ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-14-29292

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Generalized Cahn-Hilliard Navier-Stokes Equations for Numerical
Simulations of Multicomponent Immiscible Flows

Li, Zhaorui
Livescu, Daniel

67th APS Annual Meeting of Division of Fluid Dynamics,
2014-11-23/2014-11-25 (San Francisco, California, United States)

2014-12-05




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for

the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Generalized Cahn-Hilliard Navier-Stokes
Equations for Numerical Simulations of
Multicomponent Immiscible Flows

Zhaorui Li and Daniel Livescu

CCS-2, Los Alamos National Laboratory

67th APS Annual DFD Meeting

November 23, 2014

» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED Slide 1
(57,1942
Operated by Los Alamos National Security, LLC for NNSA AR l.‘t‘@:ﬂ;



Objectives and Approach

% Current numerical approaches and their limitations
» Sharp Interface Methods (zero interface thickness)
» Front tracking
= Volume of Fluid (VOF)
= Level Set Method
» Diffuse Interface Methods (non-zero interface thickness)
» Conventional Cahn-Hilliard (CH) Method
» Non-continuum Methods
» Lattice-Boltzmann Method
% Generalized Cahn-Hilliard Navier-Stokes equations
» Mathematical derivation of general equations (physically consistent) describing multi-

component (N =2) compressible flows from basic thermodynamics (CGCHNS-Compressible
Generalized Cahn-Hilliard Navier-Stokes equations)

» Rigorous derivation of general equations describing multi-component (N 22) incompressible

flows by taking the incompressible limit of the above compressible equations (IGCHNS-
Incompressible Generalized Cahn-Hilliard Navier-Stokes equations)

» Both CGCHNS and IGCHNS equations can describe flows with arbitrary density ratios, such
as the Rayleigh-Taylor instability, and naturally handle complex topological changes of the
b interface
— _
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Mathematical Development

+*General Conservation Equations for Multi-Component Flows

Continuity : L4V (p7) =0
Momentum: 2 (p7)+v-(p7 @F)=V-g+ pgw
Energy : %(pe)+v-(pel7)=g:VV—V-Q+;O§YaFa-I7a
Species mass fraction : %(pYa)N-(pYaV) =-V-J, =-V: /_oYaVa)
Entropy : %(ps)+V-(psI7)=—V-qs+As

“*Specific Helmholtz Free Energy Accounting for the Presence of Interfaces

N The expression can be derived, using
7 =f°(v,T,Y)+vAf’(T,Y)+lvzia(T)(VYa)2 statistical mechanics considerations,
’ 2 o directly from the partition function.
Bulk contribution,  |nterface contribution,  First-order non-local contribution

related to the related to the repulsive  (Cahn-Hilliard), related to the

e potential between potential between the attractive potential between like

o pl‘ilke-molecules immiscible components  molecules.
4
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Mathematical Development (Cont.)

J/

% General or Extended Thermodynamics
e= e(v,s Y VY )

°>71,2,..,N? 1,2,.,N

de = —Pdv+Tds+§unga +§¢3a -d(VY,)
a=1 a=1

" Replace dv/dt, de/dt, d(Y,, )/dt and ds/dt using continuity, energy, scalar and entropv eauations into the
above differential equation for de, together with mathematical relation d(VY, )/dt = V(dY, /dt)- VY, -VV
Finally, we have

A=V

TR SOV S W R IR AN
T T “ “ T @« “ T

where K, =4, —V'(P@)/p is the generalized chemical potential

" Second-Law of thermodynamics requires A, =0 for any process. Since the viscous stress tensor
should satisfyc’ : VI =0 , after some manipulations, the condition can be written like this:

N R N VT N _
-2V T~ 3T, ||+ DT, (V- F,) <0
ﬂ a=l1 a=l1 T a=1
=
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Mathematical Development (Cont.)

= With the generalized Helmholtz free energy (f), we can rewrite the inequality equation required by
second-law of thermodynamics, after separating individual contributions to the chemical potential

- (vT) Lo _
Jq-(T +;Ja-[(wa)T—Fa]so
N

where jq = q-éla(VYa)V-ja —ﬁ]ﬂ Mgf _T(augz /aT)v,y,wa]_gja[“gl _T(augl /aT)p’Y] is the generalize

a=1

heat flux. u" =(8f° /aYa) s the classical chemical potential and ;’ =V[A8f’(T,Y)/8Ya A VY, -VA, 'VYa]

Vs ’Yﬁsa

is the chemical potential related to the interface and Cahn-Hilliard contributions. The generalized

chemical potential is 1« =ugl(v,T,Y)+uff(v,T,Y,VYa)

+ General Near-Equilibrium Solutions of the inequality equation
ja=—§aak[(vﬂk)T—Fk]-D§(V—TT) and J = ; [(Vuk) ‘] (VTT) (Onsager relations)

k=1

®" The second law imposes restrictions on the values of the coefficients.

