

LA-UR-14-29009

Approved for public release; distribution is unlimited.

Title: Seismic Imaging with Elastic Reverse-Time Migration

Author(s): Chen, Ting

Intended for: interview presentation

Issued: 2014-11-20

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Seismic Imaging with Elastic Reverse-Time Migration

Ting Chen

Geophysics Group
Los Alamos National Laboratory
Los Alamos, NM, USA

November 21st, 2014

Introduction

- Reverse-time migration (RTM) is a powerful tool for imaging subsurface structures
 - Solves the scalar-wave equation in heterogeneous media
 - Images complex structures
- Elastic reverse-time migration (ERTM) is necessary to properly handle multicomponent seismic data
 - Solves the elastic-wave equation in heterogeneous media
 - Generates PP, SS, PS and SP images
- Some challenges in ERTM
 - low-wavenumber artifacts in PP and SS images
 - polarity reversal problem for converted-waves images (PS and SP)
 - expensive computation and memory requirement

Objective

To directly image steeply-dipping fault zones

Conventional imaging condition for ERTM

- Conventional zero-lag cross-correlation imaging condition for ERTM

$$I_{\text{cor}}(\mathbf{x}) = \int_0^{t_{\max}} S(\mathbf{x}, t) R(\mathbf{x}, t) dt$$

I_{cor} : image

t_{\max} : the maximum record time

$S(\mathbf{x}, t)$: forward-propagated source wavefield

$R(\mathbf{x}, t)$: backward-propagated receiver wavefield

$S(\mathbf{x}, t)$ and $R(\mathbf{x}, t)$ can be either P or S component

Images: I_{PP} , I_{PS} , I_{SP} , I_{SS}

Conventional imaging condition for ERTM

- Pro

- straightforward
- easy to implement

- Con

- generates low-wavenumber migration artifacts
 - for I_{PP} and I_{SS}
 - particularly strong for high-contrast, sharp interfaces
 - may mask some crucial structures
- produces destructive images due to polarity reversal
 - for I_{PS} and I_{SP}
- is difficult to obtain clear images of steeply-dipping fault zones

Imaging condition with wavefield separation

- Separate the forward and backward propagation wavefields into downgoing, upgoing, leftgoing, and rightgoing wavefields
- Obtain downward-looking (I^d), upward-looking (I^u), left-looking (I^l), and right-looking (I^r) images

$$I^d(\mathbf{x}) = \int_0^{t_{\max}} S^{+z}(\mathbf{x}, t) R^{-z}(\mathbf{x}, t) dt$$

$$I^u(\mathbf{x}) = \int_0^{t_{\max}} S^{-z}(\mathbf{x}, t) R^{+z}(\mathbf{x}, t) dt$$

$$I^l(\mathbf{x}) = \int_0^{t_{\max}} S^{-x}(\mathbf{x}, t) R^{+x}(\mathbf{x}, t) dt$$

$$I^r(\mathbf{x}) = \int_0^{t_{\max}} S^{+x}(\mathbf{x}, t) R^{-x}(\mathbf{x}, t) dt$$

- $I = I^d + I^u + I^l + I^r$

Polarity correction for converted waves

- The Poynting vector \mathbf{F} describes the energy flux density

$$\mathbf{F} = -\dot{p} \nabla p$$

p : the wavefield quantity for P or S waves

- can be used to correct for polarity reversal

$$I(\mathbf{x}) = \int_0^{t_{\max}} S(\mathbf{x}, t) R(\mathbf{x}, t) \operatorname{sgn}(\mathbf{F}_s \times \mathbf{F}_r) dt$$

- computationally efficient
- difficult to obtain accurate estimate for complicated wavefields

Polarity correction for converted waves

- combine the Poynting-vector method with wavefield separation

$$I^d(\mathbf{x}) = \int_0^{t_{\max}} S^{+z}(\mathbf{x}, t) R^{-z}(\mathbf{x}, t) \operatorname{sgn}(\mathbf{F}_s^{+z} \times \mathbf{F}_r^{-z}) dt,$$

