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Introduction

@ Reverse-time migration (RTM) is a powerful tool for imaging
subsurface structures
e Solves the scalar-wave equation in heterogeneous media

e Images complex structures

@ Elastic reverse-time migration (ERTM) is necessary to properly
handle multicomponent seismic data

e Solves the elastic-wave equation in heterogeneous media
o Generates PP, SS, PS and SP images

@ Some challenges in ERTM
e low-wavenumber artifacts in PP and SS images

@ polarity reversal problem for converted-waves images (PS and SP)

@ expensive computation and memory requirement
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Objective

To directly image steeply-dipping fault zones
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Conventional imaging condition for ERTM

@ Conventional zero-lag cross-correlation imaging condition for
ERTM

tmax

Icor(X) = 5 S(x, t)R(x, t)dt

keor: image

fmax: the maximum record time

S(x, t): forward-propagated source wavefield

R(x, t): backward-propagated receiver wavefield
S(x, t) and R(x, t) can be either P or S component

Images: lpp, Ips, Isp, Iss
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Conventional imaging condition for ERTM

@ Pro

e straightforward

@ easy to implement

@ Con
@ generates low-wavenumber migration artifacts
o for Ipp and Isg
@ particularly strong for high-contrast, sharp interfaces
@ may mask some crucial structures

e produces destructive images due to polarity reversal
@ for Ibs and Isp

e is difficult to obtain clear images of steeply-dipping fault zones
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Imaging condition with wavefield separation

@ Separate the forward and backward propagation wavefields into
downgoing, upgoing, leftgoing, and rightgoing wavefields

@ Obtain downward-looking (/9), upward-looking (/Y), left-looking (/'), and
right-looking (/") images

tmax
19(x) = St (x,)R~%(x, t)dt
0
tmax
I“(x) = S7Z(x, t)RT3(x, t)dt
0

tmax

I'(x) = S7X(x, )R (x, t)dt
0
tmax

I"(x) = SH(x, )R~ (x, t)dt
0

o /=1T+1+r
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Polarity correction for converted waves

@ The Poynting vector F describes the energy flux density
F=-pVp

p: the wavefield quantity for P or S waves

@ can be used to correct for polarity reversal

tmax
I(x) = S(x, t)R(x, t)sgn(Fs x Fy)dt
0

@ computationally efficient

@ difficult to obtain accurate estimate for complicated wavefields
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Polarity correction for converted waves

@ combine the Poynting-vector method with wavefield separation

tmax

19(x) = A STZ(x, t)R™%(x, t)sgn(F{? x F; %)dt,
1(x) = Otmax S~2(x, )RZ(x, )sgn(F5? x Fi?)at,
I(x) = Otmax SX(x, )R (x, t)sgn(F* x Fi¥)at,
roo = [T S (x )R¥(x, 1)sgn(FL* x F-¥)at.

0

@ more accurate estimate of Poynting vectors

@ better image the steeply-dipping fault zones
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90-deg fault model
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@ fault zone thickness: 20 m
@ fault zone velocity: 10% lower than surrounding regions

o VP/VS =1.73
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PS images
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Soda Lake velocity model
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@ Soda Lake geothermal field, Nevada

@ based on geologic interpretation result of a prestack migration image
@ fault zone thickness: 25 m

@ fault zone velocity: 15% lower than surrounding regions

@ W/ Vs=1.73

T. Chen (LANL) ERTM 11/24



X (km) X (km)
1 2 3 4 5 6 1 2 3 4 5 6
_os{ W 7 _ 05 ———
£ \ £ £S5
N 1 B t N 1
Conventional ERTM Downward looking
X (km) X (km)
1 2 3 4 5 6 1 2 3 4 5 6
egmay S T —
__ 05 | \l / _05] - T—"‘j}' ==
£ &~ £ ‘ é’:""}j‘&
Ny \ Ny \ .

Horizontal looking Our ERTM

T. Chen (LANL) ERTM 12/24



Z (km)

0.5

Z (km)

0.5

— —
— O — OO — ’
Y =

/f«“\'.i’*%‘i\a

With polarity correction

0.5

Z (km)

Our ERTM

T. Chen (LANL)

ERTM

13/24



Conclusions

@ We have developed a new imaging condition for ERTM by
combing the Poynting-vector method and wavefield separation in
both vertical and horizontal directions

@ Our new imaging condition can directly image steeply-dipping fault
zones

@ Our new imaging condition can eliminate low-wavenumber
artifacts

@ Our new imaging condition can efficiently correct polarity reversals
@ We have demonstrated using synthetic examples that our new

imaging condition greatly improves the images of steeply-dipping
fault zones
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Objective

To develop a new imaging condition for ERTM

e Eliminate low-wavenumber image artifacts

@ Reduce the computational cost and the computer memory
requirement of implementing the imaging condition
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S: source wavefield

R: receiver wavefield = /S/ R - dt + / Sr- Ry -dt
i: incident
r: reflected
Amplitude
Si > Sr
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Excitation amplitude imaging condition

@ During the forward propagation of the source wavefield,
for each imaging point, we store

e the maximum amplitude of the wavefield (S;)

e its corresponding excitation time f

@ Rather than using

tm ax

heor(X) = [ S(x, D)A(x, ot

we can simply use

I(x) = S(x, to(x)) - R(x; to(x))

= Si-(Ri+R) S.AR—+HR
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Excitation amplitude imaging condition

@ To further remove artifacts Si- (Ri+ &)

@ Determine the excitation time tyr for receiver wavefield

for: corresponding to the maximum amplitude of wavefield within [l — T ]
T: = ahalf period for the central frequency
t: model dependent

@ velocities gradually increase with depth: tr = fmax

@ there is a sudden large velocity jump : t(x) = t(X) + f(d(x), V(x))
d: layer thickness
we use f ~ 1.5d(x)/V(x)

New imaging condition

I(x) = { D if |to(x) — top(x)| > T
S(x, t(x)) - R(X, tp(x)) if [to(X) — tor(X)| < T
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PP images for a two-layer model
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PP images for a multiple-layer model
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PP images for a model with sudden V jump
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PS images for a model with sudden V jump
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Conclusions

@ We have developed a new excitation amplitude imaging condition
for ERTM

@ Our new imaging condition can eliminate migration artifacts

@ Our new imaging condition can also reduce the computational
cost and the computer-memory requirement

@ We have demonstrated the effectiveness of our new imaging
condition using synthetic data for layered models

e PP
e PS

@ Future work: test on more complex models
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