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ABSTRACT 

This study describes and demonstrates a method for estimating the accelerated adoption of energy 
efficient products that may be influenced by government and utility deployment programs.  The 
method begins with the Bass adoption model and calibrates the dependence of model parameters on 
government and utility program indicators using an econometric analysis.  Specifically, panel data 
exist for the market shares of efficient products in different U.S. states at different times. The 
different states have different intensities of government and utility deployment program activity, 
different energy prices, different incomes, etc.  The method uses standard econometric techniques to 
estimate the correlation of the Bass adoption curve parameters with government and utility 
deployment program activity. The method is demonstrated with preliminary results for Energy Star 
clothes washers, dishwashers and refrigerators.  The method reveals statistically significant 
correlations for clothes washers and dishwashers between rate-payer funded utility electric energy 
efficiency program spending and adoption. For refrigerators, the method indicates that income and 
energy prices may be more influential than utility spending.  

1. Introduction 
Since the 1970's, governments and utilities have been implementing a wide range of energy efficiency 
and conservation programs to save consumers money and to help mitigate energy-related environmental 
impacts [1].  To accelerate climate change mitigation, governments are seeking improved means for 
accelerating the adoption of energy efficient technologies [2]. Inducing technological innovation in clean 
energy technology requires an integrated policy and program portfolio approach that combines research 
with policies that can accelerate market adoption of efficient products [3]. Induced innovation is 
accelerated by complementary environmental policies that accelerate the market adoption of energy 
efficient technologies, because accelerated adoption creates the market incentives that encourage private 
sector actors to invest more in research and development for environmentally beneficial technologies [4].  

Consistent with the findings of policy studies on induced innovation, the U.S. Department of Energy 
(DOE) has invested in the development of a public investment technology prioritization tool for building 
sector energy efficiency measures [5].  This tool currently accounts for 770 energy efficiency 
technologies and measures, derived from literature reviews and expert input, and provides an accounting 
framework to estimate the relative impact potential of public investments in 411 of these 770 technologies 
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and measures. One of the metrics of potential impact used to evaluate technologies in the public 
investment portfolio is an "adoption-based" energy savings that estimates the difference in energy 
consumption between a baseline and intervention scenario which have different rates of energy efficient 
technology adoption.  Key drivers for the energy use estimates in the model scenario projections are the 
rates of adoption for different energy efficiency technologies as a function of public investments and 
policies. To characterize the technology adoption dynamics, the prioritization tool utilizes the well known 
model developed by Bass [6]. 

This study develops improved analysis techniques for empirically modeling the correlation between 
efficiency program indicators and efficient product adoption rates.   The technique rewrites the adoption 
rate data in terms of a “hazard rate” function that allows estimation of adoption curve parameters using 
standard econometric techniques.  The reformulation of the adoption parameter estimation problem as an 
econometric correlation analysis allows standard tools of statistical inference to be used to analyze 
patterns in available market data.  Using this method, accounting for different program and policy 
activities in the 50 U.S. states, statistically significant correlations are found between state energy 
efficiency program activity levels and adoption rates for certain categories of Energy Star appliances.  

2. Technology adoption modeling 
In the Bass product diffusion and adoption model, if F(t) represents the fraction of the market that has 
adopted a particular product by a particular point in time, then the rate at which this fraction increases 
over time is given by the following equation:  

 

( )
( )(1 )

dF t
p q F F

dt
         (1) 

This equation has a particularly intuitive interpretation.  First it assumes that the market consists of 
individuals who will eventually want a product once the purchasers know about it, and once it is available 
under conditions of sufficient accessibility or affordability.  With this assumption, the rate at which the 
adoption increases is proportional to the product of two terms. One term is the fraction of purchasers who 
have not yet adopted the product (1-F), the population of people who can make a decision to adopt a new 
product.   Then for those who have not yet adopted the product, there are two parameterized rate terms.  
One term is independent of the number of people who have adopted the product to date and may depend 
on such factors as advertising or some generally available type of information about the product being 
adopted. This is the term specified by the parameter p.  The second rate term is proportional to the 
parameter q, and is sometimes referred to as the “contagion” term. It is proportional to the number of 
people who have already have “adopted” the product.  This term represents the new adopters who are 
adopting the product because other people are adopting the product.   

