

LA-UR-14-29292

Approved for public release; distribution is unlimited.

Title: Generalized Cahn-Hilliard Navier-Stokes Equations for Numerical Simulations of Multicomponent Immiscible Flows

Author(s): Li, Zhaorui
Livescu, Daniel

Intended for: 67th APS Annual Meeting of Division of Fluid Dynamics,
2014-11-23/2014-11-25 (San Francisco, California, United States)

Issued: 2014-12-05

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Generalized Cahn-Hilliard Navier-Stokes Equations for Numerical Simulations of Multicomponent Immiscible Flows

Zhaorui Li and Daniel Livescu

CCS-2, Los Alamos National Laboratory

67th APS Annual DFD Meeting

November 23, 2014

Objectives and Approach

- ❖ **Current numerical approaches and their limitations**

- Sharp Interface Methods (zero interface thickness)
 - Front tracking
 - Volume of Fluid (VOF)
 - Level Set Method
- Diffuse Interface Methods (non-zero interface thickness)
 - Conventional Cahn-Hilliard (CH) Method
- Non-continuum Methods
 - Lattice-Boltzmann Method

- ❖ **Generalized Cahn-Hilliard Navier-Stokes equations**

- Mathematical derivation of general equations (**physically consistent**) describing multi-component ($N \geq 2$) compressible flows from basic thermodynamics (**CGCHNS-Compressible Generalized Cahn-Hilliard Navier-Stokes** equations)
- Rigorous derivation of general equations describing multi-component ($N \geq 2$) incompressible flows by taking the incompressible limit of the above compressible equations (**IGCHNS-Incompressible Generalized Cahn-Hilliard Navier-Stokes** equations)
- Both CGCHNS and IGCHNS equations can describe flows with arbitrary density ratios, such as the Rayleigh-Taylor instability, and naturally handle complex topological changes of the interface.

Mathematical Development

❖ General Conservation Equations for Multi-Component Flows

Continuity :
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$$

Momentum :
$$\frac{\partial}{\partial t}(\rho \vec{V}) + \nabla \cdot (\rho \vec{V} \otimes \vec{V}) = \nabla \cdot \underline{\underline{\sigma}} + \rho \sum_{\alpha=1}^N Y_{\alpha} \vec{F}_{\alpha}$$

Energy :
$$\frac{\partial}{\partial t}(\rho e) + \nabla \cdot (\rho e \vec{V}) = \underline{\underline{\sigma}} : \nabla \vec{V} - \nabla \cdot \vec{q} + \rho \sum_{\alpha=1}^N Y_{\alpha} \vec{F}_{\alpha} \cdot \vec{V}_{\alpha}$$

Species mass fraction :
$$\frac{\partial}{\partial t}(\rho Y_{\alpha}) + \nabla \cdot (\rho Y_{\alpha} \vec{V}) = -\nabla \cdot \vec{J}_{\alpha} = -\nabla \cdot (\rho Y_{\alpha} \vec{V}_{\alpha})$$

Entropy :
$$\frac{\partial}{\partial t}(\rho s) + \nabla \cdot (\rho s \vec{V}) = -\nabla \cdot \vec{q}_s + \Delta_s$$

❖ Specific Helmholtz Free Energy Accounting for the Presence of Interfaces

$$f = f^0(v, T, Y) + v A f^I(T, Y) + \frac{1}{2} v \sum_{\alpha=1}^N \lambda_{\alpha}(T) (\nabla Y_{\alpha})^2$$

The expression can be derived, using statistical mechanics considerations, directly from the partition function.

Bulk contribution, related to the potential between like-molecules

Interface contribution, related to the repulsive potential between the immiscible components

First-order non-local contribution (Cahn-Hilliard), related to the attractive potential between like molecules.

Mathematical Development (Cont.)

❖ General or Extended Thermodynamics

$$e = e(v, s, Y_{1,2,\dots,N}, \nabla Y_{1,2,\dots,N})$$

$$de = -Pdv + Tds + \sum_{\alpha=1}^N \mu_{\alpha}^0 dY_{\alpha} + \sum_{\alpha=1}^N \bar{\phi}_{\alpha} \cdot d(\nabla Y_{\alpha})$$

- Replace dv/dt , de/dt , $d(Y_{\alpha})/dt$ and ds/dt using continuity, energy, scalar and entropy equations into the above differential equation for de , together with mathematical relation $d(\nabla Y_{\alpha})/dt = \nabla(dY_{\alpha}/dt) - \nabla Y_{\alpha} \cdot \nabla \vec{V}$
Finally, we have

$$\begin{aligned} \Delta_s &= \nabla \cdot \left(\bar{q}_s - \frac{1}{T} \bar{q} + \frac{1}{T} \sum_{\alpha=1}^N \bar{\phi}_{\alpha} \nabla \cdot \bar{J}_{\alpha} + \frac{1}{T} \sum_{\alpha=1}^N \mu_{\alpha} \bar{J}_{\alpha} \right) - \sum_{\alpha=1}^N \bar{J}_{\alpha} \cdot \nabla \left(\frac{\mu_{\alpha}}{T} \right) + \left(\bar{q} - \sum_{\alpha=1}^N \bar{\phi}_{\alpha} \nabla \cdot \bar{J}_{\alpha} \right) \cdot \nabla \left(\frac{1}{T} \right) \\ &\quad \frac{1}{T} \left[\underline{\underline{\sigma}}^r + P \underline{\underline{I}} + \rho \sum_{\alpha=1}^N (\nabla Y_{\alpha} \otimes \bar{\phi}_{\alpha}) \right] : \nabla \vec{V} + \frac{1}{T} \sum_{\alpha=1}^N \bar{F}_{\alpha} \cdot \bar{J}_{\alpha} + \frac{1}{T} \underline{\underline{\sigma}}^v : \nabla \vec{V} \end{aligned}$$

where $\mu_{\alpha} = \mu_{\alpha}^0 - \nabla \cdot (\rho \bar{\phi}_{\alpha}) / \rho$ is the **generalized chemical potential**

