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Abstract— Open Automated Demand Response (OpenADR), an
XML-based information exchange model, is used to facilitate
continuous price-responsive operation and demand response
participation for large commercial buildings in New York who
are subject to the default day-ahead hourly pricing. We
summarize the existing demand response programs in New York
and discuss OpenADR communication, prioritization of demand
response signals, and control methods. Building energy
simulation models are developed and field tests are conducted to
evaluate continuous energy management and demand response
capabilities of two commercial buildings in New York City.
Preliminary results reveal that providing machine-readable
prices to commercial buildings can facilitate both demand
response participation and continuous energy cost savings.
Hence, efforts should be made to develop more sophisticated
algorithms for building control systems to minimize customer's
utility bill based on price and reliability information from the
electricity grid.

Index Terms—Price response, demand response, dynamic
pricing, real-time pricing, automated control, energy
management, load management, load shedding, load forecasting,
dynamic response.

I. INTRODUCTION

In order to ensure reliable and affordable electricity, the
flexibility of demand-side resources to respond to the grid
reliability requests and wholesale market conditions is
required (Borenstein et al., 2002; Hirst et al., 2001). Large
customers are often the immediate target for demand response
(DR) because they are major contributors to peak demand for
electricity and they are equipped with centralized building
management system (BMS) to adjust electric loads. However,
much of DR is still manual because most BMS do not have a
built-in capability to support DR participation (i.e., pre-
programmed DR strategies). Hence, providing frequent DR is
a daunting task for many customers, which undermines the
full potential of demand-side management among large
customers. The customer's ability to perform DR can be
significantly improved by enabling automated demand

Rongxin Yin
Research Assistant
Lawrence Berkeley National Laboratory
PhD Student
University of California, Berkeley
Berkeley, CA

Sila Kiliccote
Research Scientist

Lawrence Berkeley National Laboratory
Berkeley, CA

response (Auto-DR) (Piette et al., 2005). By eliminating the
human in the loop, Auto-DR eases the operational burden to
provide frequent DR and reduces the cost associated with
monitoring and responding.

It has been argued that Auto-DR and enabling technologies
would play a critical role in creating price-responsive load
(Goldman et al., 2002). The application of Auto-DR to
dynamic pricing has attracted attention since several states and
utilities deployed full-scale dynamic pricing programs. To
facilitate price and reliability information exchange among
various stakeholders in the electric grid, Lawrence Berkeley
National Laboratory (LBNL) developed Open Automated
Demand Response (OpenADR) (Piette et al, 20009).
OpenADR is an open and interoperable standard that uses an
XML (eXtensible Markup Language) based information
exchange model to send DR requests and pricing signals from
a server (i.e., utility, system operator, aggregator) to a client
(i.e., customer site). Ghatikar et al. (2010) discussed the use of
OpenADR for price response presenting strategies to
operationalize dynamic pricing signals into load control
modes.

Understanding Auto-DR potential in commercial buildings
requires examining the capabilities of existing control systems
and communication protocols. A centralized BMS can
integrate individual control systems/devices to provide greater
controllability and efficiency to building managers. Open
communication protocols allow interoperability between
different vendors’ systems/devices. Therefore, as more
buildings adopt the centralized BMS and open communication
protocols, the cost and time to enable Auto-DR will decrease.
According to the Energy Information Administration’s 2003
Commercial Buildings Energy Consumption Survey
(CBECS), 7% of commercial buildings have BMS which
represents 31% of the national floor space (Kiliccote and
Piette, 2006). This percentage has probably increased by now
since more buildings are built with a BMS or retrofitted with
it. The recent revisions of building energy efficiency standards
now include DR in their specifications. Examples are the
Automated Demand Response section in California’s Title 24-
2013 and the pilot demand response credit in U.S. Green



Building Council’s LEED (Kiliccote et al., 2012). Standards
like these may encourage control vendors to install built-in DR
capabilities in their BMS. In such case, the efforts to
customize DR strategies will be significant reduced.