As illustrated in Fig. 1, at very early stages of market entry, the p term represents the early adopters and 
the initial adoption rate of a product at market entry.  When fit to actual data on product adoption, the p 
parameter of a Bass adoption curve tends to be small compared to the q parameter. Also shown in Fig. 1, 
is how the q parameter of the Bass curve can have a dominant influence on the maximum adoption rate of 
a product, which is given by the expression q(1+p/q)/4. 
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Figure 1: Standard Bass adoption curve with p=0.025 and q=0.4.  At market entry the adoption curve 
begins with an initial adoption rate of p for a new product, and then accelerates to a maximum adoption 
rate of q(1+p/q)/4, the curve converges exponentially to a maximum market share of 1 after it passes the 
maximum adoption rate point.  

Changing economic and market conditions can cause purchasers to change their probability of purchasing 
any particular product.  Therefore in the 45 years since the Bass model was formulated, a fairly large 
number of extensions and generalizations of the Bass model have been developed to model these effects 
(see Mead and Islam [7] for a review).   

This study examines the simplest extension of equation (1) that allows the parameters of the adoption rate 
to vary with a set of observable economic variables: 

 

1 ( )
( ) ( ) ( )

(1 )

dF t
h t p X q X F

F dt
   



 
    (2) 

where X


is the vector of observable economic variables that is used to model variations of p and q 
between markets and over time, and h(t) is known as the "hazard rate" in the diffusion modeling 
literature.1   The hazard rate is used because it is linear in p, q, and F and thus can be modeled 
conveniently using econometric methods.  

3. Econometric formulation of Generalized Bass Model  
To fit the model to equation (2), a set of panel data2 is assembled for Energy Star product markets 
covering all 50 states.  The primary data that is available are estimates of Energy Star product sales, 

                                                            
1 See Mead & Islam 2006 
2 The term “panel data” is the term used in statistics and econometrics for multidimensional data involving 
measurements over time.  In biostatistics the term used is “longitudinal data” where one is sampling over a usually 
large population, but over a relatively small number of time steps.  In the present study, the population is the 
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market share by quarter, and by state.3 Energy efficiency policy and program data is also available by 
state in aggregate form since the 1990s.4  Additional economic information that is available state-by-state 
that can be incorporated into the econometric model includes income, energy prices, and new housing 
construction. 

The same econometric model is used for both ( )p X


and ( )q X


, which takes the form: 

 
0 ,

1
p( ) ln lnS S

S I PE NHC S Plcy S p S
US US S

I PE
X p p p p NHC p Plcy e

I PE Pop

   
            

   


 (3) 

0 ,

1
( ) ln lnS S

S I PE NHC S Plcy S q S
US US S

I PE
q X q q q q NHC q Plcy e

I PE Pop

   
            

   


  (4) 

 

The variables in these equations are I, income, PE, the price of electricity, NHC, new housing 
construction (in units per year), population, Pop, and Plcy, a policy or program indicator variable.  This 
study uses only one policy variable, but in principal several different policy indicator variables for 
different policies could be used. The subscripted ps and qs are constant coefficients, and eq,S and ep,S are 
error terms.  Each variable varies by state, as indicated by the subscript S; the subscript US refers to the 
average value of variable for the United States as a whole.  The econometric equations use logarithmic 
functions for income and energy price, consistent with recent econometric studies of energy savings [8].  
Since appliance purchase rates per capita may have a portion that is induced by new housing construction 
rates, the new housing construction term is proportional to new housing construction per capita.   

The primary purpose of this work is to test if it is possible to discern a statistically significant correlation 
between state efficiency spending and the adoption rate of energy efficient technologies. To make the 
model simple and robust with regard to energy efficiency program activity, the model uses a simple 
binary variable (Plcy) to represent the policy/program environment in each state.5 The calculation starts 
with data on total state funding for rate-payer funded utility electric energy efficiency and rank states 
based on their per-capita funding level.   The policy variable then takes the value +0.5 for states with 
above average per capita utility energy efficiency spending rates, and -0.5 for states where those spending 
rates are below average.   

