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1 Abstract 

This report summarizes the achievements and final results of this program. The objective 
of this program is to develop a general model-based sensor network design methodology 
and tools to address key issues in the design of an optimal sensor network configuration:  
the type, location and number of sensors used in a network, for online condition 
monitoring. In particular, the focus in this work is to develop software tools for optimal 
sensor placement (OSP) and use these tools to design optimal sensor network 
configuration for online condition monitoring of gasifier refractory wear and radiant syngas 
cooler (RSC) fouling. The methodology developed will be applicable to sensing system 
design for online condition monitoring for broad range of applications. The overall 
approach consists of (i) defining condition monitoring requirement in terms of OSP and 
mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-
off of alternate OSP algorithms, down selecting the most relevant ones and developing 
them for IGCC applications (iii) enhancing the gasifier and RSC models as required  by 
OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor 
network required for the condition monitoring of an IGCC gasifier refractory and RSC 
fouling. Two key requirements for OSP for condition monitoring are desired precision for 
the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor 
network in the presence of expected sensor failures. The OSP problem is naturally posed 
within a Kalman filtering approach as an integer programming problem where the key 
requirements of precision and reliability are imposed as constraints. The optimization is 
performed over the overall network cost. Based on extensive literature survey two 
formulations were identified as being relevant to OSP for condition monitoring; one based 
on LMI formulation and the other being standard INLP formulation. Various algorithms to 
solve these two formulations were developed and validated. For a given OSP problem the 
computation efficiency largely depends on the “size” of the problem. Initially a simplified 1-
D gasifier model assuming axial and azimuthal symmetry was used to test out various 
OSP algorithms. Finally these algorithms were used to design the optimal sensor network 
for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors 
type and locations obtained as solution to the OSP problem were validated using model 
based sensing approach. The OSP algorithm has been developed in a modular form and 
has been packaged as a software tool for OSP design where a designer can explore 
various OSP design algorithm is a user friendly way. The OSP software tool is 
implemented in Matlab/Simulink© in-house. The tool also uses few optimization routines 
that are freely available on World Wide Web. In addition a modular Extended Kalman Filter 
(EKF) block has also been developed in Matlab/Simulink© which can be utilized for model 
based sensing of important process variables that are not directly measured through 
combining the online sensors with model based estimation once the hardware sensor and 
their locations has been finalized. The OSP algorithm details and the results of applying 
these algorithms to obtain optimal sensor location for condition monitoring of gasifier 
refractory wear and RSC fouling profile are summarized in this final report. 
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2 Executive Summary 

This section summarizes the key accomplishments of the program. The overall two-year 
program consisted of three main technical tasks. Each key task is described next in more 
detail. 
 

2.1 Task 2 – Model Enhancement and Technology Review 

The objectives in this Task were to (i) define condition monitoring requirement and OSP 
evaluation metrics, (ii) enhancing the available gasifier and RSC models for use in OSP 
calculation, and (iii) analyzing trade off of alternate OSP algorithms. First, high-level 
condition-monitoring requirements relevant to the gasifier refractory degradation and RSC 
fouling monitoring were identified. These requirements were then transformed into design 
requirements for the OSP algorithms. There are two key metrics important for the 
accessing any OSP solution: (i) accuracy/precision of key process variables/parameters 
being monitored and (ii) the reliability of the sensor network in the presence of probabilistic 
failure of sensors. Thereafter, available dynamic models for the gasification section were 
extended to be consistent with the condition monitoring requirements. More specifically, 
the gasifier model was extended to include a transient 3-D thermal model of the refractory 
lining to relate the effects of hot surface wear on potential temperature sensors placed in 
the refractory lining. This will enable a model-based estimation of the unknown wear 
through the potential temperature sensor measurements. Similarly, the RSC model was 
extended to include a 1-D fouling variation along the length of the RSC and its effects on 
potential sensors like heat flux, temperatures, and strain. In parallel, existing literature on 
sensor placement was reviewed. The solution to OSP essentially requires decision about 
the number, type and location of the hardware sensors. This naturally leads to integer 
nonlinear programming (INLP) optimization problems, which are computationally 
expensive to solve due to the combinatorial explosion of integer search space, especially 
for larger-scale OSP problems (e.g. the full 3-dimensional gasifier refractory monitoring 
problem). Available methods for solving such INLP problems and appropriate relaxations 
were reviewed. This highlighted the need to develop a suite of tools that can be used for 
small, medium or large-scale OSP problems.  
 

2.2 Task 3 – Development of OSP Algorithm 

The objective of this task was to develop and implement all the essential elements of an 
OSP algorithm: (i) model-based estimation algorithm, and (ii) optimization algorithm for 
integer nonlinear programming problem. At the core of the optimal sensor network design 
is a model based estimator that estimates the variables important for condition monitoring 
and controls using various process measurements from available/potential sensors. This 
estimator is wrapped within an optimization framework that optimizes the number, type and 
location of the hardware sensors. Any model-based sensor network design methodology 
must account for common sources of modeling errors as well as sensing inaccuracies 
(noise, bias). This motivates the formulation of OSP problem using Kalman filtering 
techniques for estimation and coupling it with various integer optimization algorithms to 
compute the optimal sensor network configuration. A steady state Kalman filter based 
estimation algorithm is used for all OSP algorithms. One of the two key metrics that OSP 
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algorithms are designed around namely desired precision, can readily be expressed 
through the steady state error covariance matrix in Kalman filter formulation. The second 
metric namely the reliability deals with meeting the precision requirements with a desired 
level of certainty in the presence of probabilistic failures of the sensors used in the 
network. This requirement leads to combinatorial computation that is prohibitively 
expensive even for small number of sensors.  Practical approximations are made to 
include the reliability requirement within the OSP problem formulation. Various algorithms 
were developed to solve the optimal sensor placement problems as integer nonlinear 
optimization problem treating the reliability and precision requirements as constraints. 
These algorithms have varying level of computational complexities and are well suited for 
specific OSP problem based on the “size” of the problem. To facilitate faster design and 
development of the OSP algorithms, a simplified 1-D gasifier model assuming axial and 
azimuthal symmetry were used. In addition to the modular OSP algorithm, a modular 
Extended Kalman Filter (EKF) block was also developed in Matlab/Simulink©. This EKF 
block can be utilized for model based sensing of important process variables that are not 
directly measured through combining the online sensors with model based estimation once 
the hardware sensor and their locations has been finalized. Both, the modular OSP 
algorithm tool as well as modular EKF block are going to be delivered to DOE at the end of 
the project. 
 

2.3 Task 4 – Demonstration of OSP Algorithm Performance 

The objective of this task was to apply the fully developed OSP algorithm of Task 3 to 
gasifier and RSC system models to design cost optimal sensor networks in terms of 
number, type and location of hardware sensors required for condition monitoring of the 
gasifier section of an IGCC plant. In this task, a cost optimal sensor network is designed to 
online condition monitor of gasifier refractory wear. Similarly another cost optimal sensor 
network is designed for online monitoring of radiant syngas cooler fouling. The quality of 
the performance to the OSP algorithm is tested through Monte Carlo simulation studies. 
More specifically, in these studies a model based sensing technique using Kalman filter 
was used to monitor randomly generated multiple cases of gasifier refractory through the 
sensor set obtained using the OSP algorithm. The ensemble variance of wear estimates 
obtained in these simulation studies statistically match the precision for which the optimal 
sensor network was designed.  Similar studies were done for estimating the fouling in RSC 
tubing with randomly generated RSC fouling profiles. Here again the ensemble variance of 
fouling estimates obtained in these simulation studies statistically match the precision for 
which the optimal sensor network was designed.   
 
 

3 Introduction 

Integrated Gasification Combined Cycle (IGCC) technology holds the promise for clean 
and efficient power generation from coal and is currently being commercialized by GE. A 
key challenge in accelerating its commercialization is to increase IGCC plant reliability and 
availability. The critical components affecting IGCC plant availability are gasifier and 
radiant syngas cooler (RSC) in the core gasification section. The core gasification section 
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of the plant has a particularly harsh environment with high temperatures (1200-1600 oC) 
and pressures (exceeding 40atm) and presence of slag and corrosive elements which lead 
to significant degradation of the health/condition of key process equipment like the gasifier 
and the radiant syngas cooler (RSC). Currently, in the absence of online monitoring, the 
plant is operated conservatively and is shut down periodically for manual inspection and 
maintenance of the gasifier refractory lining. This adversely impacts plant availability and 
efficiency. Similarly, the heat transfer performance in the RSC degrades over time due to 
fouling buildup from ash and slag, which also affects the plant efficiency. Owing to the 
harsh environment, very limited sensing is currently available for online monitoring and 
controls in this section. An online condition monitoring of these core component is key to 
improving overall plant efficiency and availability.   
 
This program focused at developing a systematic model-based computational solution for 
optimal sensor placement (OSP) in a sensor network used for online condition monitoring 
of these key process equipment in an IGCC plant. The overall program scope, objective 
and the team is shown in Figure 1 
 

 

Figure 1: Program overview - team, scope and objectives 

 
In this two-year program, a systematic model-based approach was developed for 
addressing the problem of optimal sensor placement for condition monitoring of the gasifier 
refractory lining and RSC fouling, that combined a model based estimator with a model 
based optimizer. The overall model based optimal sensor design framework is shown in 
Figure 2. In this regard, initially available first-principles physics-based models were 
extended. These models describe the effect of refractory wear and RSC fouling on the 
overall process dynamics and potential sensors that could be used in the sensor network 
for online condition monitoring. Thereafter, nonlinear model-based estimation algorithm 
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was coupled with nonlinear integer optimization algorithm to develop a sensor network 
solution with optimal combination of sensors that allows a robust online monitoring of the 
equipment health, in the presence of modeling and sensor measurement errors as well as 
probability of sensor failure in the harsh environment.  
 
 

 

Figure 2: Model based optimal sensor placement framework 

 
  
The overall two-year program consists of three main technical tasks: 

 Task 2: Model enhancement and technology review, 

 Task 3: Development of OSP algorithm, and 

 Task 4: Demonstration of OSP algorithm performance. 

In Task 2, the existing literature for optimal sensor placement was reviewed to identify 
available solutions and gaps for practical design of optimal sensor network that can 
systemically account for sensor characteristics and model error. This review is 
summarized in Section 4. Then high-level requirements for condition monitoring of the 
gasifier refractory degradation and RSC fouling were identified. Based on these 
requirements, the OSP problem was formulized. These requirements are described in 
Section 4. Based on these required the OSP problem are formulized as described in 
Section 4. At the core of the optimal sensor network design is a model based estimator 
that estimates the variables important for condition monitoring using various process 
measurements. This estimator is wrapped within an optimization framework that optimizes 
the number, type and location of the hardware sensors. One of the subtasks in Task 2 
focused on analyzing alternate OSP problem formulations, and associated estimation and 
optimization algorithms to be implemented for the gasification section as well as be 
applicable to more general applications. Based on extensive literature survey two 
formulations were identified as being relevant to OSP for condition monitoring; one based 
on LMI formulation and the other being standard INLP formulation. 
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The available techniques for solving LMI and Integer Programming Problem were reviewed 
to identify relative merits and demerits of various options.  The algorithms to solve the 
integer problems suited for OSP application can be classified in two major subclasses. 
One class of solution is based on branch and bound techniques and the other on outer 
approximations techniques. A brief summary of the review is presented in Section 4. 
Based on the literature review, a few promising options were extended and adapted for 
pursuing in this program. 
 
The OSP algorithms are finally used to design optimal sensor network for condition 
monitoring of gasifier refractory wear and RSC fouling. Hence, available dynamic models 
for the gasification section were extended to be consistent with the condition monitoring 
requirements. More specifically, the gasifier model was extended to include a transient 3-D 
thermal model of the refractory lining that relates the effects of hot surface wear on 
potential temperature sensors placed in the refractory lining. This is a prerequisite for a 
model-based estimation of unknown wear through the temperature sensor measurements. 
Similarly, the RSC model was extended to include a 1-D fouling variation along the length 
of the RSC and its effects on potential sensors like heat flux, temperatures, and strain 
used for online monitoring.   The model enhancements for the gasifier and RSC are 
described in Section 4.  
 
Section 5 presents the Task 3 related work. In Task 3, the model-based estimation 
algorithm and nonlinear optimization algorithms were implemented in a modular fashion. 
These are tested for individual performance, and then integrated to achieve the overall 
OSP solution within a software tool meant for solving an optimal sensor placement 
problem. As mentioned earlier the computation efficiency of OSP algorithm depends 
largely on the size of the problem. Algorithms which are computationally efficient for a 
small size problem are not at all scalable for large size problems. Within this software OSP 
tool one can choose various algorithms for solving an OSP problem based on the size of 
the problem.  
 
Section 6 presents the Task 4 related work. In Task 4, the implemented OSP algorithm are 
tested against the gasification section model to demonstrate its performance in condition 
monitoring of the gasifier refractory wear and RSC fouling. More specifically, the OSP 
algorithm was integrated with the enhanced gasification section model from Task 2, and 
the performance of the OSP algorithm are tested through simulation studies for multiple 
cases of random gasifier refractory wear and RSC fouling profiles.   
 
There are two key software deliverables from this program: modular EKF block in 
Matlab/Simulink© and modular OSP algorithms. These modular tools are described in 
Section 7. 
 
Finally, conclusion from the overall program and potential directions for application of the 
developed technology are summarized in Section 8. 
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4 Task 2: Model Enhancement and Technology Review 

The core gasification section of the plant has a particularly harsh environment. It operates 
in high temperatures, pressures and presence of slag and corrosive elements that lead to 
significant degradation of the health/condition of key process equipment like the gasifier 
and the radiant syngas cooler (RSC).  
 
 
 

 

Figure 3: Condition monitoring for gasifier refractory wear 

 
 

 The gasifier has a refractory lining with multiple layers of refractory bricks and an outer 
metal shell. The refractory lining provides thermal insulation, and thus, protection for the 
metal shell. Over time, due to severe operating conditions inside the gasifier, the hot inner 
surface of the refractory lining wears out, i.e., the refractory lining thickness degrades 
thereby leading to higher temperatures in the lining and metal shell. The wear is distributed 
non-uniformly over the entire hot inner surface. This program focused on monitoring the 
wear on the main cylindrical section of the refractory lining, and to track the extent of wear 
as the inner-most brick worn out as a function of axial and azimuthal location on the 
cylindrical section. The temperature sensors located spatially in between the brick layers, 
provide signature which along with the thermal model of the gasifier refractory are used to 
measure the wear profile in the gasifier inner layer. The objective of the OSP algorithm is 
to identify the number and location of these temperature sensors at each of the brick 
layers. In particular, there is a trade-off in “observability” and “survivability” of the sensors 
(Figure 3). In particular, it is expected that temperature sensors located closer to the inner 
brick layers will provide highest sensitivity, and thus, highest observability of the hot 
surface wear profile. In contrast, sensors located at the interface of further away brick 
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layers will provide lower observability. On the other hand, due to the higher temperatures, 
the temperature sensors at the first brick interface will have relatively lower survivability.  
 
 

 

Figure 4: Condition monitoring of RSC tube fouling 

 
 

The RSC has heat exchange tubes (Figure 4), get fouled over time due to ash/slag 
deposition, thereby reducing the heat transfer and steam generation capability. This fouling 
profile is expected to be non-uniform along the length of the RSC. To monitor this change 
in axial fouling profile a combination of existing sensors, e.g. exit syngas temperature and 
steam production rate, heat flux sensors at a few key axial locations and strain sensors on 
the mechanical structure that support the weight of the heat exchange tubes – the weight 
will increase due to gradual fouling buildup, can be used. On a side note, such strain 
sensors were installed and used successfully in the previous program (DE-FC26-
07NT43094) in the RSC at the Polk Power Station IGCC plant. 
 

4.1 Elements of a Model Based OSP Algorithm 

The solution to the OSP problem determines an optimal sensor network that allows direct 
sensing or indirect model-based estimation of key process variables for monitoring and 
control. The overall objective is to design a cost-effective sensor network that allows a 
robust monitoring of key process variables in the presence of sensor measurement errors 
as well as modeling errors, in addition to expected sensor failure rates.  This problem is 
addressed within a model-based framework as shown in Figure 5, which combines both 
estimation and optimization, under which the latter is required to optimize over the sensor 
set used for estimation of the process variables in order to ensure that the estimation 
specifications are all satisfied. 
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Figure 5: Schematic of model based approach for solving an OSP Problem 
 
 
These specifications provide indicators to measure the quality of a particular sensor 
network. As shown in Figure 5, the OSP algorithm consists of three main elements: 
network requirement, estimator and the optimizer. Next, these parts are discussed in 
detail. 
 

4.1.1 Network Requirements 

The basic purpose of a sensor network is to “measure” certain signals that cannot be 
measured directly with sufficient accuracy. Hence the “measurement” obtained through 
sensor network should possess similar characteristics that are expected of a direct sensor 
measurement namely the accuracy of the measurement and the reliability. The reliability 
refers to the probability of having the required measurement accuracy in the presence of 
hardware sensor failures. In case of a sensor network consisting of model based sensing 
where the “measurement” is actually “estimate” of certain process variables these 
requirements are mapped appropriately through estimation process. 
 

4.1.2 Estimation Problem 

The overall objective of OSP is to design a cost-effective sensor network that allows a 
robust monitoring of key process variables in the presence of sensor measurement errors 
as well as modeling errors. This problem is readily addressed within the framework of 
model-based estimation using available techniques like Kalman filtering for linear systems 
or extended Kalman filtering (EKF) for nonlinear systems.  
 
Consider a nonlinear dynamic system with the following discrete-time state-space model: 
 

Eq. (1)  
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Where at a current time-sample  ,    denotes the vector of states and    denotes the 
vector of measured outputs from the available sensors. The vectors    and    denote the 
process model uncertainty and measurement noise, assumed to be white noise with 
covariance Q and R, respectively. For the above nonlinear dynamic system, starting at an 

initial state estimate  ̂    and initial state covariance     , the EKF recursively updates at 

each sample  , the state estimate  ̂    and its covariance       : 

 

Eq. (2)  
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 denote the linearized model matrices: 

 

Eq. (3)  
             
           

 

 
In particular, the EKF provides a recursive estimate of the expected uncertainty in the state 
estimates as the corresponding covariance      . For an estimated output of interest 

depending on the states   
        , or with the corresponding linear equation   

    
   , 

the corresponding covariance or uncertainty in the output estimate is obtained 

as   
       

  
. This provides a natural candidate to assess performance of estimation 

accuracy in the presence of expected modeling errors and sensor measurement errors, as 
a function of the chosen sensor set.  
 
The measurement noise covariance R is normally obtained from the typical noise 
characteristics of the candidate sensors. The process noise reflects the expected 
uncertainty in the process model and its specification is more subtle. For OSP purpose, the 
signals of interest for condition monitoring (e.g. the wear condition on the hot inner surface 
of the gasifier refractory or the fouling in the RSC) are modeled as unknown process inputs 

   or parameters    that would need to be estimated.  These inputs and parameters are 
included in the overall system model as:  
 

Eq. (4)  
                    
                  

 

 
To allow estimation of these process inputs and parameters within a Kalman filter 

framework, they are included in an extended state vector    [          ]   .  
 

Eq. (5)  
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However, this entails postulating a suitable model for these inputs/parameters to be 
estimated. Some examples include a random walk model         , a first-order Markov 

model                   , or a random ramp model     
    

      
        The 

choice of the postulated model for model parameters and inputs as well as the process 

noise covariance   has to be done carefully based on practical knowledge of the variable 
being estimated/monitored. For instance, for process model parameters, typically their 
mean values and expected range of variation is known, which motivates the use of a first-
order Markov model that yields the mean value p0, and a desired variance based on the 

choice of   and the noise covariance Q. 
 

4.1.3 Optimization Problem 

The optimization problem deals with finding the minimum set of sensors required to meet 

network requirement. Let   [           ] denote the binary decision variables with 
values 1/0 corresponding to whether a sensor at a given location             is being 

used or not and      denotes the associated sensor cost. This cost may include 
physical and installation cost and/or weight (in other applications). Then the optimization 
problem deals with finding the minimum set of sensors required to meet the desired 
estimation precision and reliability.   
 

4.1.3.1  Precision Constraint 

The estimation precision requirement for condition monitoring is defined as (Chmielewski 
et al 2002) 
 

Eq. (6)          
        

  
   ̅   

 
 Where,       is the solution of Algebraic Riccati Equation (ARE), given by: 
 
Eq. (7)        [                        ]    
 
It should be mentioned that, depending on the specification of the process and 

measurement noise covariance   and  , the above specification on precision based on 
steady-state Kalman filter covariance can be misleading. For instance, if the process noise 

covariance   is specified as too small, then the steady-state covariance and corresponding 
precision achievable with a sensor set may be very good, but the transient estimation 
performance may be too slow for any practical use. The need for transient estimation 
performance is even more critical for control purposes, where the sensing/estimation is 
integrated with control/optimization. In that case use of the transient matrix            (Eq. 

(2)  may be more appropriate instead of a steady-state one.   
 
 

4.1.3.2  Reliability Constraint 

The reliability is used to impose a design target probability of meeting the required 
estimation precision in the presence of expected sensor failures.    
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There are multiple definitions of reliability that have been considered in literature (e.g., 
Benqlilou et al. (2004)). 
 

 Hardware reliability, which is a probability measure that at least one of the sensors 
in a given network will survive in order to estimate the monitored variable. This 
notion is defined by, 
 

Eq. (8)          ∏        

 

   

   ̅   

 
where,    is the individual sensor survival rates and          indicates if the sensor at 
location i, is present         or not (      . This notion of reliability is a sufficient 
measure of accuracy under failures, when the monitored variables are directly sensed. 
However for the specific case of model based sensing (e.g., refractory wear monitoring, 
which estimates refractory wear through temperature measurements) such an indicator will 
not be applicable. 
 

 Functional reliability, which increases the sensor network survivability by allowing a 
sufficient measure of redundancy to each sensor at any given location and is 
defined by 
 

Eq. (9)          ∏        
  

 

   

   ̅   

 
Even though, the reliability definitions in Eq. (8) and Eq. (9) look similar, the key difference 
is that by allowing multiple sensors at each location (Eq. (9)), the survival rates increase 
thereby leading to robust estimation under failures which is not the case with hardware 
reliability. For the same reason, this notion will be applicable to refractory wear monitoring. 
 

 Estimation reliability: Here, the key observation is that reliability is fundamentally 
tied to the precision and includes a measure of redundancy to the sensor network.   

While the redundancy in the functional reliability is the number of sensors at each location, 
the redundancy in this notion is increasing the observability of a given network by 
considering as many configurations that can achieve a desired estimation precision. This is 
defined as, 
 

Eq. (10)  
       ∑     

     

           ̅  
 

 
Where,   is a set of possible failures associated with a particular sensor network   

      . The reliability requirement involves computation of the conditional probability of 
each failure scenario           based on individual sensor failure rates as well as the 

binary valued function       denoting whether with the reduced sensor set the precision 
requirement is met           or not (       ).   
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It should be noted that for the OSP problem, the estimation reliability provides the cost-
effective measure of capturing the requirements as compared to the multiple-sensor 
notion. However, implementing this reliability constraint involves a combinatorial 
enumeration (and summation) of all the possible failure scenarios for a given sensor 
network which becomes computationally prohibitive even for a small scale systems.  
 
With the above two key requirements on precision and reliability in the presence of 
modeling and sensor errors, the OSP problem is posed as an integer nonlinear 
programming (INLP) problem: 
 

Eq. (11)  

   
 

    

       ̅  
       ̅  

                              

 

 

Where, the vector   [            ]  denotes the binary decision variables with values 1 
and 0, corresponding to whether the respective sensor is used or not used, respectively, 
and the vector c denotes the cost of each sensor to be used in the network. To be 

consistent with the binary decision for each    , the sensor noise covariance      is scaled 

with    according to the relation: 
 

Eq. (12)  
 

    
 

  

    
   

 

Where,     
  denotes the baseline measurement noise covariance for the     sensor. The 

inverse of the noise covariance, i.e.,     
    is scaled linearly with respect to     Thus, for 

    , the baseline sensor noise covariance      is same as     
 . This amounts to using the 

    sensor with its intrinsic noise properties. On the other hand, for     , the sensor noise 
covariance,     , is scaled to infinity, thereby effectively eliminating sensor from the sensor 

pool as the corresponding Kalman filter gain with respect to the     sensor will be zero. 
 
The OSP problem in Eq. (11) has to be solved through an integer programming 
optimization algorithm. There are multiple approaches for solving the INLP problem. In 
general, large scale INLP problems are the toughest optimization problems to solve. The 
key difficulty arises due to the combinatorial nature of the problem. The following section 
reviews available methods suited for solving such INLP problems in the context of OSP 
problem and their relative merits and demerits. 
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4.2 Technology review: Integer Programing Algorithms for OSP Problem 

There is a vast literature on general integer and mixed-integer linear and nonlinear 
programming algorithms, where the latter involves both real and integer variables in the 
decision space. The OSP problem (see previous section) being confined only to integer 
decision variables is treated as an integer nonlinear programming problem (INLP). An 
excellent survey of the available methods and software is found in Bonami et.al. (2005, 
2009), and this section provides a brief summary of these available algorithms.  
 
The key difficulty in solving an integer programming problem stems from the fact that the 
optimal integer solutions cannot be computed by rounding the optimal solutions of the 
continuous relaxation for which known NLP solvers exist. The true integer optimal solution 
and the rounded solution are seldom the same or even close. This implies the need for 
methods that can search in the integer space, which is a combinatorial search space. This 
combined with the associated nonlinearities motivated a separate methodology 
development for the MINLP programming. The following ILP example (Chinneck , 2010) 
illustrates that the method of rounding the optimal solutions for continuous relaxations 
does not work. The ILP problem given by, 
 

Eq. (13)  

           

                        

 

 

has an integer optimal solution of           . The continuous relaxed LP problem 
yields the optimal solution              . Rounding this continuous relaxed solution 
yields an integer solution           , which is infeasible, or           , which is 
sub-optimal. 
 
