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1 Introduction

This final report summarizes the results from the research work supported or partially
supported by the DOE grant Geometric Analysis for Data Reduction and Structure Discovery.
While work that was conducted throughout the project is covered here, we concentrate
on the components receiving most of the attention from the participants since the interim
report dated Feb 11, 2011.

The work, aimed at exploiting insights from geometric analysis for the unraveling of
large scale data challenges, was comprised of three main threads:
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1. Exploitation of tools from geometric measure theory for the development of metrics
on complicated sets in R2 and R3 (see Section 2),

2. development of nonlinear dimension reductions and parameterizations using both
graph-based tools and local approximations, as well as an important subthread that
looked at the stability of local analysis tools (See Section 3), and

3. development of multiscale nonlinear, geometric decompositions of complicated data
sets in high dimensions (see Section 4). A subthread for this work was the cover tree
algorithms that were very carefully explored and implemented (See section 5).

2 Tools from Geometric Measure Theory for Data (K.R. Vixie,
S. Ibrahim, B. Krishnamoorthy, G. Sandine, T. Asaki, H.
Van Dyke, B. Van Dyke)

2.1 Summary of Results

Our work in this area resulted in several, related sub-projects: (1) the multiscale simplicial
flat norm, (2) flat norm decompositions, (3) fast computation of flat norm and flat norm
surrogate distances, (4) flat norm on graphs, (5) properties of L1TV minimizers, (6) non-
asymptotic densities, and (7) monotonicity in higher dimensions. We give some more
details of the results in (1), (2), and (4) in the next subsection. Here are the papers that
have resulted from the work:

Simplicial Flat norm and deformation theorem [15] In this paper, the notion of a mul-
tiscale flat norm for simplicial complexes is introduced. A deformation theorem is
established with better constants than previously established in Sullivan’s disserta-
tion in which he proves a deformation theorem for cell complexes. We do that by
exploiting the simplicial setting.

Flat Norm Decompositions [16] In this paper we show that there are integral minimizers
to the flat norm minimization for general 2 dimensional integral current inputs and
that modulo a conjecture in higher dimensions, the same holds for all co-dimension
1 integral current inputs. The conjecture, which seems to be true but tedious to
prove, involves the existence of subdivisions with controlled irregularity.

Nonasymptotic Densities [17] In this paper, a non-asymptotic notion of density is used
to characterize 2 dimensional sets in the plane, It is shown that for a wide variety
of nice shapes, a signature obtained by taking measurements along the boundary of
the shape determine the shape.

Monotonicity in higher dimensions [13] Multiple versions of a notion of monotonicity
were defined and explored in this paper. After the paper was published it was
discovered that some significant pieces were in fact a duplication of earlier work. In
spite of this fact, there are new contributions in the paper.
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Thin Minimizers for L1TV [12] We generated some examples of minimizers of the L1TV
functional that are surprisingly thin. This result helps tighten the characterization
the global properties of the minimizers. Whereas L1TV minimizers for convex input
sets are the union of balls of radius 1

λ contained in the input set, the result in this
paper shows that the same is not true for non-convex inputs to the L1TV functional.

2.2 Multiscale Distances for shapes and generalized manifolds

Shapes are often thought of as sets in R2 or R3 or as boundaries of those sets. Often they
are modeled as submanifolds. There are a variety of distances used, for example, to com-
pute distances between parameterized curves in R2 and R3. The multiscale flat norm [35]
that our work makes more usable and computable, gives us a much more general and
powerful distance or metric. Much of the increase in power comes from the fact that mul-
tiscale flat norm measures the distance between currents, which include not only oriented
manifolds of any dimension, but also much, much more general sets and measures in
Rn (or even in manifolds or metric spaces). The results obtained in this work extend the
multi-scale flat norm to simplicial complexes and graphs in vector spaces, with sugges-
tions of how to move it to metric spaces. Our results also establish important regularity
results that in effect make it much more usable (at least if one cares about rigorously de-
fensible use). Efforts towards fast computation were made and the initial results were
encouraging. Those results were reported at the DOE PI meeting in DC in 2011.1

Note: Recall that a set is said to be co-dimension k when its dimension is k less than
the space it sits in. In R3, a 1-dimensional curve is therefore co-dimension 2 and a 2-
dimensional surface is co-dimension 1. Thinking of k-dimensional currents as unions of
oriented k-manifolds will be sufficient for most purposes. While it is important that they
are much more general than that, a great deal of the intuitive impact of our results can be
obtained thinking of currents as unions of pieces of manifolds.

2.2.1 Simplicial Flat Norm

Simplicial approximations and representations are ubiquitous in science and engineering.
It therefore made sense to consider the specialization of the flat norm to this setting. To
do this, we proved a new version of the deformation theorem, a theorem that is a funda-
mental piece of the theory of currents in Rn. In important cases, our result yields better
constants than Sullivan’s more general deformation theorem for cell complexes. This
work also generalizes the integrality result for integral current inputs when everything is
simplicial.

2.2.2 Flat Norm Decompositions

The question of when the implicit flat norm computation minimization has integral solu-
tions for integral input currents, was only known in the case of co-dimension 1 bound-

1This part of the project ran afoul of some very serious personnel issues and was not developed as far as
I would have liked.
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aries. In this collaboration between Ibrahim, Krishnamoorthy and Vixie, that result was
extended to general 1-dimensional integral currents in R2 and is established (modulo a
conjecture we believe to be true) for n-1 dimensional integral currents in Rn. We also
prove that this cannot be expected for currents whose co-dimension is 3 or higher. Only
co-dimension 2 is left completely open.

