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1 Summary

The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May
31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with
Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete
this research project and this final report includes those contributions made by the members of the team
at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his
contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate
project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso,
Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago
Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman,
and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator.

The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty
quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation),
the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties
from random variable, random field, and model form sources. The expected outcomes of this activity were
detailed in the proposal and are repeated here to set the stage for the results that we have generated during
the time period of execution of this project:

1. The rigorous determination of an error budget comprising numerical errors in physical space and
statistical errors in stochastic space and its use for optimal allocation of resources;

2. A considerable increase in efficiency when performing uncertainty quantification with a large number
of uncertain variables in complex non-linear multi-physics problems;

3. A solution to the long-time integration problem of spectral chaos approaches;
4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the

most important variables via dimension reduction and dimension-adaptive refinement, and to
support fusion with experimental data using Bayesian inference;

5. The application of novel methodologies to time-dependent reliability studies in wind turbine
applications including a number of efforts relating to the uncertainty quantification in vertical-axis
wind turbine applications.

In this report, we summarize all accomplishments in the project (during the time period specified) focusing on
advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications
in each of these areas have also been completed and are available from the respective conference proceedings
and journals as detailed in a later section.
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In the UQ algorithms area, we have focused on scalability and robustness of core stochastic machinery,
managing multiple model forms, and balancing deterministic and stochastic errors. Within the core stochastic
machinery, we have explored adaptive p- and h-refinement along with adjoint gradient enhancement using
either structured or unstructured grid approaches. We have also developed capabilities for multifidelity UQ
that leverage less expensive low-fidelity models while seeking accurate high-fidelity statistics. Finally, we
have demonstrated the use of adjoint-based error estimation for estimating components of spatial, temporal,
and stochastic discretization errors within an error balancing framework.

In the wind simulation area, we have explored both low-fidelity and high-fidelity simulation tools for
analyzing the performance of wind turbines. In the low-fidelity case, we have demonstrated the use of advanced
UQ propagation methods and uncovered the need for methods that are robust with respect to nonsmooth
behavior. In the high fidelity case, we are developing time spectral and sliding mesh discontinuous Galerkin
approaches that will ultimately replace the low-fidelity approaches and allow us to assess performance and
reliability in more challenging operating regimes.

2 Introduction

Wind turbine reliability plays a critical role in the long-term prospects for cost-effective wind-based energy
generation. The computational assessment of failure probability or life expectancy of turbine components is
fundamentally hindered by the presence of large uncertainties in the environmental conditions, the blade
structure, and the physical models chosen to simulate the systems. Rigorous quantification of the impact of
such uncertainties can fundamentally improve the state-of-the-art in computational predictions and, as a
result, aid in the design of more cost-effective devices.

3 UQ Algorithms

In the sections below, we summarize our activities in UQ algorithm research and development. We organize
around some of the key challenges in the UQ field, including scalability and robustness of core stochastic
machinery, managing multiple model forms, and balancing deterministic and stochastic errors.

3.1 Scalability and robustness

Consider a set of uncertainties represented using a set of (independent) random variables ξ1, ξ2 . . . ξd defined
over a tensor space Ω = Ω1 × Ω2 × . . .Ωd and a quantity of interest f(ξ1 . . . ξd). In many engineering
applications, the objective is to characterize the statistics of f , such as the mean and the variance which are
defined as integrals over Ω, i.e.

E[f ] =

∫
Ω

f(ξ1 . . . ξd)pξ1pξ2 . . . pξddξ1dξ2 . . . dξd,

where pξk represents the probability density function of the random variable ξk. One central challenge
in uncertainty quantification algorithm development is the development of methods that are accurate in
computing the statistics of f while only requiring a few function evaluations over the domain Ω.

Polynomial chaos expansions (PCE) represent f as a (truncated) series in an orthogonal polynomial basis
and obtain the statistics directly in terms of the expansion coefficients fk.

f(ξ1 . . . ξd) ≈
P∑
k=0

fkπk(ξ1 . . . ξd).

Stochastic collocation (SC) methods, on the other hand, directly address the computation of the statistics
of f using quadrature rules and form multidimensional interpolants using a linear combination of function
values at quadrature points and interpolation polynomials:

f(ξ1 . . . ξd) ≈
Np∑
k=1

f(ξk1 . . . ξ
k
d )Lk(ξ1 . . . ξd).
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Although widely successful, these methods suffer from exponentially increasing cost as d increases (curse
of dimensionality) and limited accuracy when f is not sufficiently smooth. To address the dimensionality
challenge, we have explored the use of (1) adaptive refinement methods that adjust polynomial orders
(p-refinement) in different dimensions or regions according to suitable error estimates, (2) adjoint gradients
to enhance function evaluations, and (3) sparsity detection techniques to limit the number of expansion
coefficients required to achieve a given accuracy. The nonsmoothness challenge is typically handled using
appropriate subdivisions of the domain Ω in an adaptive process similar to h-refinement in finite elements.

3.1.1 Polynomial chaos and stochastic collocation on structured grids

Adaptive refinement of stochastic expansions seeks to preferentially refine in the dimensions or regions of
the stochastic domain Ω that are more important for resolving statistical quantities of interest (QOI). By
investing computational effort where it is most needed, the scalability of the stochastic algorithm can be
significantly improved when the relevant response metrics possess anisotropy or locality.

Initial refinement capabilities within DAKOTA focused on dimension-adaptive p-refinement within PCE
and SC by controlling the orders of global basis polynomials used in different stochastic dimensions. These
p-refinement approaches included: (1) uniform refinement using isotropic grids, (2) adaptive refinement
using anisotropic grids, and (3) goal-oriented adaptive refinement using generalized sparse grids. These
capabilities target improved scalability for smooth problems, for which global basis functions can be the most
effective [10].

During the research conducted in this project, these refinement capabilities were extended to include
dimension-adaptive h-refinement using local basis functions of fixed order, either linear or cubic spline basis
polynomials (see Figure 2 in Section 3.1.3). We also focused on adding capabilities for hierarchical interpolation
in SC, which both improve precision in dimension-adaptive approaches and enables new capabilities for local
adaptive refinement. Local error estimates computed from hierarchical surpluses are used to guide local
refinement within the framework of generalized sparse grids [16] using either local or global interpolation
polynomials. The ability to perform local refinement provides a much finer grain of control than dimension-
adaptive refinement, allowing for improved performance in applications that exhibit local response features.
And the ability to employ local basis functions is critical for mitigating the effects of nonsmoothness.

3.1.2 Polynomial chaos on unstructured grids

The use of tensor (or sparse) constructions in the parametric space provides limited opportunities for adaptivity.
Borrowing ideas from unstructured grid generation techniques we have developed a simplex based multi-
element polynomial reconstruction technique with both h- and p-refinement capabilities. The h-refinement is
achieved via random point-insertion in selected simplex elements having either large approximation error
(based on hierarchical surplus error estimate) or large probability weight. The p-refinement is constructed
including neighboring nodes [43]. This approach is effective in representing strongly non-linear or discontinuous
response surfaces, provide a natural support for correlated uncertain variables and scales reasonably well for
up to 10-dimensional spaces.

3.1.3 Adjoint enhancement

Two approaches have been pursued for adjoint enhancement in this project. First, polynomial regression for
PCE can be readily adapted to include additional derivative matching conditions. In this straightforward
implicit approach, matrix conditioning can be a limiting factor (Figure 1(a)) leading to increased solution
error with higher-order bases (Figure 1(b)). Second, a novel approach for gradient-enhanced interpolation has
been developed [9] in which type 1 and type 2 interpolation polynomials are employed to explicitly interpolate
value and derivative data:

f(ξ) ∼=
Np∑
j=1

[
fjH

(1)
j (ξ) +

n∑
k=1

dfj
dξk

H
(2)
jk (ξ)

]
(1)

While global Hermite interpolation polynomials have exhibited instability during basis generation (Figure 1(c)),
local cubic splines are stable. Figure 2 compares the use of local linear interpolants and cubic Hermite spline
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interpolants for smooth and nonsmooth test problems, in which the preference for global basis polynomials in
smooth problems and for local basis polynomials in nonsmooth problems is evident.

(a) Regression PCE: ill-conditioning. (b) Regression PCE: loss of accuracy. (c) Global Hermite SC: basis generation
instability.

Figure 1: Ill-conditioning and instability in gradient-enhancement.

(a) Smooth. (b) Nonsmooth.

Figure 2: Comparison of convergence rates for global and local basis functions.

In addition, recent efforts in local h-refinement and compressive sensing are also targeting the inclusion of
local adjoint-gradient information for informing global stochastic approximations formed in high dimensions.
In the former case, this involves hierarchical gradient surpluses, and in the latter case, this involves inclusion
of gradient matching conditions within L1 error minimization approaches.