The basic idea of the existing methodologies is the generation, at each iteration, of a lower 
and an upper bound on the optimal solution of the MINLP/INLP problem wherein the 
bounds are progressively tightened at every iteration. The generation of the bounds at 
every iteration is done by solving a relaxation of the original MINLP/INLP problem.  
 
The bounds are either tightened by an exhaustive enumeration/tree search OR by 
tightening the relaxation of the feasible region. Based on the approach used, the existing 
methods in literature can be broadly classified into the following: 
 

1. Branch and bound (BB) (Floudas et.al, 1995)  and its variants which requires an 
enumeration at every iteration 

2. Outer approximation (OA) (Duran et.al. 1986) and Generalized Benders 
Decomposition (GBD) (Geoffrion et.al. 1974) 
 

where for methods 2 and 3, the relaxed feasible region is tightened at every iteration.  The 
branch and bound based methods incur the issue of combinatorial explosion due to the 
exhaustive enumeration, but is guaranteed to converge to the true integer optimal solution. 
Since the GBD is very similar to the outer approximation in terms of the algorithm and the 
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underlying assumptions, the main focus of the discussion will be restricted to BB and OA 
based methodologies. 
 
In the sequel, both these methods are described in detail along with their applicability to 
the OSP problem under consideration.  To do so, the following general MINLP problem is 
considered. 
 

Eq. (14)  

       
 

       

         
                

 

 

where,            are convex functions and q,y are the continuous and integer decision 
variables.  It must be noted that the OSP problem in  Eq. (11) is a subset of the class of 
MINLP problems in Eq. (14) with the decision space being only restricted to integer 

variable (more specifically,         ) which implies y = []. In a general MINLP problem in 
Eq. (14) the q values may take any integer values, which can be converted into an MINLP 
with only binary-valued integer variables by introducing new binary variables for non-zero 
integer value allowed. So in the rest of this report, only binary-valued integer variables will 
be considered in the MINLP. Moreover, for the OSP problem in Eq. (11) the integer 
variables for each sensor are binary-valued variables to begin with. 
 
The following notations will be used through the remained of the report. The optimal value, 
optimal solution and feasible space to the MINLP problem are compactly denoted as 

          and   ̅   ̅  ̅) denotes the optimal value, solution and the feasible space to any 
relaxation of the MINLP problem.  
 
 

4.2.1 Branch-and-Bound 

The branch and bound (BB) method (Nemhauser et.al. 1988) has been used for solving a 
wide variety of linear/nonlinear integer/mixed-integer programming problems. The BB 
method is a global optimization method and works on the idea that enumeration of the 
integer solutions has a tree structure. The following terminology is used in standard branch 
and bound algorithms in describing the tree structure which is shown in Figure 6. 
 

 Root node which is the root of the tree structure 

 The bud node is any node in the tree which represents the partial solution which is 
the solution of the NLPR problem which is either feasible or infeasible. The bud 
node represents a node that can be potentially grown. 

 Leaf Node is the node that is at the bottom of the tree, where all the variables are 
known or specified.  

 
The root of the tree structure contains all possible solutions to the MINLP problem in Eq. 
(14) which is typically computed as the optimal solution of a relaxation of the original 
problem (e.g. integer relaxation).  The leaf nodes of the tree structure are subsequently 
obtained by enumerating the actual integer solutions. For example, for a problem with two 
integer variables, the enumeration tree is shown in Figure 6, where the node at the upper 

right of the tree represents the solution in which                 
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Figure 6: A full enumeration tree in BB algorithm with two integer variables (Chinneck 2010) 

 
Each node in the tree represents a set of all possible solutions that can be obtained by 
growing the tree. It can be immediately seen that the tree enumeration is exponential in 
terms of the number of integer variables making this method computationally prohibitive if 
the whole tree has to be grown. For the same reason the main idea of the BB method is to 
grow the tree ONLY in stages, i.e., grow the most promising node at any stage. This is 
achieved based on the fact that the optimal solution to the relaxed problem at the parent 
node provides a lower bound on the optimal solution to the relaxed problem at the child 
node, i.e., 
 

Eq. (15)   ̅       ̅    .  

 
At any node, if the optimal solution of the relaxed problem satisfies all the constraints of 

the original MINLP problem, i.e.,  ̅                ̅     , then the objective function 
value is called as the incumbent, namely the best possible objective function, denoted as 
 (I = f( ̅    ; the incumbent provides the upper bound on the optimal solution. The 
determination of the most promising node is done by estimating the best lower bound 
across all bud nodes. Given the current best lower bound and upper bound, a specific bud 
node is selected for further growth of the tree to iteratively arrive at the optimum solution. 
To this effect, there are three important steps in any standard branch and bound algorithm. 
 
 

4.2.1.1  Branch and Bound – steps 

Branch and bound algorithm has following steps: 
 

1. Branching which happens when a node is selected for further growth, commonly 
called as the bud node, from a list of all possible nodes. There are many different 
ways of node-selection (Floudas, 1995), the most common strategies being 

a. Depth-first, where the bud nodes are grown till they can no longer be. 
b. Breadth-first, where the bud-nodes are expanded in the same order in which 

they were created. 
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c. Best-first, where the bud node with the best value of the objective function is 
grown 
 

2. Bounding happens when the best value of the objective function provided by the 
parent node is attained with integer variables, thereby yielding a leaf node and 
possible incumbent.  
 

3. Fathoming is the step where the nodes are either completely discarded from further 
growth when it is concluded that all the child nodes for a given node are infeasible 
or sub-optimal, or retained as an incumbent. More specifically, 

a. A bud node may be fathomed by bounds, which happens when the lower 
bound at the bud node is higher than the incumbent (for minimization). 

b. Similarly, a bud node may be fathomed by infeasibility, when there are no 
feasible solutions to the relaxed problem, which would mean that the original 

problem is also infeasible due to the fact that    ̅  
c. Lastly, if the solution at a bud node is integer feasible and the optimum value 

is lower than the incumbent, then it is fathomed and retained as the new 
incumbent replacing the previous one. 
Steps a, and b above lead to pruning, i.e., the current bud node is discarded 
from solution candidates. This is an important step to control the growth of 
the tree and limit the search space. On the other hand, step c updates the 
upper bound for the solution. 
 

4. Termination happens when  
a. When there are no more bud nodes to search and the incumbent is identified 

as an optimal solution.  
b. Alternatively, one may terminate when the upper bound (incumbent) and 

lower bound (current best solution among all bud nodes) are within a 
specified tolerance to get an optimal/sub-optimal solution within that 
tolerance. 
 

While the BB provides a framework for solving the MINLP problem, there are many factors 
that need to be considered in order to avoid the tree explosion. Some important factors 
that influence the speed of the algorithm include getting the incumbent as quickly as 
possible to obtain a good upper bound, and the choice of a good bounding function with a 
tight relaxation such that the corresponding lower bound is closer to the optimum value.  
 
For nonlinear integer optimization the branch and bound method can be represented as in 
Figure 7. A key element of the branch and bound algorithm is to use appropriate relaxation 
of the original problem to generate lower bound of the optimum solution at each node. The 
relaxed problem is relatively easier to solve. If the solution of the relaxed problems is all 
integer variables, then the upper bound/incumbent is updated. Subsequently, a tree-
search algorithm is used to pursue promising solution candidates until a candidate solution 
to the original un-relaxed problem is obtained, thereby providing an incumbent with an 
upper bound on the optimum solution. The tree search is continued until the updated upper 
and lower bounds converge (or get within a desired tolerance) to identify the optimal 
solution (or get within desired tolerance to optimum solution). The efficiency of the branch 
and bound algorithm depends on the search algorithm (e.g. depth-first, bread-first, most-
promising-first, etc.) as well as the relaxation to the original problem.  
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Figure 7 : Schematic of a Branch and Bound Algorithm using NLP relaxation 
 
Many different kinds of relaxations and bounding functions exist in literature and they can 
be classified into  
 

 Integer relaxation  

 Lagrangian relaxation (Fisher 1981, Geoffrion, 1974) 

 SDP relaxation (Laurent and Rendl, 2002) 
 
As mentioned earlier, all these relaxation techniques aim to solve relatively easier problem 
to obtain lower bound at each node. NLP relaxation relaxes the integrality constraints. The 
NLPR1 (in Figure 7) is solved by relaxing the integer constraint and solving the OSP 
problem as a convex optimization problem. Various relaxation techniques are discussed 
next. 
 

4.2.1.2  Integer relaxation - NLP Relaxation 

This relaxation is obtained by relaxing the integer constraints on the decision variables and 
replacing with simple bound constraints to obtain: 
 

Eq. (16) NLPR 

 ̅        
 

       

         

  [   ]         

 

 
At the root node of the BB algorithm, the NLPR problem is solved. If all the decision 
variables of the NLPR take integer values the search is stopped, otherwise a tree search is 
performed by expanding the bud nodes in the tree. Each node in the enumeration tree 
represents potential solutions and solves the following NLPR1 sub-problem given by 
 

Eq. (17) NLPR1 

   
 

       

         
  [   ]         
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Where,  at any iteration,                   are the index subsets of the integer variable 
specified as 1 or 0, while the remaining variables are relaxed to be real variables in the 

entire range 0-1.  For example, the node 2 in Figure 6, corresponding to      solves the 

following with an additional constraint and is given by     .  It should be noted under 
assumptions of the convexity of the objective function and constraints in NLPR that 

            , where                denote the optimal solutions of NLPR and NLPR1, 
respectively.   

 
Remarks 
 
While the attractiveness of the BB method comes from the wide range of applicability to 
linear/nonlinear functions with integer only/mixed-integer decision variables, the size of the 
decision space poses challenges especially for nonlinear problems. The BB method is very 
well established for MILP and ILP problems given the many commercial linear 
programming packages such as GLPK, CPLEX etc.  
 
A key requirement in the case of nonlinear problems is the availability of good NLP 
solvers, since the NLPR problem needs to be solved at each iteration. These solvers 
should be able to converge to the global optimal solutions for large-scale problems (a few 
thousand decision variables) in a finite amount of time and should not suffer from many 
numerical issues. There have been a lot of improvements in the development of 
computationally efficient NLP solvers such as IPOPT, which makes this requirement more 
and more feasible. Nevertheless, for large-scale problems, BB with NLP relaxation may 
end up searching large set of combinations before converging at the solution. In particular, 
often it may approach close or even at the solution, but has to complete an exhaustive 
search of the remaining bud nodes until they are all discarded to confirm the optimality of 
the incumbent.  
 
 

4.2.1.3  Lagrangian Relaxation 

As mentioned earlier, branch-and-bound algorithm is a very commonly used algorithm for 
solving linear/nonlinear integer programming problems. A key to efficient use of branch-
and-bound is to arrive at a “relaxed” problem that is easier to solve and provides an 
optimistic estimate of the optimal solution, i.e. a lower bound in the case of minimization or 
an upper bound in the case of maximization. The relaxation involves approximating or 
ignoring a set of “difficult” constraints in the original problem such that the resulting 
problem can be solved readily. One such straightforward and common relaxation involves 
ignoring the integer constraints and treating the integer variables, e.g. the binary integer 

variables    in the sensor placement problem (Eq. (11)), as real variables with lower and 
upper bounds. This is referred to as LP (for linear) and NLP (for nonlinear) relaxation. 
While such an LP/NLP relaxation is straightforward and allows using available algorithms 
for LP & NLP problems within a branch-and-bound framework, the relaxed problem is often 
very optimistic and leads to increased number of iterations in the branch-and-bound 
algorithm. 
 
This motivated the use of “tighter” relaxations, where the relaxed problem provides an 
optimistic, yet closer bound to the original integer programming problem as compared to 



 27 

the LP/NLP relaxation. One such relaxation technique is the Lagrangian relaxation. The 
Lagrangian relaxation technique was introduced in the pioneering work of Held and Karp 
(1970, 1971), where they used this technique to address the solution of the well-known 
traveling salesman problem. The traveling salesman problem entails solving for the optimal 
route of a salesman between multiple cities, starting and ending at the same city and 
visiting every other city once. The relaxation of the original problem with a minimum 
spanning tree problem, where the constraint of starting and ending cities on the tour being 
the same is relaxed, yielded sharp lower bound on the original optimum. Geoffrion (1974) 
developed a formal framework for using Lagrangian relaxation and exploiting special 
structures for solving linear integer programming problems within a branch-and-bound 
technique. Additional work in this field in the 70‟s is summarized in the review paper by 
Fisher (1981).  
 
Lagrangian relaxation has been used for solving linear mixed integer or integer 
programming problems. More specifically, for linear binary integer programming problems 
of the following general form: 
 

Eq. (18)  

       
 

    

      
     
         

 

 

with binary decision variables    and linear objective function and constraints, the 
Lagrangian relaxation is used to relax a sub-set of the constraints. More specifically, the 
constraints are classified into two sub-sets (i) easy constraints and (ii) hard constraints. 
The integer programming problem is considered relatively easier to solve if only the easy 
sub-set of constraints were present, e.g. simple bound constraints. The inclusion of the 
hard constraints (e.g. general inequality constraints) makes the problem much harder to 
solve. The categorization of constrains in an integer programming problem as easy/hard is 
problem specific with some heuristic guidelines. However, it is a key step in deciding which 
constraints to relax and the subsequent efficiency of the solution of the original integer 
programming problem. There is often a trade-off in the complexity involved in solving the 
relaxed problem and the tightness of the bound obtained from the relaxed problem. 
 

For the problem in Eq. (18), it is considered that the first set of constraints      
represents the hard constraints, while      represents the easy constraints. Given this 
classification of the constraints, the hard constraints are then “relaxed” by discarding these 
constraints and including them in the objective function, with a penalty weight to obtain the 
following relaxed problem: 
 

Eq. (19)  

         
 

              

     
         

 

 

In the above relaxed problem, the penalty weight vector   denotes the vector of Lagrange 

multipliers for each of the hard constraints and is all non-negative, i.e.     . Note that for 
     and for all feasible points   satisfying      , it follows that         . Thus, the 
relaxed problem in Eq. (19) provides an optimistic or lower bound for the original integer 
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programming problem in Eq. (18), which can then be used in the branch-and-bound 
algorithm to solve the integer programming problem. In particular, the corresponding dual 
problem 
 

Eq. (20)  
      

 
     

    
 

 
provides the tightest lower bound for the original problem . For linear programming (LP) 
problems, there is a well-known strong duality theory that establishes that at the optimum 
solution, the original problem and the dual problem have the same value. In contrast, for 
linear integer programming problems, the strong duality doesn‟t hold. Instead only a weak 
lower bound relationship holds: 
 
Eq. (21)         
 
The above fact allows using the optimistic lower bound obtained through the Lagrangian 
relaxation within a branch-and-bound algorithm. A key issue that impacts the efficiency of 
the branch-and-bound algorithm is to obtain as tight a lower bound as possible to the 
original problem at each node in the branch-and-bound algorithm. This entails solving the 
dual problem in Eq. (20) using gradient based search techniques to identify the optimal 

value of the Lagrange multipliers    However, unlike for LP problems, the dual function is 
only piecewise differentiable. This led to the use of sub-gradient optimization methods, 

iteratively optimizing for the Lagrange multipliers  . A vector   is defined as sub-gradient of 

the function      at a point  ̅, if it satisfies: 
 

Eq. (22)        ( ̅)   (   ̅)             

 
In particular, the vector        is a sub-gradient at a point   that is a solution of     .  
 
The sub-gradient optimization method is summarized as: 
 

 Choose a starting value, i.e.      – for instance it can be initialized at the previous 
converged value from the parent node in a branch-and-bound technique. 

 Choose a sub-gradient, i.e.,          at current iteration k. If      then stop. 

 Update the Lagrange multiplier                     , where   denotes a step 
size in the sub-gradient direction. 

 Repeat for next iteration until convergence. 
 

A common heuristic used to decide the step size is: 
 

Eq. (23)        

        

|       |
   

 

where    is the best value of the original integer programming problem found so far and    

is a decreasing step-size adaptation parameter in the range       , initialized at 2 and 
decreased by half after a pre-set number of iterations fail to increase the value of      . 
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The Lagrangian relaxation of the original linear integer programming problem provides a 
tighter lower bound than the straightforward linear programming (LP) relaxation where the 
binary integer constraints are replaced with simple bounds on the decision variables, i.e. 

        While there is no general theoretical result on the tightness of the lower bound 
achieved through the Lagrangian relaxation, in practice, it often provides a very tight bound 
for a range of linear integer programming problems – see Table 2 in Fisher (1981). This 
reduces the degree of conservatism and reduced search in the branch-and-bound 
algorithm.  
 
Remarks 
 
Lagrangian relaxation has been used to solve many practical integer linear programming 
problems (see Fisher 1985 for some review of practical applications), and its promise lies 
in the ability to obtain tight bounds on the optimal solution for the original integer 
programming problem (see Table 2 in Fisher 1981 for a list of problems and tightness of 
bounds obtained by Lagrangian relaxation). However, there are some key limitations to the 
approach. First, this approach has been used for linear integer programming problems, 
where the relaxed problem, which is still a linear integer programming problem, can be 
solved more readily once the “difficult” constraints have been relaxed. The improved 
tightness of the bounds compared to standard LP relaxation, often depends on which 
constraints are relaxed. This leads, to an often unclear option of which sub-set of 
constraints should be relaxed, and thus it is often left to the user to experiment with 
alternative options and decide. Furthermore, this approach has not been applied to 
nonlinear integer programming problems – note that while Lagrangian relaxation can be 
applied in concept to nonlinear problems, the relaxed problem will still be an integer 
nonlinear programming problem (INLP), which, in general, is no easier to solve than the 
original INLP. The OSP problem described in the previous section has linear objective 
function, but the precision and reliability constraints are nonlinear functions of the integer 
sensor placement decision variables. So, available Lagrangian relaxation techniques are 
not readily applicable to the OSP problem. 
 
 

4.2.1.4  SDP Relaxation 

Consider the following linear 0/1 programming problem (Laurent et.al. 2002): 
 

Eq. (24)  

       
 

    

      
          

 

 

The classical polyhedral approach to solving this problem consists of formulating the 
above problem in Eq. (24) as a linear programming problem: 
 

Eq. (25)  
       

 
    

         
 

over the polytope  
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and applying linear programming techniques to it. For this, one needs to find the linear 
description or a good linear relaxation of P. A common linear relaxation of P is: 
 

       
         

 
In general     and one has to find “cutting planes” to strengthen the relaxation K by 
cutting off its fractional vertices 
 
There are few general purpose methods for finding “cutting planes” applied to arbitrary 0/1 
problems. The Chv´atal-Gomory cuts based on integer rounding is one such example. 
Another method of constructing a linear relaxation to polytope P is lift and project. In the 
nineties several authors investigated lift-and-project methods.  The basic idea here is to 
find representation of a 0/1 polytope as the projection of a polytope lying in higher 
dimension. Depending upon the construct, the lift and project methods also lead to 
Semidefinite relaxations as in the case of Lov´asz and Schrijver technique (Lov´asz 1991). 
Further constructions for semidefinite relaxations have been recently investigated, based 
on algebraic results about representations of nonnegative polynomials as sums of squares 
of polynomials (e.g., Kojima 2003). 
 
A semidefinite program (SDP) is the analogue of the linear program where the vector 

variable       is replaced with a matrix variable       , constrained to be symmetric 
positive semidefinite: 
 

Eq. (26)  

        
 

    

                          

    

 

 

where (   represents the inner product of matrices (e.g.,           
  ) ). There are 

many algorithms to solve these programs in polynomial-time within any specified accuracy, 
e.g., interior-point algorithms. 
 
 

4.2.1.4.1 SDP and Integer 0/1 (Binary) Programming  
 
In order to embed the 0/1 linear program of Eq. (24) in SDP formulation (Laurent 2002), 

the problem is linearized by introducing a new matrix variable X for     , i.e., define 

               , etc . The integer constraint          is equivalent to   
       and it is 

embedded by requiring            or in other words,          . However the constraint 

                    is not convex. This rank-1 condition is relaxed to   
                 , which can be equivalently written as: 
 
 

Eq. (27)  
(

         

        
)    
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Laurent (Laurent 2002) refers to several possibilities for modeling a linear constraint 

      from the system     . For example: 
 
Diagonal representation: 
 

Eq. (28)  
〈         〉     

 
 

 
Squared representation:  
 

Eq. (29)  
            〈     〉      

 
 

 
Extended square representation: 
 
 

Eq. (30)  
                 〈              〉     

 
 

 

Another possibility is to exploit the fact that the variable    satisfies        and to 

multiply       by    and     : 
 

Eq. (31)  

∑     

 

   

            

∑           

 

   

               

 
 
 

 
The tightness of the relaxation depends upon the representation. For example here, the 
relaxation in Eq. (31) gives the tightest bound whereas the relaxation in Eq. (28) is the 
least tight. Putting all together, the SDP relaxation of the linear integer optimization 
problem in, Eq. (24) using representation in Eq. (31) for the linear constraint, is as follows: 

Eq. (32)  
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4.2.1.4.2 Lift and Project Methods 
 
As mentioned earlier, SDP relaxation for integer program is a lift-and-project method to 
represent a 0/1 polytope as a projection of a polytope lying in higher dimension. In fact any 
n-dimensional 0/1 polytope can be equivalently realized as convex positive semidefinite 

program in      variables (Lasserre 2001). Of course, from practical computation 
purpose, this result is of little value because the number of variables grows exponentially 
with the size of the problem. 
 
There are several general purpose methods for constructing projection representations 
for general 0/1 polyhedral. For example, lift and project method by Balas, Ceria and 
Cornu´ejols (Balas et.al. 1993), Reformulation-Linearization Technique (RLT) by Sherali 
and Adams (Sherali et.al. 1990), matrix-cuts by Lov´asz and Schrijver (Lov´asz  et.al. 
1991) and explicit exact SDP relaxation by Lasserre (Lasserre 2001). A common feature of 
these methods is the construction of a hierarchy of linear or semidefinite relaxation Ki of P 
which finds the exact convex hull in n steps. For more details about each of these 
techniques refer to the literature cited earlier in this paragraph. One can also refer to 
(Laurent,2001) or (Laurent 2002). 
   
Remarks 
 
SDP relaxation has been used to solve many practical integer programming problems. 
This approach is readily applicable to linear, quadratic and polynomial optimization 
problems (Laurent 2002, Mevissen et.al., 2010, Kojima et.al., 2000,  Kojima 2003). There 
are efficient polynomial time algorithms, for example interior point algorithm, for solving 
SDP to any fixed prescribed precision.  
 
For certain problems, e.g., Max-Cut, SDP relaxation has been shown to yield strong 
relaxation (0:8786 approximation algorithm for max-cut (Goemans & Williamson 1995)). 
The number of variables and/or constraints in an SDP relaxation is one order of magnitude 
higher than that of the original problem. Hence, the cost of solving such SDP problems 
grows quickly as the size of the problems increases. In other words, a key issue here is the 
scalability of the SDP relaxation approach with respect to the problem size. In this regard, 
the problem size of the optimal sensor placement problem makes it a rather unattractive 
option, especially for medium/large-scale OSP problems with hundreds/thousands of 
integer decision variables.  
 
For certain problems, e.g., Max-Cut and the Max-Bisection, rank-two relaxation (Burer, et. 
al. 2001) produces better-quality approximate solutions while taking only a fraction of time 
in comparison to the SDP relaxation approach. However, such approach and its 
performance is very problem specific.  
 

4.2.2 Generalized Benders Decomposition and Outer Approximation 
Algorithms 

The Generalized Benders Decomposition (GBD) (Geoffrion, 1972) and the Outer 
Approximation (OA) (Duran et.al.,1984) are non-enumerative methods as opposed to the 
BB method and have been applied to MINLP problems. Since they avoid the enumeration 
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of integer combinations, they are potentially faster, especially for large-scale problems. 
The basic idea in both these methods is the generation of an upper and a lower bound on 
the optimal solution sought for the MINLP problem, and update these bounds until 
convergence. Even though at the onset this may seem similar to the BB method, it is not 
quite true. More specifically, in BB the bounds are obtained through enumeration and 
solving an NLP problem. In contrast, in OA/GBD based methods, the bounds are obtained 
by iteratively solving the primal (upper bound) and master problems (lower bound) till 
convergence to true integer optimal solution is obtained. 
 
The assumptions made in the development of both the algorithms are similar and are listed 
for the MINLP problem in Eq. (14).  It must be noted that the original development also 
includes the equality constraints and the readers are referred to (Floudas, 1995) for further 
details. 
 
Assumptions 
 

1. Y is non-empty and the functions f(.) and g(.) are convex for each fixed   
       

2. The set      [   ]                         is closed 

3. For each fixed          ⋃                             one of the following 
holds true 

a. The problem in Eq. (14) has a finite solution and has optimal Lagrange 
multiplier 

b. The problem in Eq. (14) is unbounded. 
 