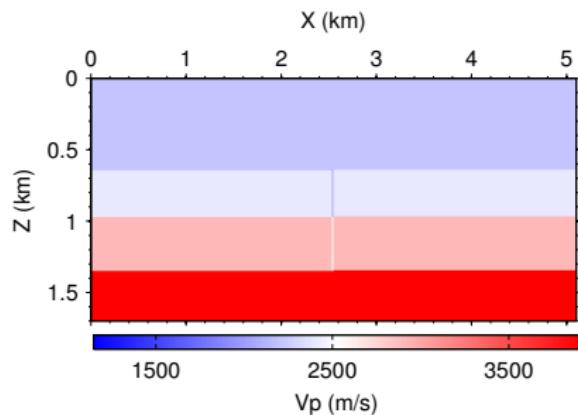
$$I^u(\mathbf{x}) = \int_0^{t_{\max}} S^{-z}(\mathbf{x}, t) R^{+z}(\mathbf{x}, t) \operatorname{sgn}(\mathbf{F}_s^{-z} \times \mathbf{F}_r^{+z}) dt,$$

$$I^l(\mathbf{x}) = \int_0^{t_{\max}} S^{-x}(\mathbf{x}, t) R^{+x}(\mathbf{x}, t) \operatorname{sgn}(\mathbf{F}_s^{-x} \times \mathbf{F}_r^{+x}) dt,$$

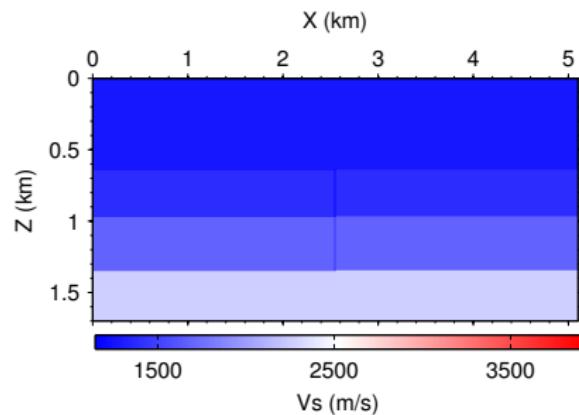
$$I^r(\mathbf{x}) = \int_0^{t_{\max}} S^{+x}(\mathbf{x}, t) R^{-x}(\mathbf{x}, t) \operatorname{sgn}(\mathbf{F}_s^{+x} \times \mathbf{F}_r^{-x}) dt,$$

- more accurate estimate of Poynting vectors
- better image the steeply-dipping fault zones

90-deg fault model



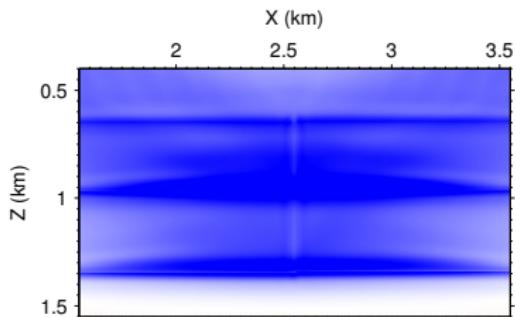
P-wave velocity



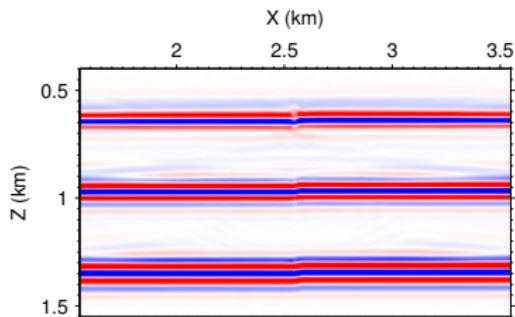
S-wave velocity

- fault zone thickness: 20 m
- fault zone velocity: 10% lower than surrounding regions
- $V_p/V_s = 1.73$