- Second-Law of thermodynamics** requires $\Delta_s \geq 0$ for any process. Since the viscous stress tensor should satisfy $\underline{\underline{\sigma}}^v : \nabla \vec{V} \geq 0$, after some manipulations, the condition can be written like this:

$$\left(\bar{q} - \sum_{\alpha=1}^N \bar{\phi}_{\alpha} \nabla \cdot \bar{J}_{\alpha} - \sum_{\alpha=1}^N \bar{J}_{\alpha} \mu_{\alpha} \right) \cdot \left(\frac{\nabla T}{T} \right) + \sum_{\alpha=1}^N \bar{J}_{\alpha} \cdot (\nabla \mu_{\alpha} - \bar{F}_{\alpha}) \leq 0$$

Mathematical Development (Cont.)

- With the generalized Helmholtz free energy (f), we can rewrite the inequality equation required by second-law of thermodynamics, after separating individual contributions to the chemical potential

$$\bar{J}_q \cdot \left(\frac{\nabla T}{T} \right) + \sum_{\alpha=1}^N \bar{J}_\alpha \cdot \left[\left(\nabla \mu_\alpha \right)_T - \bar{F}_\alpha \right] \leq 0$$

where $\bar{J}_q = \bar{q} - \sum_{\alpha=1}^N \lambda_\alpha (\nabla Y_\alpha) \nabla \cdot \bar{J}_\alpha - \sum_{\alpha=1}^N \bar{J}_\alpha \left[\mu_\alpha^{02} - T \left(\partial \mu_\alpha^{02} / \partial T \right)_{v, Y, \nabla Y_\alpha} \right] - \sum_{\alpha=1}^N \bar{J}_\alpha \left[\mu_\alpha^{01} - T \left(\partial \mu_\alpha^{01} / \partial T \right)_{p, Y} \right]$ is the generalized heat flux. $\mu_\alpha^{01} = \left(\partial f^0 / \partial Y_\alpha \right)_{v, T, Y_{\beta \neq \alpha}}$ is the classical chemical potential and $\mu_\alpha^{02} = v \left[A \partial f^I (T, Y) / \partial Y_\alpha - \lambda_\alpha \nabla^2 Y_\alpha - \nabla \lambda_\alpha \cdot \nabla Y_\alpha \right]$ is the chemical potential related to the interface and Cahn-Hilliard contributions. The generalized chemical potential is $\mu_\alpha = \mu_\alpha^{01} (v, T, Y) + \mu_\alpha^{02} (v, T, Y, \nabla Y_\alpha)$

❖ General Near-Equilibrium Solutions of the inequality equation

$$\bar{J}_\alpha = - \sum_{k=1}^N a_{\alpha k} \left[\left(\nabla \mu_k \right)_T - \bar{F}_k \right] - D_\alpha^T \left(\frac{\nabla T}{T} \right) \quad \text{and} \quad \bar{J}_q = - \sum_{k=1}^N D_k^T \left[\left(\nabla \mu_k \right)_T - \bar{F}_k \right] - r \left(\frac{\nabla T}{T} \right) \quad (\text{Onsager relations})$$

- The second law imposes restrictions on the values of the coefficients.
- After using basic thermodynamic relations, Onsager's symmetry principle, and a series of mathematical manipulations, finally we have the expression for species mass flux \bar{J}_α and heat flux \bar{q}

Mathematical Development (Cont.)

$$X_\alpha \frac{(\nabla a_\alpha)_{T,p}}{a_\alpha} = \sum_{\beta=1}^N \frac{X_\alpha X_\beta}{D_{\alpha\beta}} (\bar{V}_\beta^* - \bar{V}_\alpha^*) + \frac{p}{nR^0 T} (1 - \rho v_\alpha) Y_\alpha \left(\frac{\nabla p}{p} \right) + \left(\frac{\rho}{nR^0 T} \right) \sum_{\beta=1}^N Y_\alpha Y_\beta (\bar{F}_\alpha - \bar{F}_\beta) + \sum_{\beta=1}^N \frac{X_\alpha X_\beta}{\rho D_{\alpha\beta}} \left(\frac{D_\beta^T}{Y_\beta} - \frac{D_\alpha^T}{Y_\alpha} \right) \left(\frac{\nabla T}{T} \right)$$

$$\bar{J}_\alpha = \bar{J}_\alpha^* - \sum_{k=1}^N a_{\alpha k} (\nabla \mu_k^{02})_T \quad \text{and} \quad \bar{V}_\alpha^* = \bar{J}_\alpha^* / (\rho Y_\alpha)$$