II. OBJECTIVES AND SIGNIFICANCE

This paper reports on the latest efforts to automate
customer response to price and reliability signals for large
commercial buildings in New York City (NYC). It is
significant in two ways. First, the paper raises the awareness
to key cost challenges for commercial customers who are
subject to the default day-ahead hourly pricing in New York
State (NYS) and provides a practical solution that the facility
can adopt for continuous energy management. Second, it
provides a framework to develop and test control algorithms
that optimize energy use and cost in large commercial
buildings.

A note on terminology: dynamic pricing is referred to
energy prices that are available to customers in regular
intervals no more than a day in advance. In NYS, wholesale
electricity prices are set day-ahead, hour-ahead or in real-time
by the New York Independent System Operator (NYISO)
wholesale markets. In this paper, we focus on day-ahead
hourly pricing, which is the default tariff for large customers
in NYS.

The rest of this paper is organized as follows. In Section II,
we summarize the existing demand response programs in
NYS. In Section III, we discuss OpenADR communication
architecture, prioritization of price and reliability signals, and
control methods for large commercial buildings that
participated in our demonstration project. In Section IV, the
application of Auto-DR under MHP is explored through
energy simulation and field tests of two demonstration
buildings in NYC. Preliminary findings from the
demonstration project are discussed in Section V. Lastly, in
Section VI, we conclude with suggestions for future research
directions.

III. DEMAND RESPONSE IN NEW YORK STATE

In NYS, DR is mainly promoted through reliability-based
programs and dynamic pricing. There are a number of
reliability-based programs offered to customers by NYISO
and utilities, commonly referred to as DR programs. Since the
initial offering in 2001, NYISO's DR program registration has
grown steadily. In 2001, there were approximately 300
participants enrolled in reliability-based programs such as
Special Case Resource/Emergency Demand Response
Program (SCR/EDRP) with the total participating load of 750
MW. By 2011, NYISO had a total of 5,807 participants for the
SCR/EDRP program providing 2,173 MW of curtailable load
(Patton et al., 2012). Most customers in NYS are enrolled in
DR programs through Curtailment Service Providers (CSPs).
CSPs manage a portfolio of DR resources and aggregate
demand reduction to maximize DR compensation. They help
customers assess the DR potential and develop load
curtailment strategies. Contracting a CSP typically means that
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customers meet the minimum shed requirements during the
DR test/event and receive DR compensation in return.

Dynamic pricing is offered to induce price-responsive load,
flattening system demand by applying high prices during peak
periods and low prices during off-peak periods. Pacific Gas
and Electric (PG&E) Critical Peak Pricing and Southern
California Edison's (SCE) Real-Time Pricing are examples of
dynamic pricing. In 2005, the State of New York Public
Service Commission ordered utilities to provide day-ahead
hourly pricing as the default tariff to non-residential customers
whose demand is roughly over 500 kW (NYPSC, 2005). This
tariff is also known as Mandatory Hourly Pricing (MHP).
Although utilities offer MHP as the default service to large
customers, NYS’s retail access policy allow customers to
purchase their energy from any retail third party supplier as an
alternative to the utility. Hence, MHP is not strictly
‘mandatory’. As of 2011, only 15% of the MHP-eligible
customers were enrolled in MHP and the rest (85%) were
retail access customers (Joskon, 2012). The problem of this is
that flat price retail contracts that hedge against price
fluctuations and therefore do a poor job of reflecting
wholesale near-term market prices (day-ahead, hour-ahead and
real-time) (Goldman et al., 2002). They also tend to be
expensive due to the inherent risk of offering a less variable
rate. When retail prices are not tied to wholesale market
variations, they can “inefficiently increase the level of peak
demand by underpricing” electricity and can also “discourage
increased demand during off-peak hours by overpricing it”
(Joskon et al., 2012). Therefore, switching from MHP to a
retail rate can hamper the development of price-responsive
load.