 

4.2.2.1  Primal Problem 

The primal problem corresponds to the problem in Eq. (14) with fixed integer variables, 
where the decision space is only over the continuous variables.  The idea is based on the 
Benders approach (Geoffrion, 1974) that exploits the notion of complicating variables, i.e., 
variables which, when temporarily fixed, render the remaining optimization problem 
considerably more tractable. Thus, in the primal problem, by fixing the integer variables, 
the MINLP problem in Eq. (14) can be reduced to a tractable NLP problem and is given by 
 

Eq. (33) NLP2 

         
 

        

          

       

 

 
Based on the assumptions (1-3) that primal problem has a global optimal solution for a 
fixed integer, an upper bound on the MINLP problem is obtained if the NLP2 problem is 
feasible. The solution of this problem also provides the Lagrange multipliers for the 
constraints and the corresponding Lagrangian function given as  
 

Eq. (34)          
               

          

 
If the primal problem is infeasible, then a feasibility problem is solved which is given by 
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Eq. (35) FP 
   

 
∑  

 

   

 

    
          

              

 

 
The solution of this problem provides the Lagrange multiplies for the constraints and the 
Lagrangian function is given by 
 

Eq. (36)   ( ̅     ̅
 )    ̅  

   ̅      

 
It must be noted that no upper bound is generated if the primal problem is infeasible.  
 
 

4.2.2.2  Master Problem 

The master problem is a relaxation and hence it is used to provide the lower bound. The 
GBD and OA differ in the master problem formulation, even though they are conceptually 
quite related. The key ideas in both of these problems are first summarized, and then the 
actual formulation is defined. The MINLP problem Eq. (14) can be written in terms of the 
primal problem NLP2 and is given by 
 

Eq. (37) MP 

   
 

     

         ⋂   
 

 
where                              and v(q) is given as  
 

Eq. (38)  

        
 

        

         
       

 

 
The MP problem in Eq. (37) is the projection of MINLP on the integer space and is hard to 
solve given that the set   and v(q) are known implicitly. The master problem defined in 
GBD and OA based methods alleviates this problem and characterizes the set   and v(q) 

explicitly, where the set   is defined by a collection of intersecting feasible regions that 
contain the set. The two different formulations are given below 
 
 
GBD Master Problem 
 
The GBD method makes use of the nonlinear duality theory and the main ideas used to 
characterize v(q) and    are based on the dual representations of each of them, given as 
follows: The master problem is a relaxation and hence is used to provide the lower bound. 
The GBD and OA differ in the master problem formulation, even though these are 
conceptually quite related. The key ideas in both of these problems are first summarized 
and then the actual formulation is defined. 
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1. The set                             is characterized by the dual and is given 

as     ̅  ̅ ( ̅  ̅  )    

2. Then using the v(q) can be defined by the dual and is given by 
 
 

Eq. (39) MP 
   

 
   

 
   
   

         

   
   

 ̅  ̅   ̅      
 

 
 
Based on the above ideas and assumptions, the MP in Eq. (39) for the GBD is given as, 
 
 

Eq. (40) MGBD 
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Where,      ̅  are the associated Lagrange multipliers when the primal is  feasible and 
infeasible, respectively. The master problem MGBD is an MILP problem which is more 
tractable than an MINLP problem. 
 
 
OA Master Problem 
 
The earlier developments of this algorithm (Duran and Grossman, 1986) considered 
MINLP problems with a specific class of functions, namely functions linear in integer 

variables with the objective function                  and constraints of the form 
g               . However, many recent versions of OA as well as its variants do 
not have this restriction.  
 
Similar to the arguments used in GBD, the OA algorithm defines the master problem by 
characterizing v(q) and the set  . Unlike the GBD algorithm that uses duality to do so, the 
OA algorithm utilizes linear approximations of v(q), namely the supports of v(q) to compute 

it. In addition, the set   is not computed explicitly as in GBD which uses the Lagrange 
multipliers of the NLP2 and FP problems defined in Eq. (33) and Eq. (35) respectively.  
 
The outer approximation technique identifies the optimal integer solution by iteratively 
solving a primal problem by fixing the integer variables at some value, and a master 
problem obtained by linearizing the nonlinear objective function and constraints. These two 
sub-problems respectively yield an upper and lower bound to the optimal solution and 
ultimately converge over successive iterations. This algorithm exploits the fact that the 
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primal problem, by fixing the integer variables, becomes an NLP and can be readily solved 
by NLP solvers like IPOPT. On the other hand, at every major iteration, k, the master 
problem is an integer linear programming problem (ILP) of the form: 
 

Eq. (41) MOA 
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Where,    is the solution of the primal problem in Eq. (33) if feasible, otherwise it is the 

solution of the FP problem defined in Eq. (35). Here, the sets           denote the index 
sets that correspond to integer variables with values 1 and 0, respectively. Note that the 
first two constraints in MOA, namely the linearized cost and constraints are the supports of 
v(q) and used to characterize it. The third and the fourth constraints in MOA are used to 

implicitly define the set  . Specifically, the fourth constraint is called an integer cut, which 

removes all infeasible integer points from the set        thereby capturing the set  . 
It must be noted that the integer cut is a point wise elimination and can be ineffective for 
large scale problem, namely the 3D gasifier model. The feasibility pump variant mitigates 
this issue. 
  
The schematic of the OA/GBD is shown in Figure 8. The algorithm involves iterative 
solution of the primal (NLP) and the master (MILP) problems to calculate the upper and 
lower bounds, respectively, until convergence of the upper and lower bounds. Note that 
the primal problem alleviates the integer constraints, while the master problem relaxes the 
nonlinear constraints, thereby using a combination of NLP and MILP to obtain the solution 
to the original MINLP problem using available mature solvers for the sub-problems. There 
are many commercial software packages such as GLPK and CPLEX for solving MILP 
problem and IPOPT for solving NLP problems. 
 
 

 

Figure 8: Schematic of the GBD and OA algorithms 
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Remarks 
 
The important factors that determine the choice of the algorithm for OSP are the ease of 
use of the algorithm, computational efficiency and most importantly the availability of 
commercial software to solve each of the sub-problems. 
 

 The OSP problem is a binary valued INLP which means that there are no 
continuous variables. Three observations can be made here: 
 

o This implies that the step of solving the primal problem does not apply and 
hence the upper bounds cannot be computed till an incumbent is obtained. 
 

o Even if the primal problem cannot be solved, the characterization of the set   
is possible in OA given that it is done by integer cuts and the M-OA problem 
can be solved as a relaxation. 

 
o The GBD method is not suitable for the OSP problem for the simple reason 

that the Lagrange multipliers used in the definition of the master problem 
M_GBD are solutions to primal problem. 
 

 Given the absence of primal solutions, the integer cuts are the only way to 

characterize the decision space, i.e., the set  . Each integer cut is a point 
elimination and at convergence, the intersection of the feasible regions of these 

integer cuts will be the same as the set  . Note that the integer cuts are weak cuts, 
i.e., they eliminate one integer point per iteration. This means that for problems with 
large number of integer variables, a large number of iterations may be required to 

characterize the set   accurately. For medium/large scale OSP problems, 
mechanisms that speed up the characterization of   need to be developed, one 
such mechanism being supporting hyper-planes.  

 
One possible method to use OA for the large scale OSP problem would be to combine 
OA with a step for regaining feasibility and defining a supporting hyper-plane at this 
solution. The feasibility pump (FP) (Bonami et. al., 2006) based methods in existing 
literature have already solved the problem of finding a feasible solution to a MINLP 
problem and is delineated in the next section. 
 

4.2.3 Outer Approximation with Feasibility Pump 

The feasibility pump is a heuristic algorithm developed in order to find feasible solutions to 
the MILP and MINLP problems.  Under assumptions of convexity of the feasible space, 
this algorithm becomes an exact algorithm. The integrated FP (IFP) method described in 
Bonami et. al, 2006, integrates the OA and FP algorithms and is an iterative method. 
Similar to the OA/GBD approaches, at every iteration the generation of an upper and lower 
bound is achieved by solving different kind of relaxed sub-problems.  The potential benefit 
of the IFP as proposed in the existing literature is the speed of convergence to the integer 
optimal solution due to the increased ability to find feasible solution. 
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Two additional sub-problems are defined in IFP on top of the NLP2 (Primal) and M-OA 
problem.  
 

1. The first one deals with regaining nonlinear feasibility by projecting an infeasible 
integer point to the feasible space, which is assumed to be convex. This problem 
relaxes the integral constraint and hence is called as FP-NLP problem. The FP-NLP 
is defined as 
 

Eq. (42) FPNLP 

     ‖    ‖ 

         

  [   ]  

       

 

Where,          ,i.e, integer feasible. 
 

2. The second one looks for a better solution than the best upper bound/incumbent 
over the integer space. Here the relaxation is in terms of the non-linearity and is a 
kind of outer approximation. This problem, called as FP-OA, is an MILP problem 
and is formulations are given as. 
 

Eq. (43) FPOA 
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Where,    [   ] ,i.e, the relaxed integer feasible 
A schematic of the algorithm is shown in Figure 9.  At each iteration, the lower bound is 
computed using Master problem (MILP) and the upper bound is computed by NLP2 or 
Feasibility pump in case the NLP2 is infeasible. The NLP2 and the FPNLP requires NLP 
solvers while the OA and FP-OA use MILP solvers such as GLPK, CPLEX etc. For further 
details on the algorithm and computational benefits, the readers are referred to Bonami et. 
al 2006. 
 

 It must be noted that IFP cannot be directly applied to the OSP problem, being an 
INLP problem with no real variables and thus no primal problem. However, the 
ability to regain feasibility at every step makes this the most viable choice for the 
OSP problem.  
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 The IFP, in addition, does not have solver requirements above and beyond the OA, 
but requires an additional MILP solver as compared to the BB method. It is 
expected that the computational effectiveness of this method will outweigh the 
added software requirement. 

 Finally a solver for the OSP problem can be obtained by integrating the OA and the 
FPNLP sub-problems, where the solutions of the FPNLP can be used to compute 
the support functions in addition to the integer cuts in OA for faster convergence. 
 

 

 
 

Figure 9: Schematic of the Integrated Feasibility Pump algorithm. 

 
 
Other Methods 
 
Many other variants of the OA such as the OA-Branch and Cut (OA-BC) and the OA-
Hybrid (Bonami et.al. 2005) have been proposed in the existing methodologies for solving 
MINLP problems. While these methods work on similar assumptions as OA, the intended 
benefit has been mainly for the sake of improved computational efficiency.  However, the 
choice of the methods depends on the specific problem. It is shown that for problems 
where the linearization is a good approximation and the integer relaxations are tight, OA-
BC is a good choice. The OA-Hybrid combines the benefits of pure OA and pure BB 
algorithms. Hybrid between OA and pure BB is used for faster convergence by tightening 
the bounds from solving the NLP-R for certain iterations. Since the underlying concepts for 
the basic units have already been described, only a mention of these algorithms is done in 
this section for the sake of completeness.  
 
To conclude this section, a comparison chart of the existing MINLP methods with respect 
to the different relaxations is shown in Figure 10. The two most commonly used relaxations 
are integer relaxation where the decision space is relaxed to continuous variables, and 
nonlinear relaxation which considers the linearization of the objective and constraint 
function. In the figure, the x axis relaxes the integrality and the y axis relaxes the 
nonlinearity. The choice of methods will be problem specific and will depend on which 
relaxation is most suitable. 
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.  

Figure 10: Comparison chart of existing MINLP methods with respect to different relaxations.  

 
 

4.2.4 LMI Formulation for OSP Problem 

Recall that OSP problem was formulated (Eq. (11)) as a linear cost optimization problem 
with precision and reliability constraints, where the precision constraint was evaluated 
using the solution to ARE (Eq. (8)). This formulation can be cast in LMI framework as 
proposed by Chmielewski et al (2002). They reformulated  the general NLP of OSP into a 
convex program through the use of Linear Matrix Inequalities (LMIs). With the application 
of steady-state Kalman Filter for linear dynamic system, the technique developed by 
Chmielewski et al (2002) shows that the sensor-placement problem can be solved globally 
and efficiently using LMIs and branch-and-bound search algorithm.   
 
 

4.2.4.1  Linear Matrix Inequality and ARE Problem 

 Consider the dynamic system in Eq. (3). If the system matrix    is nonsingular then the 
following matrix is positive definite 
 

Eq. (44)            
     

 
Substituting this into Eq. (7) leads to 
 

Eq. (45)      [  
     

      ]
    

 
Which, through the matrix inversion lemma, leads to: 
 

Eq. (46)             
        

            

 

Substituting the equality into the definition of    in Eq. (44) the following equality relation is 
obtained: 
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Eq. (47)        
           

        
            

       

 
With some appropriate technical conditions (see References Boyd et al. (1994) and 

Chmielewski et al (2002)), the above ARE is feasible if and only if there exists        
such that the following inequality holds, by using the matrix inversion lemma again. 
 

Eq. (48)           
     

       
    

     

 
To convert Eq. (48) into LMI, a positive definite matrix is defined 
 

Eq. (49)  
     

           
         

    
 

Since       and    is nonsingular. From   one can find       
       

       
   , 

and substituting it into inequality Eq. (48) and using standard Schur Complement Theorem, 
the inequality Eq. (48) is cast into LMI as follows: 
 

Eq. (50)  [
    

       
       

      ]     

 
Therefore, the existence of a steady-state Kalman Filter by solving ARE in Eq. (7) is 
converted into the feasibility problem in LMI in Eq. (50). 
 
 
4.2.4.1 Performance criteria and Linear Matrix Inequality 
 

By using the definitions of Eq. (46), Eq. (49)  and the relationship       , it is easy to 

conclude that        
     

  . Hence, the estimation precision in Eq. (6) can be cast into 
the form of LMI as follows: 
 

Eq. (51)  
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With the integer nonlinear programming (INLP) problem defined in Eq. (11) can be 
converted into convex optimization problem over LMIs with estimation precision 
constraints: 
 

Eq. (52)  
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Again, note that         is linear function with respect to decision variable    as defined in 
Eq. (12). Therefore, Eq. (52) is a minimization of a linear objective under LMI constraints.  
 
To include reliability constraint, Chmielewski  et al (2002) define a slack variable to relax 
the nonlinear indicator      . Recall that the function       denoting whether the reduced 
sensor set allows meeting the precision accuracy        ), or not         . Thus, for 

       , the condition 
 

Eq. (53)         
  ̅
   

⇔         
    ̅     

 

can always be met as long as         . This amounts to relaxing the reliability 
requirement in Eq. (11), so that it can be converted into LMIs: 
 

Eq. (54)  
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Where Chmielewski  et al (2002) add a small constant,   ̅, to make Eq. (53) well posed in 
Eq. (54) and avoid singularity. As discussed previously, the set Ω of all sensor failure 
combinations to be considered can be very large, and the calculation of Eq. (54) becomes 
very expensive. Therefore, it is changeling to approximate the reliability constraint in the 
LMI constraint. Instead the function reliability constraint (Eq. (9)) will be used. With that the 
solution to OSP involves solving the following problem: 
 

Eq. (55)  
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Where, N is the total number of sensor locations     is the number of sensors at each 
location        , and   

  is the intrinsic reliability of each sensor   used to monitor 

process I; and   
  denotes the overall reliability of the sensor network  for estimating or 

monitoring the    process variable  
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With LMI formulation above, the original NLP problem was converted into a convex 

optimization problem in LMIs as in Eq. (52) with binary decision variables   . since     „s 
are linear/convex in LMIs, they can be relaxed into real values so that variables    [   ] 
solved from LMIs won‟t have impact on the LMI feasibility. In other words, because of the 
convexity, the LMIs are feasible for a certain set of    taking values     ] if and only if the 

LMIs are feasible for that set of    taking values     . In the sensor network design 
procedure, a branch-and-bound algorithm with LMI-constrained minimization problems can 
be used to solve the sensor placement problem. 
  
The way branch-and-bound algorithm works with LMIs is standard. LMIs solve for real 
decision variables    [   ] at each bud node, and branch-and-bound turns one of the 
decision variable into 0 or 1 one at a time to arrive at a child node where another LMI is 

solved for the non-integer components   , and so on. To make the searching more 

efficient, branch-and-bound chooses the largest    from the LMI solution as the next 
searching node. At the bud nodes, LMI gives the lower bound of the cost since    takes 
fractional value between 0 and 1, while a leaf node where all decision variables have 
binary integer values provides the best upper bound if it is the incumbent. If the lower 
bound at a bud node is higher than the upper bound from the incumbent, then the bud 
node is discarded from the search. Progressively, the lower bound and upper bounds 
converge and the optimal solution is found.  
 
With the branch-and-bound algorithm, the optimal sensor placement problem can be 
solved by minimizing the cost with guaranteed precision as the convex optimization 
problem in LMIs in Eq. (52). To impose the reliability constraints a few practical 
implementations was proposed. The simplest one is to check the reliability at the leaf node 
when the decision variables are decided as 0 or 1. If the reliability is satisfied, the leaf node 
is saved and the upper bound of the cost is updated. Otherwise, the node is discarded as 
infeasible solution and branch-and-bound algorithm is forced to expand more bud nodes. 
Since there is no reliability constraint before it reaches the leaf node, the searching criteria 
won‟t be optimal and will be expensive for large scale problems. Other practical 
approaches/approximations to reliability will be sought to enable including it in the 
LMI/Branch-and-bound framework.  
 
Remarks 
 
The LMI formulation for OSP problem is easy to apply, computationally tractable and 
efficient for small size problem. However the LMI technique has some practical limitations: 
 

 One limitation is the size of the optimization problem. When the size of the system 
increases, including the size of the system states, the sensor type, and the sensor 
location, the solvability of the existing commercial solvers and non-commercial 
solvers for LMIs are subject to further test.  

 The other concern is the conservativeness of the LMIs. By converting the precision 
constraint into convex optimization, the LMI imposes a stricter constraint. The 
feasible solution certainly guarantees the required precision, but the other way 
might not be true. It would be necessary to investigate numerical and practical 
method to make the constraint less conservative. 
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4.3 Model Enhancement for Gasifier Refractory Wear 

As mentioned earlier that the key focused on this program was on optimal sensor 
placement for condition monitoring of the gasifier refractory wear and RSC fouling profile. 
The direct measurement of the quantities of interest (wear and fouling) for the condition 
monitoring of the gasifier refractory wear as well as that of RSC fouling are very difficult 
due to harsh condition in which they operate. Hence a model based sensing approach is 
used as shown in  Figure 11, that utilizes a physics based model of the process to relate 
sensed signals (e.g., temperature) to the signal of interest (e.g., refractory wear).  
 
 

 

Figure 11: Typical model based sensing scheme 

 
 
First-principles physics-based models allow capturing the process knowledge through 
rigorous mass and energy balances, and utilizing it systematically for improved online 
model-based sensing and controls. In the face of limited online sensors, first-principles 
models allow relating process variables across the entire system, and can thus be used as 
the basis for online model-based estimation or “virtual” sensing of key unmeasured 
process variables. With this motivation, one of the key objective of Task 2 was to obtain a 
suitable dynamic model of the gasification section in Matlab/Simulink® that could be used 
for model base optimal sensor placement as well as  real-time transient simulations in 
Tasks 3 and 4. 
 
In a previous program (DE-FC26-07NT43094), a dynamic model of the core gasification 
section of the IGCC plant was implemented for advanced model-based controls design. 
For pre-heating of the gasifier during startup, a 1-dimensional heat transfer model of the 
refractory lining was developed to simulate the transient thermal gradients in the radial 
direction (assuming symmetry in axial and azimuthal directions) and the resulting thermal 
strains. On the other hand, for nominal plant operation, the gasification reactions were 
modeled in detail, while a simple quasi-steady-state thermal model of the refractory lining 
was used to calculate a small heat transfer loss.  
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In the current program, the key focus is on monitoring the wear of the gasifier refractory 
lining on the hot inner surface. Figure 12 shows a schematic representation of the gasifier 
refractory lining starting with uniform cylindrical profile on the cold outer and hot inner 
surfaces for a new lining. Over time, the hot inner surface wears non-uniformly, 
characterized by a growing inner surface radius         that varies with the axial location   

and azimuthal location  . This non-uniform wear leads to a non-uniform thermal profile in 
the refractory lining, which can be monitored through temperature sensors located in the 
refractory lining to estimate the current wear profile. To enable this model-based 
estimation, a 3-dimensional heat transfer model is needed that allows asymmetric 
temperature profiles. 
 

 

Figure 12: Non-uniform wear on hot inner surface of gasifier refractory lining 

  

 

 

Figure 13: Nodes for 3-dimensional heat transfer model in gasifier refractory lining. 

 

In particular, in the main cylindrical section of gasifier refractory lining, the 3-dimensional 
heat transfer is described by heat transfer through conduction in the refractory material.  
Figure 13 shows a node in cylindrical coordinates in the cylindrical section of the gasifier 
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including the three layers of refractory bricks as well as the metal shell. The dynamic heat 
balance is described by the second-order partial differential equation (PDE): 
 

Eq. (56)  
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The above PDE was implemented using finite differences with approximately 30 nodes in 

the axial direction  , 20 nodes in the azimuthal direction   and 15 nodes in the radial 

direction  , yielding a total of 9000 nodes or temperature states.  
 

Eq. (57)  
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The heat transfer in the core of the system is governed by thermal conduction, using 

temperature dependent thermal conductivity   for each brick/metal material. The heat 
transfer from the hot gas in the gasifier to the hot inner refractory surface is governed by a 
combination of radiation and convection, while the heat transfer from the outer surface of 
the metal shell to the ambient is governed by natural convection. The heat transfer to the 
top and bottom sections of the gasifier are modeled by conduction to the respective 
top/bottom sections with the same 15 radial nodes assumed to be uniform in azimuthal 
and axial directions.  
 

In the discretized model in Eq. (57), the volume of the brick material is denoted by   . For 
a fresh brick lining, this volume is the full node volume. However, as the inner brick wears, 
i.e. the hot inner surface moves radially outwards, this volume decreases to a fraction of 
the grid cell until it goes to zero as the wear progress from the first radial node to the next. 
This reduction in the brick volume in a cell corresponding to varying wear level, leads to 
problems with “stiff” dynamics as the brick volume in a cell becomes too small, in turn 
leading to numerical simulation problems. To overcome this issue, once the brick volume 
in a cell reduces to a chosen threshold, its dynamics is approximated by a quasi-steady-
state condition, thereby allowing easy numerical simulation without sacrificing significant 
accuracy.  
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Figure 14: Example non-uniform/local wear profile on inner refractory brick layer. 

 
This model was implemented and simulated for various uniform and non-uniform wear 
profiles. An example non-uniform wear profile is shown in Figure 14, where a few nodes at 

mid axial location     and around     have a localized wear profile up to ~35% of the 
inner-most brick layer thickness, while the rest of the bricks have zero wear. The 
simulation was started with initial condition at a steady-state profile with no brick wear, and 
the brick wear increased linearly from zero wear at t=5hr to the specified wear profile at 
t=15hr.  
 
Figure 15 shows the profiles for the temperature difference from initial steady-state values 
at the brick interfaces and metal shell as a function of the axial and azimuthal locations. 
The profiles for layers 1-3 denote the temperature profiles on the outer surfaces of each 
refractory brick layer, while layers 4 and 5 show the metal shell inner and outer surface 
temperatures respectively. Clearly, the temperature profiles show sharp peaks in the inner 
layers, which gets diffused to shallow and more spread out peaks in the outer layers, as 
expected.  
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Figure 15: Temperature profiles at brick interfaces and metal shell for local wear profile. 

 
For the same simulation run, the transient temperature profile at all 15 radial node 
locations (numbered from innermost to outer metal) are shown in Figure 16 for two 
axial/azimuthal locations. The plot on the left shows the temperature profile for node 

location           , where the radial wear increases from zero at t=5hr to ~35% of 
brick thickness at t=15hr. The plot on the right shows the temperature profile for node 

location           , where the radial wear increases from zero at t=5hr to ~11% of 
brick thickness at t=15hr. Note that for the left plot, as the radial wear progresses from the 
innermost node (blue) to the second(green) and ultimately to the third (red) node, the 
temperatures from the first and second radial nodes decrease and ultimately become the 
same as the 3rd node due to the quasi-steady-state condition, as expected. On the other 
hand, for the plot on right, the wear at the end of the simulation run is still limited to the first 
radial node (blue) and all radial nodes show a monotonic increase in temperature. 
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Figure 16: Transient temperature profiles across radial nodes at different axial and azimuthal 
locations. 

 

The above simulation plots show that the model is running well and can be simulated for 
varying non-uniform wear profiles and used to simulate the plant for OSP studies. 
However, the model is of very high order (~9000 states) and takes significant time for 
simulation. Also, the nonlinear model was linearized to deriver linear state-space model for 
use in OSP, e.g. for linear Kalman filter or EKF implementation. However, owing to the 
large number of states, standard numerical perturbation techniques will result in large 
matrices and will take significant time for perturbing each state. To address this, sparse 
matrices and sparse linearization techniques have been used. For the full nonlinear 
dynamic model given by nonlinear ODEs: 
 

Eq. (58)  
 ̇         
       

 

 

Where,   denotes the vector of all node temperature states,   denotes the vector of radial 

wear profile        , and   denotes the vector or potential sensor measurements of 
temperature at each brick layer outer surface, the corresponding linear model has the 
form: 

Eq. (59)  
 ̇        
                  

Owing to the spatial nature of the model, i.e. only neighboring nodes interact through 
thermal conduction, the above linear model will have a sparsity pattern. Figure 17 shows 
the sparsity pattern for the combined linear model matrix [       ]             , which 
is clearly very sparse, with less than 0.5% of the entries being non-zero. This allows 
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significant saving. Also, the numerical perturbation linearization can be done very 
efficiently using sparse linearization techniques. In particular, exploiting the structural 

orthogonality of the columns, corresponding orthogonal combinations of       can be 
perturbed together rather than one variable at a time. For the sparsity pattern shown here, 
only 26 perturbations were needed to evaluate the linear system matrices.  
 

 

Figure 17: Sparsity pattern of linear model for gasifier refractory. 