3.1.4 Structured vs. unstructured polynomial chaos

A comparison between structured sparse grids (SG, with global uniform or local uniform/adaptive refinement)
and unstructured stochastic simplex collocation (SSC with uniform/adaptive refinement) methods has been
carried out for a number of analytical test functions. Two examples are reported in Fig. 3. The first one
corresponds to the Rosenbrock function defined as f(ξ1, ξ2) = 100(ξ2 + ξ2

1)2 + (1− ξ2
1) while the second is

Sobol’s g-function: g(ξ1, ξ2) = |4ξ1− 2|(|4ξ2− 2|+ 1)/2. In both cases ξ1 and ξ2 are two i.i.d. uniform random
variables. The results show the convergence of various methods in terms of the error in the expected value of
f and g by using an increasing number of function evaluations to build the response.

3.1.5 New direction: compressive sensing methodology

Work was also initiated in a compressive sensing approach that targets computation of the sparsest polynomial
chaos basis representation given limited sample data and specified accuracy constraints. Initial investigations
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(a) Rosenbrock. (b) Sobol.

Figure 3: Convergence comparison for structured and unstructured UQ methods on analytical test functions.

have identified the Approximate Message Passing (AMP) algorithm [6] as a viable and competitive approach
for solving L1 minimization problems. This technique was also compared with more traditional Basis Pursuit
algorithms [38].

3.2 Handling multiple model forms

Issues of model form are prevalent in wind turbine simulation. Production simulations are needed for use
in industry that have fast turnaround on workstation-class compute resources. These tools are quite useful
within the regimes for which their simplifying approximations are valid, but new questions regarding turbine
reliability, fatigue, and failure require higher fidelity tools that must account for more complex physics,
such as models for predicting loads from turbulent boundary layers. This situation highlights two distinct
situations involving model form: (1) there is a clear hierarchy of low and high fidelity (e.g., the tools described
in Section 4), or (2) there exists an ensemble of models (e.g., turbulence models for RANS or LES) that, in
the absence of sufficient data to perform model selection, contribute additional epistemic uncertainty.

3.2.1 Multifidelity UQ

In the former case of a hierarchy of model fidelity, the UQ problem can be posed as one for which we seek
statistics for the high fidelity (HF) model, but wish to leverage the less expensive low fidelity (LF) model to
reduce the number of HF simulations and thereby reduce the overall expense of the study.

By forming a separate stochastic model for the discrepancy between LF and HF predictions, we can
develop a highly-resolved stochastic model of the LF model due to its lower cost and then utilize a much
lower resolution model of the discrepancy (Nhi << Nlo):

f̂hi(ξ) =

Nlo∑
j=1

flo(ξj)Lj(ξ) +

Nhi∑
j=1

∆f(ξj)Lj(ξ) (2)

When the model discrepancy has lower complexity than the original HF model, then the multifidelity
convergence rate is accelerated, and when the variance of the discrepancy is reduced relative to the HF
variance, then the initial error is reduced (the convergence trajectory is offset). In addition, the adaptive
refinement approaches of Section 3.1.1 can be tailored for multifidelity problems. In particular, greedy
adaptation can be applied to refinement of either of the two terms on the right hand side of Eq. 2, with
normalization by relative cost. Then the candidate low fidelity or discrepancy increment that produces the
greatest normalized benefit in the statistical QOI is selected by the adaptation. Refer to [25] for full details.

More details are provided in a later section of this final report.
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3.3 Balancing errors

In pursuing high fidelity UQ, an error budget has been developed that includes contributions from limited
numerical accuracy in spatial and temporal discretization and incomplete characterization/propagation
of uncertainties. Discretization errors are estimated using adjoint-based methods [7], whereas errors in
uncertainty propagation is controlled using adaptive refinement. Based on these estimates, a decision-
making tool guides whether to invest additional resources in uncertainty resolution or spatial/temporal mesh
refinement.

Since the aleatory uncertainty samples and the numerical discretization errors in these samples are both
inputs to the error balancing process, the aleatoric UQ step provides the most suitable location to perform
the decision making. For the aleatoric UQ, we employ the Simplex Stochastic Collocation [43] method which
uses a multi-element discretization of the aleatoric parameter space based on simplex subdomains. The global
uncertainty error estimate is composed as the sum of local contributions within each simplex element, and for
each aleatoric sample, the spatial and temporal discretization errors are also evaluated. Starting with a few
samples in stochastic space, the spatial, temporal, and stochastic discretization errors are determined and the
largest contribution to the error is reduced until the total error falls below the desired threshold.

4 Wind turbine simulations

Existing low-fidelity wind simulation tools have provided an essential capability for rapid exploration of UQ
methodologies within the target application domain. During the first year of this project our efforts focused
on the setup of new UQ algorithms using these low fidelity tools as an initial testbed.

The computation of wind turbine loads and performance requires the development of comprehensive multi-
physics codes that represent the blade aerodynamics, structural deformations, noise generation, environmental
conditions, etc. We have leveraged existing tools developed by the National Renewable Energy Laboratory
(NREL) and Sandia. The NREL aero-elastic code FAST, which predicts the wind turbine aerodynamic
performance, loadings, and structural dynamics during operation in a variety of wind conditions, has been the
primary design code in several of these studies. We have also developed a Matlab-based driver, called EOLO
(described in detail in last year’s report), to integrate FAST with other physics modules. These low-fidelity
tools have been applied to representative wind turbine design and analysis problems incorporating UQ. In
addition, Sandia’s CACTUS suite of tools have also been leveraged for some of the calculations in this work.

In addition to low-fidelity tools, a variety of high-fidelity tools have been deployed to the project as a
mechanism to evaluate the validity of the low-fidelity tools. These tools include the use of time-spectral
methods and non-conformal sliding mesh algorithms using overset meshes.

4.1 Low fidelity: FAST, CACTUS

4.1.1 FAST 1.5 MW HAWT with steady inputs

In the first representative design problem, we consider a 1.5 MW utility-scale wind turbine operating in a
steady wind (no turbulence) with a sheared wind profile. The wind shear gives rise to cyclical aerodynamic
loads on the blades at a once-per-revolution frequency, as shown in Figure 4(b). In this case, the single
uncertain parameter of interest is the wind shear, the magnitude of which is given by a shear exponent. The
response function of interest is the amplitude of oscillation of the per-rev blade root bending moment. This
is a simple surrogate for fatigue loading of an actual wind turbine blade in a real environment. Long-term
meteorological data from a Great Plains wind site [42] were used to generate a distribution for the wind
shear exponent (Figure 4(a)). This distribution is bi-modal, with two strong peaks appearing in the density
function corresponding to unstable (by day) and stable (by night) atmospheric boundary layer conditions.

Figure 5 shows computational results for applying polynomial chaos expansion methods in DAKOTA to the
FAST 1.5MW model with uncertain wind shear, where it is evident that PCE obtains comparable PDF/CDF
results to 105 LHS samples at much lower cost (O(101 − 102) samples) and that the numerically-generated
orthogonal polynomial basis capability outperforms standard Wiener-Askey PCE approaches.
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(a) Wind shear probability distribution. (b) Time history of simulated wind turbine blade root
bending moment.

Figure 4: FAST 1.5 MW uncertain input parameter and representative simulation results.

(a) Output PDF. (b) Output CDF. (c) Convergence rates for CDF.

Figure 5: Uncertainty quantification results for the FAST 1.5 MW HAWT with bimodal wind shear input.
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4.1.2 FAST 1.5 MW HAWT with turbulent inputs

An important design driver for modern wind turbines is the fatigue loading resulting from turbulent wind
inflow. This design case is analyzed by performing a limited number of aero-elastic simulations with excitation
by a set of turbulent wind fields. This limited set of simulations is then used to estimate fatigue damage
over the entire life time of the turbine. We have set up a representative fatigue design problem using the
same 1.5 MW FAST model, but now operating within a modeled turbulent wind field. Initial results indicate
the presence of substantial noise in the fatigue damage response function, which is due to statistical error
from the limited amount of simulation performed. We also investigated UQ methods that remain robust with
respect to such non-smooth response functions [30].

4.1.3 CACTUS VAWT

An aerodynamic model for a horizontal-axis wind turbine is necessarily three-dimensional, since it is comprised
of two or three blades rotating about an axis parallel to the oncoming wind. A vertical-axis turbine (VAWT),
where the axis of rotation is normal to the wind vector, allows for a meaningful two-dimensional analysis
of one cross-section of the rotor. This makes the VAWT a useful bridging problem for investigation of UQ
methods employing high-fidelity simulation, since methods can be developed and verified using 2D problems
before extension to 3D. The VAWT has also been chosen as a testbed problem for multi-fidelity UQ methods.
In this case, the low-fidelity tool is CACTUS (Code for Axial and Crossflow TUrbine Simulation). CACTUS
is a three-dimensional potential flow code developed as Sandia that uses a lifting line/free-wave formulation
to generate predictions of rotor performance and unsteady blade loads.

4.2 Low fidelity: EOLO

The non-intrusive UQ algorithms presented above have been used in combination with EOLO to study
the effect of uncertainties in the wind conditions on the operating performance of a realistic 50kW wind
turbine in terms of power coefficient and overall noise level [31]. Three uncertain parameters are considered,
corresponding to wind velocity, turbulence intensity and wind angle; probability distributions associated with
these parameters are defined in terms of histograms constructed from actual wind measurements.