Practically speaking, this work permits us to conclude that in may practical cases,
relaxation of the flat norm problem to normal currents (currents corresponding to very
general functions and measures of any dimension) still permits us to find integral solu-
tions. For example, if we compute the distance between sets which are oriented manifolds
or unions of oriented manifolds (with or without boundaries), we are guaranteed that the
implicit minimization problem has minimizers of the same type.

2.2.3 Flat Norm on graphs

In work in 2009, vixie et al. [37] used an approach to computing the flat norm in the
form of the L1TV functional for images in 2 and 3 dimensions. The approach that was
used there to compute the weights for the min-cut max-flow method for computing the
minimizers suggested an approach for general graphs embedded in Rn. This was tackled
by Sandine in his masters project which will be defended soon. The longer term goal for
this project is the exploration of the geometry of data sets in metric spaces.

2.3 Students

The following students worked on research supported by this funding or enabled by this
funding:

Eric Larson: Masters project, Lipschitz mappings and doubling measures. He is currently a
PhD student at UCLA in the department of mathematics. His Masters Advisor was
Kevin R. Vixie.

Heather Van Dyke: Dissertation title, A Study of p-Variation and the p-Laplacian for 0 <
p ≤ 1 and Finite Hyperplane Traversal Algorithms for Signal Processing. She has changed
her name to Heather Moon and is now a tenure track assistant professor at St Mary’s
College in Maryland. Her advisor was T. Asaki.
http://faculty.smcm.edu/hamoon/HVDthesis.pdf

Benjamin Van Dyke Dissertation title, Directional Direct-Search Optimization Methods with
Polling Directions Based on Equal Angle Distributions. Ben is a visiting assistant Pro-
fessor at Walla Walla University in College Place, Washington. His Main Advisor
was T. Asaki.

Keith Clawson Worked on calculation of the flat norm through the dual formulation as
well as the fast computation of surrogates for the flat norm on streaming data. He
did not finish and is currently contributing to the Sage project at UW and as a sys-
tems administrator in the Seattle area.
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Sharif Ibrahim: Dissertation Title, Data-inspired advances in geometric measure theory: gen-
eralized surface and shape metrics. His Advisor was Kevin R. Vixie,
http://arxiv.org/abs/1408.5954.

Gary Sandine: Masters Project, Extension of the multiscale Flat norm to arbitrary graphs in
vectorspaces. Kevin R. Vixie was a co-advisor on his masters committee and was the
faculty member directing his project. His Official Advisor was Marios Patichis in
EECS at UNM in Albuquerque, NM.

Altaa Tumurbaatar Masters thesis, Statistics in Simplicial Shape Spaces. Bala Krishnamoor-
thy and Kevin R. Vixie are directing the research, along with Krishnamoorthy Sivaku-
mar in EECS at WSU. While this work was initiated after the funding expired, the
work is a direct follow on and was made possible as a direct result of the work
carried out under this funding.

2.4 Research Groups

As a follow on to the work funded by this grant, the PI has started a new research group
at WSU focused on research at the interface of pure/applied analysis and big data. This
effort is a collaboration with 4 other faculty in the WSU mathematics department as well
as industrial scientists. The funding from this grant laid the foundation for this new
promising effort. A link to the group can be found here: http://analysisplusdata.org.

2.5 2012 Summer School

This grant partially supported the 2012 Summer school on Geometry and Data. The ap-
pendix below contains summer school details. There were about 50 participants. The
webpage for the summer school can be found here:
http://geometricanalysis.org/Workshops/2012SummerSchool. Summer School Fellows
were spread over the areas of mathematics, electrical engineering and computer science.
For a complete list of Summer School Fellows, please consult the webpage.

Instead of giving a breakdown of what the school covered (that can be found on the
website), here is what the participants had to say about the summer school:

Thanks for organizing such a great event to promote geometry education and research.
Geometry is well used in almost every area in computer science, path planning in
robotics, manifold learning, geometric modeling, etc. But still the education is not
coherent and prerequisite courses are rare. I found such a summer school will well
motivate students to study geometry. Thanks for the opportunities for me and my
student to get involved in the summer school. Personally I also enjoyed very much
meeting these friendly scholars and the nice volleyball game. Yalin Wang, Arizona
State University
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Thanks again for organizing the summer school–it was very educational and beneficial
specially for people with an engineering background (like myself). I really appreciate
the efforts that you put into this event and wish you more success in the future ones.
Armin Eftekhari, Colorado School of Mines

I found this to be a very fruitful time in Moscow. I spent many evenings writing
notes about what I learned - I feel like a huge area of potential research work is now
possible now that I’ve learned more about the topics discussed (particularly intrigued
by David H. And Bala’s work, as well as the patch graphs and revisiting our old paper
on the minimum spanning tree based stuff). Also, less applied to my day to day work,
I think I can actually make a bit more sense of Frank Morgan’s book now too - that has
been on my "to understand" list for a number of years since you put it in my hands at
LANL. Matthew Sottile, Galois (Portland, Oregon)

I wanted to let you know that I really appreciate the opportunity to participate in the
summer school this past year. As one of the younger participants and also as a new
graduate student in mathematics, I felt like it was an outstanding way to experience
some of the directions and practices of modern mathematical research. In addition it
was a fantastic way to meet and connect with people, both those known such as your-
self and Dr. Allard and those newer to the field, for both professional and intellectual
future development. In particular, I think the balance struck between funding for in-
teresting and significant speakers and for those of us just there to listen was excellent.
I know I would not have been able to attend without some form of funding, and I ap-
preciate that once I did arrive my time was well spent attending the talks and other
events. Andrew Farrar, Oregon State University