The primary barriers to the adoption of MHP are identified
as the insufficient resources (both labor and equipment) to
monitor hourly prices and inflexible labor schedule (KEMA,
2012). This is not surprising since most customers rely on
manual approach to provide DR. Providing DR manually is a
resource-intensive process. If customers are not capable of
monitoring and responding to hourly price variations, they are
likely to choose a more conventional rate such as a fixed rate.
Moreover, customers have not yet found a compelling
business case to stay with MHP. Many customers presume
that the cost of monitoring and automation outweighs the
potential savings. Even if the savings exist under day-ahead
hourly prices, they are not as obvious and repeatable as the
DR payments because the savings are a function of the market
and are embedded in the total electricity bill. Therefore, in
order to increase the adoption of MHP and dynamic-price
retail contracts, we not only need to make the prices broadly
available and automate customers’ price response but also
effectively communicate potential savings to customers and
ways to achieve it.

In NYC, MHP is billed under Rider M: Day-Ahead Hourly
Pricing from Con Edison where the cost of energy is
calculated based on the customer's actual hourly energy usage
multiplied by NYISO's day-ahead zonal locational based
marginal price (LBMP) (Con Edison). In addition, customers
pay demand charge imposed on the maximum demand of each
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Figure 1. OpenADR communication architecture for the New York City demonstration project.

billing cycle. The demand charge varies depending on the
Time-of-Day (TOD) and season (Con Edison). Based on our
billing analysis, the demand charge accounts for 19% - 55% of
the customer's electric bill depending on time of use. To
reduce the total electric bill, customers need to control their
electric consumption according to the hourly price variations
and limit the building's peak demand during expensive hours.

IV. APPROACH

Since October 2011, the Demand Response Research
Center (DRRC) at LBNL and New York State Energy
Research and Development Authority (NYSERDA) have
conducted a demonstration project enabling automated DR
and price response in large commercial buildings located in
NYC using OpenADR. The recruitment efforts were focused
on large commercial buildings in NYC. Preferences were
given to the buildings that represented the typical construction
of commercial buildings in NYC and previously participated
in DR programs. Four facilities were recruited for the
demonstration project. All of them previously participated in
one or more DR programs through CSPs providing manual
control of HVAC, lighting, and other systems during DR
events. Some also provided manual peak load management.
But because DR was manually performed, the buildings did it
only on hot days or DR event days. They did not do any price
response prior to the demonstration project. The customer’s
participation in this project was driven by the motivation to
automate the control strategies that they used for DR events.
Automation allows building operators to automatically
respond to DR events without having to manually activate
individual control strategies. All facilities are on a retail rate
and are not enrolled in MHP. In this paper, we set out to
investigate a hypothetical scenario wherein the demonstration
buildings purchase electricity under the MHP tariff and
therefore have to respond to the variability of day-ahead
hourly prices.

A. OpenADR Communication Model

To automate price and demand response using OpenADR,
three basic technologies are required: an OpenADR server to
receive reliability and price signals; an OpenADR client at the
facility to receive the reliability and price signals; and a BMS
to program and activate control strategies (Wikler et al.,

2008). We used OpenADR version 1.0 for the demonstration
project. OpenADR version 2.0, available currently, was not
released at the time of the project implementation. Figure 1
shows the OpenADR communication architecture for the
demonstration project. Day-ahead hourly prices are obtained
from NYISO's website and DR test/event notifications are
received from the customer's CSP. Based on the price and
reliability signals, an operation mode is determined for each
hour of the following day. Once the signals are processed, the
OpenADR server sends twenty-four hourly prices and
corresponding operation modes to the facility to activate
preprogrammed control strategies for next day. The OpenADR
server also logs the building’s 15-minute meter data via kyz
pulses and monitors the electric demand throughout the day.
All information exchange is accomplished through a secure
Internet connection with 128-bit Secure Sockets Layer (SSL)
encryption. The facilities can opt-out of Auto-DR at any time
via the OpenADR server’s client interface accessible over the
Internet. The opt-out can be scheduled in advance for a
specified period which can be a few hours or days depending
on the facility's operational needs.