(a) Power coefficient. (b) Noise.

Figure 6: Effect of wind conditions variability on the performance of a 50kW wind turbine [31].

The results show that the performance penalty introduced by the uncertainties is considerable: up to
50% and 10% in terms of aerodynamic performance and noise respectively. More importantly the UQ
methodology applied (the simplex collocation) provides a quantification of the effects of the uncertainties
(and a corresponding error estimate) requiring only few EOLO solutions.
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4.3 High fidelity: time-spectral URANS

High-fidelity simulations in the current project involve unsteady Reynolds Averaged Navier–Stokes (URANS)
computations of VAWT flow fields. In our current approach, the temporal periodicity of VAWT flowfields is
exploited and the time-integration process is simplified by the use of the time-spectral method [14]. In this
approach, the time-derivative operation is replaced by a matrix-vector multiplication involving a mass-matrix
that couples the discrete time-instances. This allows for a solution of the entire system of equations using
standard steady-state acceleration techniques, and also simplifies the unsteady adjoint solutions.

For demonstration purposes, a single-bladed VAWT rotating at a corresponding Reynolds number of
67000 is considered. A tip-speed ratio (ratio of rotational velocity to free-stream velocity) of 7.5 is considered
and the rotational radius to chord ratio is 4.0. This specific case has been chosen as it closely corresponds to
measurements [59]. RANS simulation with the Spalart-Allmaras turbulence model is employed. Figure 7(a)
shows the comparison of the time-spectral method (using 16 instances) with the full time marching method
(second order backwards differencing) that uses 128 time-steps per period of revolution (and 7 revolutions
before periodic steady state is achieved). The time-spectral method is seen to capture the essential features
to a good level of accuracy. For this configuration, using a 64 instance time spectral method as a reference
solution, the adjoint method was able to estimate 60% of the relative error (between the reference solution
and the 16 instance solution). For purposes of validation, Figure 7(b) compares the present calculations to
experimental measurements. It has to be mentioned that the present computations are two-dimensional,
whereas the experiments used a short aspect ratio blade.
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(b) Comparison of computation and experiments.

Figure 7: Comparison of Normal force coefficients.

4.4 High fidelity: SIERRA Mechanics

High fidelity simulations for wind energy applications inherently involve the requirement to solve the turbulent
form of low Mach Navier Stokes equation set. The underlying mesh should be adequate to resolve the
boundary layers on the blades all in the context of a rotating blade scenario. The core methodolody explored
in the SIERRA Mechanics suite involves the use of sliding mesh boundaries between the inner VAWT mesh
and the outer free stream mesh. The sliding mesh algorithm combines the Control Volume Finite Element
method at interior domains with a discontinuous Galerkin (DG) implementation at the nonconformal mesh
interface [5]. The low Mach number numerical scheme uses equal-order interpolation and a monolithic flow
solver using explicit pressure stabilization. Details can be found in [5].

An initial proof of concept simulation study was performed for a VAWT geometry of interest to Sandia
whereby the cross wind magnitude was varied in a fixed tip speed configuration of 40 m/s. Three different
cross winds were used, 3, 5 and 8 m/s from which the integrated surface traction was computed (Fig. 8(b)).
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The mesh outlining the three blade configuration along with the viscous surface traction at the leading edge
for the three cross wind configurations are shown in Fig. 8(a). Efforts are now centered on transitioning
the sliding mesh low Mach algorithm from a monolithic approach to a pressure projection scheme so that
computational times can be reduced. Moreover, a VAWT validation case has been identified [36].
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Figure 8: SNL VAWT geometry and leading edge viscous surface traction for three cross wind velocities.

Sandia has continued the work that is related to this part of the overall effort and further details will be
reported in their separate final report. No additional results related to the Sandia Large-eddy simulations are
reported here.

5 Use of Adjoints for Spatial, Temporal, and Stochastic Error
Estimation

Approaches to quantifying numerical error in the context of Finite Elements have been pursued for the
past two decades [47, 48, 49], primarily with the objective of providing an indicator of the local contri-
bution to the functional error. Pierce and Giles [50] presented a generic framework applicable to finite
element/volume/difference based discretizations, that demonstrated super convergent functional estimates
by adding a correction term based on the adjoint (or a dual) of the original governing equations. Venditti
and Darmofal [51] proposed an algebraic equivalent of the Pierce and Giles [50] approach. This approach
also utilizes the adjoint equations and the functional error on the baseline mesh is improved by computing
an estimate of the functional on a refined mesh. The current work pursues the approach of Venditti and
Darmofal because of its discrete nature, but extends it to the estimation, budgeting and control of spatial,
temporal and stochastic errors.

Most wind turbine simulations result in unsteady periodic flows. The time-spectral method [52, 53] has
proved to be efficient in the simulation of such flows. The basic idea of the time-spectral method is to have a
Fourier representation of the time-derivative term of the unsteady flow equation to take advantage of the
periodicity. When transformed back to the physical domain, the time derivative term appears as a high-order
central difference formula coupling all the time levels. The solution can then be obtained by marching towards
a steady-state in an auxiliary pseudo-time variable. One of the major advantages of the time-spectral method
is that it makes the adjoint method applicable to unsteady flow simulations. In addition, the error estimation
procedure of Venditti and Darmofal can be easily extended to time refinement. Hence, the current work will
use this approach.

Duraisamy et al. [54] proposed a framework based on the use of adjoint equations to formulate an adaptive
sampling strategy for uncertainty quantification for problems governed by algebraic or differential equations
involving random parameters. The approach makes use of discrete sampling based on collocation on simplex
elements in stochastic space. Adjoint or dual equations are introduced to estimate errors resulting from the
inexact reconstruction of the solution within the simplex elements.
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The current work attempts to carefully evaluate the aforementioned error estimation strategies in spatial,
temporal and stochastic space for wind turbine applications. Such estimates can help budget the computational
resources towards improving accuracy in regions of high errors and provide a basis for adaptive sampling in
stochastic space.

5.1 Flow Solver

The flow is computed with the compressible, multi-block, structured, cell-centered, parallel RANS flow solver
SUmb (Stanford University multi-block), developed at Stanford University under the sponsorship of the
Department of Energy’s Advanced Simulation and Computing Program. The inviscid fluxes are discretized
using an upwind scheme in combination with the approximate Riemann solver of Roe [55]. The overshoots in
the MUSCL reconstruction are avoided by applying the Van Albada limiter. Time integration is performed
using the time-spectral method described earlier. Convergence is accelerated using a multigrid strategy in
combination with local time stepping and a 5-stage Runge Kutta time integration scheme.

5.2 Adjoint Formulation

Consider a system of discrete equations obtained by applying a numerical scheme to the partial differential
equations governing the system, written in a compact form as:

R(U(~x)) = 0, (3)

where U represents the state vector of the unknowns in the space-time domain, ~x ∈ Ω, that has a
dimension of Nx ×Ny ×Nz ×Nt, where Nx, Ny and Nz, are the spatial dimensions and Nt is the number of
time-spectral instances. Let f(U) be a functional of interest. The discrete adjoint equation can be written as:[

∂R

∂U

]T
Ψ = −

[
∂f

∂U

]T
, (4)

where Ψ is the adjoint variable.
A discrete adjoint solver to solve the above system of equations was implemented in SUmb by Mader [56].

The system is solved using PETSc (the Portable, Extensible Toolkit for Scientific computation) [57] and their
preconditioned GMRES solver.

5.2.1 Stochastic Expansions

The adjoint formulation was extended to stochastic spaces by Duraisamy et al. [54]. The governing equation
in eqn. 3 can be rewritten as:

R(U(~x, ~ξ)) = 0, (5)

where the quantity ~ξ ∈ Ωs represents the random/uncertain variables with dimension Nξ. In the stochastic
space, the mean of the functional is considered as the objective function and is given by the expression:

J(U) =

∫
Ωs

f(U)dξ, (6)

and the treatment of higher moments is straightforward within this framework. In order to compute the above
integral, the random space Ωs is divided into NE simplex elements, consisting of NS vertices. The stochastic
problem is converted to a deterministic problem corresponding to the NS realizations of the random variables
and the objective function is computed by performing a quadrature on the simplex elements

J(U) =

NE∑
i=1

∫
Ei

f(U)dξ, (7)

where, Ei represents a division of the random space Ωs into NE simplex elements. Unfortunately, the
random solution U is available only at the vertices of the simplex elements. In order to perform the quadrature,
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an approximation Ũ is constructed using the solution at the vertices of the simplex elements using finite
element techniques.