I thought the summer school was thorough and comprehensive, yet accessible. I in-
creased in my mathematical maturity through not only during the many informative
lectures, but especially through the insightful and friendly conversations with mathe-
maticians from varied levels, backgrounds, and perspectives. This atmosphere was in
no way an accident, and I appreciate the obvious effort that you put into making the
school a success. Josh Cruz, Washington State University

The summer school provided me with the opportunity to learn about geometry and
data analysis from several different perspectives, many of which were new to me. I
now have an awareness of the relationship between many topics in geometry and data
and can approach research problems from new angles. Such multifaceted approaches
will prove valuable as problems become very complex in high dimensions. I also made
many contacts and greatly expanded my professional network - a crucial element for
success in my early career stage. Daniel Kaslovsky, University of Colorado
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The choice of the papers presented was very pleasing - a nice combination of recent
"hot" papers and less recent "classical" papers. Also the topics are of interest for
people of different backgrounds - mathematics, statistics, electrical and computer en-
gineering, which was proved by the diversity of the participants: from theoretical math
students to data gurus, to both. Also the level of the students was variable - from un-
dergrads to masters to thesis writers: it is never to early or too late to learn!

It is impressing how all the selected presenters were talented speakers, which made
the lectures quite engaging and truly interactive, an aspect crucial when bringing
researchers from different fields.

I found the lab sessions extremely useful and enjoyable. I have been to many summer
schools and workshops where the format has been purely lecture oriented. This is defi-
nitely not the best way we learn. Trying to implement the ideas which were discussed
is really testing our understanding. Also the little challenges were simple enough so
that nobody gets discouraged but also open enough to allow deeper thinking and tin-
kering. The initial installation time was worth it since it allowed everybody to take
part in the exercises and use the same platform. I think increasing the length of these
sessions and probably adding some mathematical problem-solving sessions can make
the summer school even better.

Overall the atmosphere was home-like and there was a chance to interact with every-
body during the breaks, lunch, in the hotel, and around town.

I personally appreciate this chance to get caught up on the recent advances in these
research topics and meet such a unique group of people. I am glad I stayed longer and
I wish I could have stayed all the three weeks. Valentina Staneva, Johns Hopkins
University

2.6 Current Directions

This funding enabled the establishment of a research program that is now beginning to
look at the intersection of (1) analysis and GMT in metric spaces and (2) data science. Data
often has a natural distance associated with it, but no easy or natural isometric embedding
of the data in some vector space. Thus there is also a practical motivation for the research.
One can always generate a graph on which a metric is defined by shortest paths, and that
is the starting point for some of our work in this area.

Existing work at the interface between (1) stochastic tools, (2) geometric analysis and
(3) uncertainty quantification is minimal in comparison to the potential presented by this
interface. We are beginning to work at that interface. Statistics in shape spaces, or more
generally, in spaces of currents, is the subject of one project that is now underway using
the computational tools generated in our work on the simplicial flat norm.

In spite of some very difficult personnel issues, we have regrouped and now have a
collaboration that involves five faculty members in mathematics, several industry scien-
tists and about 15 graduate and undergraduate students. We are also building connec-
tions to faculty members in EECS and Economics.
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3 Low Dimensional, Nonlinear Sets in High Dimensions
(F. Meyer, D. Kaslovsky, K. Taylor, N. Monnig, N. Bertrand
and J. Ramirez)

This project had several major goals. The first goal was the investigation of novel meth-
ods to parameterize low-dimensional datasets using nonlinear techniques. The project
was specifically interested in studying the low-dimensional structure of datasets formed
by collecting patches from signals and images. The second goal of the project was the
development of interactive tools to facilitate the analysis of a complex high-dimensional
dataset by an analyst using nonlinear dimension reduction.

3.1 Significant Results

3.1.1 Searching for the anomalies in massive datasets of time series

In many areas of science and engineering the only method to study a complex system en-
tails making indirect observations of the state of the system. For instance, in geophysics,
recordings of the earth ground motion made with a seismogram provide indirect mea-
surements of the complicated physical process that gives rise to a seismic event and the
associated seismic waves. Unfortunately, the complexity of the physical processes in-
volved at all scales in these systems currently prevents the derivation from first principles
of a precise model that predicts the configuration of the system, given the measurements.

An indirect approach involves replacing the unknown space of all possible configu-
rations (phase space) of the system with an equivalent phase space estimated from the
measurements. Indeed, for each time series, one can slide a window in time, which we
call a temporal patch, or patch. For each patch, we collect the d values of the time series
within the patch, and stack them into a d-dimensional vector. The trajectory of the patch
in d dimensions characterizes the dynamics of the measurements. This process is known
as time-delay embedding, and there exists a rich literature on the equivalence between the
trajectory of a vector of d consecutive measurements from a dynamical system, and the
properties of the corresponding dynamical system.

In the analysis of seismograms, we proposed a novel perspective on the concept of
time-delay embedding by combining the experimental phase spaces (patch-trajectories)
collected from several seismograms. We proposed to compute a nonlinear parametriza-
tion of the combined patch trajectories. This nonlinear parametrization assigns to each
patch a small number of coordinates that uniquely characterizes the state of the dynam-
ical system at the corresponding instant. The parametrization relies on the assumption
that the union of trajectories lies along a smooth set in Rd, which can be parametrized
using a nonlinear method based on the eigenvectors of the graph Laplacian.