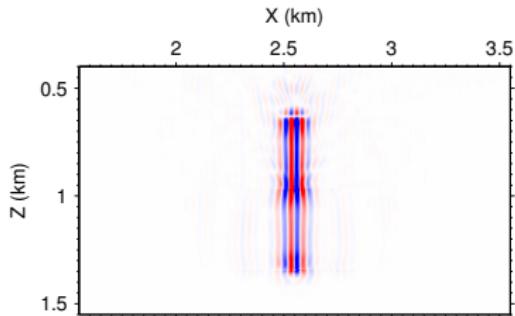
PP images



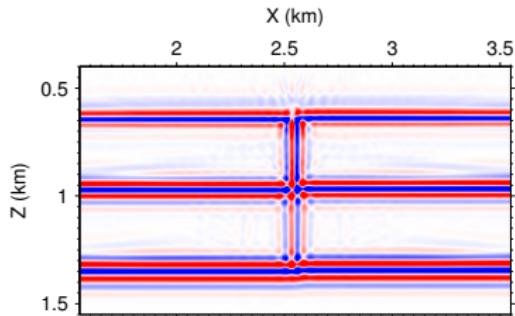
Conventional ERTM



Downward looking

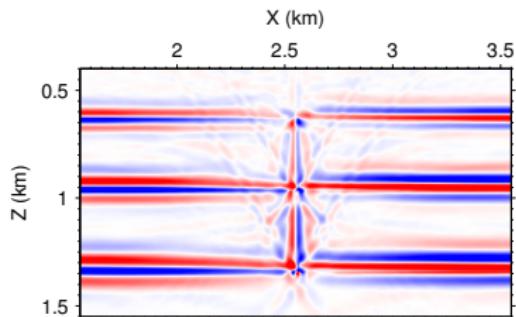


Horizontal looking

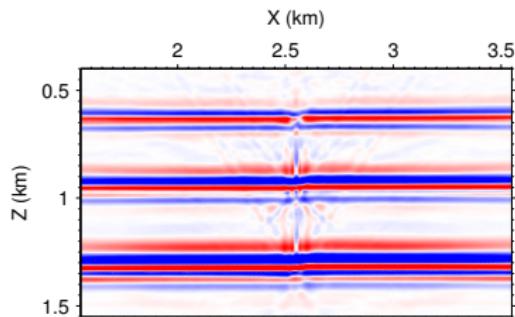


Our ERTM

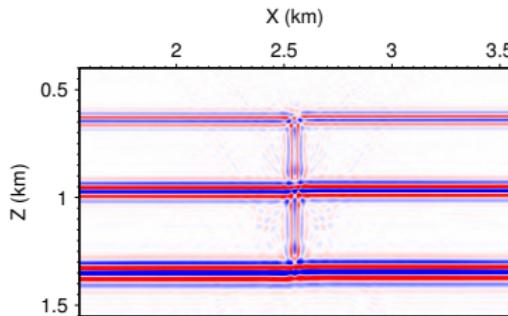
PS images



Conventional ERTM

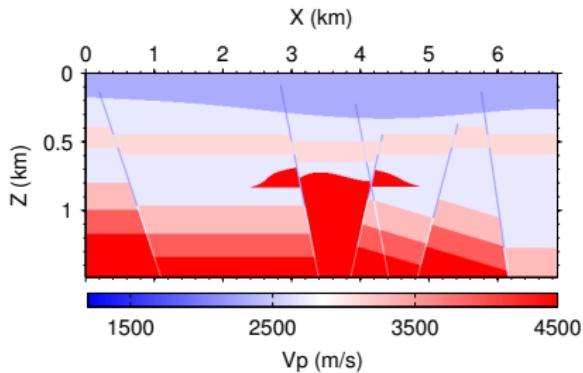


With polarity correction