$$\begin{aligned} \bar{q} = & R^0 T \sum_{\alpha=1}^N \sum_{\beta=1}^N \frac{X_\beta D_\alpha^T}{W_\alpha D_{\alpha\beta}} (\bar{V}_\alpha^* - \bar{V}_\beta^*) + \sum_{\alpha=1}^N \bar{J}_\alpha \left[\mu_\alpha^{01} - T \left(\partial \mu_\alpha^{01} / \partial T \right)_{p,Y} \right] - \kappa \nabla T \\ & + \nu \sum_{\alpha=1}^N \lambda_\alpha \cdot (\nabla Y_\alpha) (\nabla \cdot \bar{J}_\alpha) + \sum_{\alpha=1}^N \bar{J}_\alpha \left[\mu_\alpha^{02} - T \left(\partial \mu_\alpha^{02} / \partial T \right)_{v,Y,\nabla Y_\alpha} \right] - \sum_{\alpha=1}^N D_\alpha^T (\nabla \mu_\alpha^{02})_T + T \nu \sum_{\alpha=1}^N \bar{J}_\alpha \left[O \left(\partial f^I / \partial T \right) + O \left(d \lambda_\alpha / d T \right) \right] \end{aligned}$$

❖ Compressible Generalized Cahn-Hilliard Navier-Stokes Equations (CGCHNS)

Continuity :

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{V}) = 0$$

Momentum :

$$\frac{\partial}{\partial t} (\rho \bar{V}) + \nabla \cdot (\rho \bar{V} \otimes \bar{V}) = -\nabla p + \sum_{\alpha=1}^N \rho \mu_\alpha^{02} \nabla Y_\alpha + \nabla \cdot \underline{\underline{\sigma}}^v + \rho \sum_{\alpha=1}^N Y_\alpha \bar{F}_\alpha + \left[O \left(\frac{\partial f^I}{\partial T} \right) + O \left(\frac{\partial \lambda_\alpha}{\partial T} \right) \right]$$

Energy :

$$\begin{aligned} \frac{\partial}{\partial t} (\rho e^0) + \nabla \cdot (\rho e^0 \bar{V}) = & -\nabla \cdot \left(\bar{q} - \nu \sum_{\alpha=1}^N \lambda_\alpha \nabla Y_\alpha \nabla \cdot \bar{J}_\alpha \right) - p \nabla \cdot \bar{V} + \sum_{\alpha=1}^N \mu_\alpha^{02} \nabla \cdot \bar{J}_\alpha + \underline{\underline{\sigma}}^v : \nabla \bar{V} + \sum_{\alpha=1}^N \bar{F}_\alpha \cdot \bar{J}_\alpha \\ & + T \left[O \left(\partial f^I / \partial T \right) + O \left(\partial^2 f^I / \partial T^2 \right) + O \left(d \lambda_\alpha / \partial T \right) + O \left(d^2 \lambda_\alpha / \partial T^2 \right) \right] \end{aligned}$$

Species mass fraction :

$$\frac{\partial}{\partial t} (\rho Y_\alpha) + \nabla \cdot (\rho Y_\alpha \bar{V}) = -\nabla \cdot \bar{J}_\alpha$$

Mathematical Development (Cont.)

- ❖ **Incompressible Generalized Cahn-Hilliard Navier-Stokes Equations (IGCHNS)**
 - The incompressible limit is obtained as the rigorous infinite sound of speed limit. Here, we choose $T \rightarrow \infty$ and $\partial p / \partial T \rightarrow \text{const}$ ([Livescu, Phil. Trans. R. Soc. A, 2013](#)). Also, the interfacial Helmholtz free energy loses temperature dependence, i.e. $f^I \rightarrow f^{I*}(Y)$ and $\lambda_\alpha \rightarrow \lambda_\alpha^*$
 - The **Continuity** and **Momentum** equations maintain the same formulations as in compressible flows.
 - The **internal energy equation** and **species mass fraction equations** are reduced to an identical expression for the velocity divergence :
- For simplicity, assume **ideal-gas equation of state (EOS)**. This is then reduced to

$$\nabla \cdot \bar{V} = -\nabla \cdot \left[\sum_{\alpha=1}^N \left(\frac{\bar{J}_\alpha}{\rho_\alpha^*} \right) \right]$$

where $\rho_\alpha^* = W_\alpha (\partial p / \partial T) / R^0$ is the micro-density of species α

- The number of species mass fraction equations needed to be considered is **(N-2)** and the formulation for the species mass flux is reduced to:

$$\bar{J}_\alpha = \bar{J}_\alpha^* - \sum_{k=1}^N a_{\alpha k} (\nabla \mu_k^{02})_T$$

$$\nabla X_\alpha = \sum_{\beta=1}^N \frac{X_\alpha X_\beta}{D_{\alpha\beta}} (\bar{V}_\beta^* - \bar{V}_\alpha^*) \quad \text{and} \quad \bar{V}_\alpha^* = \bar{J}_\alpha^* / (\rho Y_\alpha)$$

UNCLASSIFIED

Mathematical Development (Cont.)

❖ Incompressible Cahn-Hilliard Navier-Stokes Equations for Binary Fluids

(unlike previous studies, these equations allow arbitrary density ratios).