B. Prioritization of DR signals

Three types of DR signals are issued: 1) reliability, 2)
demand limiting, and 3) day-ahead hourly price signals. These
signals are prioritized differently depending on the next day's
DR test/event status as described in Figure 2. For non-DR
test/event days, the facilities respond to price signals until the
building's electric demand exceeds a pre-set threshold, in
which case, the OpenADR server would switch the signal type
from price to demand limiting. When a DR test/event is
issued, the facilities only respond to reliability signals during
the DR test/event period. If the building’s demand exceeds a
pre-set threshold, demand limiting signals would be issued to
reduce the demand. We decided to turn off price signals
during DR test/event days to prevent curtailment activities
affecting the customer baseline. This is applicable to
customers who use morning adjustments to calculate their
energy compensation (i.e., the NYISO's Weather-Sensitive
Customer Baseline) (NYISO).

The reliability, demand limiting, and price signals are
mapped into four levels of operation mode that are tied to
preprogrammed DR strategies via the facility’s BMS.
OpenADR version 1.0 supports following operation modes:



Normal, Moderate, High, and Special (which we call Critical
for the demonstration project).

® Normal indicates the normal operation triggered when
the energy price is acceptable and there is no DR
test/event issued.

®  Moderate indicates the first level of load shed triggered
when the energy price is moderately expensive.

e  High indicates the intermediate level of load shed
triggered when the energy price is highly expensive.
High is also triggered when electric demand exceeds
the pre-set threshold.

® (Critical indicates the highest level of load shed
triggered when the DR test/event is issued and electric
loads need to be curtailed at the maximum reduction
level.

C. Auto-DR Control Logic

Using OpenADR, the facilities can control electricity usage
and cost by responding to both price and demand limiting
signals. The Auto-DR intelligence can reside 1) within the
facility or 2) in the cloud (i.e., the OpenADR server). While
the first option has the advantage of unrestricted building data
retrieval and direct control over the building systems/devices,
it requires on-site development and operation of Auto-DR
software. Locating the intelligence in the cloud has the
advantage of flexible energy monitoring and DR management.
Cloud computing also offers remote data storage and
processing capabilities. However, the availability of building
control and real-time feedback may be restricted if the
building does not want to open their network firewall.
Moreover, building managers may be opposed to the idea of
their building being controlled by remote intelligence. For our
demonstration project, we located the Auto-DR intelligence
within the facilities to obtain full access to building data and
avoid potential threats to the building network security.

If the building data retrieval and direct control over the
building systems/devices are available, the customer's energy
cost for a given day can be minimized through load
optimization in response to NYISO's day-ahead zonal LBMP (
C,), as expressed in (1).

k
min Y. C, -g(u,,x,,w,) (D

t=1
Optimal electricity usage (kWh) is determined by the
objective function ( g ) based on following variables: u is the

input constraints for control strategies; x is the building

system states (i.e., HVAC set points, operation schedules); and
w is the weather (i.e., outside air temperature, relative

Day Signal Type Operation Mode
| Reliability |—> Critical
DR Test/Event {
| Limiting Demand |—> High

Non DR Test/Event

{l Day-Ahead Hourly Prices |—> High, Moderate

Figure 2. OpenADR signal prioritization.
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humidity). ¢ represents the time interval and k indicates the
total number of time intervals in a day. The demand charge
can be minimized by reducing the building’s peak demand
during a billing cycle, as expressed in (2).

min[ max h(ui,xi,wi)J (2)
iel,...,N

h represents the electric load (kW) at a given time interval (;)
and N indicates the total number of time intervals in a billing
cycle.