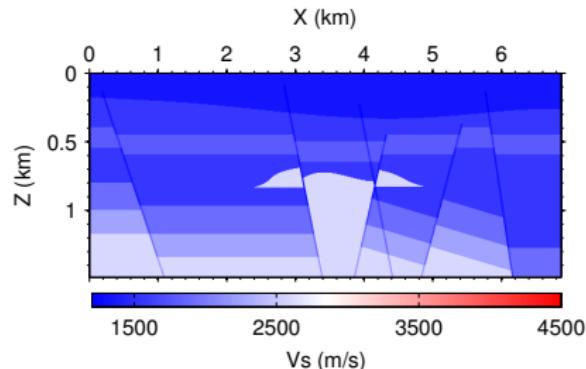


Our ERTM

Soda Lake velocity model



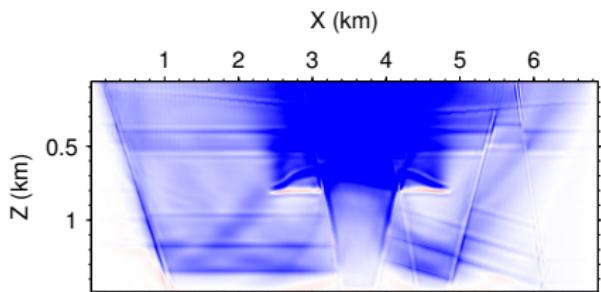
P-wave velocity



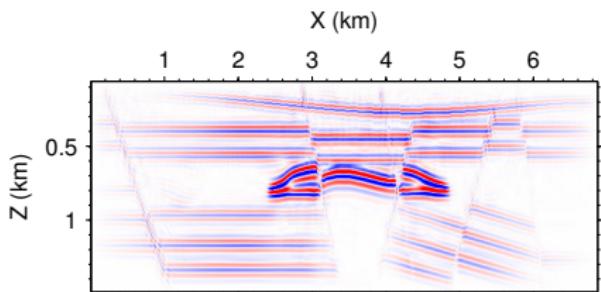
S-wave velocity

- Soda Lake geothermal field, Nevada
- based on geologic interpretation result of a prestack migration image
- fault zone thickness: 25 m
- fault zone velocity: 15% lower than surrounding regions
- $V_p/V_s = 1.73$