Continuity :

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$$

Momentum :

$$\frac{\partial}{\partial t}(\rho \vec{V}) + \nabla \cdot (\rho \vec{V} \otimes \vec{V}) = -\nabla p + A \left(\frac{\rho_1^* \rho_2^*}{\rho_2^* - \rho_1^*} \right) \tilde{\mu} \nabla \left(\frac{1}{\rho} \right) + \nabla \cdot \underline{\underline{\sigma}}^v + \rho \vec{g}$$

Divergence condition:

$$\nabla \cdot \vec{V} = -\nabla \cdot \left[D^m \nabla \ln \rho \right] + \left(\frac{\rho_2^* - \rho_1^*}{\rho_1^* \rho_2^*} \right) \nabla \cdot \left[\bar{D}' \nabla \left(\frac{1}{\rho} \tilde{\mu} \right) \right]$$

Pure miscible flow: $\bar{D}' = 0$

Pure immiscible flow: $D^m = 0$

- A simple model for the repulsive interface free energy $f'^*(Y)$ is a double-well function, for which the corresponding chemical potential is

$$\tilde{\mu} = Y_1(Y_1 - 1)(Y_1 - 1/2) - \bar{\lambda} \nabla^2 Y_1$$

- The species mass fraction equation for pure immiscible flow becomes:

$$\frac{dY_1}{dt} = \frac{1}{\rho} \nabla \cdot \left[\bar{D}' \nabla \left(\frac{1}{\rho} \tilde{\mu} \right) \right]$$

For arbitrary density and mobility coefficient \bar{D}' , the equilibrium condition is $\tilde{\mu}_{eq} = 0$

❖ Sharp Interface analysis for Binary immiscible Fluids

- The species equation for immiscible flows has an **near equilibrium** solution which converges to the sharp interface equilibrium solution as the interface thickness goes to zero ($\varepsilon \rightarrow 0$)

Mathematical Development (Cont.)

$$Y_{eq} = \frac{1}{2} \left[1 + \tanh \left(\frac{\phi(\underline{x})}{\varepsilon} \right) \right] \quad |\phi(\underline{x})| = 1$$

$$\varepsilon = 2\sqrt{2\lambda}$$

Signed distance function
Parameter control
interface thickness

- And the corresponding chemical potential is

$$\tilde{\mu}_{eq} = -\varepsilon \cdot \kappa(\phi) \left[1 - \tanh^2 \left(\phi(\underline{x}) / \varepsilon \right) \right] / 16 \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0$$

- By implementing the equilibrium solution into the incompressible Cahn-Hilliard Navier-Stokes equation, the divergence condition approaches the divergence free condition:

$$\nabla \cdot \vec{V} = O(\varepsilon) \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0$$

- and the continuity equation for the equilibrium solution approaches the classical level set equation:

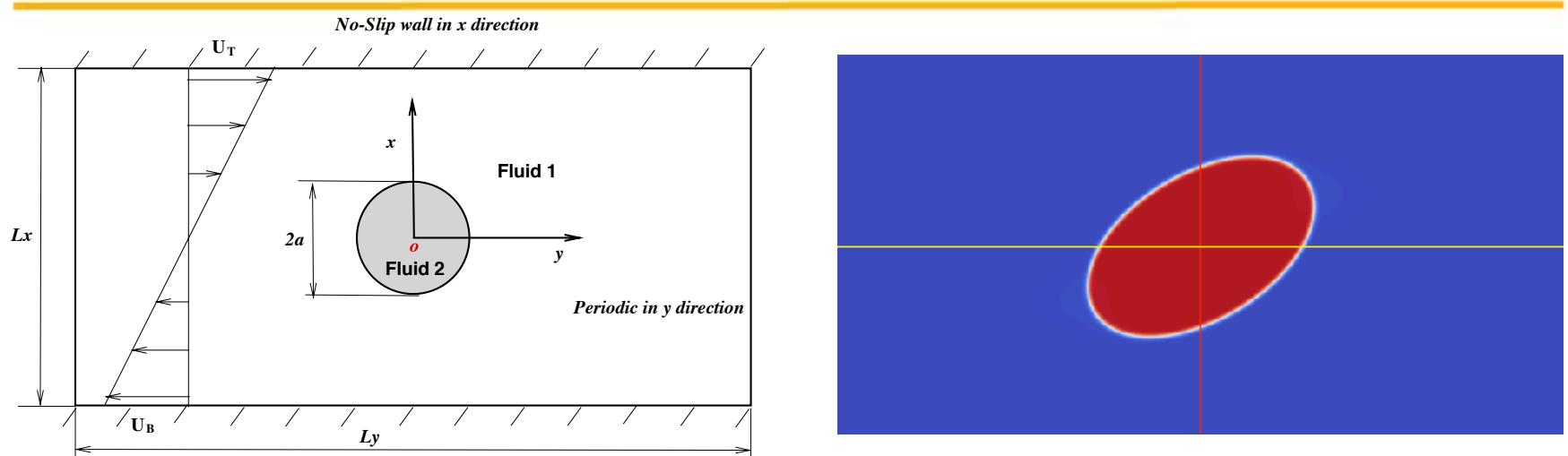
$$\frac{\partial \phi}{\partial t} + (\vec{V} \cdot \nabla) \phi = O(\varepsilon) \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0$$

- For the near-equilibrium solution, the surface tension force in the momentum equation can be rewritten as:

$$\vec{F}_s = A \left(\frac{\rho_1^* \rho_2^*}{\rho_2^* - \rho_1^*} \right) \tilde{\mu} \nabla \left(\frac{1}{\rho} \right) = -T_s \cdot \delta_\varepsilon \cdot \kappa(\phi) \nabla \phi$$

where $\kappa(\phi) = \nabla \cdot (\nabla \phi / |\nabla \phi|)$ is the interface curvature and $\delta_\varepsilon = 3[1 - \tanh^2(\phi / \varepsilon)] / (4\varepsilon)$ is an approximation of the Dirac delta function with properties: $\int_{-\infty}^{+\infty} \delta_\varepsilon(\phi) d\phi = 1$

