
 1

DOE Award #: DE-SC0004948

Name of the Recipient: The HDF Group

Project Title: Damsel: A Data Model Storage Library for Exascale Science

PI: Quincey Koziol, HDF Group

Team Members: Argonne National Laboratory, The HDF Group, North Carolina State University

Date of the report: November 26, 2014

Final Technical Report
Project Goal

The goal of this project is to enable exascale computational science applications to interact conveniently
and efficiently with storage through abstractions that match their data models. The project consists of
three major activities: (1) identifying major data model motifs in computational science applications and
developing representative benchmarks; (2) developing a data model storage library, called Damsel, that
supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable
exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with
computational scientists to encourage adoption of this library by the scientific community.

Background

Computational science applications have been described as having one of seven motifs (the “seven
dwarfs”), each having a particular pattern of computation and communication. From a storage and I/O
perspective, these applications can also be grouped into a number of data model motifs describing the
way data is organized and accessed during simulation, analysis, and visualization. Major storage data
models developed in the 1990s, such as Network Common Data Format (netCDF) and Hierarchical Data
Format (HDF) projects, created support for more complex data models. Development of both netCDF and
HDF5 was influenced by multi-dimensional dataset storage requirements, but their access models and
formats were designed with sequential storage in mind (e.g., a POSIX I/O model). Although these and
other high-level I/O libraries have had a beneficial impact on large parallel applications, they do not
always attain a high percentage of peak I/O performance due to fundamental design limitations, and they
do not address the full range of current and future computational science data models.

It is well recognized that a different approach, one that leverages the lessons and best practices learned
from previous approaches, is needed to achieve the scalability required from high-level I/O and storage
libraries to fulfill the promise of exascale systems. As the International Exascale Software Project (IESP)
report observes, “The purpose of I/O by an application can be a very important source of information that
can help scalable I/O performance when hundreds of thousands (to millions) of cores simultaneously
access the I/O system.” In other words, the high-level view of the data model is overlooked rather than
exploited. Also, the data layout used in these codes and how that layout interacts with I/O software used
to save the data to or read the data from storage systems are highly relevant. Arguably, the model of
building “verticals” with customized interfaces and formats for the data model motifs of computational
science is the next important step in enabling usable and high performance exascale I/O, and this model
represents the underlying approach of our project.

 2

Project Accomplishments

As specified in the Damsel proposal’s statement of work, this project was planned as a comprehensive
collaboration between some of the most experienced I/O middleware development teams in the country,
at all levels of the I/O stack, from MPI-I/O (the NWU and Argonne teams), HDF5 and PnetCDF (the
HDF Group and Argonne teams), and domain-specific layers such as MOAB, FLASH and GCRM (the
NCSU, Argonne and NWU teams, and outside collaborators). As such, we planned out an aggressive
replacement for both PnetCDF and HDF5, enhancements to MPI-I/O features, and outreach to DOE
simulation teams, visualization applications and computing facilities.

Unfortunately, in attempting to achieve these lofty goals, we have fallen significantly short, mainly due to
our overestimation of what we could accomplish in the time and funding limits available. We have not
designed or implemented a new file format for Damsel, data indexing and querying mechanisms for the
Damsel interface, conversion tools between PnetCDF/HDF5 and Damsel, fault tolerance mechanisms,
self-tuning files based on access patterns, or many of the other planned objectives. We have instead
created a flexible, higher-level of abstraction I/O middleware library, built on top of HDF5, explored how
that library could support several DOE applications, such as FLASH, GCRM, and applications that use
the MOAB library and explored ideas about how to index scientific data. As a whole, this project has laid
a foundation for a follow-on project that could advance the concepts we explored, but has not created
software that is useable in a production environment as currently implemented.

Technical Activities

As the sole institution from the commercial realm on the Damsel project, the HDF Group team leveraged
our experience in producing high-quality software for the high-performance computing (HPC) arena and
concentrated our efforts on the Damsel programming model and interface design and the core
implementation of the Damsel library. As implemented, Damsel depends on HDF5 for storing its
information, so we also enhanced the HDF5 library with features that supported Damsel’s advanced data
and programming models. As the other institutions focused on applying Damsel to HPC applications
such as FLASH and GCRM, we focused on implementing the underlying components, meeting in the
middle with a project-wide collaboration at the data model and programming interface layers.

The Damsel data model is designed to be very flexible, allowing applications to store both structured and
unstructured meshes and rectilinear array data in a flexible, hierarchical manner that includes metadata to
annotate components in the model. The fundamental classes in the data model include mesh entities
(such as vertices, edges, polygons and polyhedral), entity sets (which aggregate entities into larger units),
and tags (a user-defined value for a given entity, such as pressure or temperature). Over the course of the
project, the whole Damsel team met several times face-to-face each year and regularly via telecons to
create, optimize, refine and revise the data model, with the HDF Group team participating in all
discussions and decisions. A full description of the final Damsel data model can be found here:
http://cucis.ece.northwestern.edu/projects/DAMSEL/damsel_datamodel.html.