5.3 Spatial and Temporal Error Estimation

Consider a baseline (or coarse) space-time domain ΩH and a fine space-time domain Ωh which can be obtained,
for instance, by isotropically refining the baseline mesh or by increasing the number of time-spectral instances
or by combining both space and time refinement. The goal of this approach is to obtain an accurate estimate
of some functional f(Uh) on the fine domain based on the time-spectral flow and adjoint solutions on the
coarse domain. To enable this estimation, the flow and adjoint solutions computed on the coarse domain have
to be interpolated onto the fine domain (the interpolations are represented by UHh and IHh ΨH , respectively).
Assuming linearity and expanding the functional and residual about UHh ,

f(Uh) = f(UHh ) +
∂f

∂U

∣∣∣∣
UHh

(Uh − UHh ), (8)

R(Uh) = R(UHh ) +
∂R

∂U

∣∣∣∣
UHh

(Uh − UHh ). (9)

If a discrete numerical scheme can ensure (to machine precision) R(Uh) = 0, one can write

f(Uh) = f(UHh ) +
∂f

∂U

∣∣∣∣
UHh

(Uh − UHh ) + (IHh ΨH)T
[
R(Uh)−R(UHh ) +R(UHh )

]
= f(UHh ) +

[
∂f

∂U

∣∣∣∣
UHh

+ (IHh ΨH)T
∂R

∂U

∣∣∣∣
UHh

]
(Uh − UHh ) + (IHh ΨH)TR(UHh ). (10)

Now, define the adjoint residual operator as

RΨ =
∂f

∂U

∣∣∣∣
UHh

+ (IHh ΨH)T
∂R

∂U

∣∣∣∣
UHh

. (11)

This leads to the expression derived by Venditti and Darmofal [51] for the estimate of numerical error:

f(Uh) = f(UHh ) + (IHh ΨH)TR(UHh ) +RΨ(Uh − UHh )

= f(UHh ) + εcc + εre. (12)

In the above equation, the first two terms can be evaluated by post-processing the coarse domain flow
and adjoint solutions, while the third term is not computable. For the error estimation to be accurate, it
would be desirable for |εre|, the remaining error term, to be small relative to |εcc|, the computable error. A
possible way of achieving this could via mesh adaptation and temporal refinement.

5.4 Stochastic Error Estimation

In computing the statistical average [58], the integral in eqn. 7 is approximated using a quadrature on simplex
elements which is exact for polynomials of degree s,

J ≈
NE∑
i=1

Nq∑
j=1

wijf(Uij)) +O(∆ξs+1). (13)

For the purpose of clarity, the subscripts (.)ij will be used to denote the value of the quantity (.) at the jth

Gaussian quadrature point in element i. The quantities f , U and R can depend explicitly on the stochastic
variables without changing the formulation, but the dependence is not indicated for the purpose of clarity.
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Note that U is known only at the vertices of the simplices, ξk, k = 1, ..., Ns. Using these vertex values of
U , the solution can be reconstructed at the Gaussian points using either a linear or quadratic reconstruction
technique. If the reconstructed flow and adjoint solutions are Ũ and Ψ̃, respectively, and assuming linearity,

f(Uij) = f(Ũij) +
∂f

∂U
(Ũij)(Uij − Ũij). (14)

Since R(Uij) = 0, then

f(Uij) = f(Ũij) +
∂f

∂U
(Ũij)(Uij − Ũij) + Ψ̃T

ij

[
R(Uij)−R(Ũij) +R(Ũij)

]
= f(Ũij) + Ψ̃T

ijR(Ũij) +

[
∂f

∂U
(Ũij) + Ψ̃T

ij

∂R

∂U
(Ũij)

]
(Uij − Ũij)

= f(Ũij) + εcc + εre. (15)

Note that the procedure mirrors the spatial error estimation procedure of Venditti et al. [51]. The first
two terms in the above equation are computable, while the third term is not. If the remaining error is small,
the mean value of the functional is given by

J ≈
NE∑
i=1

Nq∑
j=1

wij

{
f(Ũij)) + Ψ̃T

ijR(Ũij)
}
. (16)

5.5 Sample Results

The primary test case chosen for the validation of the described procedure is the experimental setup of Oler
et al. [59]. The setup consists of a one-bladed vertical axis wind turbine operating in a water tank. The blade
uses a NACA0015 airfoil and has a chord length of 15.24cm. The rotor diameter is 122cm, making the chord
to radius ratio (c/R) to be 0.25. The rotor operates at a tip speed of 45.7cm/s, yielding a blade Reynolds
number of 67000. Measurement were made at three different tip to wind-speed ratio (TSR) of 2.5, 5.0 and
7.5. The schematic of the flow is shown in Fig. 9(a).

Simulations are performed at a TSR of 7.5 in 2D. To avoid issues with low Mach number simulation
using the compressible solver, the rotational Mach number is set to 0.225 (which is still in the incompressible
regime). Therefore, the freestream Mach number is 0.03. The baseline grid used for the simulation is a

(a) Flow schematic (b) Mesh

Figure 9: Flow schematic and computational mesh for vertical axis wind-turbine calculation.
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C-type grid with 229× 65 points and is shown in Fig. 9(b). Simulations are also done on a grid that is refined
in both directions to verify the error estimation.

5.5.1 Flow Solver Verification and Validation

Figure 10 shows the comparison of the predicted normal and tangential force coefficients as a function of
azimuth with the experimental data. Shown are the results from inviscid and viscous simulations. The
normal force predicted by the CFD is within 10% of the experimental value for both viscous and inviscid
calculations. On the other hand, as expected the tangential force prediction has higher discrepancy using
the inviscid calculation. However, since the focus of this initial effort is on numerical error estimation, the
inviscid setup should serve a good first step for basic validation of the error estimation procedure.

In Fig. 11, the results from time spectral calculation are compared against those of the time marching
calculation. The inviscid results using 16 and 32 time-spectral intervals, as well those from the time marching
simulation using 256 time steps are shown. Clearly, the time spectral solution is seen to converge to the time
marching result when the number of time instances is increased.

5.5.2 Verification of Adjoints

To verify the adjoint solution, the sensitivity of the tangential force (averaged over one period) with respect
to the freestream Mach number is computed using adjoints and compared with finite difference estimation.
Table 1 compares the results obtained using 16 time-spectral intervals.

Average Tangential force (FT ) dFT /dM∞
Adjoints Finite difference

0.4324 43.9425 44.2016

Table 1: Comparison of sensitivities using adjoints and finite difference.

5.5.3 Error Estimation

Spatial Estimation

(a) Normal force coefficient (b) Tangential force coefficient

Figure 10: Comparison of force time histories between CFD and experiment.
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(a) Normal force coefficient (b) Tangential force coefficient

Figure 11: Comparison of force time histories for different time spectral instances.

To verify the accuracy of the spatial error estimation approach, a steady flow at 10◦ angle of attack past
the NACA0015 airfoil is considered for the initial verification. The flow is again assumed to be inviscid and
the freestream Mach number is set to 0.15. The functional is chosen to be the lift coefficient and the error
estimation is performed on two levels of grid refinement, the baseline grid being the same as that used for the
Oler simulation. The results are shown in table 2. Clearly, the spatial error estimation is able to recover most
of error arising due to inadequate spatial resolution.

Cl Error Estimate % Actual Error
Baseline Grid 1.2223 0.0099 77.7

Fine Grid 1.2350 0.0019 125.3
Superfine Grid 1.2366 −

Table 2: Spatial error estimation results on lift coefficient for steady flow past NACA0015 airfoil.

Spatial and Temporal Estimation
To verify the spatial and temporal error estimation, a simulation of the Oler case using 16 time-spectral

intervals is used as a baseline. Both flow and adjoint solutions are obtained on this domain. To obtain a
spatial error estimate, the baseline solution is interpolated onto a finer grid (refined in both directions), while
keeping the number of time instances same. For temporal error estimation, the baseline solution is spectrally
interpolated onto 32 time intervals, but the spatial grid is frozen. To obtain a combined space-time error
estimate, the solution is interpolated both onto the fine grid and onto finer time intervals. The corresponding
flow solution is simulated on the finer domain to verify the accuracy of the error estimates. Table 3 tabulates
various spatial and temporal error estimation results on the average tangential force.

From table 3, it is seen that the temporal error estimation recovers only 12.36% of the actual error, while
the spatial error estimation recovers 52.87% of the actual error. Interestingly, the combined space and time
error estimation recovers 101.2% of the error. The space and time error estimation, while requiring more
tests, is confirmed to be suitable to provide reliable adaptation indicators.

Stochastic Error Estimation
For an initial verification of the stochastic error estimation, the variation in wind speed is considered as

the only random variable. The freestream velocity is allowed to vary in the Mach number range of 0.025
to 0.035. Note that the spatial and temporal error estimation was done at a freestream Mach number of
0.03. The mean value of the power is taken to be the objective function. To evaluate the objective function,
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Error Estimate
Time Intervals FT Time Space Space & Time

Baseline Grid
16 0.4324 0.0113 0.4491 0.4602
32 0.5238 - - -

Fine Grid
16 1.2818 - - -
32 0.8871 - - -

Table 3: Spatial and temporal error estimation results on average tangential force.

flow solutions are obtained at 3 sampling points distributed uniformly in the above mentioned freestream
range, as well as along the 5-point quadrature locations of the same range. In addition, adjoint solutions are
obtained at the three sampling points. To obtain the error estimation, the flow and adjoint solutions from
the sampling points are interpolated onto the 5-point quadrature locations using a spline fit.