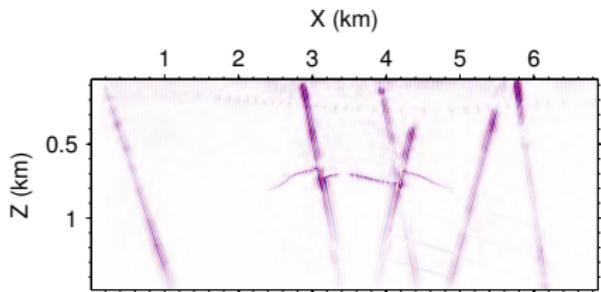
PP images



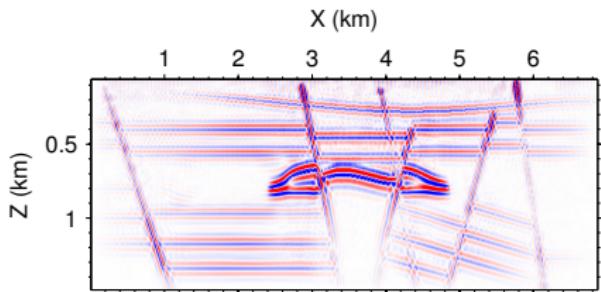
Conventional ERTM



Downward looking

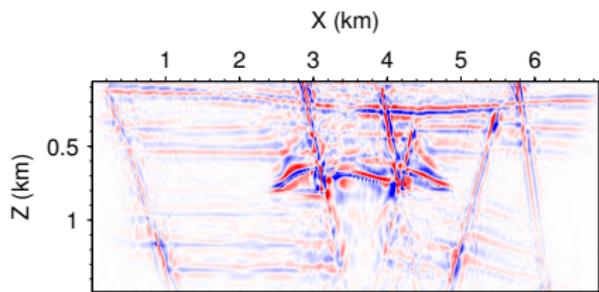


Horizontal looking

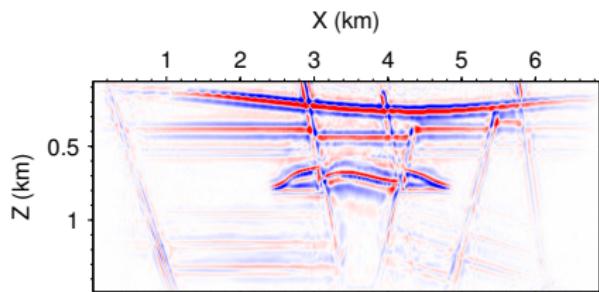


Our ERTM

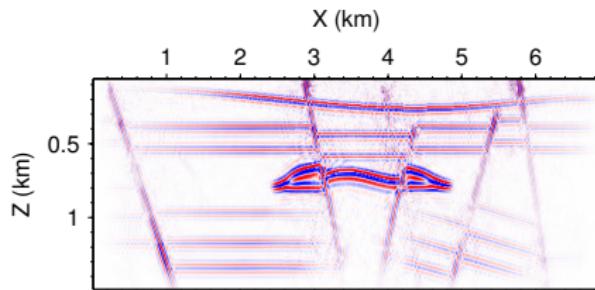
PS images



Conventional ERTM



With polarity correction



Our ERTM

Conclusions

- We have developed a new imaging condition for ERTM by combining the Poynting-vector method and wavefield separation in both vertical and horizontal directions
- Our new imaging condition can directly image steeply-dipping fault zones
- Our new imaging condition can eliminate low-wavenumber artifacts
- Our new imaging condition can efficiently correct polarity reversals
- We have demonstrated using synthetic examples that our new imaging condition greatly improves the images of steeply-dipping fault zones

Objective

To develop a new imaging condition for ERTM

- Eliminate low-wavenumber image artifacts
- Reduce the computational cost and the computer memory requirement of implementing the imaging condition

Concepts

S: source wavefield

R: receiver wavefield

i: incident

r: reflected

$$\begin{aligned}I_{\text{xcor}} &= \int S \cdot R \cdot dt \\&= \int (S_i + S_r) \cdot (R_i + R_r) \cdot dt \\&= \int S_i \cdot R_i \cdot dt + \int S_r \cdot R_r \cdot dt \\&\quad + \int S_r \cdot R_i \cdot dt + \int S_i \cdot R_r \cdot dt\end{aligned}$$

Amplitude

$$S_i > S_r$$

$$R_i > R_r$$

Excitation amplitude imaging condition

- During the forward propagation of the source wavefield, for each imaging point, we store
 - the maximum amplitude of the wavefield (S_i)
 - its corresponding excitation time t_0
- Rather than using

$$I_{\text{xcor}}(\mathbf{x}) = \int_0^{t_{\max}} S(\mathbf{x}, t) R(\mathbf{x}, t) dt,$$

we can simply use

$$I(\mathbf{x}) = S(\mathbf{x}, t_0(\mathbf{x})) \cdot R(\mathbf{x}, t_0(\mathbf{x}))$$

$$\implies S_i \cdot (R_i + R_r) \quad \cancel{S_r \cdot (R_i + R_r)}$$

Excitation amplitude imaging condition

- To further remove artifacts

$$S_i \cdot (R_i + \cancel{R_r})$$

- Determine the excitation time t_{0R} for receiver wavefield

t_{0R} : corresponding to the maximum amplitude of wavefield within $[t_0 - T \quad t_f]$