 

4.4 Model Enhancement for RSC Fouling 

A 1-D dynamic generic model of the Radiant Syngas Cooler (RSC) was developed in the 
previous program (DE-FC26-07NT43094), where the RSC was modeled to have axial 
temperature distributions for the syngas and for the water inside the RSC tubes. In that 
model, fouling on the RSC tubes, which decreases the heat transfer between the hot 
syngas and the cold water inside the riser tubes thereby decreasing the high-pressure 
steam production from the RSC drum, was modeled to be uniform along the length of the 
RSC. In addition, for startup pre-heating operation, the model was modified to include 
thermal transients in the shell and the tubes and the resulting stress and strain on the 
support structure due to the thermal gradients and weight of the RSC tubes. In that 
program, it was shown that this uniform fouling level was “observable” using the existing 
set of online sensors. 
  
The assumption of the uniform fouling is a simplification of the actual process that takes 
place in an IGCC plant. In the current program, the assumption of uniform fouling was 
relaxed to allow for non-uniform fouling profile along the RSC length, i.e., allow different 
levels of fouling at different axial locations in the RSC. This increases the challenge in 
monitoring the non-uniform fouling profile, which is in all likelihood not feasible with the 
existing set of sensors in the gasification section. To address this, inclusion of additional 
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online sensors was explored. In particular, use of heat flux sensors at few key locations 
along the RSC length, together with strain sensors on the mechanical support structure 
that provide information about the cumulative fouling weight was explored. While the heat 
flux profile is already modeled along the length of the RSC, the model had to be updated to 
allow for non-uniform fouling and the cumulative effect of the fouling weight on the strain 
sensors. 
 

 

Figure 18: Fitting the RSC model heat fluxes to CFD data by parameterizing the heat transfer 
coefficients for the un-fouled RSC tubes in case of: NOC, 80% throughput, and 50% throughput. 
The six zones, that have different heat transfer coefficient parameterizations, are highlighted in the 
top left plot. The bottom right plot shows the percent error in the heat flux fits. The heat flux trends 
shown here are for a generic model and do not represent any specific site data. 

 
The heat transfer coefficients and the effect of fouling on these coefficients were previously 
parameterized with respect to flow and the axial location matching 1-D model heat fluxes 
to heat flux values obtained from a more detailed 3-D computational fluid dynamics model. 
This analysis was also improved to account for the axially non-uniform fouling.  In 
particular, the heat transfer length was divided into six zones based on the heat transfer 
profiles to obtain better match along the length for nominal and fully-fouled conditions. The 
comparison of heat fluxes obtained from the parameterization of the heat transfer 
coefficients in the 1-D model with six zones and the heat fluxes obtained from a 3-D 
computational fluid dynamics (CFD) model is presented in Figure 18 for different throughput 
conditions: normal operating conditions (NOC), 80% throughput, and 50% throughput. The 
heat flux profile comparisons to the CFD data for the fully-fouled RSC tubes are presented 
in Figure 19. As can be seen in Figure 18 and Figure 19, with multiple zones having different 
heat transfer coefficient parameterizations 1-D RSC model‟s heat flux agrees very well 
with the CFD data. 
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Figure 19: Fitting the RSC model heat fluxes to CFD data by parameterizing the heat transfer 
coefficients for the fully fouled RSC tubes in case of: NOC, 80% throughput, and 50% throughput. 
The six zones, that have different heat transfer coefficient parameterizations, are highlighted in the 
top left plot. The bottom right plot shows the percent error in the heat flux fits. The heat flux trends 
shown here are for a generic model and do not represent any specific site data. 

 
In accordance with the multiple zones utilized for identifying heat transfer coefficient 
parameterizations, a different fouling scale factor is used for each individual zone. These 
scale factors vary from 0 to 1, where 0 corresponds to no fouling on the tubes and 1 
corresponds to fully fouled RSC tubes. This allows for a non-uniform fouling with 
independent fouling factors for each of the six zones. The effect of fouling on the 
temperature profiles inside the RSC is presented in Figure 20. It can be seen that the effect 
of fouling on the temperature profiles can be significant and can create a difference as 
much as 20% on the exit temperature between the no fouled and fully fouled cases. In 
three of the cases presented in Figure 20, fully fouled, half fouled, and no fouling cases, the 
fouling is uniform across the RSC. As expected, among these cases the no fouling case 
has the lowest temperature profile (corresponding to most heat extracted from the syngas); 
fully fouled case has the highest temperature profile; and the temperature profile of the half 
fouled case falls in between these temperature profiles. Two non-uniform cases are also 
presented in Figure 20: bottom fouled and top fouled cases, where the bottom three and 
top four zones have fouling scale factors of 1, respectively, while the other zones are un-
fouled. The top half of the nodes in these cases align with the fully fouled and no fouling 
cases, as expected while the rest of the RSC has different temperature profiles in between 
the fully-fouled and un-fouled extremes.  
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Figure 20: Effect of fouling on syngas temperature profiles inside the RSC.  Fully fouled, half 
fouled, and no fouling cases have uniform fouling while bottom fouled and top fouled cases have 
non-uniform fouling along the RSC. 1st node corresponds to the top of the RSC and the 30th node 
corresponds to the bottom of the RSC. 

 
Since fouling on the RSC tubes decreases the heat transferred from the hot syngas to the 
water inside RSC tubes, the net effect of fouling is present in the amount steam that can 
be extracted from the RSC drum at a given drum pressure. Figure 21 shows the scaled 
steam flow from the RSC drum (deviation from the lowest flow for fully fouled case) for 
different cases of uniform and non-uniform fouling as well as a transient case from no 
fouling to full uniform fouling. The variation in steam flow is in negative correlation with the 
degree of fouling on the RSC tubes, as expected.  
 
Heat flux, exit syngas temperature, and RSC drum steam flow are all measurements that 
can be utilized to track the non-uniform fouling of the RSC tubes. These three classes of 
measurements can be utilized to determine the extent of fouling through its effect on the 
heat transfer inside the RSC and they are defined within the updated RSC model. Another 
measurement that can also be utilized for this purpose is the strain experienced by the 
mechanical structure at the top in the RSC that supports the weight of the tubes, where the 
extent of fouling along the entire tube length can be tracked by the increasing strain on the 
RSC bolts due to the additional weight brought on by the fouling. The strain experienced 
on this support structure, in terms of added strain from the baseline no-fouling case, is 
presented in Figure 22 for the same fouling cases of Figure 21. The strain measurement is 
also defined within the new RSC model. 
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Figure 21: Effect of fouling on the amount of steam flow from the RSC drum. 

 

 

Figure 22: Effect of fouling on the strain on the RSC bolt. 

 
To summarize, the modifications to the RSC model included: (i) improving the heat transfer 
coefficient correlations for a better fit to CFD data with six zones along the RSC length, (ii) 
increasing the number of fouling scale factors to allow for non-uniform fouling, one 
independent factor for each of the six zones, (iii) modeling the effect of cumulative fouling 



 55 

weight in all the zones on the support structure and resulting strain, and (iv) including heat 
flux and strain measurements to allow for evaluating the use of these sensors within OSP 
for RSC fouling monitoring. In order to reduce the size of the gasifier-RSC model, the slag 
model was simplified. In particular, the previous slag model with a spatial resolution in the 
axial as well as radiant directions and detailed dynamics of the material and energy 
balance in the IGCC plant was updated with a coarser spatial resolution model. While the 
previous slag model provides detailed transient evolution of the liquid and solid slag 
thickness along the gasifier length, for OSP problem this level of resolution was not 
required, further this simplification reduces the number of the states and hence the 
complexity and size of the optimization problem. Also, reducing the order of the slag model 
has insignificant impact on the steady state gasifier temperature and syngas exit 
temperature to RSC which are signature of fouling conditions. As expected, with this 
simplification the error between critical responses (e.g., syngas temperature out of RSC 
exit, bolt strain, heat fluxes across the RSC tube etc.) for the linear models derived from 
this simplified model and that of the full nonlinear models were less than 2%.  
 
 

 

Figure 23: The fouling profiles used in simulation. 

 
In order to apply the OSP algorithms, the model linearization was carried out for the 
enhanced RSC model which allows for the non-uniform fouling profiles and the cumulative 
effect of the fouling weight on the strain sensors.  The linearization is conducted at steady 
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states conditions for un-fouled RSC tubes. In the following comparisons, all the linear 
modes were generated at no fouling condition by setting the fouling factors for all sections 
to zero. Then the simulations were conducted by applying different (small, large, uniform, 
non-uniform) fouling profiles as inputs, as shown in Figure 23. All the fouling profiles are 
modeled as ramps of 100 seconds starting at 100 second to the final value at 200 second. 
For example, the left top one is the fouling profile which is given to each zone for small 
non-uniform fouling test, and the rest of the cases are the fouling profiles which are given 
to specific zones for larger non-uniform/uniform fouling tests.  
 

 
 
 

 

Figure 24: The comparison of the RSC model heat fluxes between linearized model and nonlinear 
model for un-fouled and small non-uniform fouling (10%) at different zones. The six zones, that 
have different heat transfer coefficient parameterizations, are highlighted in the top left plot. The 
bottom right plot shows the error in term of deviation for the linear model from the nonlinear model. 

 
The comparison of heat fluxes obtained from the parameterization of the heat transfer 
coefficients in the nonlinear RSC model with six zones and the heat fluxes obtained from 
the linearized model is presented in Figure 24 for various fouling profiles: Zero (no) fouling 
and 10% fouling for each zones.  
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Figure 25: The comparison of the RSC model heat fluxes between linearized model and nonlinear 
model for non-uniform half fouled zones. The six zones, that have different heat transfer coefficient 
parameterizations, are highlighted in the top left plot. The bottom right plot shows the error in term 
of deviation for the linear model from the nonlinear model. 

 
 
In this simulation, six non-uniform cases are presented as shown in the top left plot in 
Figure 23: 10% fouling for each zone cases, where the specified zone has fouling scale 
factor of 0.1 after 200 second, while the other zones are un-fouled. The values of heat flux 
are recorded at the end of simulation 400 second.  It can be seen in Figure 24, the fouling 
profile is very “observable” from the heat flux, when a small fouling occurs at 10% in each 
zone. The linearized RSC model‟s heat flux agrees very well with the nonlinear model with 
different heat transfer coefficient parameterizations as shown in the figure. The next six 
subplots with individual zone fouled 10% describe the heat fluxes deviation from the 
baseline no-fouling case. The right plot on the bottom shows the error in terms of the 
deviation of the linear model from the nonlinear model.   
 
 
The heat flux profile comparisons between linearized and nonlinear RSC model for half-
fouled RSC tubes in different zones are presented in Figure 25. In Figure 25, the three 
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cases presented at the top represent cases where the top section of RSC is fouled, bottom 
section of RSC is fouled and middle section of RSC is fouled, are all non-uniform cases, 
where the top four zone, bottom two zone and middle two zone have fouling scale factor of 
0.5, respectively, while the fully fouled case is uniform with fouling scaled factor of 0.5 for 
all the zones. The left bottom one is the non-uniform case, where the fouling scaled factors 
are 0.1, 0.1, 0.3, 0.5, 0.3, and 0.1, for corresponding six zones. This is close to the real 
fouling situation happens in IGCC plant. The input fouling profiles are presented in Figure 
23 as the last five plots. As expected, the percent error in Figure 25 is relatively larger than 
the ones in Figure 24. This is resulted from the fact that the linear RSC model is obtained 
at no-fouling condition, so that it is expected to have better matches when fouling is close 
to zero. It is also observed that the effect of fouling on the heat flux profiles can be a 
significant signature for soft sensing.  
 
 

 

Figure 26: The comparison of the effect of fouling on the exit syngas temperature on the RSC bolt 
between linearized model and nonlinear model for small non-uniform fouling (10%) at different 
zones. 
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Since the fouling on the RSC tubes decreases the heat transferred from the hot syngas to 
the water inside RSC tubes, the signature of fouling is also present in the exit syngas 
temperature change. The effect of fouling on the exit syngas temperature of RSC is 
presented in Figure 26 (deviation from the un-fouled case), for the same fouling profile of 
Figure 24. Figure 26 also shows that the linear model response matches that of the 
nonlinear model response well during the transient condition, when the fouling ramps 
between 100-200 second in the simulation as shown in the first plots of Figure 23. As 
expected, the exit syngas temperature increases when fouling occurs. This increment is 
more significant when fouling cumulates to 50% as in Figure 27. It can be seen that the 
increment of the exit syngas temperature is very “observable” with the cumulated fouling in 
the transient and steady state conditions, but it is not “observable” for non-uniform fouling 
profile along the RSC tube length. In another word, it may not be possible to distinguish 
between a uniform fouled RSC tube and non-uniform fouled RSC tube by measuring the 
exit syngas temperature alone. 
 
 

 

Figure 27: The comparison of the effect of fouling on the exit syngas temperature on the RSC bolt 
between linearized model and nonlinear model for non-uniform half fouled zones. The bottom right 
plot shows the error in term of deviation for the linear model from the nonlinear model. 

 
Another signal that can be utilized for tracking the fouling of the RSC tubes is the strain 
experienced by the mechanical structure at the top that supports the weight of the RSC 
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tubes, where the extent of fouling along the entire tube length can be tracked by the 
increasing strain on the RSC bolts due to the additional weight brought on by the fouling. 
The strain experienced on this support structure, in terms of added strain from the baseline 
no-fouling case, is presented in Figure 28 for the fouling profiles given as the last five plots 
in Figure 23, where the fouling for each case is modeled as a 100 second ramps from zero 
fouling to full fouling. It can be seen that the added stain is very “observable” with the 
cumulated fouling in the transient and steady state conditions. However, similar to exit 
syngas temperature the strain alone cannot be used to ascertain fouling profile along the 
RSC length.  The right bottom plot shows the error between the linear model response 
from the nonlinear ones which indicates that the linearized model agrees very well with the 
nonlinear model.  
 
 

 

Figure 28: The comparison of the effect of fouling on the strain on the RSC bolt between linearized 
model and nonlinear model for non-uniform half fouled zones. The bottom right plot shows the 
error of strain in term of deviation for the linear model from the nonlinear model. 

 
The heat flux, syngas temperature, and strain on the bolt are all measurements that might 
be utilized to track the fouling of the RSC tubes. These three classes of measurements are 
outputs of the linearized RSC model. Another measurement that can be utilized for this 
purpose is the amount of steam extracted from the RSC drum. When fouling occurs, the 
heat transfer from the hot syngas to the water decreases, and it is expected that the 
amount of steam extracted from the RSC drum will decrease.  
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The following simulation compares the steam flow from RSC steam drum between linear 
and nonlinear overall plant model.  The steam flow is measured as the output of the drum. 
The same fouling profile, as shown in the top left plot in Figure 23, is given to the each 
zone as the input. Here the fouling is modeled as 1000 seconds ramp between no fouling 
and full fouling starting at 2000 seconds as more time is need for the overall plant to reach 
its steady state. The output of the steam flow in drum is presented in Figure 29. As 
expected, the steam flow matches well between linear and nonlinear cases, and both have 
negative correlation with the fouling.  
 
 

  

Figure 29: The comparison of the effect of fouling on the exit syngas temperature on the RSC bolt 
between linearized model and nonlinear model for small non-uniform fouling (10%) at different 
zones. 

 
 
The study presented in this section shows that in order to monitor fouling profile along the 
RSC length the OSP algorithms will have to use combination of RSC syngas temperature 
at exit, drum steam flow, bolt strain at the mechanical support along with heat flux 
measurements at certain location along the RSC length.  
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5 Task 3: Development of OSP Algorithm 

This task was focused on developing an OSP algorithm by integrating the estimation and 
the optimization algorithms discussed earlier. In order to develop a general algorithm for 
solving an OSP problem, first various optimization algorithms were evaluated.  
 
Recall that the optimal sensor placement problem was formulated as a “cost” minimization 
problem subject to estimation precision and network reliability constraints in the presence 
of expected sensor failure rates (Eq. (11)). Mathematically the OSP problem is defined as 
follows: 
 

Eq. (60)  

   
   

    

  
        

  
   ̅   

       ̅  
                                             

 

 
Where, r(q) is the reliability constraint on the sensor network and defined as either 
hardware reliability (Eq. (8)), functional reliability (Eq. (9)) or estimation reliability (Eq. (10)) 
based on the problem at hand. 
 
The OSP problem in Eq. (60) is an INLP problem. As mentioned earlier, there are two 
fundamentally different approaches for solving an INLP problem:  (1) Branch and Bound 
and (2) Outer Approximation. In the current program both these two approaches were 
applied to solve the OSP problem. Since the BB method can be applicable to both MINLP 
as well as INLP problems, the approach was directly implemented for the OSP problem. 
However based on the analysis described in the literature survey section, the existing OA 
method could not be directly applied to the OSP problem and hence modifications to the 
existing method was required and developed as a part of the current program.  
 
The OSP solution methodology was developed and first implemented on a simplified 
gasifier model for the refractory wear monitoring before applying it to find the solution to 
OSP problem for condition monitoring of full-fledged  3-D gasifier model refractory wear 
and RSC fouling profile. . In the rest of the section, the application of the BB method is 
presented followed by the OA algorithm developments. 
 
 
Solving the OSP problem for a simplified 1-D gasifier model provided a good and quick 
mean to understand the applicability and limitations of the proposed methodology for OSP 
solution. Before going into OSP solution methodology developed, a brief description of the 
simplified gasifier refractory model is presented. 
 

5.1 Simplified gasifier refractory model for OSP implementation 

In the simplified gasifier refractory model, the gasifier refractory geometry and the thermal 
profiles are assumed to be uniform in the axial as well as azimuthal directions, i.e. the 
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wear on the hot inner surface is also uniform in these directions. This implies that there is 
only one unknown uniform wear to be estimated and the thermal profiles vary only in the 
radial direction from the hot inner surface to the external shell. This 1-D gasifier refractory 
model has a total of 15 dynamic temperature states arising from the spatially discretized 
nodes in each of the three refractory brick layers, the insulation and the metal shell. 
Excluding the inner half of the innermost refractory brick layer, which wears out over the 
life of the refractory lining between successive repairs, there are approximately 20 
locations for temperature sensors corresponding to the respective nodes in the discretized 
model as well as the interfaces between the successive brick/insulation/shell layers. It 
should be mentioned that not all the sensor locations are practically viable, these 20 
locations are used to specify a rich enough potential sensor locations to implement and 
test the OSP algorithms and gain practical insights. Further, there are 13 model 
parameters that are constant but unknown. To account for modeling uncertainties, these 
are modeled as unknown adder or multiplier, as required, to the nominal known 
parameters.  These parameters include the gasifier core temperature, the heat flux on the 
hot inner surface, the heat flux from the outer shell to the ambient and thermal 
conductivities and heat capacities in each of the five material layers (three refractory 
bricks, insulation and metal shell). The nonlinear 1-D dynamic model is of the form in Eq. 
(5) with a first-order Markov model for the model parameters. This nonlinear model was 
linearized at two different steady-state conditions (i) zero wear, i.e. brand new refractory, 
and (ii) approximately 35% of the inner refractory layer worn out. These linear models were 
used for initial development, implementation and testing of the OSP algorithms. In 
particular, the linear model obtained at zero wear condition was used in the initial studies 
as the sensor placement with a zero wear model was more challenging. This is because 
as the brick wear progresses and the corresponding thermal profiles get hotter, the effect 
of the wear is relatively more pronounced on the temperature sensors, hence the zero 
wear model was the most difficult in terms of meeting desired wear estimation precision 
requirements.  
 
 

5.1.1 Monitoring requirement for the simplified gasifier OSP problem   

The solution to OSP problem seeks the best (lowest cost) sensor location      , that can 
satisfy the precision and reliability. These sensors are assumed to have sensor cost 

      and corresponding individual sensor failure rates      , as shown in Figure 4 
and Figure 5, respectively. The sensors located in the inner most wall while being most 
expensive also are the most observable and more prone to failures due to the extreme 
temperature. For this reason, in all our studies with 1D gasifier model, the first 5 innermost 
possible locations are excluded from sensor placement. With this restriction, there are only 
15 possible locations for sensor placement. It must be noted that the sensitivity to 
precision and survivability of the individual sensors are almost always in conflicting order in 
the sense that most survivable sensor may not provide best sensitivity to precision. If all 
the sensors are highly survivable, then a sensor placement that satisfies the precision 
constraints will also imply a higher reliability.   
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Figure 30: Sensor Cost                                                Figure 31: Sensor Failure Rate  

 
 
The OSP problem for the simplified gasifier model has two versions each associated with 
functional or estimation reliability formulations. The two formulations are given as follows: 
 
Version 1: 

Eq. (61)  
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Version 2: 

Eq. (62)  
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Eq. (63)  
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Where, i  corresponds to all possible sensor locations. In Eq. (62)    is the set of possible 

sensor failure scenarios associated with a given sensor configuration q and is defined as 
the power set of the locations where the sensors are placed. For example, if the sensors 
are located at indices 6 and 7, i.e.,  
 

  [                              ]   
 

Then     [           ]
     

 
Where,  
 

   [   ]                                     
   [                              ]                       
   [                              ]                       
                            
 

In Eq. (62)       is the indicator function and        is probability that a sensor failure can 
occur given the base sensor configuration. For example, for the case given above, the 

probability         implies that term                           and this is not the same 
as term               .  
 

In Eq. (63),    denotes the number of sensors that are required to increase the survival 
rates (    of the sensor at the given location.  The functional reliability (Eq. (9)) and 
estimation reliability (Eq. (10)) constraint makes the solving the OSP problem very 
challenging due to following reasons: 
 
1. Convexity, smoothness of objective and constraints 
 
This is essential for both the BB and OA based approaches where the feasible space is 
approximated through relaxations, the true feasible space of the INLP problem should 
always remained contained in the relaxed feasible space. While the precision constraint is 
both smooth and convex for the particular definition of measurement noise covariance 
matrix R as in Eq. (12), the functional reliability is non-convex and the  indicator function 

      used in the reliability definition makes the reliability constraint non-smooth. It must 
be noted that the convexity of the reliability constraint is still guaranteed as long as the set 
of points that satisfy the precision constraint is a convex set. This is so because, an 
Indicator functions over a convex set, namely the set of precision feasible points, is a 
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convex function. The non-smoothness can be alleviated by finding smooth approximations 
to the indicator function, such as sigmoid functions. 
 
 

 

Figure 32: Approximation to indicator function. 

 
 Figure 32  shows two such approximations which can influence the solutions of the OSP 
problem. The looser the approximation (blue solid line) is, the more optimistic the OSP 
solutions will be, in the sense that actual reliability if computed using the indicator function 
may not necessarily satisfy the 90% requirement. However, the tighter approximations 
(red-dashed) will run into the numerical issues associated with derivative computation 
when using NLP solvers.  
 
2. Computation of the    set of possible failure scenarios   

 
Another key challenge in enforcing the estimation reliability constraint lies in computing the 
reliability metric itself, which is a summation over all combinations of the failure scenarios 
for any given sensor configuration, namely the set   . For the 1D OSP problems, the 

potential size of the set can be between          and computing this set can be quite 
expensive. It can be argued that it may not be necessary to evaluate all the sensor failures 
while solving the OSP problem. The BB method based on integer relaxation solves an NLP 
or LMI relaxation optimization problem that often returns real-valued decision variables. 
While the argument above can be made with pure integer solution, it is difficult to interpret 

real-values. For example, when   [                              ]       the    has 

   elements, while for    [                                          ]      , the    will have 

   elements. This means depending upon the relaxed solution, the    may still have large 

number of elements. This however is not applicable to OA based method as the OA based 
approach will always yield integer solutions at each iteration. One way to reduce the effort 

associated with the   set computation can be to consider only those sensors that affect 
the estimation precision the most, thereby reducing the number of potential failure 
scenarios. While this would facilitate solving the original OSP problem with a benefit of 
getting the lowest cost, the additional effort to compute reliability (though reduced) still 
remains an open question.   
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In order to solve the OSP problem, given these challenges, approximations were required 
that would enable getting OSP solutions in a timely manner.  The main idea behind these 
approximations would be to solve a convex part of the OSP problem while ensuring 
constraint satisfaction by making relevant changes to the BB as well the modified OA 
framework. The exact approximations depends on the choice of functional or estimation 
reliability and are described in Section 5.6 

  
As mentioned earlier, three approaches were identified to be the most relevant for solving 
an OSP program, namely:  (1) LMI based formulation of OSP problem that uses branch 
and bound, (2) Branch and Bound approach to directly solve OSP problem and (2) Outer 
Approximation. All the approaches were explored to identify the methodology that was 
both computationally efficient and accurate with the added complexity. 
 
The rest of the section is organized as follows: First, the challenges  of the estimation 

reliability constraint discussed above with respect to smoothness and the   set complexity 
are highlighted using the BB method on the 1D model as a case study, Then the 
development of the OA-INLP algorithm is presented. The application of the LMI, BB  
the LMI and the results of the three algorithms are presented and finally the proposed 
modifications for the reliability constraints are developed and validated on the 1D model . 
 
 

5.2 Implementation challenges for Estimation Reliability using Branch and 
Bound based approach 

Two approaches have been considered for solving the NLP relaxed problem at every node 
in the BB framework. These approaches are as follows, 
 

1) Include both precision and reliability constraint in the NLP problem, where the NLPR 
(Eq. (16)) is given by,  

 

Eq. (64) NLPRF      
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2) Include only precision constraint at every node, where the NLPR is given by, 
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Eq. (65) NLPRP 
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In both the approaches, the BB framework remains the same, wherein upper and lower 
bounds are iteratively generated at every node and convergence is achieved when the 
bounds are within a specified tolerance. The upper bounds are generated anytime a 
feasible solution (both integer and nonlinear feasible) is found and the lower bounds are 
provided by the optimal solutions to the NLPR problem. It can be seen immediately that 
the approach 2 yields less tight lower bounds than approach 1, which may indicate slower 
convergence.  While the process of enumeration, branching and bounding is the same, the 
conditions for branching and enumeration differs in the two methods. 
  
