On Undecidability Aspects of Resilient
Computations and Implications to Exascale

Nageswara S. V. Rao!

Computer Science and Mathematics Division,Oak Ridge National Laboratory, Oak
Ridge, TN 37831,
raons@ornl.gov,
WWW home page: http://wuw.csm.ornl.gov/ nrao

Abstract. Future Exascale computing systems with a large number of
processors, memory elements and interconnection links, are expected
to experience multiple, complex faults, which affect both applications
and operating-runtime systems. A variety of algorithms, frameworks and
tools are being proposed to realize and/or verify the resilience prop-
erties of computations that guarantee correct results on failure-prone
computing systems. We analytically show that certain resilient compu-
tation problems in presence of general classes of faults are undecidable,
that is, no algorithms exist for solving them. We first show that the
membership verification in a generic set of resilient computations is un-
decidable. We describe classes of faults that can create infinite loops
or non-halting computations, whose detection in general is undecidable.
‘We then show certain resilient computation problems to be undecidable
by using reductions from the loop detection and halting problems un-
der two formulations, namely, an abstract programming language and
Turing machines, respectively. These two reductions highlight different
failure effects: the former represents program and data corruption, and
the latter illustrates incorrect program execution. These results call for
broad-based, well-characterized resilience approaches that complement
purely computational solutions using methods such as hardware moni-
tors, co-designs, and system- and application-specific diagnosis codes.

Keywords: Exascale systems, resilient computations, undecidability, un-
computability

1 Introduction

Exascale computing systems are expected to be built using a large number of
multi-core processors and accelerators with computing elements totaling a mil-
lion or more [1,11]; in addition, they consist of interconnects, switches and hi-
erarchies of memory units, and are supported by specialized software stacks
[25]. Typical life-span of the commercial off-the-shelf components used in these
systems is about 5-10 years, particularly for processors. Thus, as a rough ap-
proximation, computations running for hours may experience multiple failures,
and they in turn may result in errors in applications as well as in operating and



runtime systems that execute the applications [20]. Furthermore, the sheer size
and complexity of these systems may lead to complex faults, not all of which can
be known precisely or anticipated accurately. Indeed, they range from manufac-
turing and device fatigue faults in components, to dynamic hot-spots created in
computer racks due to interactions between device placement and cooling sys-
tems, to interactions of software modules with degraded hardware components.
These faults may manifest in a variety of ways: memory faults may cause the
executables to be corrupted and the variables to assume out-of-bound values;
circuit faults may cause incorrect loading of the program counters and errors in
arithmetic and logic operations; and, bus and interconnect faults may corrupt
the data in transit between the processing units.

A broad spectrum of algorithms, frameworks and tools are being actively
developed to support resilient computations on failure-prone computing systems.
They include hardware monitors, HPL codes [15], application-specific detection
methods [16, 17,5, 9], verification systems [3], Algorithm-Based Fault Tolerance
(ABFT) methods [10], resilience ecosystems [18], software-based fault detection
[12,19], and likely invariants for detecting hardware faults [22] (to name a few).
It is generally expected that the development and proliferation of such methods
will continue as we gain a deeper understanding of the design space of Exascale
systems and make progress towards building them.

In this paper, we explore the boundaries of resilient computations that pro-
duce correct results on computing systems that are subject to broad classes of
failures. We address both the algorithms for resilient computations as well as the
provability of assertions about their outputs, particularly, involving arithmetic
and logic computations. In a nutshell, we show that the resilient computation
problems present significant computational challenges if the underlying failures
are not precisely characterized and anticipated. We show a broad class of re-
silience computation problems to be undecidable in the sense of Turing [23],
that is, no algorithms exist for solving them. These results, although based on
broad failure models, provide motivation for targeting a smaller and more pre-
cisely characterized failure classes that may render these problems decidable.

We first show that verifying if a given program has the property defined by
a set of resilient computations is an undecidable problem. We then show that
resilient computations under data and program corruption and execution er-
rors are undecidable by using reductions from the classical loop-detection and
halting problems. We present the proofs under two formulations, namely, the
abstract programming language £ [8] and Turing machines [6], that highlight
different aspects of the underlying failures; the former represents program and
data corruption, and the latter illustrates incorrect program execution. We out-
line relativization results that indicate that even if halting problems due to these
errors are decidable, it is still possible for undecidable problems to persist. We
briefly describe an example failure class based on arithmetic systems that could
lead to algorithms for which performance guarantees are hard to prove. The lit-
erature in the areas of resilient computations, Exascale systems and undecidable
problems is extensive and deep. In this paper, we only refer to a small (perhaps,



unevenly represented) set of works that illustrate the main concepts, and recast
some of the results from the theory of computation within the context of resilient
computations.

These undecidability results indicate that unless the class of faults is limited,
these problems cannot be solved by purely computational and analytical means.
Hence, they call for broad-based approaches that complement computational so-
lutions, which integrate methods such as hardware monitors, co-design of hard-
ware and software solutions, system-specific diagnosis methods, and application-
specific resilience methods. Furthermore, algorithms, frameworks and ecosystems
used in such approaches must clearly identify their target failures, and establish
that the underlying computational problems are indeed not undecidable. How-
ever, severely limiting the class of faults does not necessarily lead to tractable
solutions, as indicated by the NP-completeness of stuck-at faults [13] (where the
underlying problems are decidable).

We briefly describe undecidable problems and their relationship to resilient
computations in Section 2. We describe some examples of failures in computing
systems that can could lead to challenges in realizing resilient computations in
Section 3. We present undecidability results in Section 4 using language £ in
Section 4.1 and Turing machines in Section 4.2. We discuss some implications of
these results for Exascale systems and conclusions in Section 5.