®  After using basic thermodynamic relations, Onsager’s symmetry principle, and a series of
A mathematical manipulations, finally we have the expression for species mass flux J, and heat flux g

9
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Mathematical Development (Cont.)

(Vaa), P G, Uy p Vp e > . QX X DT D(f vT
X, aan =; Daﬁﬁ( /3_Va)+nROT(l_pva)Ya(7)+(nRoT);YaY/3(Fa_Fﬁ)+; pDaﬁ Yﬁ Y, ( T )
—_ —x N
=0 =D (Vuf), and 7. =7./(pY,)
k=1
— 0 A X X/sDoTz SH ok Q 01 01
g=R TEZWD (7 —Vﬁ)+E=Ja[ua -7 (0w /aT)N]—KVT

]—ZDZ (W,‘f);TvZJ |o(ar" 1a7)+0(d2, /dT))|

a=1 a=1 o ta

+» Compressible Generalized Cahn-Hilliard Navier-Stokes Equations (CGCHNS)

Continuity E+v.(p )=0
Momentum : i(,017)+V-(/OI7®I7)=—Vp+§/oy°2VY +V~ov+p§YF' +|0 o’ +0 92,
- ot — o oT oT

F-J

o

=

Energy : %(pe°)+v-(peol7) 1g- VEA VY V-J

N
- pV- V+Eugzv-ja+(;:VI7+
a=1

=1

|

~—— R

[ (af" 1aT)+O(af" 10T*)+O(dA, /9T +O(d2, 19T

. ) 0 _ -
Q) Species mass fraction : 5(pYa)+V'(PYaV) =-V-J,
NLA?OSNALLAaB(!IHgSY UNCLASSIFIED Slide 6
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Mathematical Development (Cont.)

J/

% Incompressible Generalized Cahn-Hilliard Navier-Stokes Equations (IGCHNS)
®" The incompressible limit is obtained as the rigorous infinite sound of speed limit. Here, we choose

T —o and dp/dT — const (Livescu, Phil. Trans. R. Soc. A, 2013). Also, the interfacial Helmholtz
free energy loses temperature dependence, i.e. f' — f’*(Y) and A — A
® The Continuity and Momentum equations maintain the same formulations as in compressible flows.

®" The internal energy equation and species mass fraction equations are reduced to an identical
expression for the velocity divergence :

N/ =
VV=-Vy QJ
a=1 pa
® For simplicity, assume ideal-gas equation of state (EOS). This is then reduced to
1_yZ,
p a=1 p:(

where o" =W (gp/oT)/ R® is the micro-density ot species o
Py =", \0P

®" The number of species mass fraction equations needed to be considered is (N-2) and the formulation

for the species mass flux is reduced to: N
02
J =J Eaa (Vi)
k=1
ﬁ 1y 5k Tk
£~ 2 « "(V -7;) and v.=J./(p,)
. Los Al = D
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Mathematical Development (Cont.)

J/

% Incompressible Cahn-Hilliard Navier-Stokes Equations for Binary Fluids
(unlike previous studies, these equations allow arbitrary density ratios).

Continuity : 9P, y. (pV) 0
5 ot X |
Momentum : —(pl7)+V-(pI7®V)=—Vp+A % [N(—)+V-a=v+pg
ot o,-p ) \p
Divergence condition: V-I7=—V-[D’"V1np] (’OZ pl DIV(lﬁ)
PP, p
Pure miscible flow: D=0 Pure immiscible flow: D" =0

® A simple model for the repulsive interface free energyf’*(Y) is a double-well function, for which the
corresponding chemical potential is

a=Y,(Y,-1)(v,-1/2)-Av?,
®  The species mass fraction equation for pure immiscible flow becomes:

d—Y—lV D V( ! ﬂ)
p
For arbitrary density and mobility coefficientD’, the equilibrium condition is i, =0

dt p
% Sharp Interface analysis for Binary immiscible Fluids

®" The species equation for immiscible flows has an near equilibrium solution which converges to the
sharp interface equilibrium solution as the interface thickness goes to zero (¢ —0)

» Los Alamos
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Mathematical Development (Cont.)

1
Y, = 5 Parameter control

=222 interface thickness

&

1+tanh(¢(ﬁ)ﬂ ‘¢(z)‘=1 Signed distance function

And the corresponding chemical potential is
i, = —g-l((gb)[l—tanh2 (¢(§)/8)]/16 —0 as €0

By implementing the equilibrium solution into the incompressible Cahn-Hilliard Navier-Stokes
equation, the divergence condition approaches the divergence free condition:

V-I?=0(g)—>o as €—0

and the continuity equation for the equilibrium solution approaches the classical level set equation:
%+( 7-V)p=0(c) =0 as ¢—0

For the near-equilibrium solution, the surface tension force in the momentum equation can be
rewritten as: .
e ﬂV(l)=—TS-5;K(¢)V¢

F.=A|-=
0, =P, P

S

where #(¢)=V- (V¢/‘V¢‘) is the interface curvature and?, =3[1—tanh2(¢/€)]/(48) is an approximation of

Q)the Dirac delta function with properties: f P ( )d¢=1
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Drop Deformation in Shear Flow

No-Slip wall in x direction

By o+ v / /
/ Fluid 1
Lx 2a
:Flul;d2; )
Periodic in y direction
VA S Y S A A 77
Ly

" For a given Reynolds number, there is a critical Capillary number Ca_._and the drop deforms and
reaches a stationary deformed shape when Ca<Ca__

" When the Reynolds is small enough ( Re <<1) the flow becomes Stokes or creeping flow in which
the drop deformation parameter D is related to the Capillary number ¢, (G. I. Taylor, Proc. R.