D. Open-Loop and Closed-Loop Control

There are two types of controls that can be used for Auto-
DR: open-loop and closed-loop (Kiliccote et al., 2006). In
open-loop control, the OpenADR server sends DR signals to
the facility but does not use real-time feedback to track the
performance target determined by the objective functions in
(1) and (2). Closed-loop control, on the other hand, uses the
real-time feedback to reach the performance target. As such, it
is more advantageous if the DR performance has to be
guaranteed. However, it requires more granularity of control
over the building systems/devices and real-time decision
making capabilities. For the demonstration project, open-loop
control is used to respond to price and reliability signals and
closed-loop control is used to provide demand limiting. The
feedback is provided via electric meter readings to generate
demand limiting signals and calculate load prediction. To
estimate DR performance under different operation mode, we
simulated whole building energy usage using EnergyPlus.
EnergyPlus is an energy analysis and thermal load simulation
software which allows calculating heating and cooling loads
based on building geometry, building envelope, internal loads,
HVAC systems, and weather (EnergyPlus, DOE). Based on
the energy simulation results, we selected control strategies
and inputs for each operation mode that would produce the
target load reduction and thermal comfort level.

V. APPLICATION

Implementing Auto-DR is a multi-step process. First, we
need to understand the building's current and historic electric
use patterns and evaluate building systems, DR capabilities,
and operational constraints (Mathieu et al., 2011). Then, we
identify DR opportunities and develop control strategies for
each facility. Finally, proposed control strategies need to be
tested and modified to improve the DR outcome. In this
section, we explain the process of developing control
strategies for two of the participating buildings from our
demonstration project.

A. Site Description

The first building, located in NYC, is a 32-storey office
building with a glass curtain-wall extending the full height of
the building (here in called "office building"). The office
building has a total conditioned floor area of 130,000 m’ (1.4
Million ft*). The building's HVAC consists of multiple-zone
reheat systems with constant air volume and air-handling units
(AHUs) controlled by variable frequency drive (VFD). There



TABLE1
LOAD SUMMARY*
Facility Peak Peak Load Load Annual
Load Intensity Factor Consumption
(kW) (W/m?) (kWh)
Office Bldg 6,200 48.0 0.51 27,612,000
Campus Bldg 600 53.0 0.40 2,150,000

*Computed for Sep 2011 - Aug 2012, with 15-minute interval data.

are three 1,350-ton centrifugal chillers with constant speed and
one 900-ton centrifugal chiller with variable speed that
supplies chilled water to AHUs. Each zone temperature is
controlled via direct digital control (DDC). Currently, the
office building does not have the Global Temperature
Adjustment (GTA) capabilities to change zone temperature
setpoints for the entire facility (Motegi et al., 2007). The
facility is heated via Con Edison steam. The building is
equipped with Honeywell's Enterprise Buildings Integrator™
for HVAC control. Multi-zone control is available for lighting
through relays but it is not connected to the BMS. The facility
is in operation from 6am to 6pm during weekdays and closes
during weekends.

The second building is a 14-storey university building also
located in NYC (herein called "campus building"). The
campus building recently went through a complete renovation
and system upgrades and was recently occupied in September
2011. The newly renovated building has the total floor space
of 11,330 m’ (122,000 ftz) containing classrooms, computer
labs, offices, and conference rooms. There are eleven AHUs,
each equipped with VFDs. The building is equipped with a
400-ton chiller supplying chilled water to AHUs. Heating is
provided with steam, which is used for AHU reheat, unit
heaters, and stairwell heating. The campus building has an
Automated Logic Corporation’s WebCTRL® system used for
HVAC control. The indoor space is largely lit by T5
fluorescent fixtures located within hallways, offices, and the

building is equipped with the NexLight two-way digital
lighting control system but this system was not used for DR in
the past. There are three elevators in the campus building: two
passenger elevator and one passenger/freight -elevator.
Previously, one of the three elevators was shut off during DR
events. The facility is open from 7am to 11pm for seven days
a week.