The problem of detecting seismic wave packets becomes then the problem of charac-
terizing the regions of the patch space associated with seismic activity. In collaboration
with graduate student Kye Taylor, we implemented this approach and developed an al-
gorithm to detect seismic wave packets and compute their arrival time. The method led
to the development of a software package that was carefully evaluated by scientists in the
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Next Generation Monitoring Systems group at Sandia National Labs. Our algorithm out-
performed the existing gold standards [36]. Our work concluded that the set of patches
contained nonlinear structures that could not be well approximated by linear methods,
such as a principal component analysis, or a wavelet transform. Furthermore, our study
confirmed that the combined phase spaces associated with regional seismic waves were
remarkably low-dimensional: we needed only 25 dimensions (instead of the d = 1024
dimensions of each patch) to optimally detect seismic waves.

3.1.2 Random Graph Models for Datasets of Image Patches

Inspired by our work on temporal patches, we looked for an explanation for the success
of algorithms that organize image patches according to graph-based metrics. Indeed,
algorithms that analyze patches extracted from images have led to state-of-the art image
processing methods for denoising, inpainting, and super resolution. In collaboration with
graduate student Kye Taylor, we provided a theoretical explanation for these experimen-
tal observations [36]. Our approach relied on a detailed analysis of the commute time
metric (a notion of distance on a graph) on prototypical graph models that epitomize the
geometry observed in general image-patch graphs. We proved that a parametrization
of the graph based on commute time shrinks the mutual distances between patches that
contain textures and edges, while the distances between patches that contain uniform (or
slowly varying) intensity expand. In effect, our results explain why the parametrization
of the set of patches based on the eigenfunctions of the Laplacian can concentrate patches
that correspond to rapid local changes of the intensity, which would otherwise be scat-
tered in the space of patches.

Of course, in practice noisy images result in noisy patches, and the graph of patches
extracted from a noisy image is a perturbed version of the graph constructed using the
“clean” patches. The question becomes: what is the influence of the perturbation of the
graph on the eigenvectors of the graph Laplacian, which are used to parametrize the set
of patches. We studied this problem using an experimental approach [31, 29]. It turns
out that the low frequency eigenfunctions of the graph Laplacian are remarkably stable
to perturbation of the graph.

3.1.3 Non-Asymptotic Analysis of Tangent Space Perturbation

Many datasets collected from physical or biological systems are high-dimensional. In re-
ality, many of the internal variables of the system being measured are coupled, resulting
in a potentially dramatic reduction of the true degrees of freedom for the measurements.
Our ability to efficiently re-parametrize a dataset to take advantage of its intrinsic low-
dimensional structure is therefore fundamental. While it is very rare that the datapoints
lie exactly in a linear subspace, it is often the case that the points organize themselves
along a smooth low-dimensional manifold. A fundamental problem in processing such
datasets is the construction of an efficient parametrization that allows for the data to be
well-represented in fewer dimensions. Such a parametrization may be realized by ex-
ploiting the inherent manifold structure of the data. However, discovering the geometry
of an underlying manifold from only noisy samples remains an open topic of research.
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One approach consists in recovering a local parametrization using the local geometric in-
formation provided by the tangent planes. Principal component analysis (PCA) is often
the tool of choice, as it returns an optimal basis in the case of noise-free samples from
a linear subspace. To process noisy data, PCA must be applied locally, at a scale small
enough such that the manifold is approximately linear, but at a scale large enough such
that structure may be discerned from noise. With graduate student Daniel Kaslovsky
(now an NSF postdoctoral fellow), we used eigenspace perturbation theory to analyze
the stability of the subspace estimated by PCA as a function of scale, and bound (with
high probability) the angle it forms with the true tangent space. By adaptively selecting
the scale that minimizes this bound, our analysis reveals the existence of an optimal scale
for local tangent plane recovery. This is a fundamental problem that has been a subject of
interest for decades in dynamical systems theory, and has now very practical application,
as more and more geometrically-inspired algorithms rely on a notion of locality to select
nearest neighbors. This work was published in Information and Inference: a Journal of
the IMA [25]. Some initial versions of this work were presented in several conferences
[19, 20, 22, 24, 21, 23].

3.1.4 Interactive exploration of manifold

Meyer and graduate student Monnig addressed the problem of computing the inverse
of a general smooth bi-Lipschitz nonlinear dimensionality reduction mapping over all
points in the image of the forward map.The approach relies on a scale free radial ba-
sis functions (RBFs) to interpolate the inverse map everywhere on the low-dimensional
range of the forward map. Our algorithm provides a computational solution to a long-
standing problem in the machine learning and data science community. This work was
published in Applied and Computational Harmonic Analysis [32], and presented at sev-
eral conferences [30, 33].

3.2 Key outcomes

PI Meyer and his graduate students published five journal papers. Two papers were pub-
lished in the proceedings of international conferences. During the award, Meyer gradu-
ated two Ph.D. students: Kaslovsky is a Data Scientist at Seagate, Taylor is a faculty at
Tufts University. Two graduate student working on the project graduated with M.S. They
are both working toward a Ph.D.: Ramirez atd Duke University, Bertrand at the Georgia
Institute of Technology.

3.3 Products

3.3.1 Journal papers

1. Kaslovsky D.N., and Meyer F.G., “Non-Asymptotic Analysis of Tangent Space Per-
turbation”, Information and Inference: A Journal of the IMA, 3 (2), pp 134–187, http:
//dx.doi.org/10.1093/imaiai/iau004.
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2. Monnig N., Fornberg B., Meyer F.G., “Inverting Non-Linear Dimensionality Re-
duction with Scale-Free Radial Basis Interpolation”, Applied and Computational Har-
monic Analysis, 37(1), pp 162-170, 2014, http://dx.doi.org/10.1016/j.acha.2013.
10.004.