Drop Deformation in Shear Flow



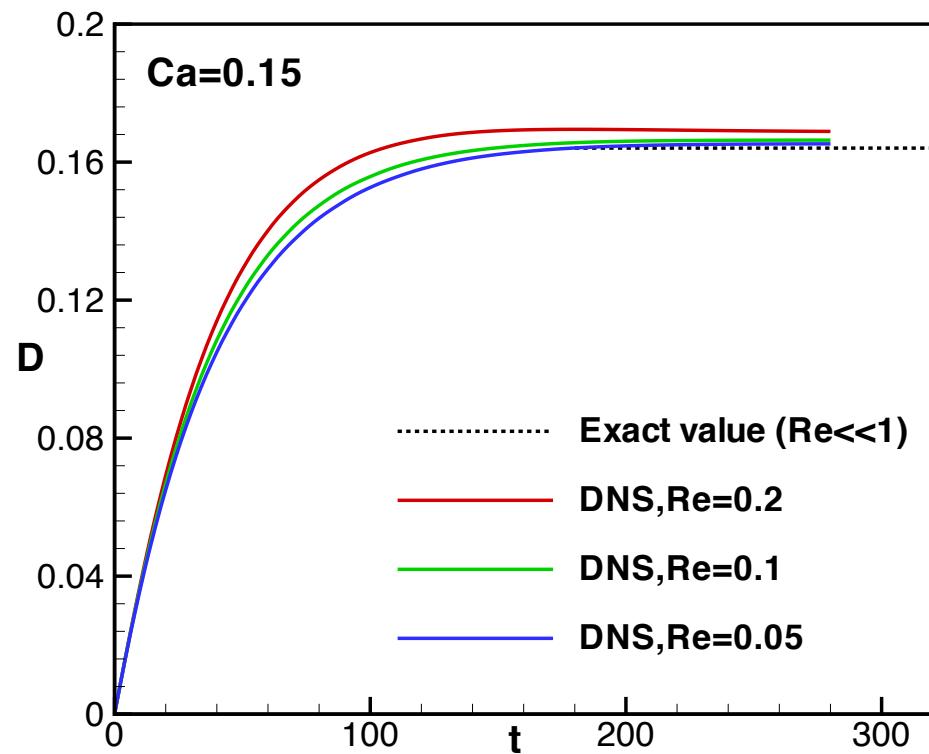
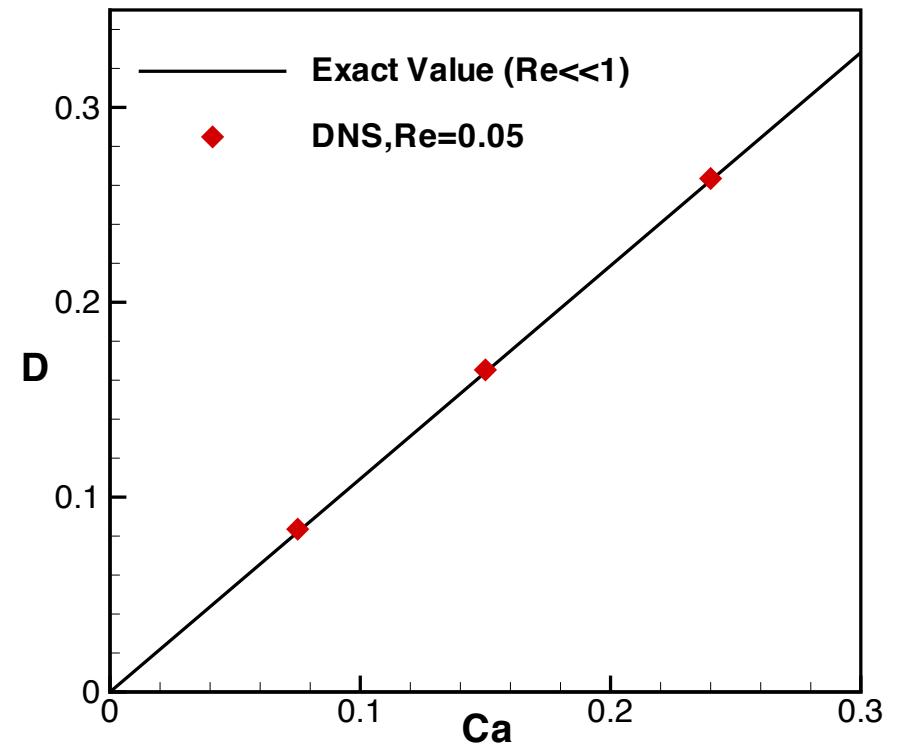
- For a given Reynolds number, there is a critical Capillary number Ca_{\max} and the drop deforms and reaches a stationary deformed shape when $Ca < Ca_{\max}$
- When the Reynolds is small enough ($Re \ll 1$), the flow becomes Stokes or creeping flow in which the drop deformation parameter D is related to the Capillary number Ca (**G. I. Taylor, Proc. R. Soc. Lond. A, 1934**) as:

$$D = \frac{L - B}{L + B} = \frac{19(\eta_2 / \eta_1) + 16}{16(\eta_2 / \eta_1) + 16} C_a$$

Where L and B are the longest and shortest axes of the ellipsoid (the steady deformed shape).

η_1 and η_2 are the viscosities of fluid 1 and fluid 2, respectively.

Drop Deformation (Cont.)



