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Objectives and Approach 

v  Current numerical approaches and their limitations 
Ø  Sharp Interface Methods (zero interface thickness) 

§  Front tracking 
§  Volume of Fluid (VOF) 
§  Level Set Method       

Ø  Diffuse Interface Methods (non-zero interface thickness) 
§  Conventional Cahn-Hilliard (CH) Method           

Ø  Non-continuum Methods 
§  Lattice-Boltzmann Method             

v  Generalized Cahn-Hilliard Navier-Stokes equations 
Ø  Mathematical derivation of general equations (physically consistent) describing multi-

component (N ≥2)  compressible flows from basic thermodynamics (CGCHNS-Compressible 
Generalized Cahn-Hilliard Navier-Stokes equations)  

Ø  Rigorous derivation of general equations describing multi-component (N ≥2) incompressible 
flows by taking the incompressible limit of the above compressible equations (IGCHNS-
Incompressible Generalized Cahn-Hilliard Navier-Stokes equations)  

Ø  Both CGCHNS and IGCHNS equations can describe flows with arbitrary density ratios, such 
as the Rayleigh-Taylor instability, and naturally handle complex topological changes of the 
interface. 
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Mathematical Development 

v General Conservation Equations for Multi-Component Flows 
∂ρ
∂t
+∇⋅ ρ


V( ) = 0

∂
∂t

ρ

V( )+∇⋅ ρ


V ⊗


V( ) =∇⋅σ + ρ Yα


Fα

α=1

N

∑
∂
∂t

ρe( )+∇⋅ ρe

V( ) =σ :∇


V −∇⋅ q + ρ Yα


Fα

α=1

N

∑ ⋅

Vα

∂
∂t

ρYα( )+∇⋅ ρYα

V( ) = −∇⋅


Jα = −∇⋅ ρYα


Vα( )

∂
∂t

ρs( )+∇⋅ ρs

V( ) = −∇⋅ qs +Δs

Continuity : 

Momentum : 

Energy : 

Species mass fraction : 

Entropy : 

v Specific Helmholtz Free Energy Accounting for the Presence of Interfaces  

f = f 0 v,T ,Y( )+ vAf I T ,Y( )+ 12 v λα T( ) ∇Yα( )
2

α=1

N

∑
The expression can be derived, using 
statistical mechanics considerations,  
directly from the partition function. 

Bulk contribution, 
related to the  
potential between 
like-molecules    

Interface contribution, 
related to the repulsive 
potential between the 
immiscible components 

First-order non-local contribution 
(Cahn-Hilliard), related to the 
attractive potential between like 
molecules. 
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Mathematical Development (Cont.) 

Δs =∇⋅
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1
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φα∇⋅
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1
T

µα
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Jα
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N

∑
α=1
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*
++−


Jα ⋅∇

µα
T

&

'
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*
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α=1

N

∑ +
q −


φα∇⋅


Jα

α=1

N

∑
&

'
((

)

*
++⋅∇

1
T
&

'
(

)

*
+

1
T
σ r + PI + ρ ∇Yα ⊗


φα( )

α=1

N

∑
-

.
/
/

0

1
2
2
:∇

V + 1

T

Fα ⋅

Jα +

1
T
σ v :∇


V

α=1

N

∑

µα = µα
0 −∇⋅ ρ


φα( ) / ρ   where                                 is the generalized chemical potential 

§  Second-Law of thermodynamics requires           for any process. Since the viscous stress tensor 
should satisfy                 , after some manipulations, the condition can be written like this: 

Δs ≥ 0
σ v :∇


V ≥ 0

q −

φα∇⋅


Jα −


Jαµα

α=1

N

∑
α=1

N

∑
%

&
''

(

)
**⋅

∇T
T

%

&
'

(

)
*+


Jα ⋅ ∇µα −


Fα( )

α=1

N

∑ ≤ 0

de = −Pdv +Tds+ µα
0

α=1

N

∑ dYα +

φα ⋅d ∇Yα( )

α=1

N

∑
§  Replace dv/dt, de/dt, d(Yα )/dt and ds/dt using continuity, energy, scalar and entropy equations into the 

above differential equation for de, together with mathematical relation  
      Finally, we have 

d ∇Yα( ) / dt =∇ dYα / dt( )−∇Yα ⋅∇

V

e = e v,s,Y1,2,....,N ,∇Y1,2,...,N( )
v  General or Extended Thermodynamics 
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§  With the generalized Helmholtz free energy (f), we can rewrite the inequality equation required by 
second-law of thermodynamics, after separating individual contributions to the chemical potential 