Stochastic Integration Value Error Estimate
3-point 1.66247 4× 10−4

5-point 1.66286 -

Table 4: Stochastic error estimation results on power.

It is seen that the procedure is able to provide a good estimate of this small error magnitude, but further
verification needs to be done for better confidence.

6 Multi-Fidelity UQ Application to a Vertical Axis Wind Turbine
Under an Extreme Gust

Designing better vertical axis wind turbines (VAWTs) requires considering the uncertain wind conditions they
operate in and quantifying the effect of such uncertainties. We study the effect of an uncertain extreme gust
on the maximum forces on the blades of the VAWT. The gust is parametrized by three random variables that
control its location, length, and amplitude. We propose a multi-fidelity approach to uncertainty quantification
that uses polynomial chaos to create an approximation to the high-fidelity statistics via a correction function
based on the difference between high and low-fidelity simulations. We found the proposed multi-fidelity
method provides better estimates of maximum forces statistics with fewer number of high-fidelity simulations
than those required by the high-fidelity method. Also, we developed a practical method to simulate a gust, in
a CFD solver, that changes its magnitude in the flow direction by combining the field velocity method (FVM)
and the geometric conservation law (GCL). The ability to study the effect of the gust with the high-fidelity
(CFD) solver is crucial as the low-fidelity (blade element/vortex lattice) solver underestimates the effect of
the gust on the maximum forces.

6.1 Introduction

Quantifying the response of a wind turbine to an extreme wind gust is an important design requirement[1].
The aerodynamics of the gust interacting with the turbine blades are complex and difficult to model because
of dynamic stall[39]. Different simulation tools can be used to model the interaction of the gust with the
turbine blades. These models can be classified as “high-fidelity” or “low-fidelity”. A high-fidelity model will
accurately simulate the gust and blade interaction but at a high computational cost; whereas, a low-fidelity
model will provide a less accurate simulation but at a low computational cost.

Low-fidelity tools are used extensively in the modeling of vertical axis wind turbines (VAWTs)[15, 34, 33]
because of their low computational cost and relative good accuracy for normal operating conditions. However,
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their performance will be degraded in the presence of the gust[39].
In current practice, only a single “most likely” extreme gust event is simulated. Whereas, in reality, the

extreme gust is stochastic[40, 20] and failure to account for the variability or uncertainty in the gust can
lead to either over-conservative designs or, in some cases, under-design. Many simulations are needed to
properly quantify the effect of the uncertain gust on the wind turbine. Using only a cheap low-fidelity model
to perform the many simulations will likely not result in accurate statistics and relying exclusively on the
high-fidelity model will give us accurate statistics but at a high cost.

Here we explore the use of multi-fidelity uncertainty quantification in order to reduce the computational
cost of obtaining accurate statistics of the maximum forces on the wind turbine blades by combining a small
number of high fidelity simulations with a large number of low-fidelity simulations (section 6.4.3). The
multi-fidelity uncertainty quantification approach is similar to previous work in Ref. [24], but here we apply
it to a more complex problem and for which the low-fidelity model is not a very good replacement of the
high-fidelity model.

In this work, we consider a computational fluid dynamics (CFD) solver as the high-fidelity tool and a
blade element/vortex lattice aerodynamic model as the low-fidelity tool. To the best of our knowledge we
perform the first practical CFD simulation of an extreme wind gust with a wind turbine. This is done by
combining the Field Velocity Method (FVM) with the Geometric Conservation Law (GCL) (section 6.3.1).

The uncertain gust and the vertical axis wind turbine considered in this problem are described in section 6.2.
The the high and low-fidelity simulation tools are described in section 6.3.1. The uncertainty quantification
method is described in section 6.4 and the results follow in section 6.5

6.2 Problem definition: The uncertain gust and the VAWT

For an extreme gust, the shape, size, and position are uncertain. Here we take the gust shape as fixed and
treat the variables that determine the size and position of the gust in a probabilistic setting to properly
determine the output distribution and statistics for the maximum loads. The extreme gust shape we use is
the one specified in the IEC standard[1]

ug(x) =

{
U∞ − 0.37ue sin

(
3π(x−x0)

Lg

) [
1− cos

(
2π(x−x0)

Lg

)]
, if 0 ≤ x− x0 ≤ Lg;

U∞, otherwise;
(17)

where U∞ is the average free-stream velocity, x0 is the gust starting position, Lg is the gust length, and ue is
the gust amplitude. An example of this gust is shown in fig. 12.

6.2.1 Uncertain variables

For the fixed gust shape given by eq. (17), we treat its parameters (x0, Lg, ue) as uncertain variables that
follow the probability distributions listed in table 5 and consider the mean wind speed U∞ fixed at 8.5 m/s.
For the particular turbine considered in this work (section 6.2.5 and table 6), the numerical values of the
variables of the distributions are also listed in table 5, and the corresponding probability distribution functions
are shown in fig. 13.

6.2.2 Gust starting position x0

The gust starting position x0 follows a uniform distribution in the interval [−246.86 m,−179 m] that accounts
for all possible interactions of the gust with the turbine blades. The x = 0 m position is at the turbine center
of rotation.

6.2.3 Gust length Lg

The gust length Lg follows a normal distribution with mean µLg = U∞Tg, where the gust time scale
(Tg = 10.5 s) is the deterministic value given in the IEC standard. For the standard deviation, we picked a
reasonable estimate of 10% of the mean value, σLg = 0.1µLg .
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Figure 12: Example of an extreme gust with gust parameters (x0, Lg, ue).

Uncertain parameter Probability distribution Distribution variables

x0
Uniform (a, b)

a = −246.86 m, b = −179 m
f(x0) = 1

b−a

Lg
Normal (µ, σ)

µ = 89.25 m, σ = 8.925 m
f(Lg) = 1√

2πσ
e−

1
2 (
Lg−µ
σ )2

ue
Gumbel (α, β)

α = 1.14, β = 11.24
f(ζ)†= α exp[−e−α(ζ−β)]e−α(ζ−β)

Table 5: Uncertain parameters for the extreme gust and their probability distributions.
The values of the distribution variables are for the particular turbine considered in this
work (see table 6).
† The gust amplitude is obtained from ue = σuζ.
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(c) Gumbel distribution for the gust amplitude.

Figure 13: Probability distributions for the uncertain variables.
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(a) The 5 MW VAWT. (b) A schematic of a 2D horizontal slice of the VAWT.

Figure 14: The vertical axis wind turbine and a schematic for the two-dimensional horizontal slice through
the tips of the VAWT considered in this work.

6.2.4 Gust amplitude ue

The gust amplitude ue follows a gumbel distribution. This gumbel distribution can be derived from the wind
climate given in the IEC standard as shown in detail in Larsen and Hansen[20]. Here we briefly describe how
to obtain the parameters (α, β) that determine the Gumbel distribution,

f(ζ) = α exp[−e−α(ζ−β)]e−α(ζ−β), α =
1

2C(z)
, β = 2C(z) ln(Tκ), (18)

where ζ = ue/σu is the gust amplitude normalized by the standard deviation of the wind velocity, and T is the
recurrence period for an extreme gust. We set T = 50 years, which is a common value in wind turbine design.
Expressions for the standard deviation of the wind velocity σu, the terrain and altitude dependent empirical
constant C(z), and the expected rate of local extremes κ, can be found in Larsen and Hansen[20]. These
expressions depend on the particular geometry and operating conditions of the turbine. Using the turbine
considered in this work (section 6.2.5 and table 6) we obtain the distribution variables listed in table 5 and
the probability distribution for ζ and then ue (ue = σuζ) that is shown in fig. 13(c).

6.2.5 VAWT description

The wind turbine considered is a preliminary design generated at Sandia National Laboratories for a 3-bladed,
5 MW, offshore vertical-axis wind turbine (VAWT) (fig. 14(a)). The maximum rotor radius is 54 meters,
and the rotor height measured from the bottom blade attachment point to the blade tips is 104.7 meters. A
central tower extends from the rotor base to 70% of the rotor height, and is attached to the blades via three
support struts. The present analysis considers a two-dimensional horizontal slice through the rotor at the
blade tips (fig. 14(b)). This is the region of most interest from the aerodynamics perspective, given that this
is the location where the maximum forces are generated per unit span. The blade chord at this location is 2
meters, with the blade attachment point located at 25% of the chord (measured from the leading edge). The
airfoil section is a SNL 0018/50, a natural laminar flow airfoil developed specifically for VAWTs. The design
RPM at rated power for this turbine is 7.4 RPM. A summary of the geometry and the operating conditions
for the VAWT are listed in table 6.