Soc. Lond. A, 1934) as: H L-B 19(172/171)+16C
" L+B 16(n,/n)+16

Where L and B are the longest and shortest axes of the ellipsoid (the steady deformed shape).

n, and 1, are the viscosities of fluid 1 and fluid 2, respectively.
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Drop Deformation (Cont.)

0.2
i Ca=0.15 - —— Exact Value (Re<<1)
- 0.3F
016 N e iehekelehehlelahelelolalelel el | ’ DNS,Re=0-05
0.12 B ook
D - i
i D |
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Incompressible & Immiscible Rayleigh-Taylor Instability

% Linear Stability Theory (LST) for Rayleigh-Taylor Instability with zero-thickness

® |f the initial perturbations of the interface are small, then, at early time, the mixing layer width
grows exponentially with time

uO 1 —
H(t)=h, cosh[n(t - to)] + ;smh[n(t fo)]

®" The exponential growth rate of immiscible Rayleigh-Taylor instability is given implicitly in an
algebraic equation (Chandrasekhar, Hydrodynamics and Hydromagnetic Stability, 1981)
2

E o415 o)

n
% Direct Numerical Simulation (DNS) using incompressible Cahn-Hilliard Navier-
Stokes equations

kT,

(al—az)+g(—

0+p,)

ﬁ(al - a2)3 (q - k)2 —-dkao, =0

® Fixed Density ratio p,/p, =3 or Atwood number A=0.5

® The ratio of mesh grid in vertical direction to horizontal direction is A, /A, =0.8 and the initial
interface thickness is §, =8A,

®" The resolution is chosen based on the condition: the ratio of interface thickness to wavelength

AN 8/ 2y 1%
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Rayleigh-Taylor Instability

For fixed wavenumber k and viscosity v For fixed surface tension coefficient Ts
0.06 0.08
0.06|
0.04 I
nor
n 0.04|
0.02 - LST-VIS1
0.02F ° DNS-VIS1
i LST-VIS2
i = DNS-VIS2
0 | | | | | | | | | 0 7\ | | | | | |
0 2000 4000 6000 0.02 0.04 0.06
Ts k
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Rayleigh-Taylor Instability (Cont.)

% Late time Rayleigh-Taylor Instability results

T, =214
T, =856
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Head-on Coalescence of Drops

y Fluid 1

3D D m
o . X
Fluid 2
d
|

6D

P,/ p,=3.0

®" Purpose: Show the capability of our approach in handling the singular topological changes
during interface reconnection as well as breakup.

®" |n reality, the rupture or reconnection of interface is the interplay between repulsive and
attractive forces between molecules of the two drops, which are represented by f and Cahn-
Hilliard terms in the Helmholtz free energy (f) given before.

= Aexternal body force f =-C psign(x-x,)(1-Y,) is enforced to move the drops toward each other
and turned off right before the drops approach together.

A
9
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Head-on Coalescence of Drops Results

Re = 40.0, We=4.0 Re =40.0, We=16.0

Previous studies with single point contact: Previous study with double-point contact:
e.g. Nobari et al, Phys. Fluids, 1996, Front- Yue et al, J. Fluid Mech., 2004, Diffuse-
racking, artificial rupturing needed. interface but for constant density only.
VL Al Non-diffuse interface cannot capture double
* LOS Alamos uncLassiFieD point contact with trap of matrix fluid_
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Summary

O For the first time, the compressible generalized Cahn-Hilliard Navier-Stokes
(CGCHNS) equations are derived from basic thermodynamics for multi-
component (N =2) flows.

O For the first time, the incompressible generalized Cahn-Hilliard Navier-Stokes
(IGCHNS) equations are rigorously derived as the incompressible limit of
CGCHNS. The equations can address fluids with arbitrary density ratios.

O The Cahn-Hilliard Navier-Stokes equations can naturally handle complex
interface deformation, including merging and breaking.

O Both the compressible and incompressible Cahn-Hilliard Navier-Stokes
equations have been implemented into the CFDNS code.

O For the first time, extensive comparisons with Linear Stability Theory (LST) for
the immiscible Rayleigh-Taylor instability are presented. Simulations using the
incompressible Cahn-Hilliard Navier-Stokes equations reproduce the LST
predictions. The equations have also been tested in several other immiscible flow

problems.
e o)
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