Jq ⋅

∇T
T

#

$
%

&

'
(+


Jα ⋅ ∇µα( )T −


Fα

*
+

,
-

α=1

N

∑ ≤ 0

   where                                                                                                                      is the generalize   

  heat flux.                              is the classical chemical potential and  

  is the chemical potential related to the interface and Cahn-Hilliard contributions. The generalized  

  chemical potential is                             

 


Jq =
q − λα ∇Yα( )∇⋅


Jα −


Jα µα

02 −T ∂µα
02 / ∂T( )v ,Y ,∇Yα

%
&'

(
)*
−

Jα µα

01 −T ∂µα
01 / ∂T( ) p,Y

%
&'

(
)*

α=1

N

∑
α=1

N

∑
α=1

N

∑

µα
01 = ∂f 0 / ∂Yα( )v ,T ,Yβ≠α µα

02 = v A∂f I T ,Y( ) / ∂Yα −λα∇2Yα −∇λα ⋅∇Yα%
&

'
(

µα = µα
01 v,T ,Y( )+µα02 v,T ,Y ,∇Yα( )

v  General Near-Equilibrium Solutions of the inequality equation 

Jα = − aαk

k=1

N

∑ ∇µk( )T −

Fk

$
%

&
'−Dα

T ∇T
T

(

)
*

+

,
-


Jq = − Dk

T

k=1

N

∑ ∇µk( )T −

Fk

$
%

&
'− r

∇T
T

(

)
*

+

,
-

§  The second law imposes restrictions on the values of the coefficients. 

§  After using basic thermodynamic relations, Onsager’s symmetry principle, and a series of 
mathematical manipulations, finally we have the expression for species mass flux       and heat flux  

and 


Jα

q

(Onsager relations) 
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v  Compressible Generalized Cahn-Hilliard Navier-Stokes Equations (CGCHNS) 
∂ρ
∂t
+∇⋅ ρ


V( ) = 0

∂
∂t

ρ

V( )+∇⋅ ρ


V ⊗


V( ) = −∇p+ ρµα

02∇Yα
α=1

N

∑ +∇⋅σ v + ρ Yα

Fα

α=1

N

∑ + O ∂f I

∂T

'

(
)

*

+
,+O

∂λα
∂T

'

(
)

*

+
,

-

.
/
/

0

1
2
2

∂
∂t

ρe0( )+∇⋅ ρe0

V( ) = −∇⋅ q − v λα∇Yα∇⋅


Jα

α=1

N

∑
&

'
((

)

*
++− p∇⋅


V + µα

02∇⋅

Jα

α=1

N

∑ +σ v :∇

V +


Fα

α=1

N

∑ ⋅

Jα

+T O ∂f I / ∂T( )+O ∂2 f I / ∂T 2( )+O dλα / ∂T( )+O d 2λα / ∂T
2( ),

-
.
/

∂
∂t

ρYα( )+∇⋅ ρYα

V( ) = −∇⋅


Jα

Continuity : 

Momentum : 

Energy : 

Species mass fraction : 

Xα

∇aα( )T ,p
aα

=
XαX β

Dαββ=1

N

∑

Vβ
* −

Vα
*( )+ p

nR0T
1− ρvα( )Yα

∇p
p

$

%
&

'

(
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ρ
nR0T
$

%
&

'

(
) YαYβ


Fα −


Fβ( )+

XαX β
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Dβ
T

Yβ
−
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T

Yα

$

%
&
&

'

(
)
)
∇T
T

$

%
&

'

(
)

β=1

N

∑
β=1

N

∑


Jα =


Jα
* − aαk ∇µk

02( )T
k=1

N

∑ and 

Vα
* =

Jα
* / ρYα( )

q = R0T
X βDα

T

WαDαβ


Vα
* −

Vβ
*( )

β=1

N

∑
α=1

N

∑ +

Jα µα

01 −T ∂µα
01 / ∂T( ) p,Y

$
%&

'
()

α=1

N

∑ −κ∇T

+v λα ⋅ ∇Yα( ) ∇⋅

Jα( )

α=1

N

∑ +

Jα µα

02 −T ∂µα
02 / ∂T( )v ,Y ,∇Yα

$
%&

'
()

α=1

N

∑ − Dα
T ∇µα

02( )T
α=1

N

∑ +Tv

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(
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v  Incompressible Generalized Cahn-Hilliard Navier-Stokes Equations (IGCHNS) 
§  The incompressible limit is obtained as the rigorous infinite sound of speed limit. Here, we choose 

                  and                          (Livescu, Phil. Trans. R. Soc. A, 2013). Also, the interfacial Helmholtz 

    free energy loses temperature dependence, i.e.                       and             

§  The Continuity and Momentum equations maintain the same formulations as in compressible flows. 

