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Introduction

Reverse-time migration (RTM) is a powerful tool for imaging
subsurface structures

Solves the scalar-wave equation in heterogeneous media

Images complex structures

Elastic reverse-time migration (ERTM) is necessary to properly
handle multicomponent seismic data

Solves the elastic-wave equation in heterogeneous media

Generates PP, SS, PS and SP images

Some challenges in ERTM
low-wavenumber artifacts in PP and SS images

polarity reversal problem for converted-waves images (PS and SP)

expensive computation and memory requirement
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Objective

To directly image steeply-dipping fault zones
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Conventional imaging condition for ERTM

Conventional zero-lag cross-correlation imaging condition for
ERTM

Ixcor(x) =
∫ tmax

0
S(x, t)R(x, t)dt

Ixcor: image

tmax: the maximum record time

S(x, t): forward-propagated source wavefield

R(x, t): backward-propagated receiver wavefield

S(x, t) and R(x, t) can be either P or S component

Images: IPP, IPS, ISP, ISS
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Conventional imaging condition for ERTM

Pro

straightforward

easy to implement

Con

generates low-wavenumber migration artifacts
for IPP and ISS

particularly strong for high-contrast, sharp interfaces

may mask some crucial structures

produces destructive images due to polarity reversal
for IPS and ISP

is difficult to obtain clear images of steeply-dipping fault zones
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Imaging condition with wavefield separation

Separate the forward and backward propagation wavefields into
downgoing, upgoing, leftgoing, and rightgoing wavefields

Obtain downward-looking (Id ), upward-looking (Iu), left-looking (I l ), and
right-looking (Ir ) images

Id (x) =
∫ tmax

0
S+z(x, t)R−z(x, t)dt

Iu(x) =
∫ tmax

0
S−z(x, t)R+z(x, t)dt

I l(x) =
∫ tmax

0
S−x(x, t)R+x(x, t)dt

Ir (x) =
∫ tmax

0
S+x(x, t)R−x(x, t)dt

I = Id + I l + Ir
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Polarity correction for converted waves

The Poynting vector F describes the energy flux density

F = −ṗ∇p

p: the wavefield quantity for P or S waves

can be used to correct for polarity reversal

I(x) =
∫ tmax

0
S(x, t)R(x, t)sgn(Fs × Fr)dt

computationally efficient

difficult to obtain accurate estimate for complicated wavefields
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Polarity correction for converted waves

combine the Poynting-vector method with wavefield separation

Id(x) =
∫ tmax

0
S+z(x, t)R−z(x, t)sgn(F+z

s × F−z
r )dt ,

Iu(x) =
∫ tmax

0
S−z(x, t)R+z(x, t)sgn(F−z

s × F+z
r )dt ,

I l(x) =
∫ tmax

0
S−x(x, t)R+x(x, t)sgn(F−x

s × F+x
r )dt ,

Ir (x) =
∫ tmax

0
S+x(x, t)R−x(x, t)sgn(F+x

s × F−x
r )dt ,

more accurate estimate of Poynting vectors

better image the steeply-dipping fault zones
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90-deg fault model
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fault zone thickness: 20 m

fault zone velocity: 10% lower than surrounding regions

VP/VS = 1.73
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PP images
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PS images
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Soda Lake velocity model
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Soda Lake geothermal field, Nevada

based on geologic interpretation result of a prestack migration image

fault zone thickness: 25 m

fault zone velocity: 15% lower than surrounding regions

VP/VS = 1.73
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PP images
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PS images

X (km)

Z
 (

k
m

)

1 2 3 4 5 6

0.5

1

Conventional ERTM

X (km)

Z
 (

k
m

)

1 2 3 4 5 6

0.5

1

With polarity correction

X (km)

Z
 (

k
m

)

1 2 3 4 5 6

0.5

1

Our ERTM

T. Chen (LANL) ERTM 13 / 24



Conclusions

We have developed a new imaging condition for ERTM by
combing the Poynting-vector method and wavefield separation in
both vertical and horizontal directions

Our new imaging condition can directly image steeply-dipping fault
zones

Our new imaging condition can eliminate low-wavenumber
artifacts

Our new imaging condition can efficiently correct polarity reversals

We have demonstrated using synthetic examples that our new
imaging condition greatly improves the images of steeply-dipping
fault zones
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Objective

To develop a new imaging condition for ERTM

Eliminate low-wavenumber image artifacts

Reduce the computational cost and the computer memory
requirement of implementing the imaging condition
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Concepts

S
i

S
r

R
r

R
i

S: source wavefield
R: receiver wavefield
i: incident
r: reflected

Ixcor =

∫
S · R · dt

=

∫
(Si + Sr ) · (Ri + Rr ) · dt

=

∫
Si · Ri · dt +

∫
Sr · Rr · dt

+

∫
Sr · Ri · dt +

∫
Si · Rr · dt

Amplitude
Si > Sr

Ri > Rr
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Excitation amplitude imaging condition

During the forward propagation of the source wavefield,
for each imaging point, we store

the maximum amplitude of the wavefield (Si )

its corresponding excitation time t0

Rather than using

Ixcor(x) =
∫ tmax

0
S(x, t)R(x, t)dt ,

we can simply use

I(x) = S(x, t0(x)) · R(x, t0(x))

=⇒ Si · (Ri + Rr ) ((((
(((Sr · (Ri + Rr )
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Excitation amplitude imaging condition

To further remove artifacts Si · (Ri +��Rr )

Determine the excitation time t0R for receiver wavefield
t0R: corresponding to the maximum amplitude of wavefield within [t0 − T tf ]
T : ≈ a half period for the central frequency
tf : model dependent

velocities gradually increase with depth: tf = tmax

there is a sudden large velocity jump : tf (x) = t0(x) + f (d(x),V (x))
d : layer thickness
we use f ≈ 1.5d(x)/V (x)

New imaging condition

I(x) =
{

0 if |t0(x)− t0R(x)| > T
S(x, t0(x)) · R(x, t0(x)) if |t0(x)− t0R(x)| ≤ T
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PP images for a two-layer model
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PP images for a multiple-layer model
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PP images for a model with sudden V jump
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PS images for a model with sudden V jump
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Conclusions

We have developed a new excitation amplitude imaging condition
for ERTM

Our new imaging condition can eliminate migration artifacts

Our new imaging condition can also reduce the computational
cost and the computer-memory requirement

We have demonstrated the effectiveness of our new imaging
condition using synthetic data for layered models

PP
PS

Future work: test on more complex models
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