T : \approx a half period for the central frequency

t_f : model dependent

- velocities gradually increase with depth:

$$t_f = t_{\max}$$

- there is a sudden large velocity jump :

$$t_f(\mathbf{x}) = t_0(\mathbf{x}) + f(d(\mathbf{x}), V(\mathbf{x}))$$

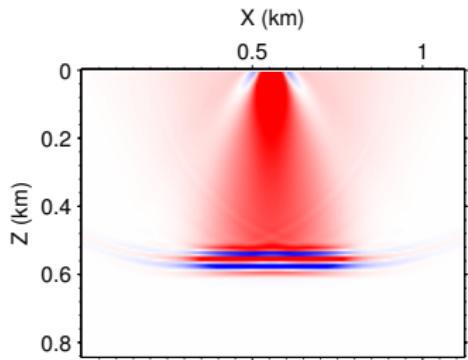
d : layer thickness

we use $f \approx 1.5d(\mathbf{x})/V(\mathbf{x})$

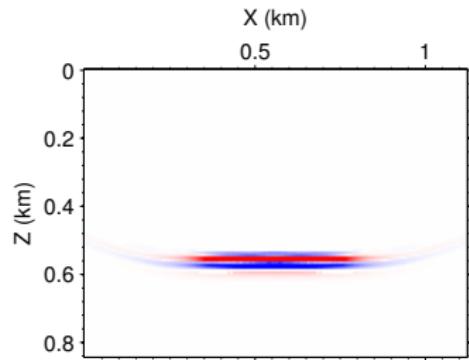
New imaging condition

$$I(\mathbf{x}) = \begin{cases} 0 & \text{if } |t_0(\mathbf{x}) - t_{0R}(\mathbf{x})| > T \\ S(\mathbf{x}, t_0(\mathbf{x})) \cdot R(\mathbf{x}, t_0(\mathbf{x})) & \text{if } |t_0(\mathbf{x}) - t_{0R}(\mathbf{x})| \leq T \end{cases}$$