§  The internal energy equation and species mass fraction equations are reduced to an identical 
expression for the velocity divergence : 

 

§  For simplicity, assume ideal-gas equation of state (EOS). This is then reduced to  

      where                                is the micro-density of species  

§  The number of species mass fraction equations needed to be considered is (N-2) and the formulation 
for the species mass flux is reduced to: 

 

 

T→∞ ∂p /∂T→ const

∇⋅

V = −∇⋅


Jα
ρα
*

$

%
&&

'

(
))

α=1

N

∑
+

,
-
-

.

/
0
0

1
ρ
=

Yα
ρα
*

α=1

N

∑

∇Xα =
XαX β

Dαββ=1

N

∑

Vβ
* −

Vα
*( )


Jα =


Jα
* − aαk

k=1

N

∑ ∇µk
02( )T

Vα
* =

Jα
* / ρYα( )and 

f I → f I* Y( ) λα → λα
*

ρα
* =Wα ∂p / ∂T( ) / R0 α
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v  Incompressible Cahn-Hilliard Navier-Stokes Equations for Binary Fluids 
(unlike previous studies, these equations allow arbitrary density ratios). 

∂ρ
∂t
+∇⋅ ρ


V( ) = 0

∂
∂t

ρ

V( )+∇⋅ ρ


V ⊗


V( ) = −∇p+ A ρ1

*ρ2
*

ρ2
* − ρ1

*

&

'
((

)

*
++ µ∇

1
ρ

&

'
(

)

*
++∇⋅σ v + ρ

g

∇⋅

V = −∇⋅ Dm∇ lnρ$

%
&
'+

ρ2
* − ρ1

*

ρ1
*ρ2

*

(

)
**

+

,
--∇ ⋅ D

I∇
1
ρ
µ

(

)
*

+

,
-

$

%
.

&

'
/

Continuity : 

Momentum : 

Divergence condition: 

Pure miscible flow:  Pure immiscible flow:  Dm = 0DI = 0

§  The species mass fraction equation for pure immiscible flow becomes: 
dY1
dt

=
1
ρ
∇⋅ DI∇

1
ρ
µ

#

$
%

&

'
(

)

*
+

,

-
.

§  A simple model for the repulsive interface free energy          is a double-well function, for which the 
corresponding chemical potential is 

f I* Y( )

µ =Y1 Y1 −1( ) Y1 −1/ 2( )−λ∇2Y1

v  Sharp Interface analysis for Binary immiscible Fluids 
§  The species equation for immiscible flows has an near equilibrium solution which converges to the 

sharp interface equilibrium solution as the interface thickness goes to zero  (ε→ 0)

      For arbitrary density and mobility coefficient    , the equilibrium condition is  DI µeq = 0
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§  By implementing the equilibrium solution into the incompressible Cahn-Hilliard Navier-Stokes 
equation, the divergence condition approaches the divergence free condition: 

§  and the continuity equation for the equilibrium solution approaches the classical level set equation: 

∇⋅

V =O ε( )→ 0   as  ε→ 0

∂φ
∂t
+

V ⋅∇( )φ =O ε( )→ 0   as  ε→ 0


FS = A

ρ1
*ρ2

*

ρ2
* − ρ1

*

!

"
##

$

%
&& µ∇

1
ρ

!

"
#

$

%
&= −TS ⋅δε ⋅κ φ( )∇φ

κ φ( ) =∇⋅ ∇φ / ∇φ( ) δε = 3 1− tanh
2 φ / ε( )"

#
$
% / 4ε( )

δε−∞

+∞

∫ φ( )dφ =1

Yeq =
1
2
1+ tanh

φ x( )
ε

!

"

#
#

$

%

&
&

'

(

)
)

*

+

,
,

φ x( ) =1 Signed distance function 

ε = 2 2λ
Parameter control 
interface thickness 

§  And the corresponding chemical potential is 

µeq = −ε ⋅κ φ( ) 1− tanh2 φ x( ) / ε( )#
$

%
& /16→ 0   as  ε→ 0

where                              is the interface curvature and                                      is an approximation of 
the Dirac delta function with properties:                            

§  For the near-equilibrium solution, the surface tension force in the momentum equation can be 
rewritten as: 
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                   Drop Deformation in Shear Flow 

§  For a given Reynolds number, there is a critical Capillary number           and the drop deforms and 
reaches a stationary deformed shape when   

§  When the Reynolds is small enough (             ), the flow becomes Stokes or creeping flow in which 
the drop deformation parameter     is related to the Capillary number       (G. I. Taylor, Proc. R. 
Soc. Lond. A, 1934) as: 

              

      Where L and B are the longest and shortest axes of the ellipsoid (the steady deformed shape).  

                     are the viscosities of fluid 1 and fluid 2, respectively. 