Incompressible & Immiscible Rayleigh-Taylor Instability

❖ Linear Stability Theory (LST) for Rayleigh-Taylor Instability with zero-thickness

- If the initial perturbations of the interface are small, then, at early time, the mixing layer width grows exponentially with time

$$H(t) = h_0 \cosh[n(t - t_0)] + \frac{u_0}{n} \sinh[n(t - t_0)]$$

- The exponential growth rate of immiscible Rayleigh-Taylor instability is given implicitly in an algebraic equation ([Chandrasekhar, Hydrodynamics and Hydromagnetic Stability, 1981](#))

$$\begin{aligned} & - \left\{ \frac{gk}{n^2} \left[\left(\alpha_1 - \alpha_2 \right) + \frac{k^2 T_s}{g(\rho_1 + \rho_2)} \right] + 1 \right\} (q - k) - \frac{4k^2 \nu}{n} (\alpha_1 - \alpha_2)^2 (q - k) + \\ & \quad \frac{4k^3 \nu^2}{n^2} (\alpha_1 - \alpha_2)^3 (q - k)^2 - 4k\alpha_1\alpha_2 = 0 \end{aligned}$$

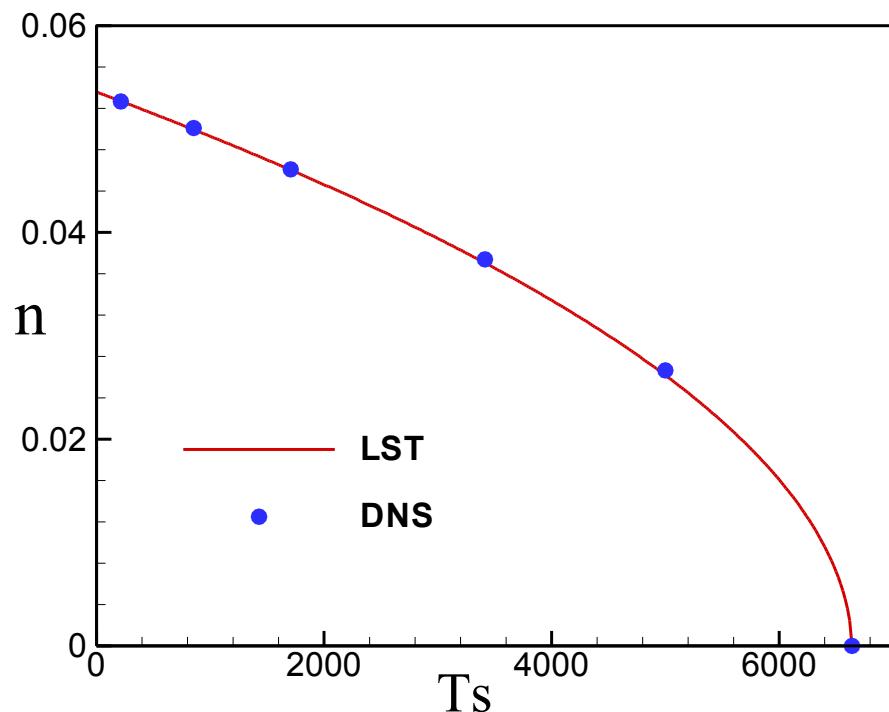
❖ Direct Numerical Simulation (DNS) using incompressible Cahn-Hilliard Navier-Stokes equations

- Fixed Density ratio $\rho_2 / \rho_1 = 3$ or Atwood number $A = 0.5$
- The ratio of mesh grid in vertical direction to horizontal direction is $\Delta_v / \Delta_h = 0.8$ and the initial interface thickness is $\delta_0 = 8\Delta_v$
- The resolution is chosen based on the condition: the ratio of interface thickness to wavelength