B. Load Characteristics

Approximately two years of 15-minute whole building
electric load data was made available to the project team for
the office building and the campus building. Table 1
summarizes the data over one year period (Sep 2011 - Aug
2012). To characterize the behavior of building energy use, we
plotted the load profile against different time scales. First,
weekly electric demand and consumption was plotted from
January 2011 to August 2012 in Figure 3. Examining these
plots revealed following findings: 1) both the office and
campus buildings had relatively constant minimum demand
throughout the year; 2) the maximum demand was higher in
summer than in winter for both buildings; and 3) maximum
demand (kW) varied more significantly from season to season
than electric consumption (kWh). Next, the buildings' interval
load was plotted over a one-week period for summer months
(May to Aug 2012) in Figure 4 and for winter months (Nov
2011 to Feb 2012) in Figure 5. The scatter plots reveal
following things. 1) The office building was in use during
weekdays while the campus building was in use for seven
days a week, confirming the operation schedule of the two
buildings provided to the project team. 2) In both facilities, the
spikes shown at the beginning of each weekday during
summer months indicated precooling activities and the system
overload. For the office building, precooling typically started
at midnight and for the campus building, it started at 7am. The
campus building had a start-up electric surge during the first

lobby, Office lighting is on motion sensors. The campus hour of the building operation which marked the highest
Office Bldg
< 6,000 |- 800,000 —
3 4000 < 600,000 E
g2’ 400,000 g
£ 2,000 . 200,000 ©
e e <V <Y B <V~ B R U
S © © © © © © © © © © © © © o © o © o o o o
a4 4 4 4 94 4 4 & N 4 4 g o4 & 4 g4 g4 & o &4 4 o
o o ~ ~ < o [e2) ~ < ~— (<2} © < gl [*2) O Yol o o ~ Yo} [V}
- 2 94 o o 4 - - - - S5 - & - ¥ 9 o o o = = =
— [aY) [ep} < [fe} © ~ 0 [} ~— ~— — ~— N [s2] < 1) © ~ 0
Campus Bldg
80,000
=
60,000 =
53
) 40,000
< =
= . 20,000 &
8 o » &
0 - — — — — — — — — — — — — [N Y] [ Y] [ o [ [ Y] 0
S © © © © © © © © © © © ©o© © o © o © o o o o
a4 4 94 4 94 4 4 & q4 44 4 g o4 4 §4 g4 g4 & o4 &4 4 o
o o N~ ~ < o [e2) ~ <t ~— (<2} © < g [} O Yo} o o ~ v o
- 2 84 o o 4 - - - - S5 - & = ¥ 9 o o o = = =
— o [e2] < [fe} © ~ [ee} [} ~— ~— — — N [s2] < 1) © ~ ©
Consumption Min Demand Max Demand -~ Avg Demand

Figure 3. Demand usage and electric consumption from Jan 2011 to Aug 2012.
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Figure 5. Scatter plot: time-of-week from Nov 2011 to Feb 2012 excluding
holidays (Veterans Day, Thanksgiving Day, Christmas Day, New Year’s
Day, Birthday of Martin Luther King, Jr., and Washington’s Birthday).

demand of the day. In summer, starting precooling at 7am
would add more loads to the morning ramp-up and increase
the demand even higher. 3) Both buildings showed a wide
range of daily demand during summer months versus winter
months while the base load stayed relatively constant
throughout the year. This was more prevalent in the office
building than the campus building. Since both buildings were
heated with steam, the difference in summer and winter
demand was likely to be influenced by the amount of cooling
loads. To understand the dependence of the building demand
on outside weather, we plotted the electric load for occupied
hours during weekdays against outdoor air temperature and
relative humidity as shown in Figure 6. From the National
Climatic Data Center, we acquired hourly outdoor air
temperature data for each facility from the nearest weather
station (NOAA). Some of the missing data were filled in by
linear interpolation. As seen in Figure 6, both the office and
campus buildings’ electric loads were highly sensitive to the
outside air temperature. However, some of the peak loads
shown in the campus building’s scatter plot were more
influenced by the classroom schedule than outside weather.
Both buildings did not show a significant relationship between
building load and relative humidity.