3. Meyer F.G., and Shen X., “Perturbation of the Eigenvectors of the Graph Lapla-
cian: Application to Image Denoising”; Applied and Computational Harmonic Analysis,
36(2), pp 326–334, 2014, http://dx.doi.org/10.1016/j.acha.2013.06.004

4. K.M. Taylor and F.G. Meyer,“A random walk on image patches”, SIAM Journal on
Imaging Sciences, 5(2), pp 688-725, 2012, http://dx.doi.org/10.1137/110839370.

5. KM Taylor, MJ Procopio CJ Young and F.G. Meyer, “Estimation of arrival times from
seismic waves: a manifold-based approach”, Geophysical Journal International, 185
(1), pp 435–452, 2011, http://dx.doi.org/10.1111/j.1365-246X.2011.04947.x.

3.3.2 Conference papers

1. Kaslovsky D.N., Meyer F.G., ”Overcoming noise, avoiding curvature: optimal scale
selection for tangent plane recovery”, Proc. IEEE Statistical Signal Processing Work-
shop, pp. 904-907, 2012.

2. Ramirez J., Meyer F.G.,”Machine Learning for Seismic Signal Processing: Seismic
Phase Classification on a Manifold”, in Proc. IEEE International Conference on Machine
Learning and Applications, pp 382-388, 2011. [Acceptance rate: 27%]

3. Meyer F.G., Taylor KM, Kaslovsky D., Procopio MJ, and Young CJ “Evaluation of
Empirical Mode Decomposition and Chirplet Transform for Regional Seismic Phase
Detection and Identification”, Seismological Society of America 2009 Annual Meet-
ing, Seismological Research Letters, Volume 80, No. 2 p 347, 2009.

3.3.3 Invited Conference Presentations with no Proceedings

1. Meyer F.G., Invited Speaker, 5th International Conference on Computational Harmonic
Analysis, Vanderbilt University, May 2014.

2. N.D. Monnig and B. Fornberg and Meyer F.G., “Nonlinear Dimensionality Reduc-
tion: The Inverse Map”, Workshop on Electrical Flows, Graph Laplacians, and Algo-
rithms: Spectral Graph Theory and Beyond’, ICERM, Brown University, 2014.

3. Meyer F.G., Kaslovsky D.N., and B. Wohlberg, “Analysis of image patches: a unified
geometric perspective”, SIAM Conference on Imaging Science, 2012.

4. Ramirez J, Meyer F.G., “Machine Learning for Seismic Signal Processing: Phase
classification of seismic events on a manifold”; Society for the Advancement of Chicanos
and Native Americans in Science National Conference, 2011. Juan Ramirez received the
Student Research Presentation Award (category: Applied Mathematics).
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5. Kaslovsky D.N. and Meyer F.G., “Image Manifolds: Processing Along the Tangent
Plane”, International Congress on Industrial and Applied Mathematics, 2011.

6. Meyer F.G., “Image de-noising on the manifold of patches: a spectral approach”,
SIAM Conference on Imaging Science, 2010.

7. Meyer F.G., “Exploring the Manifold of Seismic Waves: Application to Phase De-
tection”, Random Shapes Reunion Conference II, Institute for Pure and Applied Math-
ematics, UCLA, December 6-11, 2009

3.3.4 Invited lectures

1. “Nonlinear Dimensionality Reduction: The Inverse Map”, Department of Mathemat-
ics Colloquium, Washington University in St. Louis, November 7, 2013.

2. “Low-Dimensional Representations of High-Dimensional Datasets: A Geometric
Perspective”, Department of Electrical Engineering Seminar, University of Colorado at
Boulder, Nov. 2012.

3. “A Random Walk on Image Patches”, Electrical & Computer Engineering Seminar, Col-
orado State University, April 2, 2012.

4. “A Random Walk on Image Patches”, Applied Mathematics Seminar, Yale University,
February 22, 2012.

5. “A Random Walk on Image Patches”, PACM/Applied Mathematics Colloquium, Prince-
ton University, February 20, 2012.

6. “A Random Walk on Image Patches”, Department of Mathematics Colloquium, Wash-
ington University in St. Louis, February 16, 2012.

7. “Image Manifolds: Processing Along the Tangent Plane”, Department of Mathemat-
ics Seminar, Washington State University, January 2011

8. “A Random Walk on Image Patches”, Applied Mathematics Colloquium, University
of Colorado at Boulder, October 2011

9. “Exploring the manifold of patches: a spectral approach”, Bigroup Seminar, Univer-
sity of Colorado at Boulder and JILA, March 2011.

10. “Exploring the Manifold of Seismic Waves: Application to Phase Detection”, Applied
Mathematics Seminar, Yale University, March 2010.

11. “Exploring the Manifold of Seismic Waves”, CARDI seminar, Colorado School of Mines,
Feb 2010.

12. “Image de-noising on the manifold of patches: a spectral approach”, COSI Seminar
Series, University of Colorado at Boulder, March 2009.
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3.3.5 Software

We provide MATLAB code to implement the algorithms described in the different papers
at the permanent link: http://ecee.colorado.edu/~fmeyer/software.html

3.3.6 Thesis/Dissertations

1. Daniel Kaslowsky, Ph.D. Applied Mathematics, 2012;Geometric Sparsity in High Di-
mension.

2. Juan Ramirez. M.S. Electrical Engineering; 2012; Learning from Manifold-Valued Data:
An Application to Seismic Signal Processing.

