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Genetic analysis of Ca**-signaling in Arabidopsis in response to drought and salt stress
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Foundation (2011-2014)

Overview and Significance- A primary objective of modern agriculture and biofuel production is to utilize
arable land to its fullest potential. However, sub-optimal growing conditions—arising from abiotic stresses such
as drought, soil salinity, low humidity, cold, and heat—reduce crop yield and quality. Optimal yield under both
stressed and non-stressed conditions requires the plant to activate coping mechanisms at a level commensurate
with the severity of the drought stress. The osmotic sensors and associated regulatory mechanisms that initiate
drought- and salt-tolerance responses in plants are largely unknown (Figure 1). My fellowship research aimed to
identify and characterize these initial sensory components.

Research Milestones- Rapid osmotic-induced calcium
responses in Arabidopsis thaliana
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fellowship, I established a system for measuring
osmotic-induced calcium responses in the model plant Arabidopsis thaliana expressing the calcium indicator
aequorin (Figure 2A). Data obtained from these experiments are fed into a detailed R-script analysis that
quantifies over 40 different aspects of the response profiles, including peak amplitudes, rise times, decay
constants, integrated response magnitudes, and principal components.

1) Osmo-sensory potentiation- 1 found that prior exposure of Arabidopsis seedlings to hyper-osmotic stress
potentiates subsequent osmotic-induced calcium responses— amplitudes are larger, and the responses are more
reproducible (Figure 2B). This result points toward a mechanism whereby positive feedback on the sensory
machinery results in more robust activation of downstream responses to subsequent stress (Figure 1).
Interestingly, I found that the abiotic stress hormone abscisic acid (ABA) also potentiates the osmotic-induced
calcium responses. Potentiation by ABA is partially distinct from osmotic-induced potentiation. Through a
collaboration I initiated with Dr. Carlos Guerrero in the Department of Chemistry and Biochemistry at the
University of California, San Diego, we have synthesized the ABA antagonist hexa-sulfanyl-ABA (Takeuchi et
al., 2014) to investigate the ABA-independent potentiation pathway. Other reported “drought-priming” agents
are being evaluated for possible roles in osmo-sensory potentiation, including NO, H»S, H,O,, polyamines, and
acetate (Filippou et al., 2013).

2) Genetics of osmo-sensation- Candidate mutant Arabidopsis lines for genes with the potential to influence
osmo-sensing were tested for osmotic-induced Ca®" responses. While many proposed mechano-sensitive
channel mutants showed no phenotype (Fig. 2C-D), I identified three mutant genes that result in a reduction in
osmotic-induced calcium responses. The first gene, Cyp86al, is necessary for suberin biosynthesis (Hofer et al.,
2008; Li et al., 2007) (Fig. 2E). I hypothesize that the site of osmotic stress perception is located within the root
at- or outside-of the endodermal cell layer, and an increase in hydraulic conductivity at the limits the magnitude
of the perceived water potential difference (Wy,). I have established a collaboration with Professor Niko Geldner
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at The University of Lausanne to test this hypothesis using mutants in genes necessary for biosynthesis of the
Casparian Strip, which provides an independent means to increase root hydraulic conductance (Naseer et al.,
2012). I also identified a mutation in the plasma membrane-localized, mechanosensitive, Tandem-Pore
Potassium Channel #pk4 gene that results in a reduced osmotic-induced calcium response (Maathuis, 2011).
Lastly, through a collaboration with Dr. Hans-Henning Kunz (now at Washington State University), I found an
involvement of the plastidial potassium/proton antiporters KEA1 and KEA2 (Kunz et al., 2014) in regulating
osmotic-induced calcium responses. Preliminary observations indicate that this phenotype may be due to
impaired sensory potentiation rather than a difference in initial sensitivity. Tissue-specific expression of these
genes will be used to determine the site of perception. Work is currently underway to determine the link
between altered intracellular and cell-surface potassium gradients and the osmotic-induced calcium response.
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osmosensory functions. Figure 2. Potentiation of osmotic-induced calcium responses and genetic analyses.

3) Physiological consequences of

altered osmo-sensation- I tested many of the mutants that displayed altered osmotic-induced calcium
responses for downstream effects on drought and osmotic responses. I found that mutant line “9.3C09K” (Fig.
1F), for instance, displayed faster transpiration rates than wildtype in response to water stress (Fig. 3A).
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chirality.

mechanisms may shed light into previously
unknown effects of osmotic stress on molecular interactions and developmental processes. Third, these
mechanisms may provide new insights into the origins of biological chirality and how the environment can
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influence the direction of chirality (Riehl, 2010).
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