The two approaches are pursed in order to understand the tradeoff between the 
computation effort and accuracy associated with detailed OSP problem with reliability 
constraint versus finding reasonable approximation using the precision constraint alone.  
 
 

5.2.1 Approach 1 using NLPRF 

 
The NLPRF is solved at every node and the enumeration is based on the most fractional 

variable. This means that if the     index of the solution to the NLPRF, namely,    is very 

close to either 0 or 1, the     index would be added as a branch in the subsequent search.  
Even though there is not a systematic procedure for determining the incumbents quickly, 
depth first branching strategy is adopted for this analysis. The calculation of the reliability 
metric for real-valued decision values, involved computing    for all possible sensor failure 

scenarios for sensor indexes whose value is greater than 0, i.e,                . In 
order to mitigate the associated effort, only the set of sensor locations that are both failure 
prone and affect the estimation precision are considered. This leads to including only 
sensor locations at 6, 7, 8, 16 and 17  for evaluating the failure scenarios.  It must be 
noted, that for this particular OSP application there is a clear separation in the precision 
sensitivity making this trick suitable.  However this need not be true for other OSP 
applications and such a trick may yield overly optimistic solutions.  
 
To smoothen the reliability constraint, the indicator function was approximated using 
sigmoid function given by                                     , where     are 
parameters used to control the tightness of the indicator function approximation. Two sets 
of these parameters are used : 
 

1.             is a smoother approximation, but less tight 
2.            is a tighter approximation 
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Table 1: Optimal Sensor Placement 

Case Approximation Reliability 

(actual) 

Optimal 

location 

Total cost 

1 Smooth 

Approx. 

0.79        6857 

2 Tight Approx. 0.9           7857 

 
 

The optimal sensor locations for cases 1 and 2 are shown in Table 1. The branch and 
bound (BB) iterates of the upper and lower bounds are shown in Figure 33 and Figure 34 
respectively. The following observations can be made: 
 

1. The optimal sensor placement for the 1D problem is to place the sensors at 
locations 6, 7 and 15 which has a network reliability of 90% and an associated cost 
with a hypothetical value of 7857. 

2. From the table, it can be seen that a smoother approximation yields an overly 
optimistic solution, where the cost is lower than case 2. While the reliability using 
the approximation satisfies the 90% requirement, in reality this sensor network is 
only 79% reliable.  

3. From the figures, another important observation is the non-monotonicity of the lower 
bounds in both cases. Even though this would not affect convergence to the true 
optimal solution, this indicates potential non-convexity of the reliability constraint 
with the approximation. With the tighter approximation (Figure 34), the non-
monotonic behavior is reduced. 

 
Figure 33: Smoother approximation of the Indicator function 
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4.  

       

Figure 34: Tight approximation of the Indicator function 

 

5.2.2 Approach 2 using NLPRP 

The main idea here is to leverage the optimal sensor solutions obtained by only 
considering the precision constraint denoted by           

 and add redundancies to obtain 

the optimal solution that would also satisfy the reliability constraint. This rationale holds 
true because the feasible space of the solutions that satisfy the reliability constraint (F) is a 

subset of those set of points that satisfy precision constraint (  ), i.e,     . One way to 
achieve this would be to add multiple sensors which would be a suboptimal option but 
computationally the least expensive. 
 
The algorithm involves the following steps 
 

1. Using the BB with NLPRP obtain the precision optimal solution. Here there are two 

incumbents, one for the precision (  
   and another for the reliability (  

 ). 

2. If the precision optimal solution is also reliable then convergence is achieved, else 

a. Branch with respect to the highest sensitivity sensor index 

b. Solve the NLPRP whose solution is the lower bound (  
    

c. Repeat a, b to convergence defined as    
    

     
 
 

 
The main issue with this approach is that while there is a mechanism of getting the 
incumbents quickly from the precision optimal solutions, the number of iterations that 
would be required to converge will be larger if the sensor failure rates are higher. This is so 

because the lower bounds are the solutions of NLPRP where             
       .  

 
The optimal sensor locations using this approach are 6, 7 and 15. This is the true optimal 
solution with a cost with a hypothetical value of 7857.00 as shown in the Table 2.  
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Table 2: Optimal sensor placement by solving NLPRP problem at every node 

Rel actual 
% 

Cost  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

90 7857                

 
The BB iterates for this approach are shown in , where it can be seen that it takes about 80 
iterations to reach the precision optimal solution, while about 1200 iterations to converge to 
the final optimal solution. In addition, the incumbent that satisfies the reliability 

constraint   
  , is found immediately from the precision optimal solution by the above 

branching strategy. The number of iterations that will be required will depend on the gap 

between the OSP solution for the precision only and the reliability problem, i.e.,       
            

 .  
 
 

 

Figure 35: BB iterates for approach 2, MIP: (  
   Upper bound when reliability and precision are 

satisfied, MIP_prec: (   
   Upper bound when ONLY precision is satisfied, NLP: Solution of NLPRP 

problem 

 

Table 3: Comparison of optimization times with approach 1 and 2 

Method No. Iterations Time/Iteration 

NLPRR (App. 1) ~110 ~165s 

NLPRP (App. 1) ~1200 ~1s 

 
 
A comparison () of the OSP solutions along with the optimization time per iteration for both 
the approaches shows the computational benefits of using approach 2 while being able to 
achieve the optimal solution. Methods to intelligently restrict the feasible space of NLPRP 
problem will further bring down this effort by tightening the lower bounds thereby reducing 
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the total number of iterations required for convergence. Identify metrics that would allow for 
computing reliability using less number of failure scenarios without loss of accuracy in the 
reliability computation, one such metric explored in this report is using only the sensors 
with highest sensitivities. 
 
 

5.3 Proposed Outer Approximation Based Approach for INLP 

Another approach to solving an INLP problem arising in OSP formulation is Outer 
approximation.  Since the OSP problem has a pure-integer decision space, conventional 
Outer approximation algorithm was needed to be modified. The algorithm development is 
discussed in this section. In the modified OA), the nonlinear constraints are relaxed to get 
the lower bounds and the following MOA problem (Integer linear Program) is solved. 
 
 

 

Figure 36: Schematic of OA-INLP method 

 
 
The feasible space is contracted successively by defining cutting planes at the projections 
of MOA solutions on the feasible space which are computed as the solution of the 
feasibility problem (FP-NLP). The MOA and the FP-NLP are defined as follows: 
 
MOA 

Eq. (66)  
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Where,       is the cutting plane which is the solution of the NLPR problem (Eq. (16)) if 
it is nonlinear feasible or the FP-NLP problem (Eq. (67)) if it is infeasible. 
 
 
 

 
NLPR 

Define cutting 
planes 

MOA 

(ILP)  

FP-NLP 

(NLP)    
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 FP-NLP 

Eq. (67)  

         
 

‖      ‖ 

                        

  [   ]  

 

 

Where,     is the solution of the MOA problem. It should be noted that the MOA problem 
is an Integer linear programming problem, while the FP-NLP is a nonlinear programming 
problem such as NLPR. 
 
In the rest of the section the three methods, namely LMI, BB and OA-INLP are applied to 
the OSP problem using the 1D model and the results are presented.  
 

5.4 LMI Based Approach 

The solution of OSP problem as defined in Eq. (55) is given as:  
 

Eq. (68)  
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The branch and bound iterates for this case, are shown in Figure 37. 

 
 

Figure 37: Branch-and-Bound Iteration result with LMI relaxation 
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As mentioned earlier, the total time required to compute the OSP solution using LMI 
formulation depends on the algorithm used. Next, an evaluation of the LMI solvers is 
provided 
 
 

5.4.1 LMI solver evaluation 

The previous section shows the optimal solution for the 1-D gasifier refractory problem by 
using branch-and-bound with LMI relaxation. The iteration results are generated by using 
LMI solver mincx of LMI Lab. This is a commercial solver developed by Matlab©. This 
solver is quite efficient for a small/medium size optimization problem. For the medium to 
large size optimization problem as in OSP for 3-D gasifier refractory model and RSC 
model, alterative solvers are also evaluated. One of the widely used non-commercial 
solvers, SDPT3 was investigated for solving medium-large size LMI problems and 
compared with Matlab© LMI solver. 
 
All those solvers use the interior-point method, but with possible difference in barrier 
functions, direction determination mechanism, and options setting. LMI lab and SDPT3 
solvers yield the same overall result for the sensor placement problem. However, the 
numbers of the iteration that branch-and-bound takes are different.  Table 4 shows the 
comparison for these solvers. 
 
 

Table 4: LMI solver evaluation with reliability constraints 

 No Para Uncertainty Para Uncertainty 

size n = 153, m = 34 n = 465, m = 60 

Solver Iteration Time Iteration Time 

LMI Lab 47 181 63 2200 

SDPT3 111 1434 53 2324 

 
The above table shows the CPU time, or the total time, to solve the MIP problem by using 
branch-and-bound algorithm with LMI relaxation. The LMI lab out performs SDPT3 in 
terms of time when the size of the problem is small.  But, its performance deteriorates 
significantly as the number of states increases in the presence of parametric uncertainties. 
However, the SDPT3 solver is relatively slow for solving a small size problem, but the time 
does not grow significantly compare to that for LMI Lab.  
 
 

5.4.2 Discussion of LMI implementation 

As shown in this section, the standard branch-and-bound algorithm and LMI solvers are 
implemented to solve the optimal sensor placement problem in 1-D gasifier refractory 
model. The technique is easy to apply, and efficient for small to medium size problem. 
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While LMI and branch-and-bound technique is chosen for many advantages, the LMI 
technique has some practical limitations. One limitation is the size of the optimization 
problem. Even with SDPT3 the OSP problem using the full 3D gasifier model cannot be 
solved. However, for certain other applications having small to medium size OSP problem, 
LMI does provides competitive solutions. Further, the reliability constraint is not easy to 
formulate as an LMI. However, with the approximate formulation used here, a practical 
solution to the OSP problem can be obtained.  
 
 

5.5 Results of OA-INLP on 1D Gasifier Model 

The proposed OA for INLP was applied to solve the OSP problem using the 1D gasifier 
model in order to understand the algorithm applicability. To do so, 
Matlab© NLP solver fmincon was used for solving NLPR and FP-NLP sub-problems, while 
the GNU ILP solver  GLPK was utilized to solve the MOA  sub-problem.  The optimal 
solutions and the computation times are shown in Table 5. 
 

Table 5: Optimization Time using fmincon for the 1-D Gasifier Model 

Method Constraints Optimal location Total 

Optimization 

time (s) 

No. Iterations 

BB-NLP Precision          440 40 

OA-INLP Precision         215 16 

BB-NLP Precision and 
Estimation 
Reliability 

          O(1000)s 110 

 
 
 
From the table, it is obvious that the computational effort is of the order of few hundred 
seconds and increases drastically with the inclusion of the reliability constraint even for a 
small size model. Even though the OSP for condition monitoring is an offline problem there 
is still a need for obtaining optimal solutions in a timely manner.  
 
Based on the above analysis, it is clear that to compute OSP solutions in a timely manner 
modifications to the OA and BB framework are essential and are presented in the sequel. 

 

5.6 Modifications to BB and OA framework for Reliability constraint 

The main idea still is the iterative generation of lower and upper bounds for the functional 
reliability problems defined in (Eq. (8)) and (Eq. (9)) respectively. However instead of 
solving the associated relaxations, the following properties are exploited to generate the 
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lower bounds by solving a simpler convex INLP problem, namely the OSP problem with 
precision as the only constraint. 

 

1. Let         be the lower and upper bounds and the feasible space of the OSP 

problem with precision as the only constraint and   
    

     be the lower and upper 
bounds and the associated feasible space of the OSP problem with precision as 

well reliability (Functional or estimation). Then, the ordering      
            

  

holds true since       
 
Through this ordering the following modifications to the BB and the OA method is 
proposed. The lower bound computation is exactly the same which the solving a NLPR 
(BB) or ILP (M-OA) problem. The key modification is in the computation of an incumbent. 
Three possible cases can occur with the solution of the relaxed problem (lower bound 
calculation) at each iteration in the BB:  
 

 Case 1: The solution of the NLPR problem satisfies precision constraints alone. In 
this case the current node is added as a potential node to be explored for further 
search. 

 Case 2: The solution of the NLPR satisfies integer and precision constraints. This 
case is the one which requires modifications (described in the sequel). In the 
traditional method, an incumbent would be declared. However since the associated 

objective function, namely   , lower bounds the true incumbent   
 , the following 

modifications are made to the existing framework depending on the type of reliability 
considered. 

 Case 3: The solution of the NLPR satisfies integer, precision and reliability 

constraints. Update the incumbent   
  

 
Three similar cases occur in the OA methodology after solving the relaxed M-OA 
problem, which are: 

 

 Case 1: The solution of the M-OA problem satisfies INTEGER constraints alone. In 
this case, the feasibility restoration problem (FPNLP) problem described in Eq. (67) 
is solved and a supporting hyper-plane is added to contract the feasible space. This 
step is exactly the same as in the previously proposed method 
 

 Case 2: The solution of the M-OA satisfies integer and precision constraints. This 
case is the one which requires modifications (described in the sequel).  
 
 

 Case 3: The solution of the M-OA satisfies integer, precision and reliability 

constraints. Update the incumbent   
  

 
Before presenting the modifications to the proposed algorithm associated with Case 2, a 
discussion of the fundamental differences between functional and estimation reliability is 
required. For any given sensor configuration, the functional reliability can be made to 
satisfy by increasing the number of sensors. Hence any solution of the relaxed problem 
that solves both precision as well integer constraints can satisfy the functional reliability by 
computing the optimal (cost-effective) number of sensors required to achieve constraint 
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satisfaction. This would require solving another optimization problem to compute the 
number of sensors since the decision space of the OSP problem with precision constraint 
is a 0/1, but that of the functional reliability also includes the number of sensors.   
 
However the same does not hold true with the estimation reliability since both redundancy 
as well as observability of the monitored variable need to be improved with respect to a 
sensor configuration that satisfies precision constraint. This means that while adding 
sensor at location “I” may increase the sensor redundancy, it need not improve estimation 
reliability if monitored variable is poorly observable from that specific particular location. 
 
 

5.6.1 Modification to OSP Formulation for Handling Functional Reliability 
Constraints  

Given the NLPR   
    or the MOA   

    solution of the relaxed problem at kth iteration, 
 

1. Compute the optimal number of sensor   
  as the solution to the following 

optimization problem 

Eq. (69)  
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Where,   
    

     for BB and   
    

    for OA. 
 

2. Update the incumbent as   
     

       
  

 
Note that: 
 

 The reliability constraint in the above problem is convex with respect to the number 
of sensors (n) as opposed to q and n and can be solved using the proposed INLP 
solver. 

 It must be noted that the reliability constraint is a product of the reliability of the 
sensor(s) at individual locations. Hence in order to satisfy the functional reliability 
constraint for the network, the individual probability must satisfy the threshold, i.e, 

(        
   )

    ̅. This implies the minimum number of sensors required at each location 

can be computed a priori and is computed as  
 

Eq. (70)                       
    ̅         

 

The modifications for Case 2 with respect to estimation reliability are described next. 
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5.6.2 Modification to OSP Formulation for Handling Estimation Reliability 
Constraints 

 

In case of the branch and bound algorithm, given the NLPR solution   
    ,  

1. The current node is added to the list of bud nodes to the explored 
2. Branch with respect to the highest sensitivity sensor index at a current sensor 

configuration or index of the location with highest observability. 
3. Enumerate and repeat the steps in BB-schematic 

 

In case of the OA algorithm, at any given iteration k, if the MOA solution   
    satisfies 

integer and precision constraint but not the estimation reliability define an integer cut at 

  
    which is defined by the addition of the following constraint 

 

Eq. (71)  
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A very important observation is that it is possible to define a supporting hyper plane when 
a solution does not satisfy the precision constraint, while only an integer cut can be 
achieved when the estimation reliability is not met. This is so because for the former, the 
FPNLP which considers the precision constraint can be solved at each iteration to define 
the support, while solving a restoration for reliability implies solving the optimization 
problem with the reliability constraint and the associated issues described above. An 
integer cut being a point wise elimination is not effective as a cutting plane which 
eliminates a larger area of the infeasible space.  
 
 

5.6.2.1  Implementation Considerations 

 
While the proposed modifications to the BB and OA methodologies, considers simpler and 
convex relaxed problems it can be seen immediately that this approach yields less tight 
lower bounds, which may indicates slower convergence. A tighter lower bound for the 
functional reliability can be computed by solving the relaxed problem (NLPR or ILP) 
associated with the optimization problem defined below: 

Eq. (72)  
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Where           is defined in Eq. (70). 
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5.6.3 Results  

An offline optimization was performed to determine the optimal sensor location (   
               using BB and OA-INLP methods. The comparison of the optimal sensor 
location, cost and computational times for the functional reliability is shown in Table 6. 
 

Table 6: Functional reliability optimization results 

Reliability  Sensor 
location 

Number of 
Sensor 

Opt Cost No. Iterations 

Functional-BB 6,16 2,2 12571.43 49 (58s) 

Functional-BB-tighter 
lower bound (Eq 17) 

6,16 2,2 12571.43 35 (42s) 

Functional-OA 6,16 2,2 12571.43 110 (145s) 

Functional-OA-tighter 
lower bound (Eq 17) 

6,16 2,2 12571.43 34 (52s) 

 
 
It can be seen that by tightening the lower bound as proposed in Eq.17, the number of 
iterations along with the computational time is significantly reduced for both the BB and the 
OA based methodologies. The progress of the iterates, namely the bound generation, 
using the BB and the OA methods for functional reliability is shown in Figure 38 and  
Figure 39, respectively where the black x‟s are the lower bounds of the reduced feasible 
space while red x‟s are those without using the proposed modification. 
 
 

 

Figure 38: BB method functional reliability 
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Figure 39: OA method functional reliability 

 
The optimization results for estimation reliability are described in the rest of the section. 
Two different branching were considered in the BB implementation,  
 

 Branching with sensor index with the following ordering on observability  
[6 7 8 16 9 10 11 12 17 13 14 18 15 19 20] 

 Branching with respect to the element which has maximum sensitive to the 
precision constraint at a given sensor configuration. 
 

The OA method implements the integer cut and no strategy was implemented for obtaining 
a tighter lower bound for both the OA and the BB algorithms. The comparison of the 
optimal sensor location, cost and computational times for the functional reliability is shown 
in Table 7. 
 

Table 7: Estimation reliability optimization results 

Reliability  Sensor 
location 

Number of 
Sensor 

Opt Cost No. Iterations 

Estimation-BB (obsv) 6,7,16 1,1 ~9714 750 (~420s) 

Estimation-BB (sens) 6,7,16 1,1 ~9714 1350 (~800s) 

Estimation-OA 6,7, 6 1,1 ~9714 250 (250s) 

 
 
It can be seen that the OA method far outperforms the BB algorithm in terms of the 
computational efficiency while both of them have the same solution accuracy. This is 
because in the BB the enumeration is used for case 2, while in OA a point wise elimination 
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is done. The progress of the bounds for the BB is shown in  for the two branching 
strategies and that of OA is shown in , respectively. It can be seen that for OA-INLP, the 
convergence is achieved once an incumbent is obtained given that there is no associated 
primal problem due to the pure integer space. 
 

 

Figure 40: BB implementation of estimation reliability 

 
 

 

Figure 41: OA implementation for estimation reliability 
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Given that the underlying nature of the problem is combinatorial as well as nonlinear, a 
thorough analysis was done in order to identify the set of tools that would achieve solution 
accuracy in a computationally efficient manner.  For any successful implementation of the 
OSP there are few critical elements:  
 

 State-of-art NLP solvers:  The solvers for both NLP and ILP problems need to be 
efficient as well as robust. The state of the art solver for the efficient NLP 
implementation is the interior-point based Ipopt  (www.coin-or.org/Ipopt), while the 
GLPK (http://www.gnu.org/software/glpk/) is considered as the ILP solver 
 

 Analytical gradients:  While using state-of-art solvers is an important aspect, the 
solver efficiency increases when as much information can be provided about the 
underlying NLP problem. One of the most important information is the gradient as 
well as the Hessian computation. Even though they can be computed using finite 
differencing, analytical gradient computation greatly enhances the solver efficiency.   
 
 

5.6.4 Analytical Gradient Computation 

The optimization algorithms requires gradient of the cost function as well the constraints. 
While it is straight-forward to compute the cost gradient (linear in this case), the gradient of 
the precision and reliability involves computing the sensitivities of the state error 

covariance matrix (
    

  
). For instance the gradient of the precision constraint is given as, 

 

Eq. (73)  
  

  
  

     

  
|
  

   
  

 
Where    is the solution of the ARE given in Eq. (7)  It can be seen if the gradient 
computation is done through finite differencing, the ARE equation has to be solved N+1 
times which increases as the number of the sensor (N) as well as the underlying system 
dynamics (n) increased. In a previous work, an approach for computing the sensitivity 
equations for LQR design of control systems using continuous time ARE was presented 
(Borggaard 2004).  This approach was extended to compute the covariance sensitivity. 
While the described approach deals with continuous time ARE, the noise characteristics 
are easier to describe in terms of covariance matrices. Given that the system under 
consideration is discrete time, the discrete-time Lyapunov approach was developed. The 
following proposition computes the covariance sensitivities in an efficient manner thereby 
providing the analytical gradients. 
 
 
Proposition 
 
Let (A,C) denote the discrete time state space and (Q,R> 0) denote the process and 
measurement noise covariance matrices. If      is the solution of the discrete ARE 

http://www.coin-or.org/Ipopt
http://www.gnu.org/software/glpk/
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solution, then the sensitivity    
 

    

   
 can be computed as the solution of the following 

discrete-time Lyapunov equation 
 

Eq. (74)   ̂   
 ̂

 
    

  ̂     

 

Where,   ̂ and  ̂ can take any of the possible two values 
 

a.  ̂                 ̂         

    ,  

b.  ̂           ̂            
     ,  

 

Where,    [                        ]  ,                  ,    

   
    

   
    and 

   
 

  

   
   . 

 
This can be proved in two steps 
 

 If Q,R>0, then we have               and hence the inverse exists which 
implies Z>0. 
 

 Using the matrix identity which states that      
    

   
             

   , a and b 

above, can be obtained by differentiating the following equations respectively and 
rearranging terms. 

o       [                        ]   
 

o                               
 

Here, the sensitivity of the measurement noise, namely     

   and    
 can be readily 

computed since the matrix is defined as            (
  

  
 )        . It must be noted that 

such a computation is possible whenever the R(q) is defined as an explicit function of q. 
Comparison of the computational effort and the solution accuracy is presented in Table 8. 
 

Table 8: Comparison of Optimization Time Using Proposed Lyapunov Based Method and Finite 
Differencing 

Method Gradient 
Calculation 

Optimal 
Cost 

Optimal 

location 

Total Optimization 

time (s) 

No. 

Iterations 

BB Lyapunov 6428.5714 
  

        44 40 

BB Finite-
Differencing 

6428.5714 
  

        440 40 

OA-
INLP  

Lyapnuov 6428.5714         23 17 

OA-
INLP  

Finite-
Differencing 

6428.5714         215 17 
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It can be seen that computing covariance sensitivities using solutions of Lyapunov 
equations improve the algorithm speed by about an order of magnitude.  
 
 

5.7 Practical Considerations: Constraint Softening for OSP Problem 

The motivation for softening the constraints is provided by following example. Consider the 
refractory wear estimation using the 1-D simplified gasifier model for two different sensor 
networks are provided in Table 9. 
 

Table 9 : Refractory Wear Estimation for Two Sensor Networks 

Sensor set Refractory 
wear 

estimate 

Cost No. 

Iterations 

                         6428.6 40 

                       6285.7 40 

 
 
If the constraint was a hard constraint, then feasible space associated with the precision 

constraint is given as,                       
             . This would mean that the 

sensor set 2 which is cost-effective than sensor set 1, will not be selected since it is not a 
feasible point.  
 
In many practical applications there will always be a tradeoff between cost and the 
constraints thereby motivating the need to include the constraint softening as a user 
option. The constraint softening essentially relaxes the feasible space by allowing 
constraint violation through the problem formulation itself using a slack variable. In order to 
minimize the violation this slack variable is included to the objective function and the 
formulation for the soft constrain is given as, 
 

Eq. (75)  

   
    

         

           ̅         
             ̅  

                              

 

Where,        is the penalty for constraint violation and         is the slack variables.  
The OSP with constraint softening is an MINLP problem as compared to the original INLP 
problem and includes both real as well as integer variables and hence an extended 
decision space.  It should be noted that for solving the MINLP problem a C++ based 
implementation for the BB and OA, namely Bonmin is available. However, the tool-set 
developed for the OSP program is Matlab based. Hence the machinery was extended to 
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include traditional Outer approximation for MINLP problem which is based on the Primal-
Master sub-problem (Bonami 2009).  
 
Using the Matlab-based solver which comprises of Ipopt  (Matlab Interface) and the GLPK 
as the solvers for NLP and ILP, the machinery was tested by softening the precision 
constraint for the 1-D refractory wear monitoring problem given as: 
 

Eq. (76)  

   
    

         

                       
                

 

 

 The above MINLP problem for constraint softening was solved using both BB and OA 
approaches for different penalty values and the results are shown in Table 10. Two 
observations can be made: 
 

 As the slack penalty is increased the constraint violation is reduced which implies 
that if the penalty value is very high the constraint violation will be zero. The optimal 
sensor location for a penalty greater than 3.5e4 is the same as the optimal solution 
with the hard constraint formulation (Eq. (11)). In order to meet the precision 
requirements more closely, given the increased penalty, more sensors are required 
and hence the total cost increases. The same trend is observed with the 
optimization times also due to the fact that an increased penalty tightens the 
feasible space.  
 