In the demonstration of the method, one additional, more or less stylistic change is made to the 
econometric model.  The method calculates the marginal impacts of economics and policy on the 
adoption parameters, by referencing the value of F (which varies by state) to the national average value 
(FUS). The reason that this is done is that as economic and program influences change over time, and the 
adoption parameters can also change over time.  The adoption parameters shown in equation (2) are 

                                                                                                                                                                                                
different states of the US, which are sampled over a few years during which the Energy Star efficiency level 
definition is stable.  
3 http://www.energystar.gov/index.cfm?c=partners.unit_shipment_data_archives. Date accessed: 7 February 2012 
4 http://aceee.org/sector/state-policy/scorecard. Date accessed: 9 November 2012 
5 In appendix A of this report, an alternative, non-binary rank-order policy variable is also presented which results in 
very similar correlation coefficient estimates. 
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referenced to a market share of F=0 at the time of market entry.  But between the time of market entry 
and the time of measurement, the adoption parameters may have changed.  The method therefore 
references the hazard function equation to the average market share at the time being studied (FUS). The 
equation for the marginal changes in adoption parameters during the period of data collection can thus be 
written as follows: 

 

1 ( )
( ) ( ) ( ),

(1 )

( ) ( ) ( )

S
S S S US

S

S S S US

dF t
p X q X F F

F dt

p X p X q X F

   


   

 

      (5) 

3.1. Sources of economic data 
The economic data used in the econometric correlations derive from a diversity of sources.  The market 
share data for Energy Star appliances was downloaded from the Energy Star website.6  Two distinct 
official sources exist for population data. One source provided by the US Census is estimates of civilian 
non-institutionalized population by state at monthly resolution.7  Another source for both state-level 
annual population and income is the Bureau of Economic Analysis.8 Electricity price data is provided by 
the Energy Information Administration.  Annual housing construction activity is indicated by U.S. Census 
total residential building permits data.9 For the utility energy efficiency program spending indicator, the 
statistical model uses total utility electricity energy efficiency program spending data as compiled by the 
American Council for an Energy-Efficiency Economy in its State Energy Efficiency Scorecard reports.10 
In these reports, data are provided for the years 2000 to 2011 inclusive except for 2001, 2002, 2005, and 
2008.  For those four years, values are imputed for each state using linear interpolation from the nearest 
years where data is available.  

3.2. Calculation of the hazard rate  
To estimate the hazard rate described in equation (2) the calculations need to estimate the time derivative 
of F(t) for each state.  This is done by using the quarterly data for F for one year and calculating the slope 
of F(t) with respect to time using a linear least squares fit of the four data points.  The linear least squares 
slope combined with the average value of F for the four quarters provides the estimate of the hazard rate 
for the year that is used in the statistical model given by equations (3), (4) and (5).  

4. Regression results 
Tables 1 through 3 provide the regression results for the model represented by equations (3), (4) and (5).  
For each appliance (clothes washers, dishwashers and refrigerators) regressions were performed for the 
maximum number of years between 2000 and 2009 for which the product performance requirements were 

                                                            
6 http://www.energystar.gov/index.cfm?c=partners.unit_shipment_data_archives. Date accessed: 7 February 2012 
7 http://www.bls.gov/lau/rdscnp16.htm. Date accessed 15 September 2012 
8 http://www.bea.gov/iTable/index_regional.cfm, Date accessed: 2 February, 2013 
9 http://www.census.gov/construction/bps/stateannual.html. Date accessed 21 February, 2013 
10 http://aceee.org/sector/state-policy/scorecard. Date accessed: 9 November 2012 
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unchanged.  For clothes washers this was 2000 to 2004 inclusive, for dishwashers this was 2001 to 2004 
inclusive, and for refrigerators it was 2002 to 2004 inclusive.  