The HDF Group was primarily responsible for the implementation of the Damsel library, including a
collaborative effort to design the programming interface with the rest of the Damsel project teams. The
Damsel library is implemented in C and uses the HDF5 library for storing data. Key features explored in
the Damsel implementation are its support for both blocking and nonblocking I/O operations, hierarchical
mesh specification, and support for sub-file storage. Implementation of the Damsel library was primarily
performed on several Linux distributions (Redhat, Ubuntu and Debian), but the package was also tested
by developers on MacOSX systems, to verify that it was portable to non-Linux environments as well.
Best practices for software development were used during the development process, including integration
of daily regression tests in the NSF Middleware Initiative’s Metronome environment (which also enabled
testing in many other operating system environments), a standardized build system, use of a source code
version repository, and the usual array of wikis and mailing lists for collaboration between developers. A
description of the Damsel programming API and both simple and complex examples of its use are

 3

available here: http://cucis.ece.northwestern.edu/projects/DAMSEL/damsel_api.html and
http://cucis.ece.northwestern.edu/projects/DAMSEL/#DamselUsecases.

Finally, in order to support parallel I/O for the collections of datasets produced by Damsel, the HDF
Group implemented a new feature in HDF5: support for collective parallel I/O on multiple HDF5 datasets
with a single operation. Adding this feature to HDF5 allowed the datasets created by Damsel to be
accessed in a single read or write call, by creating a single MPI datatype and file view and a single final
call to MPI_File_write_at_all. The graph below shows the results from writing multiple HDF5 datasets
individually vs. a single call to the new multi-dataset write call:

As shown above, multiple calls to write data to HDF5 datasets scale exponentially, as O(n2), whereas a
single call to write all datasets at once is performed in effectively constant time, as O(1). Similar results
for reading multiple datasets in many vs. one calls were also observed. Not only does this feature support
multiple dataset I/O for Damsel, but this functionality is also available to any HDF5 application that
writes multiple datasets in parallel, benefitting many applications beyond those using Damsel directly.

Summary

The Damsel project, as currently implemented, falls short of the goals proposed. We have implemented
an I/O middleware library that provides an interface for storing scientific data at a higher level of
abstraction than HDF5 and PnetCDF, and explored how to use that library with several DOE applications
(see collaborations listed below), but without many of the advanced research aspects proposed (such as
actively reconfiguring the file’s storage based on its access pattern, live querying and indexing of the data
stored, etc). The Damsel library successfully delivers a working prototype of the Damsel data model, but
without a significant further effort, probably with a smaller team that was more focused on just this
project, future work on Damsel proper is not justified. Arguably, the most valuable work products from
the project are the Damsel data model, which has had significant effort invested and would be valuable to
apply to another project, and the multi-dataset I/O enhancements to HDF5. Additionally, the teams
involved in the Damsel project will be able to apply the lessons learned and ideas generated to future
work, which hopefully can be delivered in a more useful form for applications.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

400	
 800	
 1600	
 3200	
 6400	

W
ri
te
	
 ti
m
e	

in
	
 s
ec
on
ds
	

Number	
 of	
 Datasets	
 Written	

H5Dwrite	

H5Dwrite_multi	

 4

Web Access

The project web page, http://cucis.ece.northwestern.edu/projects/DAMSEL, contains a description of the
Damsel library, including the programming model and C application programming interface reference
manual. Several case studies are available, ranging from several fundamental data entities to real
production applications. It also includes the I/O optimizations developed, example codes, and references
to the studied cases.

The internal software development repository is running on a SVN server at Argonne National Lab. and
its trac/wiki page is https://trac.mcs.anl.gov/projects/damsel. This platform provides an easy and secure
platform for collaborative software development from parties at remote locations. Registered users will be
able to access all development history and internal user discussion.

Software Release

The source code and instructions for building Damsel version 1.0.0 are publicly available from the project
web page, here: http://cucis.ece.northwestern.edu/projects/DAMSEL/#DamselSourceCodeDownload.

Collaboration and Outreach

We collaborated with the Geodesic Grid I/O team led by Karen Schuchardt at Pacific Northwest National
Laboratory to improve the parallel I/O performance of the Global Cloud Resolving Model (GCRM)
framework. GCRM is supported by the DOE SciDAC program as one of the major climate simulation
application frameworks. The geodesic grids used by GCRM cover the entire earth surface with clouds
with the dimensions of longitude, latitude, and altitude. A 4km grid resolution run will contain 42M
horizontal cells and generate about 0.3TB data for each snapshot, assuming 100 vertical layers and a
modest number of 3D variables. A case study has been created to describe the data model and layout for
geodesic grids in Damsel, including source code, illustrative figures, input data, and expected outputs,
here: http://cucis.ece.northwestern.edu/projects/DAMSEL/GCRM_write.html

We collaborated with Dr. Anshu Dubey and Christopher Daley, application scientists from the ASC /
Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago on mapping the
FLASH simulation code to the Damsel interface. The FLASH code is used to study the surfaces of
compact stars such as neutron and white dwarf stars, and the interior of white dwarfs. FLASH uses an
AMR-based domain decomposition method to partition the data and is a difficult model to map to most
I/O middleware interfaces, but mapping it to Damsel’s interface is straightforward. A case study has been
created to describe the data model and layout for AMR grids in Damsel, available here:
http://cucis.ece.northwestern.edu/projects/DAMSEL/damsel_usecase_flash_detail.html

Presentations and Publications

None, from the HDF Group, as we focused on the Damsel software implementation during the span of the
project.