 For applications where constraint violations are not allowed, treating the problem as 
an INLP problem and using the associated set of tools (BB-INLP, OA_INLP) is more 
computationally efficient when compared to solving the MINLP problem with a larger 
penalty as seen in the last row of Table 10. 
 

Many factors affect the performance of the OSP algorithms even after the proposed 
improvements to the computationally efficiency. The plant size affects the memory 
requirements; the measurement system affects the decision space and the reliability 
constraint handling. As mentioned earlier, the estimation reliability (Eq. (10) ) is 
computationally prohibitive even for small systems as shown in the 1D gasifier model case 
study, due to the evaluation of multiple sensor failure configurations. In order to develop a 
generic tool-suite that is applicable to solve the OSP problem for small/medium or large 
scale systems, the two constraints that were considered was the precision and the 
functional reliability.  
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Table 10 : Comparison of Optimal Solutions/Time vs Slack With Precision Constraint Softening 

Penalty 

(   

Method / Optimal 

Solution (q) 

Slack 

(Sl) 

Slack 
Cost 

(      

Sensor cost 

(     

 Total 

cost 

Time(s)  

1e4           0.2358 2358 1142.9  3501.2476 12s  

          0.2358 2358 1142.9  3501.2476 47  

1.5e4          0.2358 3537.6 
 

1142.9  4680.42 22  

          0.2358 3537.6 
 

1142.9  4680.42 145  

2e4          0.09 1799.5 3571.4  5370.9 34  

         0.09 1799.5 3571.4  5370.9 143  

>3.5e4     [    ]    0 0 6428  6428 56  

      [    ]    0 0 6428  6428 162  

Hard 
constraint 
(N/A) 

         [    ]    [] [] 6428  6428 23  

     [    ]    [] [] 6428  6428 44  

 
 
 
A Matlab based INLP framework was proposed and the associated machinery was 
developed using the state-of-art solvers, which comprises of BB-INLP and OA-INLP. With 
the multitude of the optimization algorithms for solving INLP problem it was decided that 
instead of one algorithm, a suite of OSP design tool should be developed combining 
multiple algorithms for solving an OSP optimization problem based on size and 
requirement of the problem in hand. A description about the features of the framework 
along with summary of its applicability is shown in the Table 11. A brief summary about the 
modular OSP tool is presented in Appendix A.2. 
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Table 11: Summary of the Tool-suite for Solving OSP Problems 

 

Tool Features Applicability 

Two 
Algorithms 

 

BB:  
1. LMI 
2. Ipopt 

Better option when the feasible space is included 
in the decision space (Eg. Estimation reliability) 
 
 LMI is a better solver for small scale systems. 
Ipopt works for large scale systems as well 

 OA: 
1. Integer cut 
2. Feasibility 

pump 

Better than BB when the feasible space 
approximations through hyper planes are included 
(Precision and functional reliability) 

Three 
indicators 
 

Precision 
 

 Precision constraint is convex, and 
evaluated for small, medium and large 
scale systems 

 Analytical and efficient  computation of 
Jacobians  

Functional Reliability 
 

Functional reliability for medium and large scale 
systems (RSC and 3D) 

Indicator 
Enforcement 

1. Soft constraint 
2. Hard constraint 

The two options are there to provide a way to 
factor the cost vs constraint trade-off. 

 
 
 
 
In the next section the modular tool was tested on solving the OSP problems for the 
refractory wear monitoring using the full order 3D model as well as the fouling monitoring 
of the RSC model. The relevant modeling assumptions along with the algorithm 
performance are discussed below. 
 
 

6 Task 4: Demonstration of OSP Algorithm Performance 

In this task, the developed OSP algorithm in Task3 was applied to find solution to two 
optimal sensor placement problems – a) OSP problem for condition monitoring of full-
fledged 3-D gasifier refractory wear and b) OSP problem for condition monitoring of RSC 
fouling. The solution (sensor location) thus obtained for each of these problems was used 
in a model based sensing framework to verify if with these sensor set the variable of 
interest (refractory wear in case of the gasifier and fouling profile in case of the RSC) could 
be estimated correctly with the design accuracy. 
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6.1 Solution to OSP problem for condition monitoring of gasifier refractory 
wear and RSC fouling 

The problem size of gasifier refractory wear OSP problem poses significant challenges due 
to the target platform namely windows Matlab©, limitation. The estimation algorithm used 
within the OSP algorithm cannot handle models having more than couple thousand states. 
The 3-D gasifier model that represents the actual gasifier closely has more than 9000 
states and 3000 possible sensor locations. Hence a reduced size gasifier model was 
identified. 
 
 

6.1.1 Reduced Size Gasifier Model for the OSP Algorithms 

In this section a methodology to represent the larger size gasifier model by an “equivalent” 
smaller size model for OSP purpose is proposed. This methodology exploits the axial 
symmetry and the special nature of thermal model that represents the gasifier dynamics. 
Similar techniques can be applied to other models having similar characteristics. 
 
Consider the gasifier model response to a non-uniform wear profile shown in Figure 15 

(Section 4), where a few nodes at mid axial location     and around     have a 
localized wear profile up to ~35% of the inner-most brick layer thickness, while the rest of 
the bricks have zero wear. The thermal response of a gasifier due to refractory wear 
exhibits two characteristics:  
 

a) Dominant temperature difference within the gasifier close to the wear location (axial 
and azimuth). The temperature quickly goes to no-wear value away from this 
location. 

b) The thermal response does not depend on the azimuthal location of the wear. 
 
 

 

Figure 42: Hot surface of the 3-D refractory model 

 
Due to above two characteristics, it is possible to utilize only part of the gasifier model for 
the OSP problem and repeat the solution thus obtained to find optimal sensor set for the 
complete gasifier OSP problem. The large number of the states in complete 3-D gasifier 
model arises from the fine grid required to adequately represent the thermal gradient 
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across the refractory. Consider a 3-dimensional refractory block, 2 dimensional hot 
surfaces of which is denoted by abcd in Figure 42. The block is l-grid long in the axial 
direction and m-grid wide in azimuth direction. The block is a part of the complete 
refractory, 2 dimension hot surfaces of which is denoted by ABCD.  The radial dimension 
the block is same as the original 3-D gasifier model.  
 
The idea is to explore the possibility of representing the complete refractory ABCD by a 
much smaller block abcd for the OSP algorithm purpose. Recall that it is the estimator 
algorithm within the OSP algorithms that is limited by the memory requirement of the target 
implementation machine. Consider the gasifier model representation within the estimator 
as in Eq. (3). The term wk in Eq. (3) represents the process noise and is used to account 
for un-modeled system dynamics. It is possible to use this term to model the “left out” part 
of the gasifier ABCD while considering the smaller block abcd to model the system 
dynamics in the estimator. For example, the contribution to the state derivatives as in Eq. 
(3)  from the states not included within the block could be accounted as unmodeled 
dynamics and can be clubbed with noise term wk for the boundary nodes of the block. This 
will increase the covariance of the noise for the boundary nodes of the block as shown in 
Figure 43.  
 

 

Figure 43: The refractory wear outside the block affects the state derivatives with in the block. That 
effect can be captured through the process noise model of the block boundary nodes. 

 
The magnitude of this additional noise can be obtained through extensive simulation 
studies. As an example, consider that the block abcd is of size 7x7x15, and the block 
ABCD is of size 20x30x15. In other words the block abcd has 735 nodes (or states) 
whereas the complete gasifier block ABCD has 9000 nodes. The maximum wear possible 
is, say, 4 inches. Now extensive simulation study can be performed where the refractory is 
given various amount of uniform wear between zero and 4 inches everywhere expect in 
the smaller block abcd. This represents the worst case scenario for the thermal response 
in the border grids of abcd due to sections of the refractory that are ignored in the OSP 

algorithm. The maximum of all the temperature gradients (i.e., maximum of 
  

  
 , in  Eq. 

(56)) in boundary grid of abcd due to various wear magnitude are recorded as shown in 
Figure 44. This maximum magnitude of temperature gradients, then, is used to compute 

the 3 value of the noise term wk over and above nominal noise term in Eq. (4). In the 
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figure the nodes are ordered axially (i.e., first fixed radial and azimuth direction and move 
axially) before moving azimuthally and then finally radially.  From the figure it can observed 
that the maximum modeling error occur at the corner nodes of the blocks as expected 
because the corner nodes temperature gets affected from both axial as well as azimuthal 
thermal flow (apart from radial flow of thermal energy), whereas all other boundary nodes 
only get affected either by the axial or by the azimuthal flow of thermal energy (again, apart 
from the radial flow of energy) as the case may be. 
 

 

Figure 44: Maximum temperature derivatives for each boundary nodes of the smaller block abcd, 
for various wear scenarios within complete gasifier ABCD, are recorded in simulation. The 

magnitude of the process noise (3) for the boundary nodes are increased by the noise magnitude 
thus obtained.  

 
As mentioned earlier, it is the estimation algorithm that restricts the size of the model that 
can be used on a given target operating system. To verify that the assumption of using a 
small size block here for applying the OSP algorithm and then replicating the solution to 
find the solution of the OSP problem of the full-fledged 3D  gasifier is valid a simple 
experiment was conducted. The precision values for the wear were obtained by solving the 
Algebraic Riccati equation (Eq. (7)) for the full 3D model as well as that of a small 5x5x15 
wedge block carved out from the full model using the same noise covariance matrices R & 
Q. The histogram of the precision thus obtained in shown in Figure 45. The figure shows 
that both the histograms are statistically quite similar. 
 
Using the techniques outlined in this section earlier, the model size is reduced for the OSP 
purpose. One of the design decision required to be made for the OSP problem related to 
gasifier refractory, is the size of the smaller block abcd. From the estimation point of view it 
could be argued that the small size problem as obtained earlier is “equivalent” to the 
original larger size problem (though, this is difficult to prove rigorously). However, from the 
OSP solution point of view it is easy to show that both are not equivalent. To understand 
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this, consider the limiting case of size one for the smaller block. Due to the absence of any 
analytical redundancy, in order to do any condition monitoring the OSP algorithm will have 
only trivial solution of placing sensor on each block in order to meet any non-zero precision 
requirement. However, for a larger block it is possible to construct scenario where the OSP 
algorithm can take advantage of the analytical redundancy available in the model and thus 
reducing the total number of sensor required to meet the same condition monitoring 
requirements. Intuitively, the size of the smaller block abcd should be as large (i.e., close 
to the complete model ABCD) as possible within the constraints of memory requirement for 
the estimation algorithm. In other words the upper limit on the size of the smaller model 
abcd is dictated by the memory requirement. The lower size limit of the model, however, 
gets restricted by the added process noise for boundary nodes. This is because; the higher 
process noise reduces the bandwidth of the estimation filter thus making its convergence 
very slow.  For condition monitoring with respect to gasifier refractory wear, the OSP 
algorithm uses solution to steady state Riccati equation to compute quantities relevant to 
precision constraints. It is implicitly assumed that the steady state of the estimation filter is 
reached within a reasonable time (3 months).  Once the solution to the OSP problem 
involving the smaller block abcd is obtained, the solution to the original gasifier OSP 
problem can be obtained due to azimuthal symmetry of the gasifier model and the gasifier 
operation. 
 

 

Figure 45: Comparing precision of the wear estimates obtained from a small wedge block of the 
gasifier to that obatined from the full gasifier 

 
In order to obtain the solution to the gasifier OSP problem following heuristic is proposed: 
 

 First identify an “equivalent” smaller size model. 
 

 Solve the OSP problem for this small size model by imposing the condition 
monitoring requirement constraints only at nodes away from the boundary as shown 
in Figure 46. This means the sensors would be placed wherever they are required 
within the smaller block but the requirement of precision and reliability would be 



 92 

imposed on the double shaded block as shown in Figure 46. This is done to 
minimize the effect of artificial boundary created by the smaller block. 
 
 

 

Figure 46: Solve the OSP problem for the block considered by imposing CM requirement 
constraints only on part of it. 

 

 Extend the sensor placement solution to the entire gasifier by repeating the optimal 
sensor placement solution obtained for the smaller block and shifting the block so 
that the region where CM constraints were imposed are just overlapping and taking 
the union of sensor placement as show Figure 47. 
 

 

 

Figure 47: Extend the OSP solution obtained using smaller block to obtain OSP solution for 
complete refractory gasifier by repeating the solution. 

 
 

6.1.2  Optimal Sensor Placement Results for Reduced Order 3D Model 

Using the above mentioned heuristic, for the purpose of the OSP algorithm, the 3D gasifier 
layer is represented by a reduced wedge that comprises of a 5 x 5 x 15 block (Figure 42), 

where there are 5 grids in z and   directions and 15 in the radial direction leading to 375 
temperature states. The temperature measurements are available only at the interfaces 
thereby leading to a 125 possible measurements. Since the interface layers at 3 and 4 are 
very close to each other only the measurements at interface 4 is considered leading to a 
total of 100 possible sensing locations. The linearized system corresponding to the 
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reduced or 3D model represented by the wedge is obtained by truncating the linearized 
model for the full 3-D gasifier and is given by, 
 

Eq. (77)  
                     

                    
 

 

Where,                      and N=100. The standard deviation used in the 
computation of the measurement noise covariance matrix is assumed to be 1% of nominal 
measurement which is based off the sensor characteristics. The process noise 
characteristics for the temperature states is a small percentage of the initial state and that 

of the ramp state is assumed to be a   variation from the nominal wear rate, which is 
computed as the maximum wear over a period of normal maintenance cycle. The solution 
to the OSP problem for condition monitoring of the 3D gasifier refractory wear is obtained 
by solving the optimization problem Eq. (11), where the constraint imposed are the 
precision constraint ( Eq. (6)) and the reliability constraint (Eq. (9)). Due to size of the 
problem, the estimation reliability is prohibitively expensive to compute, where a single 
computation of the estimation reliability metric would require the precision evaluations 

    times. For the same reason the notion of functional reliability is considered even for 
the computing the OSP solutions of the reduced order 3D wedge model, 
 
The OSP problem for the wear monitoring using the 3D wedge model is an integer 
nonlinear programming problem (INLP) with a total of N= 100 integer decision variables 

with       nonlinear constraints.  The large dimensional search space due to the 
increased number of possible sensor locations, combined with the enumerative nature of 
the BB algorithm makes the BB method inapplicable to the 3D OSP problem, making the 
outer approximation only viable alternative.  
 
To compute the OSP solutions, a hypothetical sensor cost similar to the 1D model is 
considered, where the cost of placing sensors at a given layer is the same and the cost 
increases as the layers are radially inward closer to the wear surface as shown below.  
The sensor reliability is maximum at the outer-shell and is minimum in innermost interface 
given the harsher operating conditions and is shown in Figure 49. The requirement on the 
estimation precision using the 3D gasifier model is considered to be around 4% of the brick 
thickness and the reliability is considered to be 90%.  
 
One of the features of the OSP tool developed is that it enables using a-priori knowledge 
of infeasible sensor locations which can reduce the search space thereby improving the 
computational speed. This feature is exploited in getting the solutions to the OSP problem , 
given the large-scale dimensions of the OSP problem, even when utilizing the 3D wedge 
approximation.  
 
The OSP algorithm was run with an initial guess of placing the sensors at all locations and 
the optimal sensors placement solutions from the algorithm would be to place sensors at 
all locations at node 16  as shown in the following figure.  While a single sensor would 
meet the estimation precision, meeting the reliability constraints would require computing 
the minimum number of sensors requried to increase the survival rates of each sensor. 
The reliability analysis using the 1D model was extended to the reduced order 3D model. It 
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was computed that placing 3 sensors at all the locations in the first interface (node 16) with 
the exception of the indices 6,22 and 25 which required 4 sensors  will meet both reliability 
and precision requirements. The schematic representation of the OSP solutions on the 3D 
model is given in Figure 50, where the green indicates that a sensor is placed at the 
indicated location and gray indicates the absence of a sensor at the specified location. 
 

 

Figure 48: Hypothetical Sensor Cost 

 

Figure 49: Sensor Reliability 
 
The OA algorithm converged in one iteration within 2950 sec for the 3D model with 100 
binary variables and the the progress of the OA iterates, namely the generation of the 
upper and lower bounds are shown in . Figure 51 
 
   

 
Figure 50:  OSP Results for                    

 
 

Interface 1, Node 16 

Interface 3, Node 18 

Interface 2, Node 17 

Outer Shell 
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Figure 51: OA bound generation 

 
A comparison of the sensor locations as well as the estimation precision of the initial guess 
as well as the optimal solutions for the 3D model is shown in Figure 52. 
 

 

Figure 52: Wear Estimate Precision of the innermost surface 

 
It can be seen that the estimation precision of the optimal sensor network is slightly larger 
than that of the placing sensors at all locations but at a much reduced cost and satisfies 
the precision constrain on all the 25 grids on the inner wear surface.  
 
A first glance at the OSP results poses an important question as to why would it be 
sufficient to place sensors only in the first layer. The following observation are useful in 
explaining the optimality of the OSP solution.  



 96 

 
1. The most important observation is the radial dominance exhibited by the 3D gasifier 

model, where the temperature states in any given grid are effected by the states in 

the radial direction as opposed to those in the azimuth (z)  or   directions.  The 
radial dominance necessitates a sensor placement directly behind the wear surface. 

2. Even though the strategy is to place the sensor radially behind, how much farther 
behind will be decided on the estiamtion accuracy desired. For example since the 
desired accuracy is 4/10”, there placement of sensors at node 16 was the option. 

 

6.1.2.1  Analysis and Remarks 

In order to validate the above observations, two results are presented.  First a comparison 
of the estimation accuracies of the OSP solution with different possible sensor networks is 
presented in order to highlight observation 1 and 2.  
Then a comparison of the networks in terms of cost is presented in order to highlight the 
optimality of the OSP solution. The different networks considered are as follows: 

 Initial Guess which is to place the sensors at all 100 locations in interface 1,2,3 and 
5 spread across nodes 16, 17, 18 and 20. 

 The OSP solution which is to place the sensors in interface 1 alone. 

 The sensor network which comprises of placing sensors only in the interface 2. 

 Case1 which is place 24 sensors on interface 1 and one sensor in interface 2Case2 
which is to move 2 sensors from interface 1 to interface 2. 

The sensor network corresponding to the OSP solution is shown in Figure 50 and the 
networks corresponding to the cases 1 and 2 are shown in Figure 53 and Figure 54. 
 

 
Figure 53:  Sensor network for case 1 

 
Figure 54:  Sensor network for case 2. 

 
It can be seen from Figure 55 that placing all the sensors in interface 2 yields a minimum 
and maximum estimation accuracy of 6.7% and 10% of brick thickness respectively. This 
means that it would not be possible to achieve 4/10” requirement on a given wear surface 
if the sensor behind that surface is placed in the second interface. It can be seen that the 
precision constraint is violated in sensor networks corresponding to cases 1 and 2, where 
1 or 2 sensors are moved from the 1st interface to the 2nd. The constraints are violated in 
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the surface 10 or 11 (case 1 or 2),   where the sensor location has been moved from 
interface 1 to 2 illustrating the radial dominance on the minimum achievable precision 
(Observation 2). 

 

Figure 55: Comparison of the OSP solution with cases 1 - 5 

 
The comparison of cost and estimation precision is shown in Figure 56 for the different 
sensor networks.  It can be seen that the low-cost option while meeting the precision 
requirement is the OSP solution thereby illustrating the optimality of the solution. For 
the specific application, constraint softening was not applicable given that the 
estimation accuracies were quite different at different interfaces, where the interface 2 
could meet a threshold of 10% as compared to the  desired accuracy of 4.5% of the 
brick thickness.  
 

 

    Figure 56: Cost, precision comparison of OSP solution. 
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6.1.3 OSP Solution to the Detailed 3D Gasifier Model 

The sensor placement for the entire refractory layer will be computed by repeating the 
OSP solutions for the block considered above due to the symmetry of the underlying 
model.  The most important observation from the above analysis is the radial dominance in 
estimating the wear, where the optimal solution is to place the sensor radially and the 
location depends on the estimation requirements. Because of the dominance and the 
symmetry of the 3D model, the OSP solution for the full order model can be obtained by 
repeating the solution of the 5x5x15 wedge all along the theta and z direction.  In the rest 
of the discussion, the exact solution is presented. 
 
The 3D model consists of 30 grids in the theta direction and 20 grids in the z direction 
leading to a total of 600 grids for each of the 15 layers. For the rest of the discussion a top-
down and left-right numbering is adopted and the following nomenclature is used for the 
sensor placement. The grids in interface 1 (node 16) are numbered from 1 to 600 and the 
corresponding optimization variables are denoted by [        ]       , where a value of 1 
indicates the presence of a sensor at the location and 0 otherwise. Similarly the grids in 
interfaces 2 through 5 (node 17-20) are numbered from 601 to 3000 and the 
corresponding optimization variables are denoted by [            ]       . Let       
            denote the number of sensors at each measurement location. Let   denote the 
following index sets: 

   [                                                             

                                                                             
                                                                                

                                                            ]  
Then the OSP solution for the 3D model, whose schematic is shown in  

Figure 57, is given as follows: 

o    {
             

                
 ,  

o    {
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Figure 57: Node 16 (Interface 1) sensor placement  
 

 

 

6.2 Optimal Sensor Placement for Condition Monitoring of RSC Fouling 

Recall that the fouling profile of the RSC heat transfer tubes were parameterized by using 
six independent fouling parameters that can vary between zero and one; zero signifying no 
fouling whereas one signifies fully fouled RSC zone. For monitoring the condition of the 
RSC heating tube, the sensors are needed to be placed so that these six fouling 
parameters can accurately be identified. The fouling parameters are modeled as a first-
order Markov process. The IGCC-RSC model has a total 207 states from gasifier-slag 
model, RSC, Drum, Quench, and Scrubber, which makes the OSP problem a medium-
large optimization problem. In the previous program (DE-FC26-07NT43094), certain 
sensors (36 to be precise) were identified that were needed for the control purpose, such 
as the syngas temperature and pressure measurements form RSC to Quench, steam flow 
from Drum, water flow from Scrubber etc.  For optimal sensor placement problem, it was 
assumed that this sensor set (36 sensors) that are normally present in an IGCC plant for 
monitoring and controlling the process will remain available for condition monitoring for 
RSC tube fouling. Hence, the OSP problem for monitoring RSC fouling seeks the best 
(lowest cost) additional sensors that can satisfy the precision and reliability constraints. 
These additional sensors include heat flux sensor and the strain gauge sensor (referred to 
as ebolt sensor in this report) on the mechanical support structure. Since there are six 
fouling parameters that needed to be identified, the additional sensors that may be needed 
for condition monitoring of RSC fouling would be a most six heat flux sensors. As 
mentioned earlier, the ebolt sensor also has significant signature of the cumulative fouling 
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and is cheaper compare to a heat flux sensor the OSP problem here involves finding the 

lowest cost sensor set,     ,that can satisfy the precision and reliability constraints. 
 

 

Figure 58: Heat flux sensor location vs. sensor cost 

 
In the RSC model, there are 30 possible locations for the heat flux sensors. The heat flux 
sensor cost as a function of location is shown in Figure 58.  
The cost to install heat flux sensors is assumed to be relatively expensive than other 
sensors, for example, the strain sensor. Also, the reliability of heat flux sensors along the 
tube is assumed to vary from each other based on their location. As the syngas gets cooler 
due to heat transfer inside the RSC tube, the temperature on the top of the RSC is 
expected to be higher than the bottom. Accordingly, the sensors placed on the top are less 
reliable than the ones placed on the bottom. The sensors are assumed to have sensor 

cost       as shown in Figure 58 and corresponding individual sensor failure rates   
   (Figure 59).  
 
In Figure 58 and Figure 59, the x axis shows the node index, indicating 30 heat flux 
location along the length of RSC tube, with Index 1 being the sensor on the top and Index 
30 being the on the bottom. The y axis in Figure 58 shows corresponding sensor cost. The 
color bar shows the region of zones, for instance the green bar covers the node index from 
1 to 3, which implies that zone 1 has three locations for heat flux sensors, etc. As 
explained previously, we select one sensor in each zone to be the potential location to put 
sensor, which is plotted as red dot, whereas the blue ones are the locations that won‟t be 

considered for sensor locations. The cost of the strain sensor is defined as      with 
index “7”. It must be noted that while the absolute values for the cost is not of any 
significance here  
 
It is assumed that the survivability of the sensors on the top of the RSC is lower than the 
ones on the bottom, due to the higher temperature and presence of more corrosive 
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environment at the top-middle section. For the same reason, the cost of heat flux sensors 
are assumed to decrease along the length of RSC from top to bottom.  

  
Figure 59: Heat Flux sensor reliability vs. sensor location 

 
 
The y axis of Figure 59 shows the reliability of sensor at each location. The strain sensor is 

relatively more reliable than heat flux sensor, and it is defined as        .   
 
The constraints imposed on the sensor network are defined as follows: 
 

1.  Estimation precision : For an fully fouled RSC tube      is given by: 
 

Eq. (78)  
         

   
  

   
       

 
 

Where        is defined as the thickness of the fully-fouled RSC. 
The OSP problem for condition monitoring of RSC fouling can be categorized as a 
medium-large scale problem with more than one hundred states for RSC model. The 
branch and bound based approach was used to solve this problem. 
 
 
2. Functional reliability:  

Eq. (79)  
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In the above expression, N denotes the total number of sensor locations     denotes the 
number of sensors at each location        , and   

  is the intrinsic reliability of each 

sensor   used to monitor process I; and   
  denotes the overall reliability of the sensor 

network  for estimating or monitoring the    process variable as defined in  
 
To solve the OSP problem with the precision constraint and reliability constraint, a two-
step approach is followed in the framework of branch-and-bound algorithm. First the NLP 
problem is solve with only the precision requirement imposed. This solution gives lower 
bound in the branch-and-bound algorithm to obtain the integer solution. Such an integer 
solution is augmented at the leaf node of branch-and-bound algorithm, as in Eq. (56) with 
implementing adequate redundancy in sensor location to allow meeting the desired 
precision in the presence of expected sensor failure probabilities. 
 