PP images for a two-layer model

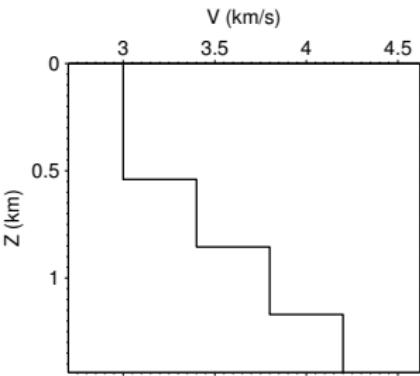


Conventional imaging

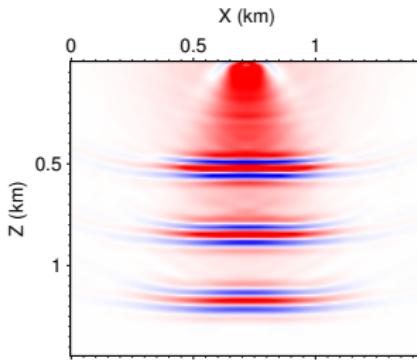


New excitation amplitude imaging

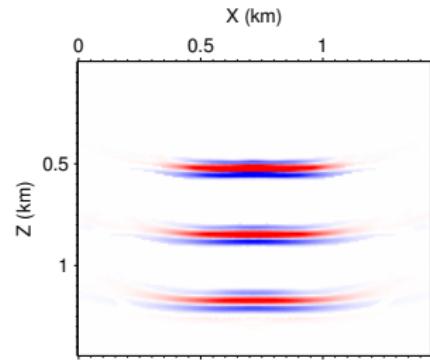
PP images for a multiple-layer model



Velocity model

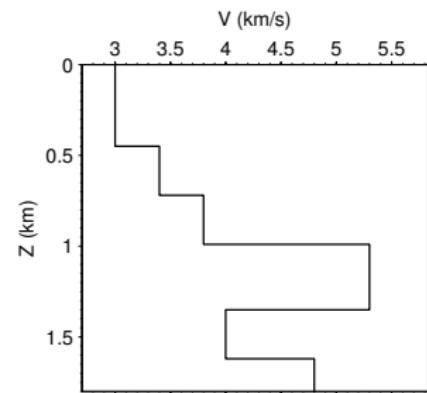
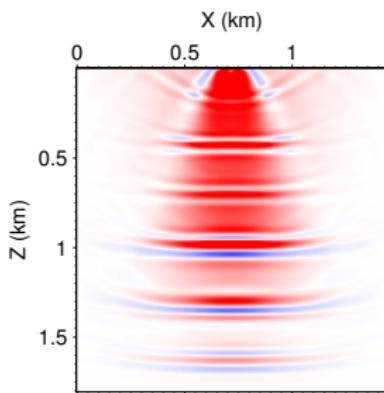
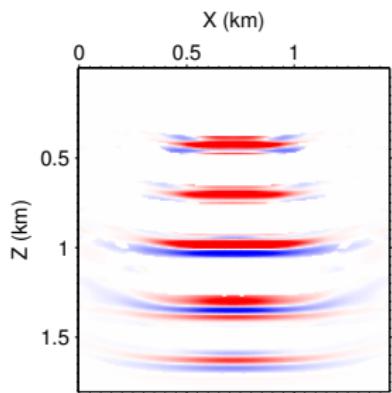


Conventional imaging

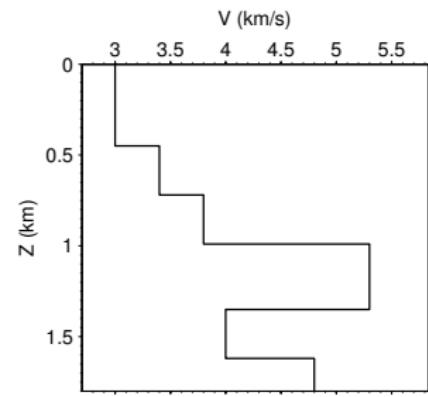


New excitation
amplitude imaging

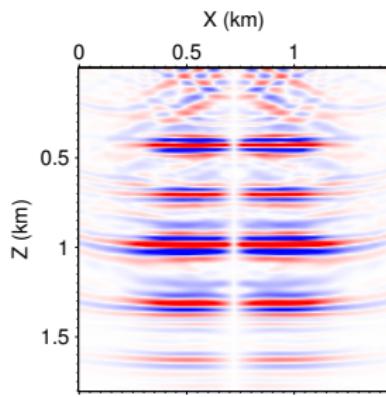
PP images for a model with sudden V jump



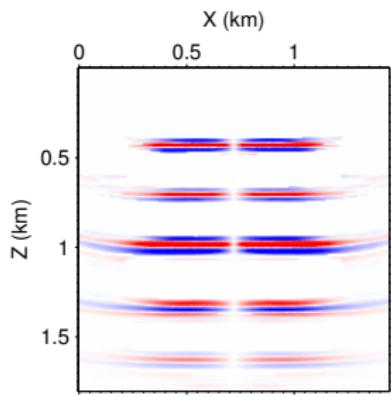
PS images for a model with sudden V jump



Velocity model



Conventional imaging



New excitation
amplitude imaging

Conclusions

- We have developed a new excitation amplitude imaging condition for ERTM
- Our new imaging condition can eliminate migration artifacts
- Our new imaging condition can also reduce the computational cost and the computer-memory requirement
- We have demonstrated the effectiveness of our new imaging condition using synthetic data for layered models
 - PP
 - PS
- Future work: test on more complex models

Acknowledgements

- This work was supported by the U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory.
- The computation was performed on super-computers provided by the Institutional Computing Program of Los Alamos National Laboratory.