D = L− B
L+ B

=
19(η2 /η1)+16
16(η2 /η1)+16

Ca

Fluid 2

Fluid 1

yo2a

x

Lx

Ly

Periodic in y direction

U

U

T

B

No-Slip wall in x direction

!

!

Camax
Ca <Camax

Re <<1
D Ca

η1  and η2
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                     Drop Deformation (Cont.) 

0 100 200 3000
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0.08

0.12

0.16

0.2

Exact value (Re<<1)

DNS,Re=0.2

DNS,Re=0.1

DNS,Re=0.05

D

t

Ca=0.15

!
0 0.1 0.2 0.30

0.1

0.2

0.3
Exact Value (Re<<1)

DNS,Re=0.05

D

Ca !
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Incompressible & Immiscible Rayleigh-Taylor Instability 

v  Linear Stability Theory (LST) for Rayleigh-Taylor Instability with zero-thickness 
§  If the initial perturbations of the interface are small, then, at early time, the mixing layer width 

grows  exponentially with time 

§  The exponential growth rate of immiscible Rayleigh-Taylor instability is given implicitly in an 
algebraic  equation (Chandrasekhar, Hydrodynamics and Hydromagnetic Stability, 1981)   

−
gk
n2

α1 −α2( )+ k 2TS
g ρ1 + ρ2( )

!

"
#
#

$

%
&
&
+1

'
(
)

*)

+
,
)

-)
q− k( )− 4k

2v
n

α1 −α2( )
2
q− k( )+

                                                    4k 3v2

n2
α1 −α2( )

3
q− k( )

2
− 4kα1α2 = 0

H (t) = h0 cosh n(t − t0 )"# $%+
u0
n
sinh n(t − t0 )"# $%

v  Direct Numerical Simulation (DNS) using incompressible Cahn-Hilliard Navier-
Stokes equations 
§  Fixed Density ratio                                                          

§  The ratio of mesh grid in vertical direction to horizontal direction is                    and the initial 
interface thickness is  

§  The resolution is chosen based on the condition: the ratio of interface thickness to wavelength                          	



ρ2 / ρ1 = 3  or  Atwood number  A = 0.5

Δv /Δh = 0.8
δ0 = 8Δv

δ0 / λL ≤1%
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                   Rayleigh-Taylor Instability 

0 2000 4000 60000
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For fixed wavenumber k and viscosity v	
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                Rayleigh-Taylor Instability (Cont.) 

v  Late time Rayleigh-Taylor Instability results 

TS = 214

TS = 856

!
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                          Head-on Coalescence of Drops 

§  Purpose: Show the capability of our approach in handling the singular topological changes 
during interface reconnection as well as breakup. 

§  In reality, the rupture or reconnection of interface is the interplay between repulsive and 
attractive forces between molecules of the two drops, which are represented by fI and Cahn-
Hilliard terms in the Helmholtz free energy (f)  given before. 

§  A external body force                                           is enforced to move the drops toward each other 
and turned off right before the drops approach together. 

              

    

Fluid 2

Fluid 1

f f

y

xoD

y

d

3D

6D

Periodic in both x and y

!

ρ2 / ρ1 = 3.0

f = −C0ρsign(x − x0 )(1−Y1)
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                  Head-on Coalescence of Drops Results 

! !

Re = 40.0,  We=4.0 Re = 40.0,  We=16.0

Previous studies with single point contact: 
e.g. Nobari et al, Phys. Fluids, 1996, Front-
tracking, artificial rupturing needed.          

Previous study with double-point contact: 
Yue et al, J. Fluid Mech., 2004, Diffuse-
interface but for constant density only. 

Non-diffuse interface cannot capture double 
point contact with trap of matrix fluid 
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                                Summary 

q  For the first time, the compressible generalized Cahn-Hilliard Navier-Stokes 
(CGCHNS) equations are derived from basic thermodynamics for multi-
component (N ≥2) flows. 

q  For the first time, the incompressible generalized Cahn-Hilliard Navier-Stokes 
(IGCHNS) equations are rigorously derived as the incompressible limit of 
CGCHNS. The equations can address fluids with arbitrary density ratios. 

q  The Cahn-Hilliard Navier-Stokes equations can naturally handle complex 
interface deformation, including merging and breaking. 

q  Both the compressible and incompressible Cahn-Hilliard Navier-Stokes 
equations have been implemented into the CFDNS code. 

q  For the first time, extensive comparisons with Linear Stability Theory (LST) for 
the immiscible Rayleigh-Taylor instability are presented. Simulations using the 
incompressible Cahn-Hilliard Navier-Stokes equations reproduce the LST 
predictions. The equations have also been tested in several other immiscible flow 
problems. 