6.3 Methods: Modeling the gust and uncertainty quantification

In this section we describe the two important ideas put forth in this paper 1) a practical method to simulate
a wind gust for wind turbine applications in a CFD solver and 2) a multi-fidelity approach to uncertainty
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Turbine data Specification

Operating data

Rated capacity (MW) 5
Terrain type Offshore
Average wind speed U∞ (m/s) 8.5
Reynolds number 5.4× 106

Tip speed ratio λ 5

Geometry data

Number of rotor blades 3
Rotor diameter (m) 108
Blade chord c (m) 2.00
Blade attachment point 0.25c
Height from base of rotor (m) 104.7
Airfoil SNL 0018/50

Specific data to calculate ue (section 6.2.4)

Turbulence intensity Iref 0.16
Reference wind speed Uref (m/s) 37.5
Mean wind speed bin width (m/s) 2
Extreme gust recurrence period T (year) 50

Table 6: Vertical axis wind turbine description.

quantification. Also, we describe the low and high-fidelity tools used to simulate the wind turbine and we
describe polynomial chaos, the uncertainty quantification method the proposed multi-fidelity approach uses.

6.3.1 Modeling of the gust interaction with the VAWT

The are many aerodynamic models available to simulate a wind turbine [15, 34, 33, 19, 22, 37], ranging from
simple analytic models all the way to Direct Numerical Simulation (DNS), where each model depending on
the context can be considered a high-fidelity or low-fidelity model. For this paper we consider the Euler
equations in SU2 (a CFD solver) as the high-fidelity model and CACTUS, a blade element/vortex lattice
aerodynamic solver, as the low-fidelity model. The difference in simulation time between SU2 and CACTUS
(1 simulation takes 1 min on 1 processor) is around 3 orders of magnitude. These models are described below
as well as how to model a gust in SU2. The modeling of the gust in a CFD solver (SU2) is not a straight
forward task for this reason a subsection is devoted to introduce a practical method to model the gust. On
the other hand modeling the gust in a low-fidelity tool such as CACTUS is straightforward, all that is needed
is to modify the free-stream velocity as a function of time.

SU2- High-fidelity model

The high-fidelity model is Stanford University Unstructured (SU2)[27]. SU2 is a C++ software suite
developed for the specific task of solving partial differential equations (PDE) and PDE-constrained optimization
problems on general unstructured meshes. The computational fluids dynamics (CFD) solver in SU2 suite has
been used and validated for many aerospace engineering applications[28].

In this work we use the compressible two-dimensional Euler equations to model the aerodynamics of the
gust interacting with the vertical axis wind turbine. We use the Euler solver in SU2 as opposed to the RANS
solver, because of the cheaper computational cost without a significant loss of accuracy for our problem.

The Euler equations are solved on a domain Ω ⊂ R2, with airfoil boundaries S and far-field boundary Γ∞,

∂tU + ∂xF + ∂yG = 0, in Ω ,

(~u− ~xt) · ~nS = 0, on S,

W+ = W∞, on Γ∞,

(19)
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where

U =


ρ
ρu
ρv
ρE

 , F =


ρ(u− xt)

ρu(u− xt) + p
ρv(u− xt)

ρE(u− xt) + pu

 , G =


ρ(v − yt)
ρu(v − yt)

ρv(v − yt) + p
ρE(v − yt) + pv

 ,
ρ is the fluid density, ~u = [u, v]T is the fluid velocity in a cartesian coordinate system, ~xt = [xt, yt]

T is the
boundary velocity (mesh velocitiy after discretization), E is the total energy per unit mass, and p is the
static pressure

p = (γ − 1)ρ

(
E − 1

2
(u2 + v2)

)
.

The second line of eq. (19) represents the flow tangency condition at a solid wall, and the third line represents
a characteristic-based boundary condition at the far-field where the fluid state at the boundary is updated
using the state at infinity depending on the sign of the eigenvalues.

In the numerical implementation, the Euler equations eq. (19) are discretized using a standard edge-based
finite volume formulation on the dual grid, obtained by applying the integral formulation of the equations
to a dual grid control volume surrounding any given node of the grid and performing an exact integration
around the outer boundary of this control volume. The convective flux is discretized using a central scheme
with JST-type artificial dissipation.[18] Time integration is implicit and handled by a second-order accurate
dual-time stepping approach.[17]

CACTUS - Low-fidelity model
The low-fidelity model is CACTUS, the Code for Axial and Crossflow Turbine Simulation developed at

Sandia National Laboratories (SNL).[23] CACTUS simulates the performance and loads of a wind turbine
rotor in the time domain using a blade element/vortex lattice aerodynamic model. The rotor blades are
discretized into blade element sections, where each section is assigned two-dimensional airfoil performance
characteristics in the form of tables containing lift, drag, and moment coefficient vs. angle of attack. CACTUS
also incorporates unsteady aerodynamic blade load effects such as dynamic stall, apparent mass and blade
rotation effects. For the wake flow field, CACTUS uses a potential flow model comprised of free vortex line
elements shed and trailed from each blade element at each time step.

Gust modeling in a CFD solver (SU2)
Modeling a wind gust in a CFD solver is non-trivial. Initializing the gust in the flow field or specifying

the gust as a time-dependent boundary condition (this approach is used for the low-fidelity tool) will not
work. The reason for this is that the specified gust should satisfy the Euler equations eq. (19) or at least the

gust velocity field ~Vg should be divergence free ∇ · ~Vg = 0. The extreme gust, specified in the IEC standard,
and considered here

~Vg =

[
ug(x) = eq. (17)

vg = 0

]
, (20)

changes its magnitude in the free-stream direction and has non-zero divergence

∇ · ~Vg = ∂xug + ∂yvg = ∂xug(x) 6= 0. (21)

In the rest of this section we describe a practical method that will allow us to simulate a gust that changes
its magnitude in the free-stream direction and whose velocity field has non-zero divergence.

Even though the wind turbine gust has non-zero divergence, there are divergence free gusts in aerospace
applications and efficient methods to simulate them have been developed. Two examples are a gust whose
magnitude changes are perpendicular to the free-stream, which is used for gust alleviation studies in aircraft
and a vortex gust used to study blade vortex interactions that occur in rotorcraft. An efficient method used
to study the effect of these divergence free gusts is the Field Velocity Method (FVM)[32, 29, 35, 46, 3]. This
method prescribes the gust as grid velocities which alleviates the problem of needing small cells everywhere
in the mesh in order to avoid the gust being dissipated. For a CFD code that already has the capability to
simulate moving meshes what is needed is to specify the gust as the negative of the grid velocity in the Euler
equations eq. (19), xt = −ug. Our case, has true grid velocities due to the rotation of the wind turbine, so
for cases with true grid velocities xttrue we would set xt = xttrue − ug.

Note that the FVM is not quite equivalent to the Euler equations because of the extra prescribed gust
velocity. Also, as the gust velocity is prescribed, only the effect of the gust on the body is captured, whereas
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the effect of the body on the gust is not. As long as the body does not affect the source of the gust which is
almost always the case and which is the case here, the FVM method works remarkably well [32, 29, 35, 46, 3].

Directly applying the FVM to the non-divergence free extreme gust causes non-physical behavior and the
method fails terribly. Using the recently developed Split Velocity Method (SVM)[41] an extension to the
FVM that captures the effect of the body on the gust by introducing additional source terms in eq. (19) also
does not work to simulate the gust.

When performing simulation with dynamic meshes (grid velocities) it has been shown that Geometric
Conservation Law (GCL)[4, 21, 11] should be satisfied for consistency in the governing equations. Usually
adding GCL provides a slight improvement in accuracy.

Here we found that satisfying the GCL is crucial when using the FVM method, as this combination
allows us to successfully simulate the extreme gust and in fact any non-divergence free gust. To our surprise
combining the GCL with the SVM does not work.

In summary, a practical method to model a gust that changes magnitude in the free-stream direction (a
non divergence free gust) requires the use of the field velocity method in combination with the geometric
conservation law.

6.4 A multi-fidelity approach to propagating the gust uncertainty

Uncertainty quantification (UQ) is the process of 1) characterizing input uncertainties, 2) propagating these
uncertainties through a computational model, and 3) quantifying the effect of the input uncertainties on the
output(s) of interest. In essence, uncertainty quantification aims to gain a quantitative understanding of how
variations in the inputs of a model affect the outputs. For instance, how do the uncertain gust parameters
affect the maximum load on the turbine. The first step of characterizing the input uncertainties was done in
section 6.2 and the last step of characterizing the output of interest is done in the results section (section 6.5).
In this section, we describe a novel approach to the second step of propagating the uncertainties by using
computational models of different fidelities.

Different methods for performing the propagation of the input uncertainties depend on the type of the
input uncertainties, either epistemic or aleatory. Epistemic uncertainties are a result of our lack of knowledge.
Aleatory uncertainties, which are the ones we consider in this paper, are a result of their natural inherent
variability, such as the wind speed. Because aleatory uncertainties are variable, they are analyzed with
probabilistic methods and described by probability distributions.