3. Kye Taylor, Ph.D. Applied Mathematics, 2011; The geometry of signal and image patch-
sets.

3.4 Education

Meyer developed a graduate level course on the analysis of high-dimensional datasets,
http://ecee.colorado.edu/~fmeyer/class/ecen5322/. The course is centered around
the concept of concentration of measure in high-dimensions and its consequences, such
as the Johnson-Lindenstrauss theorem. Meyer was awarded the 2010 Holland Teaching
Excellence Award in Electrical and Computer Engineering for developing this new course.

3.5 Impacts

This project had several major impacts on problems related to the analysis of complex
datasets that depend on a small number of parameters.

The first major impact involves a novel theoretical understanding of algorithms that
organize patches extracted from images and signals using a similarity graph. Indeed, its
has become a common practice to use graphs to model dependencies between points in
large datasets. For instance, algorithms that analyze patches extracted from images pro-
vide state-of-the art image processing methods. This project provided an unprecedented
understanding of the success of such algorithms. Our approach led us to the construc-
tion, and subsequent analysis, of novel graph models to describe functional dependencies
between signal and image patches. In a larger context, this project has shown that our re-
sults enable scientific discovery in scientific fields such as geosciences, neuroscience, etc.
by providing novel tools to detect interesting patterns and anomalies and make inferences
from noisy data.

The second major impact involves the analysis of high-dimensional datasets. Such
data are usually presented to the practitioner as measurements that depend on many co-
ordinates, or parameters. Fortunately, many of the internal variables of the system being
measured are usually coupled, resulting in a potentially dramatic reduction of the true
degrees of freedom. Our ability to efficiently re-parametrize a dataset to take advantage
of its intrinsic low-dimensional structure is therefore fundamental. This project studied
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the problem of constructing a local chart of a noisy dataset that lies close to a smooth low-
dimensional structure. Specifically, we studied the distortion of the map as a function of
the amount of noise and how fast if the dataset departing from a local plane. This analy-
sis provide a fundamental answer to the question of choosing the right scale to estimate a
low-dimensional representation of a noisy and curved dataset. This work has immediate
application to the analysis of large and complex dataset.

4 Multiscale Geometric Analysis: Geometric Wavelets (M.
Maggioni, W.K. Allard, G. Chen)

4.1 Main Results

The main goal of this project was development of novel data structures for the analysis
of high-dimensional data sets, and extraction of information from them. We developed a
novel multi-scale data structure, called Geometric-Multi-Resolution Analysis, that maps a
whole data set to a novel representation which is both hierarchically organized and yields
sparse (or compressible) representations of data sets.

On the one hand, this generalized standard linear dimension reduction procedures
such as Principal Component Analysis, and fits into the large body of research on nonlin-
ear dimensionality reduction and manifold learning that was developed in the last several
years. On the other hand, the data representation we introduced has completely novel as-
pects: it is multi-scale, with each scale having its own accuracy in the approximation of
the data, it comes with guarantees of such accuracy, it is achieved with fast algorithms
(more on this later), that scale linearly in the size of the data or, even better, that may
be run in an online fashion at a cost that is independent of the number of points and
dependent only on the requested accuracy. Finally, both the computational cost and the
sample complexity of this procedure depend fundamentally on a suitable, robust notion
of intrinsic dimensionality of the data, therefore defying the curse of dimensionality.

We have explored generalizations and applications of GMRA in a wide variety of
problems in machine and statistical learning for high-dimensional data problems, such
as high-dimensional classification and regression, and anomaly detection. We also made
a connection with dictionary learning, which is a well-studied problem in statistical signal
processing and machine learning, where given data one wishes to construct a dictionary
that yields sparse representations of such data: while existing techniques rely on algo-
rithms that are expensive and at the same time lack performance guarantees, the GMRA
yields a novel algorithm for constructing such dictionaries, together with a full set of
guarantees. Indeed we performed a carefully finite sample analysis of the construction,
showing that GMRA dictionaries yield the best known dictionary learning algorithms
from every aspect (guarantees, accuracy, sparsity, running time), under suitable geomet-
ric conditions on the data (a robust notion of low-intrinsic dimension, that accommodates
noise).
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4.2 Geometric Multi-Resolution Analysis (GMRA)

We continued the work on Geometric Multi-Resolution Analysis (GMRA), pushing in
several directions. First of all, we recall that a GMRA consists in a hierarchically organized
family of portions of low-dimensional planes that approximate a manifold or a set of data
points sampled from a manifold, together with an efficient of encoding of such family of
portions of planes, and fast transforms mapping points on (or near to) the manifold to
sets of sparse coefficients, and conversely a set of coefficients to a point on a manifold.

We recall that the construction of a GMRA proceeds in 3 stages:

(i) Construct multiscale partitions {{Cj,k}k∈Γj}
J
j=0 of the data: for each j,M = ∪k∈Γj Cj,k,

and Cj,k is a nice “cube” at scale 2−j. In practice we obtain Cj,k by recursive spectral
partitioning or cover trees.

(ii) Compute low-rank SVD of the local covariance: covj,k = Φj,kΣj,kΦT
j,k. Let Pj,k be the

affine projection RD → Vj,k := 〈Φj,k〉 (local approximate tangent space): Pj,k(x) =
Φj,kΦ∗j,k(x− cj,k) + cj,k. These pieces of planes Pj,k(Cj,k) form an approximationMj

to the original dataM; let PMj(x) := Pj,k(x) for x ∈ Cj,k.