With only the precision requirement, the following optimal sensor configuration result is 
obtained.  
 

Table 12: OSP solution using NLP-BB for RSC fouling problem 

Location Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 bolt 

Rel. Cost 1.9967 1.8667 1.7667 1.6667 1.6 1.3667 1 

solution        

 

Eq. (80)  

   
  

                  

∑             

                  

Since the cost of sensors located at bottom is less expensive than the ones on the top and 
the strain sensor has the least expensive cost, the minimum cost is obtained by selecting 
two heat flux sensors at Zone No.4 and Zone No.6, together with one strain sensor so that 
the precision requirement is satisfied with minimum cost. This result is expected from the 
equal cost test in previous section, which is the confirmation from the OSP algorithm.  
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Figure 60: Branch-and-Bound Iteration result with NLP relaxation: precision only 

 
The Figure 60 shows the iteration result by using the Branch-and-Bound and NLP 
relaxation.  
 
 
If both, precision and reliability requirements are imposed then the following optimal sensor 
configuration result is obtained.  
 

Table 13: Complete solution to OSP problem using NLP-BB for RSC fouling problem 

Location Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 bolt 

Rel. Cost 1.9967 1.8667 1.7667 1.6667 1.6 1.3667 1 

Reliability 0.805 0.82 0.835 0.85 0.86 0.895 0.95 

Solution        

Number    2  1 2 

 

Eq. (81)  

   
      

                  
        

∑            

                                   

 
The result states that it requires two heat flux sensors at Zone No. 4, one heat flux sensor 
at Zone No.6 and two strain sensors at bolt to satisfy the precision and reliability 
requirement.  
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Figure 61: Branch-and-Bound Iteration result with NLP relaxation: unequal cost, precision and 
reliability  

 
The Figure 61 shows the iteration result by using the Branch-and-Bound and NLP 
relaxation for unequal cost with precision and reliability requirement. 
 
 

6.3 Assessing the performance of the OSP algorithm 

The application of model based state estimation, which combines information from an 
analytical process model with direct actuator and sensor measurements forms the basis 
for model based sensing tool used here to validate the OSP solutions. This section 
summarizes the general structure of this model based tool used. Using models for 
corresponding processes the model based sensing framework can be customized for that 
particular application. Due to matrix size limitation posed by the operating system running 
the Matlab\Simulink©, the validation tool for OSP algorithm solution for gasifier refractory 
wear (recall that gasifier model has more than 9000 states) is slightly different than that of 
the RSC fouling profile. They both are based on extended Kalman filter formulation; 
however they differ slightly in the way they are implemented. The code for the gasifier is 
implemented in Matlab© whereas the one for the RSC fouling is implemented in 
Matlab\Simulink©.  
 
A typical model based sensing system also known as virtual sensing, is shown Figure 11. 
In virtual sensing, the measurement (actual) from the plant is compared with response 
(estimated) of the dynamic model of the plant to the same input as the actual plant. 
Kalman filter uses this difference between the actual and the estimated response of the 
plant along with the plant model to estimate parameters like refractory wear or RSC fouling 
profile. The extended Kalman filter formulation is similar to that of Section 4.1.2.  This 
estimator for the gasifier refractory wear is implemented to run in the Matlab© environment 
uses a detailed nonlinear model of refractory heat transfer coupled with distributed 
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temperature sensor measurements as described in Section 4.3 to estimate the depth of 
the wear at each defined grid point (node) in the refractory liner. In addition to 
demonstrating via simulation that the liner wear can be accurately estimated using the full 
radial temperature sensor set  at each node, the estimator will basically be used to verify 
the near identical performance accuracy achieved using the reduced sensor set identified 
by the Optimal Sensor Placement study. 
 
This estimator for the RSC fouling is implemented to run in the Matlab\Simulink© 
environment uses a linear model derived from the detailed nonlinear physics based model 
of the gasification section model of an IGCC plant consisting of gasifier, RSC, quench, 
drum boiler and scrubber very similar to the one used in the previous program (DE-FC26-
07NT43094) with having additional heat flux and bolt strain measurement sensors as 
described in Section 4.4.  In addition to demonstrating via simulation that the RSC fouling 
profile can be accurately estimated using the additional heat sensors, the estimator will 
basically be used to verify the near identical performance accuracy achieved using the 
reduced sensor set identified by the Optimal Sensor Placement study. 

 
 

6.3.1 Assessing solution to OSP problem for CM of gasifier refectory wear 

In order to assess solution to OSP problem for condition monitoring of refractory wear a 
Monte Carlo simulation was conducted where randomly generated wear ramps were used 
to simulate multiple cases of worn out refractory within  the innermost surface of the 
gasifier. For one such case the randomly distributed wear is shown in Figure 62. The 
maximum wear is clamped at 4 inch. It should be noted that the wear distribution 
generated here is completely uncorrelated in the sense that the grids next to each other 
might have completely different wear; one might have maximum wear of 4 inch whereas 
the next one might be close to zero inch (e.g., wear grids corresponding to azimuth 
location 4 and 5 at axial location 16) . In reality this is a highly unlikely scenario. Normally 
the nearby locations will have similar wear. Nonetheless the wear distribution used here is 
very challenging for a model based sensor.   
 

 

Figure 62: Randomly distributed refractory wear 
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Figure 63: Refractory wear profile 

 
The wear grows from zero level to corresponding maximum level in 120 hours as shown in 
Figure 63. The assumed wear ramp rate is certainly very large and unrealistic but the 
computing time needed to run the estimator for longer period imposed a practical 
constraint for carrying out this work. Hence a faster ramp rate was chosen. Nonetheless 
the fast ramp rate does not adversely affect the ability to assess the OSP solution.  
 
 

 

Figure 64: Wear estimate through model based sensing 
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The temperature responses within the gasifier refractory were generated with these 
randomly generated wear profile keeping all other input constant. The assumption here is 
that the time scale in which the input change occurs are too small compare to the time 
scale related to wear propagation (hours in the simulation). The hardware sensors 
included in Model based sensing approach were obtained using the solution to OSP 
problem for the gasifier refractory wear monitoring. Total 40 such randomly generated 
wear profiles were used for simulation validation study.  Figure 64 shows the wear 
estimate through model based sensing for one typical case out of this 40 random cases. 
To avoid cluttering only eight wear grid points are shown in the figure. From the figure it 
can be seen that the model based sensor is able to correctly estimate the wear profile for 
all the wear grid location. The model based sensor requires some initial time based on 
sensor tuning but soon latches on to the actual wear profile. Similar responses were 
observed in all other cases.  
 
In the simulation environment since the actual wear profiles are available, the estimation 
error statistics can be computed directly. Figure 65 shows the distribution of mean error 
between the actual wear and the estimated wear obtained through the model based 
sensing. From the figure it is clear that the mean error is normally distributed with around 
mean zero and standard deviation much smaller than that of the design precision value as 
expected. This is so, because the optimizer ensures that the precision constraint is 
satisfied. Recall that the precision is output error variance which is a stochastic measure. 
 

 

Figure 65: Distribution of the mean wear estimation error 
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Figure 66: Precision constraint obtained from simulation based on 24600 wear estimates 
 
Further, the individual variance of each estimated wears as obtained from model based 
sensing approach for all 40 cases was compared with the design value of the precision 
constraints. Figure 66 shows the comparison of the ensemble standard deviation with that 
of the precision constraint used in the OSP solution. It can be seen from the figure, that the 
precision as obtained from the ensemble standard deviation is less than the design 
precision constraints. Further, Only 7 out of 24600 wear estimates had variance slightly 
more than the design precision of 0.4 inch. This implies that the probability of having a less 
accurate estimate than what the sensor system was designed for; using the solution of the 
OSP algorithm is less that 0.03%. Based on simulation it can be concluded that using the 
solution to the OSP algorithm for the gasifier refractory wear the model based sensor can 
accurately estimate the wear. 
 

 

Figure 67: Wear estimate when few sensor from the solution to the OSP problem are moved 
further away 
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In order to check optimality of the solution one can remove few sensors from the solution 
to the OSP problem and do the simulation again. It was observed in the simulation that 
when a sensor is moved from the sensing location (1st interface) obtained as solution to 
the OSP problem to further away from the hot surface (2nd interface), the model based 
sensor was either not able to estimate the wear at the location behind which the sensor is 
moved from the first interface, correctly specially if the wear magnitude was small or was 
estimating the wear with reasonably large variance rending such estimate meaningless. 
Figure 67 shows one such case. In the figure, the wear of maximum magnitude of 0.5 inch 
could not be estimated correctly. Further the wear estimates have large variance. 
 
 

6.3.2 Assessing solution to OSP problem for CM of RSC fouling profile 

In order to assess solution to OSP problem for condition monitoring of RSC fouling   a 
Monte Carlo simulation was conducted where randomly generated 20 RSC fouling profiles 
were used to simulate multiple cases of RSC tube fouling for simulation validation study.  
Recall that to model the RSC fouling profile the fouling was parameterized by six 
parameters ranging between zero and one. Parameter value being zero implies no fouling 
whereas one implies full fouling. It should be noted that the fouling distribution generated 
here is completely uncorrelated in the sense that the zone next to each other might have 
completely different fouling; one might have maximum fouling whereas the next one might 
be close to zero. In reality this is a highly unlikely scenario. Normally the nearby locations 
will have related fouling. Nonetheless the fouling distribution used here is very challenging 
for a model based sensor. 
 

 

Figure 68: Fouling profiles and fouling parameters estimates 

 
A Monte Carlo simulation was conducted with 20 randomly generated RSC fouling profiles. 
The plant response was generated with these randomly generated RSC fouling profiles 
keeping all other input constant. The assumption here is that the time scale in which the 
input change occurs are too small compare to the time scale related to fouling.  Also, since 
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fouling occurs very slowly, it is practically constant for estimation modeling. Figure 68 
compares the actual fouling parameters used in the simulation with that of the fouling 
estimates for one typical simulated study.   
 
In the figure, the broken lines are the actual fouling parameters whereas the solid lines 
with same color are the corresponding estimates. The figures shows that the fouling 
parameter estimates takes around 10 hours to tune themselves and after that they match 
very well with the actual parameters. 
 
In the simulation environment since the actual fouling parameters are known, the 
estimation error statistics can be computed directly.  Figure 69 shows the distribution of 
mean error between the actual fouling parameters and the estimated fouling parameters 
obtained through the model based sensing. From the figure it is clear that the mean error 
is normally distributed with around mean zero and standard deviation much smaller than 
the design precision value as expected. This is so, because the optimizer ensures that the 
precision constraint is satisfied. Recall that the precision is output error variance which is a 
stochastic measure. In this case around 9% case the ensemble variance was more than 
the design variance. This is slightly more than expected but most likely this is due to slow 
convergence of the estimate. 

 

Figure 69: Distribution of mean estimation error for RSC fouling parameters 

 

7 Conclusion 

An Integrated Gasification Combined Cycle (IGCC) plant is a large chemical plant coupled 
to a power generation plant. It is traditionally designed to operate mainly at steady state 
conditions. The IGCC technology is very important for clean and efficient power generation 
from coal and is currently being commercialized by GE. One of the key challenges in its 
commercialization is to increase reliability and availability of an IGCC plant. The critical 
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components that normally affect the plant availability are gasifier and radiant syngas cooler 
(RSC) in the core gasification section. These components operate in a corrosive 
environment at very high temperature (1200-1600 oC) and pressures (exceeding 40atm) 
leading to significant degradation in their condition. In an IGCC plant the gasifier is 
normally checked annually for wear and damage. In the absence of online monitoring 
system, plant is operated conservatively and is required to shut and cool down for manual 
inspection and maintenance of the gasifier refractory lining. Each gasifier cool down for 
manual inspection and the refractory preheat for startup requires roughly 10 days of plant 
outage. These are periodic outages that the plant must take in order to perform routine 
maintenance.  These outages are often scheduled during a time of year that the customer 
suffers the least loss of income (for instance, in Florida, the best time for an outage of a 
power plant would be between high electrical usage for heating and air conditioning like 
February or March time frame).  In that case, shutting down in December or June to 
replace refractory would be very costly.  In addition, there are unscheduled outages too.  
Some of these unscheduled outages happen if it is felt that the refractory was wearing 
faster than it should be based on the other indirect indicators.  Having no other means of 
condition monitoring, the plant may be forced to shut down for a week to allow for cool 
down and inspection of the refractory.  This adversely impact plant availability. Similarly, 
the heat transfer performance in the RSC degrades over time due to fouling buildup from 
ash and slag, which also affects the plant efficiency. Online condition monitoring is critical 
to enhancing power generation plant reliability and availability. Furthermore, an online 
condition monitoring will also enable increased plant efficiency and flexibility when coupled 
with advanced control strategies such as model-predictive control. Motivated by this, a 
systematic approach to sensor network design methodology has been developed in this 
program that supports the development of an online condition monitoring. In particular, this 
project developed a sensor network design with optimal combination and placement of 
sensors to enable online monitoring of refractory condition and RSC fouling in order to 
improve IGCC plant availability and efficiency. The approach is model based and uses 
Extended Kalman Filter framework along with optimization to optimally place sensor in 
order to meet certain network criteria e.g., precision and reliability. There were three main 
tasks in this program. The results and conclusions from each key element of the program 
are summarized in the next sections. 

  

7.1 Model Enhancement and Technology Review 

Inability to get direct measurement due to either unavailability or high cost of hardware 
sensors pertaining to harsh environment in the core gasification section necessitated 
indirect or model based sensing approach for condition monitoring of gasifier refractory 
wear and RSC tube fouling.  The overall objective of an optimal sensor placement problem 
was to design a cost-effective sensor network  for a robust monitoring of key process 
variables in the presence of practical constraints e.g., sensor measurement errors as well 
as modeling errors, in addition to expected sensor failure rates.   

 

The three main elements to an OSP algorithm were identified. They are: network 
requirement specifications, an estimator for indirectly “measuring” the quantities of interest 
based on a model and some direct measurements and an optimizer to optimize the 
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number of direct measurements needed for the estimator to meet the given network 
requirement specification.  

 

Two key requirements that the sensor network should satisfy for condition monitoring of a 
system were identified as, a) the precision requirement that deals with the accuracy of the 
estimated signal in terms of mean and standard deviation and b) reliability of the network 
that deals with the accuracy of the estimated signal in the presence of expected failure rate 
of hardware sensors that make up this sensor network. In addition the physical locations 
where a possible hardware sensor may be placed are assumed to be given.  

 

The estimator within the OSP framework was chosen to be of Kalman filter type. This was 
done to systematically account for modeling and sensor error. The network requirement of 
precision was mapped into parameters related to steady state covariance matrix in the 
Kalman filter formulation. Multiple notion of network reliability was discussed where he 
functional reliability was found to be most appropriate for OSP problem formulation with 
model based sensing approach. Even though enforcing estimation reliability would lead to 
minimum cost sensor network, the computation complexity of enforcing this constraints 
was found to be prohibitively high. 

 

With Kalman filter approach for model based estimator the problem of optimal sensor 
placement was naturally posed as an optimization problem with objective being minimizing 
sensor network cost subject to precision, reliability and sensor location constraints. The 
optimizer optimizes the number, type and location of the hardware sensors used within the 
Kalman filter. This optimization problem is a nonlinear programing problem over integer 
variable (INLP), the integer decision variable being the zero or one corresponding to “use” 
or “don‟t use” a particular sensor at a given location. Due to the combinatorial nature of 
INLP problem, the OSP problem is computationally challenging to solve efficiently. An 
exhaustive literature survey was conducted to shortlist algorithms to solve INLP problem 
related to OSP formulation. Two algorithms, one based on branch and bound approach 
and other based on outer approximation techniques were found most suited for solving an 
OSP problem. These algorithms were shortlisted for further evaluation in the Task3. A 
slightly different formulation to solve the OSP problem based on Chmielewski et al (2002) 
work was also shortlisted for evaluation in Task3. This formulation is based on LMI. 

 

Model based sensing requires mathematical model of the process. First-principles physics 
based models captures the process knowledge through mass and energy balance and is 
used to relate the measured signals with variable of interests that cannot be measured 
directly. The dynamic model of the core gasification system developed in a previous DOE 
funded program (DE-FC26-07NT43094) was extended to make them suitable to use in the 
OSP formulation. In this program, the key focus was to develop a sensor network with 
optimal combination and placement of sensors to enable online monitoring of refractory 
condition and RSC fouling. In this regard the existing 1-D axial gasifier refractory model 
was extended to model the 3-D temperature variation in the gasifier refractory due to 
refractory wear. The model was discretized to solve it numerically. The discretization 
resulted in a very large size gasifier model. Similarly, the RSC model from the previous 
program (DE-FC26-07NT43094) was enhanced to include axial fouling profile for the RSC 
tubes. The fouling profile was parameterized by six parameters. These parameters scale 



 113 

the conventional as well as radiation heat transfer coefficient appropriately to model fouling 
effect on the heat transfer from syngas to the water/steam with the tube. In additional the 
strain on the tube supporting structure was included in the model. This bolt strain is a good 
measure of cumulative fouling on the tubes.  

 

7.2 Development of OSP Algorithm 

For development purpose, there are two components of the OSP algorithm- the estimator 
and the optimizer. These have been integrated under OSP framework. All the algorithms 
were implemented in Matlab©. A simplified first order gasifier model was used to evaluate 
various OSP formulations. Even though OSP problem is an offline design problem, an 
efficient optimizer is needed to find solution to the OSP problem with reasonable time and 
solution accuracy. Hence the OSP algorithms were evaluated for these two criteria.  
 
All the solvers to OSP algorithms give accurate solution, hence the applicability of these 
algorithms for practical application basically depend on their ability to solve the OSP 
problem in reasonable time and memory resources. The LMI based OSP formulation was 
found to suitable only for a small size problem (problem with less than 20 states). The 
formulation does not scale up well with the size of the OSP problem. It became 
computationally inefficient in terms of both, CPU time and memory requirement. Of course 
the efficiency of the algorithm depends on the solver used to solve the LMI problem. 
Matlab toolbox based LMI solver, LMI Lab and widely used and freely available solver 
SDPT3 were evaluated. For a small size problem the Matlab solver was found to be more 
efficient but its performance degraded with the increase in the size of the problem. 
However both the solvers do not scale well in terms of memory requirement with the size 
of the problem. 
 
The standard OSP problem formulation as an INLP problem was evaluated using branch 
and bound solver as well as OA solvers. A key element of the branch and bound algorithm 
is to use appropriate relaxation of the original problem to generate lower bound of the 
optimum solution at each node. In order to solve the OSP problem, integer relaxation was 
used. The relaxed problem with precision only constraint is a nonlinear convex problem in 
real decision space with particular scaling of measurement noise covariance matrix. A 
state-of-art NLP solver IPOPT was used to solve the integer relaxed problem. Branch and 
bound is a systematic enumeration process. The reliability constraint being non convex 
cannot be accounted directly in the standard branch and bound algorithm. Hence it was 
modified to incorporate functional reliability. Branch and bound algorithm is efficient 
algorithm for solving a small to medium size INLP problem. However, due to enumeration 
process, this algorithm does not scale well with the size of the problem. This algorithm can 
still be used to solve small decision space of the order of 50-60 quite efficiently. 
 
The OA based approach uses linear relaxation of the INLP problem and solve relaxed 
integer linear programming (ILP) problem to obtain the lower bound on the solution and 
then repeatedly improves the bound. State of art GLPK software was used to solve ILP 
problem whereas IPOPT was used for solving the NLP problem in OA approach. The 
standard OA approach deals with mixed integer nonlinear programming problem hence 
cannot be directly applied to the OSP problem which has only integer decision variables. 
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The OSP formulation was slightly modified to include real slack variables to make it mixed 
integer problem. However, the standard MINLP solvers were not found very efficient to 
solve this problem. In addition, similar to branch and bound, due to non-convexity and non-
smoothness of the reliability constraint the OA framework for solving the OSP problem was 
modified. Further, in order to solve the OSP problem efficiently the standard OA approach 
was modified to incorporate cutting planes. A technical paper based on this approach was 
presented in peer reviewed IEEE Conference on Decision and Control (CDC) 2012 
conference. 
 
The computational efficiency as well as accuracy of a gradient based NLP solver can be 
significantly improved if the solver is provided with the analytical derivatives of the cost and 
the constraints functions. The cost function is linear in decision variable however the 
precision constraint which is directly related to the solution to an algebraic Riccati equation 
is a nonlinear function of the decision variable. It was shown that derivative of this solution 
actually leads to a Lyapunov function and can easily be computed suing Matlab lyap 
command. Use of efficient solvers along with providing solvers with analytical derivatives 
led to an order of magnitude improvement in the computational efficiency of the algorithm. 
 
Based on various OSP formulation and use of various optimizers to solve the OSP 
problem it was concluded each formulation and solver has its merit and demerit. The LMI 
based formulation is easy to follow but does not scale well with the size of the problem. 
The branch and bound is widely used solver for solving INLP problem but again it is suited 
well for only small to medium size problem. OA based algorithms are most powerful for 
large size problem but are computationally more complex.  Hence in this program, instead 
of having one OSP algorithm, a suite of OSP algorithm was developed that make all these 
various formulation and as well optimizer options available to the user. This modular OSP 
tool along with modular estimator block will be available to DOE. 
 

7.3 Demonstration of OSP Algorithm Performance 

The OSP algorithms developed in Task 3 were applied to design optimal sensor network 
for condition monitoring of the gasifier refractory wear and RSC fouling profile. The gasifier 
model and the gasification section model (gasifier, RSC, quench, drum, scrubber, etc.) 
were used for this purpose.   

 

The gasifier model has more than 9000 states and 3000 possible sensor location for 
temperature measurement. Due to the size of the gasifier model, The OA based OSP 
algorithm was used for finding the optimal sensor set. Even with OA based algorithm, it 
was not possible to apply the OSP algorithm to the full 3-D gasifier model because of the 
computational limitation of the machine. Exploiting the symmetry of the model about the 
axial direction, an “equivalent” but smaller and manageable size wedge block was 
identified and used for applying the OA-based OSP algorithm. Once the optimal sensor 
location for this wedge block was obtained, the solution for the complete 3-D gasifier was 
obtained by just repeating the small wedge block optimal solution. In order to estimate 
refractory wear within 0.4 inch accuracy one would need as many as 600 sensors, all 
placed in the first interface of the refractory layer. These sensor locations obtained as 
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solution to the gasifier refractory wear OSP problem are due to the dominance of heat flow 
in the radial direction. 

 

The temperature sensor locations obtained above was used in the model based sensing 
approach to verify if indeed it is possible to obtain the refractory wear estimates using 
these sensor location within the design accuracy of 0.4inch. A Monte Carlo simulation was 
set up with more than 40 completely random distributed wear profiles on the hot surface of 
the gasifier refractory. For the refractory hot surface there are 600 grid locations where the 
wear was monitored. The ensemble variance based on this sample size of more than 
24000 wear estimates showed most of the estimate variance were within design limit and 
the probability that a wear estimate is less than design accuracy was less than 0.03% . 
Further, to show that the solution thus obtained for the condition monitoring the refractory 
wear OSP problem is optimal, few thermal sensors were moved further away from the 
intended location. With this modified sensor locations, the simulation with same random 
wear profiles, showed that the sensor network was not able to estimate the refractory wear 
at certain axial and azimuthal locations that corresponded to radial directions from where 
the sensors were moved.  This showed that the OA based OSP algorithm is able to 
provide correct solution. The specific optimal sensor locations obtained through solving the 
gasifier refractory wear OSP problem are as such not very important. Due to strong radial 
heat flux dominance one could have obtained the same solution based on a pure 
engineering judgment. But that is just due to the nature of this particular problem and it is 
not always possible. The algorithms to solve OSP problem developed in the current 
program are generic and can be applied to other applications. 

 

The branch and bound based OSP algorithm was applied to obtain the solution to optimal 
sensor placement problem for condition monitoring of the RSC tube fouling. It was 
assumed that the normal sensor set that are usually present and used for controls of the 
gasifier operation will remain available. The OSP algorithm was used to locate additional 
heat flux and strain gauge sensors to estimate six fouling parameters that are used to 
characterized the fouling profile. With this setup the gasification section model has close to 
200 states and 31 possible additional sensor locations. The solution to this OSP problem 
shows that by placing 2 additional heat flux sensor (out of possible 30) and using strain 
gauge measurement on the required precision on the estimated fouling profile can be 
obtained. Again, to verify this solution these sensors were used in the model based 
sensing approach to estimate the fouling profile parameters using a Monte Carlo 
simulation. In the simulation the model based sensing system was used to estimate fouling 
profile parameters for 10 randomly generated fouling profile. The simulation shows that in 
all cases the sensing system was able to estimate all six fouling parameters within the 
design accuracy. This showed that the branch and bound based OSP algorithm performs 
as expected and can be used for finding solution to OSP problems of moderate sizes. 
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Appendix A: Modular Tools 

 
As part of this program two modular tools were developed which can also be used for 
other applications. One of the tool is Matlab/Simulink© based extended Kalman Filter 
block and the other is the Matlab© based optimal sensor placement tool. In this section 
both these tools are described briefly. 