C. Demand Limiting and Price Thresholds
In order to determine operation mode for each hour of the
day, customers need to establish the demand and price
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Figure 6. Scatter plot of load versus temperature and humidity. Data shown
are from May to Aug 2012.

thresholds to which the selection of a particular operation
mode can be based upon. These thresholds can be updated as
frequently as required (i.e., weekly, quarterly, or yearly). To
help customers choose the appropriate demand and price
thresholds for their facility, we first evaluated the buildings'
load duration curves to look for demand reduction
opportunities. Figure 7 shows the one-year load data (from
September 2011 to August 2012) plotted in descending order
over the proportion of time. For the office building, the
weekday load duration curve descended at a gradual slope and
there was no unusual peaks observed in the plot. The
weekend/holiday curve was much lower than the weekday's
since the office building was not in service during
weekend/holidays. However, the weekend/holiday load during
the top one percent was "peakier" than the rest. This was
probably caused by night flushing and precooling of thermal
mass performed during Sunday evenings in preparation for the
next business day or occasional use of the facility over the
weekends. For the campus building, the difference between
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Figure 7. Load duration curves. Data shown are from Sep 2011 to Aug 2012.



the weekday and the weekend/holiday load duration curves
was small since the building was in operation for seven days a
week. Both curves showed a significant increase in load
during the top one percent of the time. This behavior was
probably caused by the system overload experienced during
the first hour of the building operation. This issue can be
resolved by shifting some loads to earlier times in the morning
or later during the day and limiting demand below the level
corresponding to the top one-percent of the time.

Similarly, price thresholds can be established by analyzing
hourly price distribution over time. Figure 8 displays a price
duration curves over the time period of September 2011 -
August 2012. We used NYISO's day-ahead LBMP for Zone J:
NYC since both the office building and the campus building
were located in NYC (NYISO). Day-ahead LBMP did not
vary significantly between weekdays and weekend/holiday
and most of the time the price stayed below $100 per MWh.
Only significant deviation was seen during the top one percent
of the time where the price increased up to $363 per MWh.
The loads corresponding to the top one percent of the time are
concentrated in summer and winter months. When plotted
against the time of day, it was clear that the expensive hours
were either cooling hours (mid-day) or heating hours (morning
and evening). Therefore, limiting the building’s demand
during the top one percent of the time via Auto-DR can help
customers reduce energy cost.

D. DR strategies
Both the office and campus buildings currently participate
in NYISO's SCR/EDRP through separate CSPs. For the
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Figure 8. Price duration curves. Data shown are from Sep 2011 to Aug 2012.
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Figure 9. LBMP distribution against month and time-of-day during the top
one percent of the time from Sep 2011 to Aug 2012.

TABLE II
DR STRATEGIES AND OPERATION MODES

[Turning off lighting in auxiliary space

» |Shutting off chilled water pumps

» » |Chilled water pump speed reduction
» |Chiller quantity reduction

» = [Exhaust fan quantity reduction
» > » |Condenser water temperature increase

» » » [Chilled water temperature increase

> > > = > > Shutting off condenser water pumps
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NYISO initiated DR test/event, the office building have a
minimum shed requirement of 2,000 kW. The shed
requirement of the campus building has not yet been
established. To help the facilities meet their DR targets, CSPs
developed DR strategies for their clients that were used for
previous DR test/events. Based on the customers' existing DR
strategies, we selected the ones that could be automated and
grouped them into Critical, High, and Moderate operation
mode, as shown in Table 2. The project team added GTA
capabilities to the office building to enhance DR control.
Automating lighting control in auxiliary space such as
hallways and lobby was discussed but was put on hold due to
budget constraints. As for elevators, we recommended that the
facilities maintain manual control over their elevators for both
DR and non-DR days. To minimize the post-DR rebound
effects, Normal operation mode returns slowly with sequential
equipment recovery. If there is less than one hour left until the
end of occupancy period, DR is extended to the end of the
occupancy period and then the building returns to Normal
operation mode.