For clothes washers, there is a clear correlation between whether a state has above-average vs. below-
average utility energy efficiency program spending and the observed adoption rate for Energy Star clothes 
washers from 2000 to 2004.  For low spending states, the observed Bass adoption curve q parameter is 
0.660-0.5*0.347=0.486, while for high spending states the observed Bass adoption curve q parameter is 
approximately 70% larger: 0.660+0.5*0.347=0.834. Correlations with the other economic parameters do 
not appear to be statistically significant, since the correlation calculation finds that p-values for non-zero 
coefficients to be greater than 10%.  

For dishwashers there is also a clear correlation between whether a state has above-average vs. below-
average utility energy efficiency program spending and the observed adoption rate for Energy Star 
dishwashers. Correlations with income or new housing construction rate do not appear to be statistically 
significant.  There does appear to be a significant negative correlation between energy prices in a state 
and Energy Star dishwasher adoption rate. Exactly why such a correlation might exist is not immediately 
clear and warrants further investigation. Such investigation might explore the issue of which other 
economic and demographic variables might correlate with energy prices.  

For refrigerators, adoption rates for Energy Star products are substantially slower than for dishwashers 
and clothes washers. The national average q parameter for refrigerators is less than ½ the magnitude of q 
for clothes washers.  There does appear to be a statistically significant correlation between one of the 
adoption parameters (p’) and income electricity price and the policy variable.  States with relatively low 
per-capita income appear to be more inclined to adopt Energy Star refrigerators during 2002 to 2004 than 
states with high average per-capita income.   States with high energy prices also appear to have a 
statistically significant positive correlation with adoption of Energy Star refrigerators during 2002 to 
2004.   
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Table 1: Regression Results: Energy Star Clothes Washers 
Variables p’ q 
Income  -0.051 0.053 
 (0.038) (0.313) 
Energy price 0.026 -0.431 
 (0.022) (1.384) 
New housing construction rate -0.007 -0.116 
 (0.009) (0.101) 
Policy indicator 0.002 0.355*** 
 (0.012) (0.091) 
Constant 0.098*** 0.663*** 
 (0.005) (0.048) 
Average national market share (FUS) 0.193 
Observations 250 
R-squared 0.59 
Number of states 50 
Period of observation 2000 to 2004 
*** represents 1% statistical significance. Significance level is determined by the p-value for the 
coefficient. 
Standard errors are indicated in parentheses 
 

Table 2: Regression Results: Energy Star Dishwashers  
Variables p’ q 
Income  0.064 0.063 
 (0.090) (0.336) 
Energy price -0.094* -5.456*** 
 (0.054) (1.513) 
New housing construction rate 0.006 0.033 
 (0.023) (0.097) 
Policy indicator 0.117*** 0.541*** 
 (0.025) (0.095) 
Constant 0.474*** 1.444*** 
 (0.011) (0.052) 
Average national market share (FUS) 0.470 
Observations 200 
R-squared 0.843 
Number of states 50 
Period of observation 2001-2004 
* and *** represent 10% and 1% statistical significance respectively  
Standard errors are indicated in parentheses 
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Table 3: Regression Results: Energy Star Refrigerators  
Variables p’ q 
Income  -0.098** 0.097 
 (0.039) (0.446) 
Energy price 0.010 -0.597 
 (0.022) (1.891) 
New housing construction rate 0.001 0.032 
 (0.009) (0.146) 
Policy indicator 0.020* -0.054 
 (0.010) (0.129) 
Constant 0.085*** 0.323*** 
 (0.005) (0.069) 
Average national market share (FUS) 0.268 
Observations 150 
R-squared 0.24 
Number of states 50 
Period of observation 2002-2004 
*, ** and *** represent 10%, 5% and 1% statistical significance respectively 
Standard errors are indicated in parentheses 

 
 
Fig. 2 illustrates the results of the regression for Energy Star clothes washers in graphical form.  The 
figure shows data for both high energy efficiency program spending and low energy efficiency program 
spending.  The statistical results from table 1 indicate that the two sets of states have different values of 
the q adoption parameter: q=0.486 for a low spending state, and q=0.834 for a high spending state.  The 
two adoption curves in Fig. 2 are calculated using equation (5), the same values of p’, the same value of 
FUS, different values of q and different initial conditions in the year 2000. The initial condition we use for 
each curve is the median market share for the corresponding subset of states in the year 2000.  