(iii) We efficiently encode the difference QMj+1 between PMj+1(x) and PMj(x), by con-
structing affine “detail” operators analogous to the wavelet projections in wavelet
theory.

We obtain a multiscale nonlinear transform mapping data to a multiscale family of pieces
of planes. Fast algorithms and multiscale organization allow for fast pruning and opti-
mization algorithms to be run on this multiscale structure.

4.3 Extensions & applications of GMRA

4.3.1 Online construction

The original construction could not be adapted to an online learning setting, where the
points are seen incrementally rather than all at once. One of the main reasons was that the
multiscale partitions used to construct the local planes where computed by using static
tree structures used for nearest neighbor searches. W.K.Allard, as detailed in his portion
of the report, has been adapting cover trees, a data structure for fast proximity searches
in low-dimensional metric spaces, to the setting of interest, and the construction of this
data structure, which yields multiscale partitions, is perfectly suited for online updates.
It also theoretical guarantees in terms of geometric properties of the partitions, which are
useful theoretically, as well as guarantees in terms of computational complexity. We are
re-adapting the code in order to use these data structures.

4.3.2 Density Estimation

In Figure 1 and 2 we show some experiments were we performed density estimation as
mentioned above on a simple manifold M, and then distort the manifold as a function
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Figure 1: We superimpose to the geometry encoded by GMRA density estimators.This can be
done in different ways, but we discovered a general framework for which we believe very strong
guarantees can be proved, and still very fast algorithms exist. Once a density estimator (i.e. a
model for the data) is constructed, a new point cloud can be tested against the model. Since
these models have scale and location information, fit vs. anomaly is assessed at multiple scales
and locations. A cusp growing in time on a simple manifold (top) affects the goodness of fit at
different scales and locations (bottom, color in log scale represents multiscale measure of fit of the
model to the data; columns correspond to points, and the regions of poor fit do correspond to the
cusp.).

of time, obtainingMt , and measure the likelihood of seeing the points inMt according
to our multiscale density estimator. We see that the “anomaly” is being detected at the
appropriate scales and locations. In Figure 2 we have real data, in the form of hyper
spectral data cubes changing in time, and with the GMRA density estimator we are able
to detect a chemical release occurring at time t, that affects the shape of the “manifold” of
spectraMt at a later time t.

While the original GMRA produces geometric approximations, it is of interest in many
applications to also approximate the actual density of points, for example in order to
attach likelihoods to changes in the density, for example because of data changing in
time, or anomalies developing. Instead of approximating a manifold M the goal is to
estimate the probability distribution µ of the data. Very general framework for geometric
density estimation:

• start with a space of local models FCj,k , a subset of probability measures that are
supported in Cj,k, a region at scale j in the GMRA. For example it could be the
uniform normalized Hausdorff measure on sets in the form π ∩ Cj,k, where π is
a plane of dimension d, of an appropriately truncated and normalized version of
N (m, C), a Gaussian distribution of mean m and covariance C, restricted to Cj,k.
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Figure 2: Cube: 320x256x120 every 8sec. Spectra from 8µm to 11.7µm. Each data set contains 5-10
min. 4 distinct chemical types, 3 chemical release mechanisms, 2 different locations. Currently de-
veloping anomaly detection algorithms with GMRA. In this case we construct a model of normal
spectra on the first cube in the movie. We then test the model on the spectra at time t.Anomalies
are detected as points with very small probability.

• While each FCj,k is “small”, we consider the (typically) much larger space obtained
by picking a convex combination of measures in the“local” spaces associated with
a partition. It is within F that we look for an approximation µ̂n, dependent on n
observed samples, to the probability measure µ, aiming at being close to the optimal
µ̂ := argminν∈FW2(ν, µ).

• We develop fast multiscale adaptive algorithms, with finite sample guarantees on the
distance between µ̂n and µ, depending only on intrinsic dimension, complexity of
the local model class, and approximability of µ. We can even perform these online.

4.3.3 Manifold compressed sensing

We are developing a compressive sensing framework for GMRA: given a GMRA forM,
can we measure a small number of linear projections of a new point x, on or near the man-
ifoldM, and reconstruct x? We have results showing that the answer is yes as soon as the
number of linear measurements is of the order of the intrinsic dimension ofM, and the
measurements satisfy certain conditions. Such conditions are indeed satisfied with high
probability by random projections, for example, but we are considering the problem of
adaptively designing a measurement matrix, which may yield even better reconstruction.
All of this generalizes compressive sensing and compressive reconstruction algorithms
from the standard sparsity setting to the case of nonlinear low-dimensional manifolds.
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This work lead to the paper [18]. A corresponding Matlab toolbox is published on the M.
Maggioni’s webpage, together with the paper, and it is also available together with the
paper on the publisher’s website, in the spirit of reproducible research.