A common way to study the effect of a probabilistic input on the output of a model is by Monte Carlo
simulations (MC) or similar sampling methods, but one of their drawbacks is that many simulations of
the model are needed to obtain accurate statistics of the outputs. Another approach is to use a stochastic
expansion method, such as polynomial chaos (PC). In polynomial chaos, to approximate the statistics of the
outputs a polynomial function is constructed that maps the uncertain inputs to the outputs of interest.

In this work, we use polynomial chaos, as opposed to Monte Carlo, because the functional relationship
provided by polynomial chaos can be used to combine different levels of simulation fidelity (see section 6.4.3)
and accurate statistics on the output can be obtained in many fewer simulations using polynomial chaos for
problems with few uncertain variables, which is the case in this study.

6.4.1 Description of the 1D polynomial chaos method

Polynomial chaos is a method of propagating the uncertainties in a model’s inputs to the model’s outputs, by
constructing a polynomial approximation to the model’s response to stochastic input parameters ξ,

R(ξ) ≈ R̂(ξ) =

P∑
i=0

αiφi(ξ), (22)

where the larger the polynomial order P the closer the approximation R̂(ξ) is to the true response R(ξ). The
basis functions φi(ξ) are known orthogonal polynomials and the coefficients αi are what need to be estimated
in the polynomial chaos method. One approach to calculate the PC coefficients αi is the spectral projection
method which takes advantage of the orthogonality of the basis polynomials. In the spectral projection
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Uncertain parameter Probability distribution Polynomial basis

x0 Uniform Legendre
Lg Normal Hermite
ue Gumbel Numerically generated

Table 7: The polynomial basis used in the polynomial chaos method for each uncertain parameter.

method the first step to calculate the chaos coefficients is to multiply the PC expansion eq. (22) by φj(ξ) and
ρ(ξ), the density of the stochastic parameter, and then integrate over the probability space Ω,∫

Ω

R(ξ)φj(ξ)ρ(ξ)dξ =

∫
Ω

∞∑
i=0

αiφi(ξ)φj(ξ)ρ(ξ)dξ. (23)

Using the orthogonality of the basis polynomials with respect to the uncertain variable density,∫
φi(ξ)φj(ξ)ρ(ξ)dξ = δi,j , (24)

and solving for the coefficients from eq. (23), we obtain

αi =

∫
Ω
R(ξ)φi(ξ)ρ(ξ)dξ∫
Ω
φ2
i (ξ)ρ(ξ)dξ

=
〈R(ξ), φi(ξ)〉
〈φ2
i (ξ)〉

=
1

〈φ2
i (ξ)〉

∫
Ω

R(ξ)φi(ξ)ρ(ξ)dξ. (25)

A couple notes to keep in mind when evaluating the polynomial chaos coefficients equation eq. (25):

• The polynomial basis φi(ξ) is chosen such that it is orthogonal to the probability density function of
the stochastic parameters ρ(ξ) up to a constant. The common probability distributions have known
basis polynomials[45], For stochastic parameters that do not follow one of the common probability
distributions, a numerically generated polynomial basis can be constructed [44, 13]. The polynomial
basis for the uncertain parameters considered in this paper are listed in table 7.

• The majority of the effort in solving for the coefficients resides in evaluating the integral,
∫

Ω
R(ξ)φi(ξ)ρ(ξ)dξ,

especially when R(ξ) is expensive to evaluate, as the inner product 〈φ2
i (ξ)〉 for a particular polynomial

basis is known. A common approach to evaluate the integral is by numerical quadrature

N∑
j=0

ωjR(ξj)φi(ξj)ρ(ξj), (26)

where the weights ωj and quadrature points ξj depend on the quadrature method used.

Once the coefficients αi are known on top of having a functional relationship between the uncertain inputs
and outputs

R̂(ξ) =

P∑
i=0

αiφi(ξ), (27)

estimates of the statistics for the mean and variance can be computed from

µR = α0, (28)

σ2
R =

P∑
i=1

α2
i 〈φ2

i (ξ)〉. (29)
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6.4.2 Multi-dimensional polynomial chaos and sparse grid construction

For multiple uncertain variables ξ = (ξ1, ξ2, . . . ξd) the polynomial chaos expansion eq. (22) is written as

R(ξ) ≈ R̂(ξ) =
∑
i∈Ip

αiΦi(ξ), (30)

where i = (i1, i2, . . . , id) is a multi-index and the values of the elements ij ∈ N depend on how the expansion
is truncated, i.e., on how the index set Ip is defined. There are two common ways in which to define the index
set: “total-order expansion” and “tensor-product expansion”. In “total-order expansion” a total polynomial
order bound p is enforced

Ip = {i : |i| ≤ p}, |i| = i1 + i2 + · · ·+ id. (31)

Whereas in “tensor-product expansion” a per-dimension polynomial order bound pj is enforced

Ip = {i : ij ≤ pj , j = 1, . . . , d}. (32)

The basis functions Φi(ξ) are given by products of one-dimensional orthogonal polynomials φij ,

Φi(ξ) =

d∏
j=1

φij (ξj). (33)

Similarly to the 1D case, the coefficients of the expansion are calculated from

αi =
1

〈Φ2
i (ξ)〉

∫
Ω

R(ξ)Φi(ξ)ρ(ξ)dξ, (34)

where ρ(ξ) =
∏d
j=1 ρj(ξj) is the joint probability density of the stochastic parameters over the support

Ω = Ω1 × · · · × Ωd. Same as in the 1D case the majority of the effort in computing the coefficients resides
in evaluating the integral

∫
Ω
R(ξ)Φi(ξ)ρ(ξ)dξ. To evaluate the integral tensor product quadrature Qi can

be used, but the number of quadrature points in tensor product quadrature grows exponentially with the
number of dimensions d. To alleviate the exponential growth in quadrature points sparse grid quadrature can
be used. Sparse grid quadrature is constructed from a linear combination of tensor product quadrature grids
Qi in such a way that high accuracy is preserved while using only a relative small number of grid(quadrature)
points.[24, 12, 8] The isotropic sparse grid level q (q ∈ N) used to perform the integration in eq. (34) is defined
as

Aq,d(R) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(
d− 1

q − |i|

)
Qi(R) (35)

where as q increases more quadrature points are used and the integral is evaluated more accurately. The
number of quadrature points depends on the number of uncertain variables and on the distributions of the
uncertain variables. Table 8 lists the number of quadrature points used for our particular problem where we
have d = 3 uncertain variables which follow the distributions in table 7.

6.4.3 Multi-fidelity uncertainty quantification with polynomial chaos

The goal of the multi-fidelity uncertainty quantification is to accurately characterize the high-fidelity system
response Rhigh(ξ) with less computational effort by using information obtained from the low-fidelity system
response Rlow(ξ) as opposed to solely using the high-fidelity response. There are different methods of
incorporating the information from the low-fidelity response.[24] Here we will do so by means of an additive
correction function,

Rcorr(ξ) = Rhigh(ξ)−Rlow(ξ). (36)

In multi-fidelity UQ instead of approximating the high-fidelity function directly via polynomial chaos

Rhigh(ξ) ≈ R̂high(ξ) =
∑
i∈Ip

αiΦi(ξ), (37)
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Sparse grid level Number of evaluations

1 9
2 44
3 158
4 455
5 1099

Table 8: Number of function evaluations (quadrature points) in each sparse grid level. The higher levels reuse
the evaluations in the lower levels.

we approximate it from the polynomial chaos expansions of the low-fidelity and correction function

Rhigh(ξ) ≈ R̃high(ξ) = R̂low(ξ) + R̂corr(ξ). (38)

The multi-fidelity approach could be beneficial if an accurate expansion of the correction function R̂corr can
be obtained with less computational effort, i.e., with less simulations(quadrature points) than the high-fidelity
function R̂high and if the low-fidelity model is a good approximation to the high-fidelity model[24]. A priori,
it is hard to know for a particular problem if the conditions on the low-fidelity and correction function would
be satisfied and even then if the multi-fidelity approach will lead to any computational savings. But for some
problems large (80%) computational savings can be obtained.[24]

6.5 Results

First we show results for a particular gust realization and then we follow with the results from the uncertainty
quantification study.

A simulation in SU2 of the gust convecting passed the turbine blades is shown in fig. 15. To help
visualization a circle is drawn around the blade we will refer to as “Blade-1”. The position of Blade-1 in figs
15(a) and 14(b) is the 0° position. Blade-1 advances by 90° in each frame and each row of fig. 15 represents a
full revolution of the turbine.

As the gust convects pass the blades it changes the blades angles of attack. The angle of attack that
a blade sees during a revolution for normal operating conditions (no-gust) is shown in fig. 16. If the gust
interacts with the blade when it is already at a high angle of attack it can cause the flow to separate and the
blade to stall. An angle of attack sweep for the blade (SNL 0018/50 airfoil) showed that the blade stalls at
around 12° for both Euler and RANS simulations in SU2. Also, the Euler and RANS simulations agreed
well for the angle of attack sweep given us confidence that the results obtained by the Euler simulations are
reasonable even if gust caused the blade to stall.