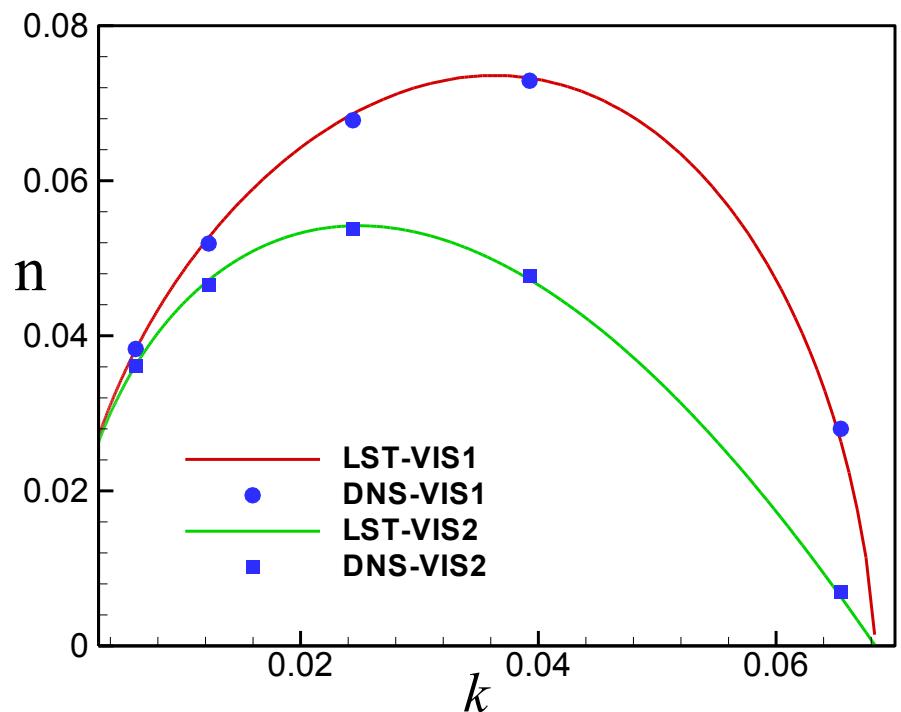
$$\delta_0 / \lambda_L \leq 1\%$$

Rayleigh-Taylor Instability

For fixed wavenumber k and viscosity ν

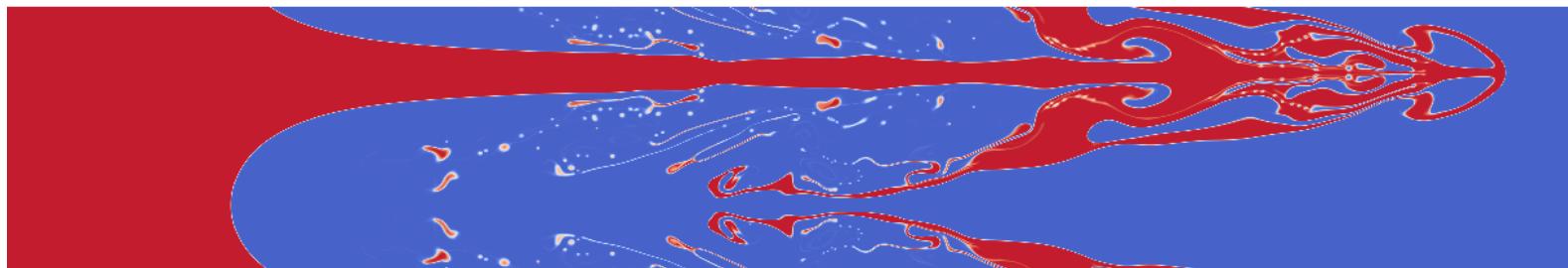


For fixed surface tension coefficient T_s

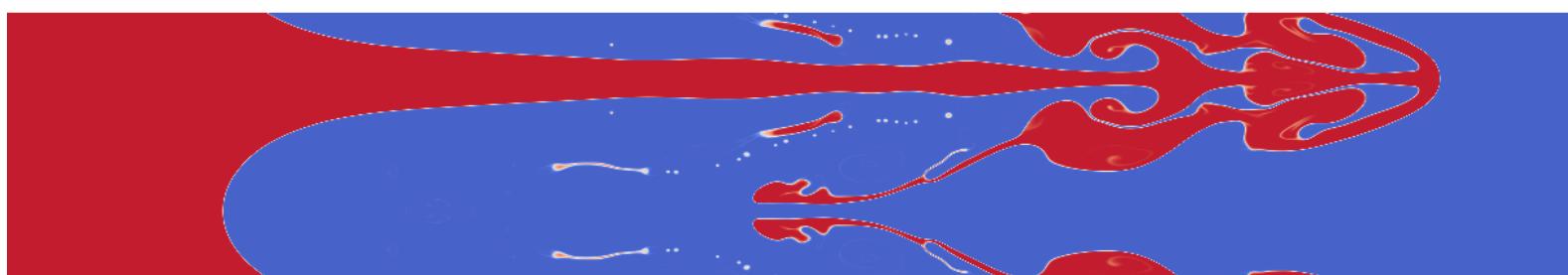


Rayleigh-Taylor Instability (Cont.)