4.3.4 Robust Dictionary Learning

In the paper [27] we use GMRA to construct dictionaries from data, with guarantees on
the quality of the dictionary, and fast algorithms for both the construction of the dictio-
naries and fast transforms from data to dictionary coefficients and back. The problem
may be stated as follows: we are given i.i.d. samples x1, . . . , xn from an unknown proba-
bility measure Π in RD whose support is concentrated (in a suitable technical sense) near
a d-dimensional manifoldM in RD, with d � D being the interesting case. The goal is
to construct a dictionary Φ = {ϕ1, . . . , ϕm} ⊂ RD such that if x is a sample from Π, there
exists α ∈ Rm such that ||x−Φα|| < ε and ||α||0 ≤ k. We would like m, ε, k to be all small,
but clearly there are tradeoffs between them (for example, the large m is, the smaller we
should be able to make ε and k), as well as tradeoffs with n, the number of samples at
hand. In this paper we show that a GMRA-based construction leads to the following: if ε

is fixed and given as a desired accuracy, if n & ε−1+ d
2 , then with high probability we ob-

tain a dictionary Φ with O(ε−
d
2 ) elements, that achieves accuracy ε on all samples x from

Π, and any sample x from Π will have a (d + 1)-sparse representations in terms of Φ. The
algorithm for constructing Φ is fast, scaling linearly in the size of the input data matrix,
and exponentially in the intrinsic dimension d of the data, and the map from x to the set
of coefficients α that yields a sparse representation for x is also fast. All the rates depend
crucially on the intrinsic dimension d and not on the ambient dimension of the space. The
(rather long) paper has been submitted for publication in Journal of Machine Learning
Research and is currently available on the ArXiv. A toolbox for the paper is published on
M.Maggioni’s webpage.

4.3.5 Publications & Future Work

We have so far published the papers [2, 9, 34, 8, 7, 18, 26, 5, 10], posters [34], and large
data visualization techniques. We have started writing a long paper on GMRA density
estimation (together with other conference papers, e.g. [28]), and we extended these tech-
niques to the study of high-dimensional systems, in particular to model reduction and
homogenization problems [11], as well as to the fast construction of multi-resolution (in
the spatial domain) dictionaries for images [14]. We submitted a long paper on multi-
scale techniques for Markov Decision Processes, also inspired by the multi-scale construc-
tions above [6] together with short papers on multi-scale methods for control of high-
dimensional systems [4, 5]. We are also developing fast multi-scale techniques, inspired
by the GMRA construction, for the calculation of optimal transportation distances and
plans for high-dimensional point clouds (with S. Gerber).
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4.3.6 Students and Postdocs supported by the award

G. Chen, J. Bouvrie, S. Gerber were Visiting Assistant Professors in the Mathematics De-
partment at Duke University that were partially supported by this award. G. Chen is an
author of [2] and several other papers under this award, developed an initial version of
the GMRA code. J. Bouvrie worked on the generalization of GMRA-type ideas to control
systems and Markov Decision Processes. S. Gerber used GMRA-type ideas to create new
algorithms for the fast calculation of optimal transportation plans, as well as developing
a fast version for dictionary learning on multi-scale patches of large databases of images.
Eric Monson is a research scientist in Computer Science Department at Duke University
who collaborated with the PI on the development of novel user interfaces and visualiza-
tion techniques for high-dimensional data. GMRA-based visualization are enabling the
visualizations of very large data sets in an interactive fashion, with minimal communica-
tion requirements with the server on which the data is stored, making it possible to use
on mobile devices. Co-PI W.K. Allard besides co-authoring [2], was heavily involved in
the design and development of the algorithms for GMRA, in particular for the fast, online
hierarchical data structures underlying the construction.

5 Cover Trees (W. K. Allard)

5.1 Introduction

My work on this grant was concerned with the theory and application of a fundamental
data structure called a cover tree which is used to provide a useful and efficient multiscale
decomposition of a subset S of a metric space X. This structure was introduced in the
paper ([3]) Cover Trees for Nearest Neighbor by Alina Beygelzimer, Sham Kakade and John
Langford. In the preprint [1], supported by this grant, I refined and extended the work
done in [3] in ways I will indicate below.

5.2 The algorithm

Whereas many algorithms designed for usefully decomposing S as above require the
computation of all (N

2 ) pairwise distances between the N points of S, the cover tree algo-
rithm requires only N log N such distance calculations under hypotheses that are satisfied
for many data sets of interest. Moreover, of all such decompositions, in a sense that can
be made precise, that provided by the cover tree algorithm has the highest quality. In ad-
dition, and perhaps more importantly, the constant in front of the complexity mentioned
a small and simple universal constant raised to the power of the intrinsic dimension of
S. A precise an appealing definition of the intrinsic dimension, though certainly not the
only reasonable one, is given in [1]. If one’s goal is to build a decomposition of S which
has the desirable qualities of a cover tree decomposition it is seems one cannot do better.

It is not at all obvious how to parallelize the cover tree algorithm. In [1] I provide what
I believe to be a very efficient way to do this on a shared memory machine. The user must
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set one parameter. I have found that setting this parameter to 100 times the number of
cores works pretty well. Very often the speedup is close to the number of cores.

5.3 The code

All told, I wrote around 7000 lines of C++ code to efficiently implement the construction
of a cover tree as well as to perform a number of associated tasks, such as a k-nearest
neighbor search. This code is written for shared memory machines and, most of the time,
provides good speedup.

In addition, I have written Matlab wrappers using MEX so that a user can call the code
from within Matlab.

I have outlined a distributed memory version of the code but have yet to implement
it; the algorithm I have outlined is more naive than the one I wrote for shared memory.
Having built such a program it is not difficult to build one that that works on a distributed
shared memory machine.

5.4 GMRA.

Mauro Maggioni and his many collaborators are using this code to implement his beau-
tiful Geometric Multiscale Resolution Analysis (GMRA) suite of constructions. The first
step in any GMRA algorithm is the multiscale decomposition of a point cloud, a task for
which the cover tree construction is ideally suited.

6 Summary

In spite of some very difficult personnel issues, the group as a whole made significant
progress in pushing forward the research agenda focused on (1) exploiting insights and
techniques in geometric analysis for data and conversely, (2) exploiting motivation from
data analysis for further developments in geometric analysis.
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