In the two adoption curves, we can see the faster growth in the market share in the states with the higher 
energy efficiency spending.  The statistical correlation analysis shows that this difference in market share 
growth for clothes washers is not correlated to income, energy price, or new housing but is correlated 
with differences in utility spending between states.   The existence of a correlation is not enough evidence 
to fully attribute the observed differences in Energy Star clothes washer adoption rates to utility program 
spending, but they do provide a significant observational test of the hypothesis that utility electricity 
program intensity may have an impact on energy efficiency product adoption rates.  Further analysis and 
data collection would be useful to more clearly understand the relationship between utility spending and 
Energy Star clothes washer adoption rates.   
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Figure 2: Statistical model results for Energy Star clothes washers in graphical form.  Red open circles 
represent Energy Star market share data for states with high levels of utility energy efficiency program 
spending.  The corresponding red curve is the adoption curve calculated from an adoption equation that 
uses the statistical results for high spending states shown in table 1.   Blue diamonds represent the Energy 
Star market share data for states with low levels energy efficiency program spending, while the blue curve 
represents the corresponding adoption model calculated from the statistical estimate of adoption curve 
parameters in table 1. 

5. Summary and conclusion 
This study develops a form of a generalized Bass model that enables an econometric correlation analysis 
of the relationship between energy efficiency policies or programs and the adoption rate of energy 
efficient products.   The analysis found that with this model there are statistically significant correlations 
between high and low state utility efficiency program spending levels and Energy Star product adoption 
rates for clothes washers and dishwashers. 

For refrigerators, the method indicates that income and energy prices may be more strongly correlated 
with adoption rates than per-capita energy efficiency spending levels. Specifically, income correlations 
were significant at a 99% confidence level, energy price and utility spending correlations were significant 
at a 90% confidence level.   

This new method has therefore passed an initial test of being able to detect correlations between energy 
efficiency programs spending intensity, economic drivers and efficient product adoption rates.   

Given these initial results, further research is recommended to explore the precision and power of this 
technique.   Specifically, future research could examine the application of this method to providing 
forecasts of energy efficiency product adoption as a function of economic and program parameters.  
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Further investigation of the method with better and more precise data regarding utility programs and 
incentives is also likely to be useful, and may yield new insights regarding the potential impact of utility 
programs on energy efficient product adoption.     

Appendix A. Selected sensitivity tests of the econometric correlations 

This appendix presents the results of two sets of sensitivity calculations.  The first set of calculations test 
the sensitivity of the correlation results to changes in the definition of the policy variable.  The second set 
of calculations test if the correlation calculation results of a random subsample of the data can predict 
correlation coefficients calculated from the remaining out-of-sample data.  

 State rank-order policy variable correlation results 
For the calculation that tests the sensitivity of the correlation results with respect to policy variable 
definition, the results using a continuous state rank variable is compared to the results from the binary 
policy variable calculation used in the main study. The new policy variable is a normalized rank of a state 
as measured by per-capita utility energy efficiency spending rate where the normalize rank is +1.0 for the 
state with the highest per-capita spending, is -1.0 for the state with the lowest per-capita spending, is 0.0 
for the state with the median per-capita spending, and varies linearly as a function of the state rank order.   

The results of the correlation analysis with the continuous rank order policy variable are show in tables 
A1 through A3.  Qualitatively the results are very similar for the two different definitions of the policy 
variable with similar patterns of statistical significance and standard errors for the various correlation 
coefficients in the models with the binary policy variable and the rank-order policy variable.   

