pu).
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The PV power plant output active power (MW), voltage (pu) and frequency (Hz) of Point of

T T T T T
150 200 250
Time in Seconds(PV-G Bus: PV-1)

300

= POUT
== FREQG

Common Coupling (PCC) are shown in Figure 98. The frequency of PCC point is almost

following the PV generation level.
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6.10. Case B: PV Plant with Battery Storage

In the second case, battery storage is considered using the same concept for smoothing the
power ramp rates for the total PV generation. To achieve this, the output power control signal
is calculated for each battery to decrease the ramping rate of PV generations to 5SMW/1min
and is shown in Figure 8.7.33. Using this signal will lead to the DC current waveform shown in
Figure 8.7.34. The positive current means discharging and the negative current presents the
recharging mode. The DC power and current are limited to the battery storage device design
specifications which occurs at t=160 seconds in recharging mode. This is already considered
in control power signal.

The battery voltage is then calculated using the battery dynamic model which is illustrated in
Figure 93. The state of charge of the battery is also presented in Figure 94 and assumed to be
100% in beginning of the simulation. During the discharge SOC drops to 96.6%. Finally,
battery output power is shown in Figure 95 which is totally following the power control signal
and injects this amount of power to the AC side. The small difference is related to the
converter efficiency which is set to 97%.
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Figure 110 - Battery Power Control Signal [MWatt]
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Similar to the previous case, the PV power plant output active power (MW), voltage (pu) and
frequency (Hz) of Point of Common Coupling are shown in Figure 104.

The PV Plant output power [MW] with (Red line) and without (Black line) Battery Storage
System is shown in Figure 105 for better comparison between deploying storage systems for
limiting plant output power ramp ratings. As clearly shown this control methodology will
enhance the PV system operation integrated with a power system by considering all power
guality constrains.
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Consequently, the developed battery dynamic model can be utilized for:

e Sizing the battery according the PV plant size, statics of annual irradiance and its
application for power regulating and smoothing

e Modeling the dynamic behavior of the Battery Charge/Discharge Curve for transient studies
under different events and scenarios by tracking its voltage and state of charge

e Considering Energy storage device limitations in charge/discharge power, depth of
discharge and maximum stored power

e Developing real-time control methodology for mitigating worse power ramp rates in PCC
point using storage devices with/without forecasted data

e Optimizing control parameters for the objective application usage of storage devices and
performance evaluation for several sun irradiance profiles
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6.11. Summary

Power Analytics has been involved and engaged with advancing the integration of photovoltaic
power systems with particular focus on interconnect simulations, integration of control and
integration of irradiance forecasts. This combined approach is central to the Power Analytics
ability to bring these simulations into a real-time operating strategy so essential to moving past
simulation and focusing on deployment of photovoltaic farms. In addition to the simulations
made possible as a result of this work (including dynamic simulations), the combined approach
of modeling, forecasting, control and operation including charging/discharging of energy
storage promises to provide the most exciting advances in High Penetration PV.
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