The most interaction Blade-1 has with the gust is during the second revolution of the turbine (figs. 15(e),
15(f), 15(g) and 15(h)). The normal and tangential forces on Blade-1 during the second revolution are shown
in figs. 17 and 18, respectively. For comparison purposes (figs. 17 and 18) include the forces obtained from
the low-fidelity model and for the normal operating conditions when there is no gust. The low-fidelity model
under predicts the maximum forces when there is no gust and more noticeably when there is a gust. The
gust has a bigger effect on the high-fidelity simulation because on top of changing the angle of attack the
gust can cause unsteady aerodynamic effects which are not captured by the low-fidelity model. For instance
the gust can cause the blade to stall, followed by a vortex convecting over the blade which can cause large
variations in the forces and the larger discrepancies between the high and low-fidelity model.

For the uncertainty quantification study, we picked the maximum normal Cn,max and maximum tangential
force Ct,max as our quantities of interest (QOI). We picked these QOI because as seen in figs. 17 and 18 they
are affected by the uncertain gust and if they are large enough they can cause turbine failure. The gust
interaction in figs. 17 and 18 is a very benign interaction as the effect on the maximum forces is small. This
particular gust realization is from setting the gust parameters to their mean values.

The maximum number of gust realizations used for the high-fidelity case is 455 (sparse grid level 4) and
for the low-fidelity case is 1099 (sparse grid level 5). A high-fidelity simulation takes about 30 minutes on 36
processors and a low-fidelity simulation 1 minute on 1 processor. The difference in simulation time between
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15: Evolution of the gust. A circle is drawn around Blade-1 to help with visualization. In each frame
Blade-1 advances by 90° and each row represents a full revolution of the blade. The gust interactions lasts
from 3 to 4 revolutions depending on the uncertain gust realization. The figure shows the gust velocity as
compared to the free-stream velocity and the darker the color the higher the gust value.
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Figure 16: Angle of attack seen by the blades in normal operating conditions.
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Figure 17: Comparison of the normal force coefficient Cn as a function of azimuth ψ between the high-fidelity
tool SU2 and the low-fidelity tool CACTUS. For the normal operating conditions CACTUS compares well
with SU2 (a), but CACTUS fails to capture all the variability introduced by the gust (b), which is expected
of the low-fidelity tool.
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Figure 18: Comparison of the tangential force coefficient Ct as a function of azimuth ψ between the high-
fidelity tool SU2 and the low-fidelity tool CACTUS. For the normal operating conditions CACTUS compares
well with SU2 (a), but CACTUS fails to capture all the variability introduced by the gust (b), which is
expected of the low-fidelity tool.
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Figure 19: Histogram of the maximum normal force for the high-fidelity (455 samples) and low-fidelity (1099
samples).

the high and low-fidelity is 3 orders of magnitude. Table 8 lists the number of samples in each sparse grid
level. The higher sparse grid levels reuse the simulations from the lower sparse grid levels. A histogram of
the output for the maximum normal force for the low and high-fidelity tool is shown in fig. 19 and for the
maximum tangential force in fig. 20. There are many cases for which the gust does not affect the maximum
forces, this is especially the case for the low-fidelity tool for which about 40% of its samples have their normal
operating condition maximum. The spread in the high-fidelity is more pronounced and the maximum force
can reach very large values as compared to the low-fidelity results.

The sparse grid level 4 samples are shown in fig. 21. These samples are colored based on the maximum
normal force. The samples values are symmetrically distributed for the gust starting position x0 and the gust
length Lg which follow symmetric distributions (see table 5) and for the gust amplitude ue the samples are
more heavily concentrated on values higher than its mean. The highest values of the maximum force occur at
the highest values of the gust amplitude. A plot for the maximum tangential force shows a similar behavior.

In fig. 21 there is the least amount of variation along the gust length Lg axis. Holding Lg fixed at its
mean value, fig. 22 shows the samples for sparse level 1,2,3 and 4. These samples are again colored based on
the maximum normal force. We see that as the sparse grid level is increased there are samples with larger
gust amplitude values which cause larger values for the maximum normal force. These large values can slow
down the convergence of the statistics for the maximum forces.

Also holding the gust amplitude fixed we can visualize how Cn,max changes as a function of the gust
starting position for the high and low-fidelity tool and also visualize what the correction function (difference
between the high and low-fidelity) might look like for performing the multi-fidelity uncertainty quantification
(fig. 23). For this slice of the data, the complexity of the correction function is similar to the high-fidelity and
the low-fidelity does not fully follow the the high-fidelity trend, which are not ideal conditions to see very
large computational savings when using multi-fidelity UQ.

The relative change in the mean and variance of the maximum forces between consecutive sparse grid
levels is shown in figs. 24 and 25, for both the multi-fidelity and high-fidelity. In the multi-fidelity case
the starting sparse grid level corresponds to the level used to approximate the correction function and the
multi-fidelity uses a sparse grid level 5 for the low-fidelity.

The decrease in the relative change of the variance between succesive sparse grid levels (1-2, 2-3, 3-4)
shows that the statistics are converging. Also, the value of the relative change in the mean for both forces
converges rapidly to around 1%. The relative change in the variance and the mean is with respect to the
variance and mean obtained from the sparse grid level 4 samples. For the statistics of Cn,max and Ct,max
shown in figs. 24 and 25 the multi-fidelity approach provides more accurate statistics for most of the cases
with lower number of samples.

More accurate statistics for a lower number of samples (lower computational cost) is also observed for two
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Figure 20: Histogram of the maximum tangential force for the high-fidelity (455 samples) and low-fidelity
(1099 samples).
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Figure 21: Sparse grid level 4 samples colored by the maximum normal force obtained by using the high-fidelity
tool (SU2).
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Figure 22: Maximum force response to the uncertain variables x0 and ue. The gust length Lg is hold constant
at its mean value.
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Figure 23: Maximum force response as a function of gust starting position. The difference function is of
similar complexity than the high-fidelity function.
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Figure 24: Convergence of maximum normal force statistics.
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Figure 25: Convergence of the maximum tangential force statistics.

other quantities of interest, the total variation in the normal and tangential force caused by the gust (figs. 26
and 27). The total variation,

TV -Cn =
|Cngust − Cnnogust|1

|Cnnogust|1
, (39)

is an integrated measure of the effect of the gust as opposed to the maximum values which are point values.

6.6 Conclusions

In this portion of the work in this grant, we have explored the influence of a uncertain extreme gust on the
maximum normal and maximum tangential force on the blades of a VAWT. The extreme gust is defined by
three uncertain variables, the gust starting position x0, the gust length Lg, and the gust amplitude ue. The
maximum forces are most susceptible to the gust amplitude and the gust starting position. We studied the
effect of the gust with a low-fidelity tool CACTUS (blade element/vortex lattice aerodynamic solver) and a
high-fidelity tool SU2 (CFD solver). To study the effect of a gust in the CFD solver, we developed a practical
method that allows us to simulate a gust that changes its magnitude in the flow direction (non-divergent free
gust) by combining the field velocity method (FVM) and the geometric conservation law (GCL).
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Figure 26: Convergence of the total variation normal force statistics.
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Figure 27: Convergence of the total variation tangential force statistics.
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We found that the proposed multi-fidelity uncertainty quantification methodology provides better estimates
of the statistics of interest for a lower number of high-fidelity simulations. The multi-fidelity methodology
uses polynomial chaos to create an approximation to the high-fidelity statistics via a correction function based
on the difference between the high and low-fidelity simulations. Simulating the gust with the low-fidelity
tool underestimates the value of the mean and the variance for the maximum forces on the blade when
compared to the high-fidelity tool (“true solution”). Also, simulating the gust at its deterministic “most likely”
realization under predicts the maximum forces on the blade when compared to the mean values calculated by
the uncertainty quantification study. A good estimate of the high-fidelity mean for the maximum forces is
obtained in only a few (9 - sparse grid level 1) high-fidelity simulations.

7 Closing Remarks

7.1 Observations on methods

• This project is developing a broad suite of scalable and robust UQ methods, covering adaptive p- and
h-refinement with adjoint-enhancement over structured and unstructured grids.

• We are now starting to build on top of this core UQ machinery with investments in error balancing and
multifidelity modeling.

7.2 Observations on applications

• We have demonstrated the deployment of state of the art UQ methodologies to current production
simulation tools for wind turbine performance.

• These low fidelity simulation tools have exhibited nonsmooth behavior, particularly when modeling
turbulent in-flows, motivating an increased emphasis on algorithmic robustness.

7.3 Impact

Key programmatic impacts of this effort include:

• NREL is currently developing their next-generation modeling and simulation framework and they are
closely following the developments in this project. Based on recommendations from our team, NREL is
developing their framework using OpenMDAO and DAKOTA as key foundational components.

• Discussions with senior leadership in NREL have been used to highlight the importance of UQ techniques
(at many levels) in the development of the next generation of their predictive tool capability. Senior
leadership has expressed interest in pursuing such techniques as a high-priority item as soon as their
basic framework has been established.

• Progress has been made in deploying the DAKOTA framework to Sandia-led research supported by
EERE’s Wind Power Program [2].
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