VI. EVALUATING DR PERFORMANCE

In this section, we show how Auto-DR can be performed
on a non-DR event day and on a DR event day through field-
test results and energy simulation. First, we examined the load
data taken from the actual DR event day on June 20, 2012 that
the office building participated, as illustrated in Figure 10. The
DR event was called between 2pm and 6pm, during which the
minimum 2,000 kW reduction was expected in reference to
NYISO's Average Coincident Load (ACL) baseline (NYISO).!
The office building achieved the reduction target only during
the last two hours of the event period by activating all DR
strategies listed under Critical operation mode. It experienced
a post-DR rebound effect with an average spike of 12% from
the baseline load over a one hour period. The maximum

' NYISO's ACL baseline averages customer's 20 highest loads of 40
highest system load hours excluding hours in which DR events were
previously activated.
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Figure 11. Load and price data of the sample non-DR event day.

rebound was recorded as 19% higher than the baseline load.
To avoid the post-DR rebound effects, we recommended the
development of DR recovery strategies for participating
buildings. Next, we compared the load reduction with two
different baselines to evaluate customer's DR performance: 1)
NYISO's Average Customer Baseline (CBL) and 2) the
weather regression baseline developed by LBNL (Coughlin et
al., 2009).2 NYISO's CBL has a tendency to underestimate or
overestimate the building's power usage for the days with
unusual weather conditions. In general, the weather regression
baseline provides a more accurate prediction of weather-
sensitive loads than NYISO's CBL. As seen in Figure 10,
NYISO's CBL underestimated the baseline load because the
DR event day was warmer than previous days. As such, DR
payments would have been smaller if the compensation was
calculated based on NYISO's CBL instead of the weather
regression baseline.

Figure 11 illustrates the office building's response to price
signals on a non-DR event day. The load data were taken from
August 9, 2012, representing a typical weekday. The building
underwent three hours of Moderate operation mode from 2pm
to Spm based on the price thresholds set at LBMP > $98 for
Moderate operation mode and LBMP > $200 for High
operation mode. We used EnergyPlus simulation to predict the
effects of DR strategies for Moderate operation mode and
compared the simulated load to the actual load which was
unaffected by Auto-DR. According to the simulation results,

2 NYISO's CBL averages customer's five highest of the previous ten
weekdays excluding holidays and previous DR event days.
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the office building can reduce demand up to 700 kWh by
implementing DR strategies listed under Moderate operation
mode for this day.

It is noted that continuous energy management in response
to hourly prices can impact the customer's DR baseline,
potentially reducing DR payments due to lowered baseline
usage. This can make DR programs less attractive to energy
efficient customers under the day-ahead hourly pricing.
However, DR program events are called only a few days a
year and the incentives collected from DR programs are likely
to be small compared to the utility savings achieved under
day-ahead hourly pricing due to continuous energy
management. Hence, as the commercial buildings move
towards more dynamic response to prices, the applicability of
baseline-based DR payments should be re-evaluated.

VII. CONCLUSIONS AND FUTURE STUDIES

We presented the process of automating continuous energy
management with day-ahead hourly prices and demand
response for large commercial buildings in New York who
were subject to the default MHP tariff. OpenADR version 1.0
was used to facilitate the communication of price and
reliability signals. Based on the preliminary findings from the
New York demonstration project, we concluded that: 1) price
response to day-ahead hourly pricing can be made easier
through Auto-DR; 2) understanding customer's financial
goals, such as reduction in utility bills including demand
charges, and curtailment requirements by CSPs was critical in
establishing Auto-DR goals and performance targets; and 3)
price and demand response opportunities were unique to
customer's electric load characteristics, control capabilities,
and operational constraints.

Future studies include: 1) creating dynamic optimization
capabilities in buildings given the availability of price and DR
signals; 2) monitoring and evaluating the effects of control
strategies on load and occupant comfort during operations; 3)
increasing the customer's ability to modify and change
individual control strategies within the facility; and 4)
evaluating benefits and drawbacks of having Auto-DR
intelligence in the cloud versus inside the facility. Finally, we
recommend a comparative study on customer economics
between MHP and retail rates to be conducted and the role of
Auto-DR in cost savings to be further explored.
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