Table A1: Regression Results: Energy Star Clothes Washers 
Variables p’ q 
Income  -0.054 0.109 
 (0.038) (0.313) 
Energy price 0.022 -0.262 
 (0.022) (1.383) 
New housing construction rate -0.006 -0.149 
 (0.009) (0.100) 
Policy indicator 0.003 0.256*** 
 (0.009) (0.066) 
Constant 0.099*** 0.606*** 
 (0.005) (0.048) 
Average national market share (FUS) 0.193 
Observations 250 
R-squared 0.59 
Number of states 50 
Period of observation 2000 to 2004 
*** represents 1% statistical significance  
Standard errors are indicated in parentheses 
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Table A2: Regression Results: Energy Star Dishwashers  
Variables p’ q 
Income  0.115 0.334 
 (0.095) (0.349) 
Energy price -0.062 -4.872*** 
 (0.056) (1.602) 
New housing construction rate -0.004 -0.003 
 (0.024) (0.102) 
Policy indicator 0.077*** 0.424*** 
 (0.026) (0.105) 
Constant 0.445*** 1.285*** 
 (0.013) (0.056) 
Average national market share (FUS) 0.470 
Observations 200 
R-squared 0.823 
Number of states 50 
Period of observation 2001-2004 
* and *** represent 10% and 1% statistical significance respectively  
Standard errors are indicated in parentheses 

 

Table A3: Regression Results: Energy Star Refrigerators  
Variables p’ q 
Income  -0.091** 0.006 
 (0.039) (0.431) 
Energy price 0.010 -0.571 
 (0.022) (1.897) 
New housing construction rate -0.001 -0.028 
 (0.009) (0.146) 
Policy indicator 0.026* -0.001 
 (0.013) (0.178) 
Constant 0.072*** 0.328*** 
 (0.007) (0.108) 
Average national market share (FUS) 0.268 
Observations 150 
R-squared 0.24 
Number of states 50 
Period of observation 2002-2004 
*, ** and *** represent 10%, 5% and 1% statistical significance respectively 
Standard errors are indicated in parentheses 
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 Comparison of randomly selected in-sample and out-of-sample correlations 
This section presents the results of test that examines if the correlation analysis of a subsample of data has 
the ability to predict the statistical properties of the out-of-sample data.  

In this test, the states were randomly assigned to be either in-sample or out-of-sample for the clothes 
washer correlation analysis presented in table 1 above.  The random assignment was made by selecting a 
random number between 0 and 1 for each state, and then assigning the state to in-sample status if the 
random number was <0.5 and out-of-sample status if the random number was >0.5.  Two correlations 
were then performed for each subset of states, and the out-of-sample correlation coefficients were 
compared to the in-sample correlation coefficients for the three correlation coefficients that were found to 
have a high degree of statistical significance in the main study, i.e. the variables p0’, q, and qPlcy.   

The results of this analysis are illustrated in figure A1 which shows the out-of-sample correlation 
coefficients as a function of the in-sample correlation coefficients for the three statistically significant 
coefficients calculated for the clothes washer case.  On a log/log plot like that shown in the figure, the 
scatter in the data is an indicator of the relative error in the in-sample to out-of-sample forecast.  As 
expected the relative error in the forecast corresponds roughly to the estimated relative standard error of 
the subsample correlation analysis which averages in this analysis 8%, 12% and 48% for the subsample 
data for the estimates of  p0’, q, and qPlcy  respectively. 

   
Figure A1: Comparison of in-sample correlation coefficients to out-of-sample correlation coefficients for 
the clothes washer correlation analysis presented in table 1 in the main study.  Results are presented with 
a logarithmic scale on both axes such that the scatter of the correlation represents the relative error in 
predicting the out-of-sample correlation coefficients from the in-sample data.   
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The key implication of the in-sample versus out-of-sample comparison analysis is that the accuracy of 
prediction is likely to scale with the standard error of the econometric correlation estimates.  Standard 
errors depend quite sensitively on the number of data values in the data set used for the correlation 
calculation.  There are several ways in which market data sets can be expanded, including increasing 
either the geographic or the temporal resolution of the market data that is collected. Hence, there exists 
the possibility of creating increasingly precise forecasts of policy-correlated adoption of energy efficient 
products by continually expanding market data collection capabilities.  
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