- ❖ Late time Rayleigh-Taylor Instability results

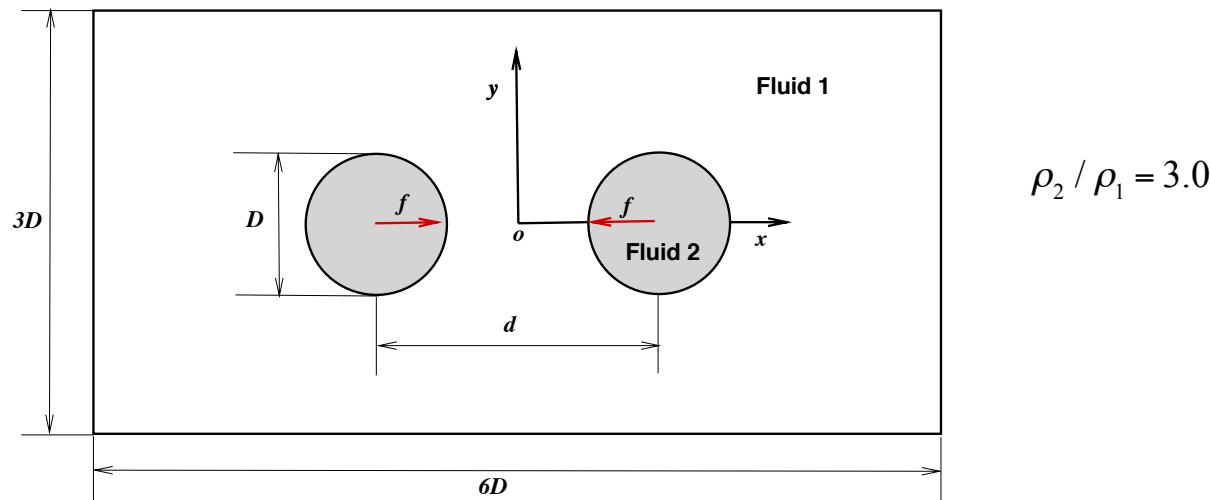


$T_S = 214$



$T_S = 856$

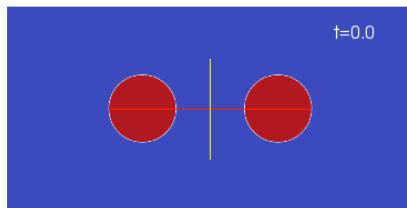
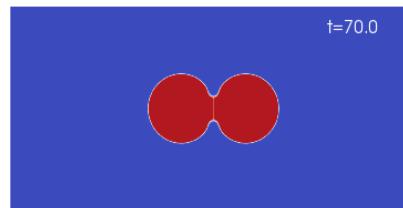
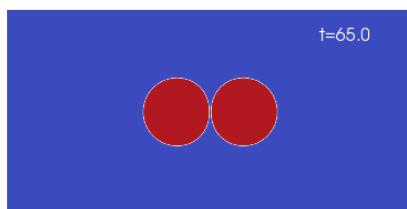
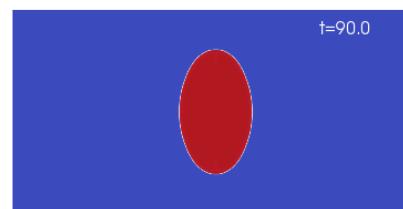
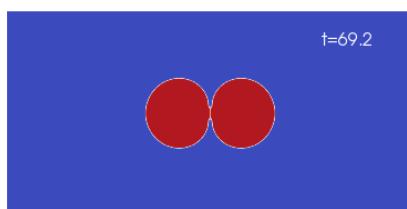
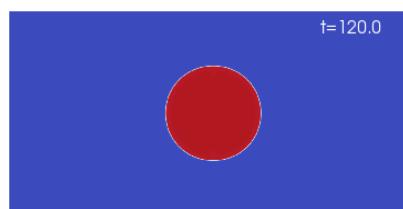
Head-on Coalescence of Drops



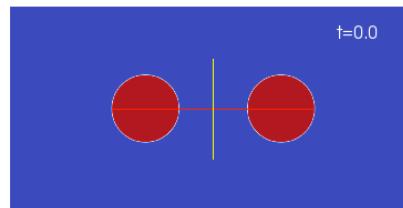
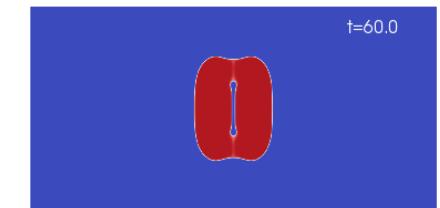
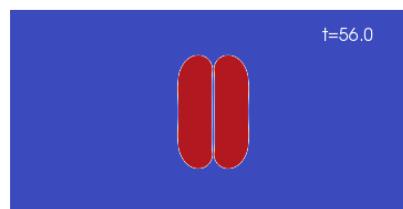
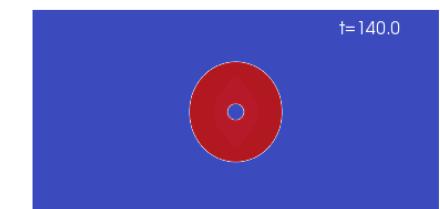
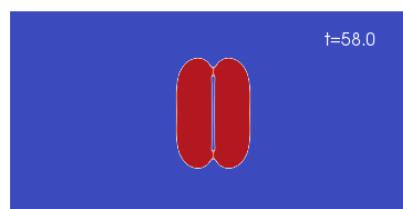
- **Purpose:** Show the capability of our approach in handling the singular topological changes during interface reconnection as well as breakup.
- In reality, the rupture or reconnection of interface is the interplay between **repulsive** and **attractive forces between molecules** of the two drops, which are represented by f and **Cahn-Hilliard** terms in the **Helmholtz free energy (f)** given before.
- A external body force $f = -C_0\rho\text{sign}(x - x_0)(1 - Y_1)$ is enforced to move the drops toward each other and turned off right before the drops approach together.

Head-on Coalescence of Drops Results

Re = 40.0, We=4.0



Re = 40.0, We=16.0



Previous studies with single point contact:
e.g. Nobari et al, Phys. Fluids, 1996, **Front-tracking, artificial rupturing needed.**

Previous study with double-point contact:
Yue et al, J. Fluid Mech., 2004, **Diffuse-interface but for constant density only.**

Non-diffuse interface cannot capture double point contact with trap of matrix fluid

Slide 16

Summary

- ❑ For the first time, the compressible generalized Cahn-Hilliard Navier-Stokes (CGCHNS) equations are derived from basic thermodynamics for multi-component ($N \geq 2$) flows.
- ❑ For the first time, the incompressible generalized Cahn-Hilliard Navier-Stokes (IGCHNS) equations are rigorously derived as the incompressible limit of CGCHNS. The equations can address fluids with arbitrary density ratios.
- ❑ The Cahn-Hilliard Navier-Stokes equations can naturally handle complex interface deformation, including merging and breaking.
- ❑ Both the compressible and incompressible Cahn-Hilliard Navier-Stokes equations have been implemented into the CFDNS code.
- ❑ For the first time, extensive comparisons with Linear Stability Theory (LST) for the immiscible Rayleigh-Taylor instability are presented. Simulations using the incompressible Cahn-Hilliard Navier-Stokes equations reproduce the LST predictions. The equations have also been tested in several other immiscible flow problems.