A.1 Modular Extended Kalman Filter block in Matlab/Simulink© 

The EKF block is designed to implement an Extended Kalman Filter (EKF) state estimator 
in the form of a compilable Simulink block which can be placed in higher level Simulink 
models such as plant system simulations or control algorithm models,  and from which 
estimator code can be generated for real-time operation on the controller.   The modular 
form of the EKF Simulink block allows the state estimator to be automatically constructed 
around two user defined models, a plant model and an auxiliary state model that are 
placed inside modular blocks with pre-specified interfaces.  The user defined models can 
be Simulink or embedded Matlab blocks with custom code, as long as they can be 
compiled.   The top level EKF block, identifying the input/output structure, is shown in 
Figure 70.     

 

Figure 70: EKF Simulink - top level block 
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A.1.1 Input and Output Signals 

 
A summary of the Inputs is contained in Table 14  
 

Input Description Size (at each time 
step) 

Comments 

u_sys Measured inputs which 
drive the system 

[# of measured inputs x 1] Set points, operating conditions 
and other time varying signals 
that drive system  

p_sys Assumed system 
parameter values 

[# of parameters x1] Constants (of particular 
interest) that affect system 
response  

z_sys Measured outputs of the 
system 

[# of measured outputs  x 1] System output sensor 
measurements 

update flag Flag to enable an EKF 
state update with current 
measurements 

scalar Allows the measurement 
update to occur at a slower rate 
than the basic execution rate (if 
desired) 

restart Flag to reset the EKF 
estimator scalar 

Allows re-initialization of EKF 
estimator while running 

Table 14: EKF Block Inputs 

 
A summary of the Outputs is contained and  Table 15. 
 

Output Description Size (at each time step) Comments 
X_est State Estimate [# of estimated states  x  1] EKF State estimate is the 

primary output 

P_est State Error Covariance [# of est states  x  # of est states] For performance 
monitoring, information or 
debug 

X_prop State Estimate prior to 
measurement update 

[# of estimated states  x  1] For performance 
monitoring, information or 
debug 

P_prop State Error Covariance 
prior to measurement 
update 

[# of est states  x  # of est states] For performance 
monitoring, information or 
debug 

innov Measurements minus 
model predicted 
measurements 

[# of measurements  x  1] For performance 
monitoring, information or 
debug 

K Kalman gain matrix [# of est states  x  # of meas] For performance 
monitoring, information or 
debug 

Qd Contribution of modelled 
process noise to State Error 
Covariance 

[# of est states  x  # of est states] For performance 
monitoring, information or 
debug 

Table 15: EKF Block Outputs 

  



 120 

The EKF block executes at a fixed time step as specified by the user, and the external 
system data is input at this fixed rate. The input data signals are connected to the u_sys, 
p_sys and z_sys ports, where u_sys represents the measured inputs driving the plant, 
p_sys represents assumed parameter constants of the plant, and z_sys represents the 
measured outputs of the plant.  The distinction between inputs and parameters is arbitrary 
and is made for organizational convenience only, as either port can contain both constants 
or time varying signals and in fact all input type signals could be fed in through just one of 
these ports.  The update_flag port is used to indicate that the z_sys measurements are 
fresh and should be used by the EKF block to update the state estimates using these 
measurements.  The restart port provides the capability to reset the EKF state estimator to 
the predefined initial conditions and restart the estimation at any point after it is running. 
The primary output of the EKF block is the state estimate vector, X_est., at each time step.  
X_est  contains all the plant model states as well as any user defined auxiliary states.   
The remaining outputs are provided mainly for information or performance monitoring, if 
desired.  P_est is the state error covariance matrix at each time step as computed by the 
EKF process.  X_prop  and P_prop are the propagated state vector and state error 
covariance matrix at each time step, prior to being updated with the measurements, z_sys.  
The innovation vector, innov, represents the difference between the actual measurements 
and their predicted values obtained from the EKF model evaluated at  X_prop, while K is 
the Kalman Filter Gain matrix which multiplies the innovations to produce the state vector 
update corrections.  Finally, Qd is the contribution of the modeled process noise to the 
state error covariance.  (Note that any additional internal signals that are of interest may be 
easily obtained by simply opening the EKF block in Simulink,  adding output ports, and 
connecting them to the desired signals.)   
 
 

A.1.2  User Supplied Models 

As mentioned, in order to adapt the generic EKF block to a particular application, the user 
supplies a plant model and an auxiliary state model, which are placed inside standard 
interface placeholder blocks which exist for that purpose.  In addition, some specific 
information about these models, such as the number of states, inputs, parameters and 
how they should be combined in the estimator must be input into an initialization file.   The 
plant model captures the essential dynamics and output relationships of the system being 
observed or controlled, while the auxiliary model is the means to incorporate additional 
estimator states such as sensor biases, random process models, parameter estimates, 
etc. that are typically a part of robust system state estimation. 
 
The plant and auxiliary models must adhere to the standard interface as shown below: 
 

},,,{   ] , ,[ 1 iiiiiii wpuxmdl_fncxxy


 , 

 
Where, the model acts as a function that returns the outputs, state derivatives, and one-
step-ahead state extrapolation when given state, input, parameter, and noise input values.  
Note that this function is not in the form of a typical „time simulation‟, in which the states 
are computed and maintained  internally; rather it requires all state information to be 
passed into it, so the user supplied models likewise should not contain internal state 
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memory themselves.  Placeholder blocks with the proper interface ports are provided for 
the models as is shown by the two highlighted model blocks in  Figure 71 (this figure 
represents a several level drill down from the top level EKF block of Figure 70 ).  

 

Figure 71: Standard Interface Blocks for User Defined Models 

 
 
The model placed inside the generic block can be in the form of a Simulink block diagram 
model or it can be an embedded Matlab block containing the code producing the model 
function.  In either case the result is a Simulink block with the prescribed inputs and 
outputs, which is simply connected inside to the external ports provided by the generic 
block.  The supplied models must be designed to execute at a fixed time step, specified by 
the user to accommodate the plant dynamics, and this time step also becomes the top 
level execution time step.  Measurements can be processed by the EKF estimator at a 
lower sampling rate using the update flag signal previously described. 
 
To illustrate, a simple example follows which uses an embedded Matlab block for the plant 
model, and a Simulink block diagram for the auxiliary model. Figure 72  shows the plant 
model being ultimately defined by code in an embedded Matlab function block.  
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Figure 72: User Defined Plant Model as an Embedded Matlab Block 

 
 
An empty embedded Matlab function block is selected from the Simulink library which, 
when opened, brings up the embedded Matlab editor into which the desired model code 
can be entered, as shown.  The function definition line identifies the required standard 
inputs and outputs and these will appear as the ports on the block.  In this example, an 
additional term, prop_dT representing the sampling time step, has been included in the call 
list but does not show up as a block input because it has been declared in the editor 
(tools/edit data menu) as a (Simulink) parameter rather than a block input.  This 

function 

[y,xdot,xnp1]=yxdotFn_toy(x,u,p,w,prop_dT) 
%#eml 

  
% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
%  Embedded Matlab Code Example 
%  Plant as a damped second order system 
% XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 

Zeta = p(1); 
Wn = p(2); 

  
A = [0 1 ; -Wn^2 -2*Zeta*Wn]; 
B = [0;Wn^2]; 
G = [1 0; 0 1]; 

  
xdot = A*x + B*u + G*w ; 
xnp1 = x + xdot*prop_dT; 
y = x(1);    
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mechanism is useful for passing in model or system constants from the workspace without 
impacting the standard interface definition. 
 
Figure 73 shows the auxiliary model, which is implements a first order Markov random 
process directly in a fixed time step Simulink diagram. 
 
 
 

 
 
 

   

      Figure 73: User Defined Auxiliary Model as a Simulink Diagram                                      

 
 



 124 

A.1.3  EKF Estimator Model 

 
The EKF estimator model is a composite of the plant model and auxiliary model, in which 
the EKF state vector, x, is defined as the plant states followed by the auxiliary states.  
Likewise, the EKF input, u, parameter, p, and noise driver vector, w, definitions are also 
the stacked version of the plant and auxiliary model signal names.  (This stacked ordering 
of the two model groups must be adhered to, but within each group, the signals can be 
reordered, if desired, by the user through the model connection definitions specified in the 
initialization file.)   The EKF measurement vector, y, definition, however, will be very 
specific to each application, as it typically involves measurements which are modeled as 
functional combinations of plant and auxiliary outputs.  For this reason, it was deemed 
most efficient to require the user to simply construct this functional combination in the 
Simulink diagram itself, rather than try to make it generically configured from setting in the 
initialization file.  In Figure 71, the small highlighted block in the upper right corner ( an 
„addition‟ block) represents this required user construction, which for this example models 
the single EKF output as the sum of a plant model state (the desired quantity) and an 
auxiliary model state ( a corrupting sensor bias).  
 
The initialization file entries for the simple example are shown below.   For presentation 
purposes, the file sections have been divided into several Tables.  Sections 1 through 4 
are shown in Table 16, where the user specifies the basic EKF block computational time 
step, prop_dT, section 1 (in units consistent with the user supplied models ); specifies the 
Plant and Auxiliary model dimensions (in terms of the x, u, p, and w vector sizes) in 
sections 2 and 3; and specifies the size of the desired EKF measurement vector, y, and 
particulars about which noise driver signals contained in w should be active (using 1‟s and 
0‟s in w2use to indicate signal vector elements that are to be used or not used, 
respectively), in section 4.  The ability to include many potential noise drivers in the 
models, but use only subsets of these for specific implementations provides a flexibility 
and efficiency in that different random process models and process noises can be set up 
without changing the models and recompiling each time, while the computational burden of 
model linearization at the unused noise inputs is eliminated.    
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Table 16: Initialization File Setting for Simple System Example  

                                   

 
Table 17 shows the user specifications for the EKF settings and initial conditions.  Beyond 
specifying the standard Kalman Filter quantities such as the initial state vector, Xest0, the 
initial error covariance matrix, Pest0, the noise power covariance, Qc, and the 
measurement noise covariance, R, the user can customize the perturbation step size 
selection for the state and noise input model linearization.  This is accomplished through 
xpertvec_in for the states, and wpertvec_in for the noise drivers, where the rows 
correspond to each state or noise input, and the four columns identify the factors used to 
compute the perturbation step sizes.  The function of these factors in step size 
computation is shown in .Table 18 
 
 
 

 
%         Initialization File 

  
% 1.  Specify Simulink Model Fixed Time Step Value 
prop_dT = .02; 

  
% 2.  Specify Plant model Info 
% Number of Plant states, inputs, params, noise inputs: 
%  (Set size to 0, if no signals of that type.) 
nx_plant = 2; 
nu_plant = 1; 
np_plant = 2; 
nw_plant = 2; 

  
% 3.  Specify Aux model Info 
% Number of Aux states, inputs, params, noise inputs: 
%  (Set size to 0, if no signals of that type.) 
nx_aux = 1; 
nu_aux = 0; 
np_aux = 1; 
nw_aux = 1; 

  
% 4.  EKF model Info 
% Number of Estimator States  
nx_ekf = nx_plant + nx_aux; 
% Number of deterministic Inputs 
nu_ekf = nu_plant + nu_aux; 
% Number of parameter constants 
np_ekf = np_plant + np_aux; 
% Number of noise Inputs  
nw_ekf = nw_plant + nw_aux; 
% Specify w2use to identify which elements to include in linear model 
w2use = [1; 1; 1]; % set to one element if nw_ekf = 0 
% Specify mean value of noise signals to linearize about 
wnom = zeros(max(nw_ekf,1),1);   % set to one element if nw_ekf = 0 
% Number of measurements used 
ny_ekf = 1;   
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Table 17: Initialization File Setting for Simple System Example  

 

 
 
 

        
  xpertvec_in and wpertvec_in   Column Definitions; 
 
[ Fraction,     Non-Zero Default,    Pos Limit,      Neg Limit ] 
 
 
where the positive and negative perturbation steps are computed as: 
 
Pos step  = min{   max[    abs(Fraction*Signal value),  Non-Zero Default   ], Pos 
Limit} 
Neg step = max{   min[   -abs(Fraction*Signal value), -Non-Zero Default   ], Neg 
Limit} 
 

Table 18: User Specifications of xpertvec_in and wpertvec_in to Control Perturbation Step Size 

 
 
 
In the EKF block operation, EKF estimator signal vectors must be decomposed and routed 
to the appropriate plant and auxiliary model blocks, and likewise, the output signals from 

 
% 5.  EKF Settings and Initial Conditions 
% Initial State Estimates 
Xest0 = [-1; 3; 0]; 
% Initial State Error Covariance 
Pest0 = diag([10^2*ones(2,1); 1^2]); 
% Noise Input Signal Power Density  
Qc = diag([ .01^2; .01^2; .01^2]); 
% Measurement Noise Covariance  
R = diag(.01^2); 
% Specify the Numerical Differentiation step sizes and limits for x and w 
%  Rows correspond to states or noise vector elements 
%  Columns (4) specify: 
%  [ % of Signal,  floor (abs)   , positive ceiling,   negative ceiling] 
xpertvec_in = [.01*ones(nx_ekf,1),[.0001*ones(nx_ekf,1)], ... 
              [1000*ones(nx_ekf,1)],[-1000*ones(nx_ekf,1)]]; 
if nw_ekf>0 
wpertvec_in = [.01*ones(nw_ekf,1), .0001*ones(nw_ekf,1)], ... 
              [1000*ones(nw_ekf,1), -1000*ones(nw_ekf,1)];  
else 
wpertvec_in = [0 0 0 0];     
end 
% Flag to specify Xest output: 
% 1 = enable output of propagated states in between measurement updates 
% 0 = hold the previous updated states in between measurement updates 
Extrapolate_Output = 1; 
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the model blocks must be gathered and combined to reform the EKF vectors again.  
Sections 6 and 7 of the Initialization File, shown in Table 19, allow the user to specify the 
EKF and plant/auxiliary model signal relationships so that the signal routing will be set up 
automatically in the generic model blocks.  For instance, specifying i_Xest2xPlant = [1:2] 
identifies states 1 and 2 of the EKF estimator as states 1 and 2 of the plant model, and 
specifying i_Xest2xAux = [3] identifies states 3 of the EKF estimator as state 1 of the 
auxiliary model.  It is common to have EKF states which are in fact unknown inputs or 
parameters in the plant model, and the terms such as i_Xest2uPlant or i_Xest2pPlant are 
used to specify the EKF states that become plant model inputs, u, or parameters, p.  The 
accompanying terms i_uPlant2replace and i_pPlant2replace are then used to identify 
where these states fit in the input or parameter vectors. 
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% 6.  Specify Signal Indices to translate from EKF x,u,p,w signals 
%         to Plant/Aux model x, u, p, w signals 
% EKF to PLANT model signals 
% States 
i_Xest2xPlant = [1:2];  % These elements of EKF state vector are the 
%                         Plant model states 
% Inputs 
i_Xest2uPlant = [0];    % These elements of EKF state vector are the 
%                         'estimated' Plant model inputs if any 
i_uest2uPlant = [1 ];   % These elements of EKF input vector are the 
%                         remaining Plant model inputs 
i_uPlant2replace = [0]; % Indices of the estimated inputs in the u vector  
% Parameters 
i_Xest2pPlant = [0];    % These elements of EKF state vector are the 
%                         'estimated' Plant model params if any 
i_pest2pPlant = [1 2];  % These elements of EKF param vector are the 
%                         remaining Plant model params 
i_pPlant2replace = [0]; % Indices of the estimated params in the p vector 
% Noise 
i_west2wPlant = [1 2 ]; % These elements of EKF noise vector  
%                         drive the Plant model process noise 
% EKF to AUX model signals 
% States 
i_Xest2xAux = [3];     % These elements of EKF state vector are the 
%                        Aux model states 
% Inputs 
i_Xest2uAux = [0];    % These elements of EKF state vector are the 
%                       'estimated' plant model inputs if any 
i_uest2uAux = [0 ];   % These elements of EKF input vector are the 
%                       remaining Aux model inputs 
i_uAux2replace = [0]; % Indices of the estimated inputs in the u vector  
% Parameters 
i_Xest2pAux = [0];    % These elements of EKF state vector are the 
%                       'estimated' Aux model params 
i_pest2pAux = [3];    % These elements of EKF param vector are the  
%                       remaining Aux model params 
i_pAux2replace = [0]; % Indices of the estimated params in the p vector 
% Noise 
i_west2wAux = [3];     % These elements of EKF noise vector  
%                        drive the Aux model process noise 

  
% 7.  Specify Signal Indices to translate from Plant/Aux model x,y 
%               signals to EKF x,y signals 
%       Plant/Aux to EKF model signals 
% States 
i_xPlant2Xest = [1 2]; 
i_xAux2Xest = [1]; 
%Outputs 
i_yPlant2yest = [1 ]; 
i_yAux2yest = [1]; 

  

Table 19: Initialization File Settings for Simple System Example  
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A.1.4 EKF Block Operation 

 
The two major EKF functions, State Propagation and State Update, are performed by the 
highlighted blocks of Figure 74.  The Propagate block executes at the basic time step 
interval and propagates the EKF state and covariance forward in time using the plant and 
auxiliary models, driven by the measured system inputs.  When measured system outputs 
are available, the Update block will execute, correcting the current propagated state and 
covariance with information contained in the output measurements.  The Update block can 
execute at a lower rate than the Propagate block, and this is controlled by the user through 
an externally generated update flag signal.  
 

 

Figure 74: Propagate and Update Functions within the EKF Block 

 
 
Both the Propagate and Update functions require that the EKF model provide an output 
vector, y, and state derivative vector, xdot; and this is satisfied by the requirement on the 
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form of the plant and auxiliary models that must be supplied.  However, solution of the EKF 
estimation algorithm also requires linear system approximations about the current 
estimated state vector and operating point.  To perform this linearization, a generic EKF 
model linearization block was created base on forward and backward signal perturbation.  
The EKF model linearization block is shown at the left in Figure 75, along with the 
functions inside it on the right.  This block is implemented as a „while iterator‟ block, which 
will execute many times within each basic time step, where the number of iterations will 
depend on number of EKF states and noise inputs that must be perturbed to produce the 
linearized Model.   

 

 

Figure 75: EKF Model Linearization Block 

 
 
The contents inside the „Estimator Model‟ block are shown in  is the full EKF model which 
is shown in .  The perturbation of the EKF model and the linear model generation is 
orchestrated by means of the embedded Matlab Function block in Figure 75.   
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A.2  Modular OSP Tool in Matlab©  

 
The OSP tool is designed to solve the optimal sensor placement problem, in the form of 
NLP or LP, with optional search algorithms and optional solvers. The module allows the 
user to input the OSP problem with pre-specified interfaces. The top level user interface is 
shown in the following table (Table 20). 
 
 
The Demo of the Optimal Sensor Placement Algorithm 

Step-1: System specification 

Input system data file name: 

 

Step-2: Include reliability constraint 

Check reliability? Y/N [N]: (Otherwise, only precision)  

 

Step-3: Option for choosing OSP formulation 

OSP formulation 

 3.1) LMI based 

 3.2) Standard INLP based 

Choose from above options 3.1/3.2: 

 

(if 3.1 chosen) 

Step-4: Option for choosing LMI solvers 

 4.1) LMI-Lab provided by Matlab 

 4.2) LMI-SDPT3 

 

(if 3.2 chosen) 

Step-4: Options for optimization algorithm 

 4.1)Branch-and-Bound  

 4.2)Outer-Approximation  

 

Table 20: OSP tool top level user interface for Branch-and-Bound 

 
At the top level user interface, the tool expects users to specify the OSP problem in the 
Matlab readable MAT file. The following subsection will describe the outline of preparing 
such a MAT file. The subsequent steps deal with choosing the criteria (reliability), OSP 
framework and optimization algorithms.    
 
The user can specify the OSP with precision requirement and reliability requirement. The 
precision criterion is always enforced. If the reliability requirement is not selected, the OSP 
tool will solve the OSP problem with only precision requirement. The reliability 
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implemented in the OSP tool is the “functional” reliability as described in Section 4. The 
“estimation” reliability is not implemented in this modular general purpose tool. The main 
reason for the choice is that for problems with N number of possible sensor locations, the 

estimation reliability metric requires    precision constraint computations, which even with 
small scale problems of say N=10 leads to     computations. The time required to 
compute this metric is quite prohibitive. Since the intent of modular OSP tool is to help in 
designing a reliable and precise estimation in the cost-optimal manner, the choice of 
functional reliability along with the precision constraint will make the tool applicable to a 
much wider class of problems. 
 

A.2.1 Input Data 

The user is required to provide for certain data to setup the OSP problem, which includes 
1) the system matrices of the linear or linearized dynamic system in discrete-time domain; 
2) the precision requirement; 3) the reliability requirement; and 4) the cost of the sensors in 
the network. The input data is required to be in mat file format in the Matlab. An example 
m-file “Setup_OSP.m” has been provided in  Table 21 to help the user to prepare the input 
data required at Step-1 (Table 20) to setup the OSP problem.    
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 % This m-file is used to prepare the input mat file required for the OSP     

problem with Branch and Bound search Algorithm. This file will create a .mat 

file with following data 

%----------------- 

% 

%  1) Ad: Discrete system matrices (N x N) 

%  2) Cd: Discrete system matrices (M x N)  

%  3) Q: Covariance of process noise w (N x N) 

%  4) R: Covariance of the measurement noise v (M x M) 

%  5) ReqstPrec: Precision request 

%  6) PrecIdx: Index of states on which precision is enforced 

%  7) ReqstRelib: Reliability requirement  

%  8) RelibVec: Survivability for sensors,(M x 1)  

%  9) CostVec: Vector defining the sensor cost (M x 1)  

%  10) SensorIdx: Predefine a sensor network to include prior information (M x 

1) 

%       vector of o, 1 or Nan 

%       0: no sensor;  

%       1: fixed sensor;  

%       Nan: the potential sensor measurement for OSP problem. 

%  

% 

% %%%%%%%%% Example%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 1. Define the problem formulation for discrete-time linear system 

% system matrix x(k+1) = Ad x(k) + w(k) 

%               y(k) = Cd x(k) +v(k) 

  Ad = eye(7,7);  % system has 7 states 

  Cd = rand(5,7);  % system has 5 output 

  Q = eye(7); 

  R = eye(5) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 2. Estimation requirement for OSP problem 

% The OSP problem has multiple precision requirements:  
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% 1) precision 0.2 on the 2nd element of states; and 

% 2) precision 0.4 on the 5th element of states, then define 

  ReqstPrec = [0.2;0.4]; 

  PrecIdx = [2;5]; 

% 

%%%%%%%%%%%%%%%%%%%%%%%% 

% 3. Reliability requirement for OSP problem 

%  

% The OSP problem requires 80% of reliability of the sensor network 

 ReqstRelib = 0.8; 

 

% The sensor survivability at the 1st, 2nd and 3rd measurements are 0.9.  

% and at 4th and 5th measurements are 0.8, then define: 

  RelibVec = [0.8;0.9;0.9;0.8;0.7];  

 

% 4. Cost of the sensor network 

  CostVec = [100; 120; 110; 60; 50];  

 

% 5. Predefine sensor network to include prior information multiple options 

% want to indicates there is always sensors at the first measurement location,   

% no sensors at the fourth measurement location 

% OSP problem is to find potential sensor @2nd, 3rd and 4th measurement location 

  sensorIdx = [1; NaN; NaN; 0; NaN];  

 

% 6. Save the outputs in a mat file 

  save OSP_trivial_example.mat Ad Cd Q R ReqstPrec PrecIdx ReqstRelib RelibVec 

  CostVec sensorIdx 

 

Table 21: OSP tool: help file of the Setup_OSP.m  

 

A.2.2 Output Data 

 
The output of the OSP tool is a Matlab structure SolutionData. The field of this structure is 
listed in Table 22. 
 
 

Output Description Size (at each time 
step) 

Comments 

SolutionData.
Costbest 

The cost for the optimal sensor 
placement solution.  

Scalar  With satisfied estimation 
and/or reliability 
requirements.  

SolutionData.
Optbest 

Location for optimal sensor 
placement (solution to OSP 
problem).  

[ M  x  # of possible 
solutions]  

0: no sensor 
1: 1 sensor 
2: 2 sensors... 

SolutionData.
Cputime 

The total CPU time spent to solve 
the OSP problem   

scalar In second 

Table 22: OSP Tool Outputs 
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A.2.3 Software Package Needed for the OSP Tool  

 
The OSP tool is Matlab© based but it requires few additional software packages for all the 
optimization options to work.   
 
For the LMI based OSP formulation the OSP loot uses LMI-Lab, developed by Mathworks 
and provided in the Matlab Control toolbox, SDPT3, which is the free open source. In the 
OSP tool, YALMIP is used to integrate SDPT3 in the Matlab environment. The solver 
IPOPT is implemented to solve NLP relaxation problem and a combination of Ipopt and 
GNU Linear Programming Kit (GLPK) packages are used to solve the Outer-
Approximation problem.  SDPT3, YALMIP, IPOPT, GLPK are all freely available and can 
be downloaded from links below. 
 
The link for SDPT3 can be found as follows, 
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html 
 
The link for YALMIP can be found as follows: 
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.HomePage 
Note that the above software packages get updated from time to time. The OSP tool has 
been tested based on the latest release when the report is generated. 
  
In the OSP tool, SDPT3-4.0 is tested with release YALMIP R20130128 
 
The link for IPOPT can be found as follows: 
http://www.cs.ubc.ca/~pcarbo/ipopt-for-matlab/.  
Further details about the exact algorithm and other options can be found in the following 
link: http://www.coin-or.org/Ipopt/documentation/node10.html 
 
The link for GLPK can be found as follows: 
http://www.gnu.org/software/glpk/#TOCdocumentation 
 
 

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.HomePage
http://www.control.isy.liu.se/~johanl/YALMIP.zip
http://www.cs.ubc.ca/~pcarbo/ipopt-for-matlab/
http://www.coin-or.org/Ipopt/documentation/node10.html
http://www.gnu.org/software/glpk/#TOCdocumentation