2 Context of Undecidable Problems

The notion of undecidability plays two roles in resilient computations, namely,
non-existence of algorithms in the framework of Turing [23] and unprovability
of assertions about their outputs in the framework of Godel [14] . As pointed
out by Chaitin [4], these two results are closely related: informally, they both
capture the “finiteness” of algorithms and proofs, which is insufficient to address
certain “infinite” requirements of computations and assertions, respectively. The
undecidability results are formally proved within the frameworks of recursive
functions expressed in £ [8], Turing machines [6], lambda calculus [4], and others
[24]. For concreteness, we follow the first two in this paper.

Several of the well-known undecidable problems belong to the decision prob-
lems about Turing machines such as the halting problem, empty-set detection
and equivalence of Turing machines [6]. These problems might appear somewhat
abstract, but there are a number of more “practical” undecidable problems, in-
cluding virus detection problems [7], programs to test randomness of a string [4],
testing the equivalence of context-free grammars, smallest program capable of
generating a given string, and computing the Kolmogorov complexity of strings.
And, the resilient computations for Exascale systems represent another class of
such challenging problems.

Among the existing undecidable problems, closely related to resilient compu-
tations are the virus detection problems, wherein the disruptive effects on code

1 Godel’s incompleteness results on provable assertions about arithmetic systems were
published in 1931 [14] years before Turing’s results on computations in 1936 [23].



executions are to be detected and accounted for. In some sense, the effects of
viruses on computer codes are similar to those of complex failures in computing
systems. However, the latter are fundamentally different from viruses which are
generated by computable or recursive functions. The effects due to failures are
not similarly restricted, and as a result the intractability results of virus do not
simply carryover to resilient computations. Nevertheless, they both are capable of
introducing non-halting computations into otherwise terminating computations,
which is one (but not all) of the sources of undecidability in these problems.

3 Complex Faults In Exascale Systems

Complex failures or faults may arise due to a variety of factors in Exascale
systems [2,20]. In addition to individual component faults (due to statistics
of larger numbers), multi-component faults can occur as a result of the sheer
complexity of Exascale systems, for example, multi-core processor errors due to
hot spots in server shelves. We are particularly interested in faults that lead to
non-halting computations in codes that are guaranteed to terminate and produce
correct results on failure-free computing systems. In particular, infinite loops that
lead to non-halting computations can be created by several fault mechanisms
including the following:

(a) Code Corruption: Program executables may be corrupted and lead to non-
terminating loops, for example, the condition 7 < N may be changed to ¢ > 0.
Another example would be go to statements changed to be self-referential.
Third example could be the corruption of base conditions on recursive calls.

(b) Parameter and Variable Errors: Infinite loops can be created without mod-
ifications to codes by errors in the contents of certain memory locations, for
example, loop control variables.

(¢) ALU Circuit Errors: Failures in Arithmetic and Logic Unit (ALU) circuits
can create loops by incorrect execution of terminating conditions of loops
and base conditions of recursive calls.

(d) Program Counter Errors: Program counters hold the next instructions to be
executed, and loading errors in their contents can lead to infinite loops, for
example, by repeatedly loading the same instruction.

Within the framework of language £ and Turing machines, both programs and
their inputs are treated essentially the same way, namely, as strings. In that
sense, there is not much difference between the faults of type (a) and (b), since
both can be caused by memory errors; together, they represent program and
data corruption, and may be abstracted as string errors in language £. However,
failures in (c) and (d) are different in that they occur during the program exe-
cution, and may be abstracted as incorrect state transitions of Turing machines.
Given the diversity of failure sources of non-halting computations and the com-
plexity of Exascale systems, it not clear if all of them can be adequately known
or even if that set is bounded. Furthermore, some of these errors may occur si-
multaneously, for example, high shelf temperatures might lead to the failures in



memory elements and ALU circuits at the same time. Computer viruses modify
codes and their executions, and several virus detection problems are known to
be undecidable [7]. But, code modifications by viruses do not reflect the entire
diversity of faults in Exascale systems due to their possible “non-computational”
origins.

4 Resilient Computation Problems

In this section, we present undecidability results within the formal frameworks
of abstract programming language £ described in Davis and Weyuker [8] and
Turing Machines (TM) [6]. These two frameworks are equivalent for undecidable
problems, but the former shows the effects of infinite loops at an algorithm
level, whereas the failure effects on memory and circuits are more apparent in
the latter. We only present an outline of results from a resilient computations
perspective, and details of these formulations and their relationships can be
found in [8, 6] (or in introductory books on theoretical computer science).

One of the key notions behind the undecidability is the concept of a universal
programming language or equivalently the Universal Turing Machine (UTM)
wherein each program can be specified as a string. Both the program P and its
input w are specified as strings, and P is “interpreted” in £ and “executed” by a
TM with w as the input. That is, these are abstract models of computers wherein
the code P is stored as an executable in the memory along with its input w.
While these abstract models are much more primitive than complex computing
systems, they both are equivalent in terms of the underlying computability as
per the Church-Turing thesis [6,4]. We consider that the programs are coded
as integers under a scheme such as Godel numbering in the former [§], and
Boolean strings for TMs [6]; in both cases, they can be enumerated like the
natural numbers with the caveat that not every natural number represents a
valid program P in either scheme.

4.1 Predicates About Programs in £

We follow the programming language abstraction £ described in [8], wherein each
program is described as a set of instructions. The programs in £ are converted
into numbers using schemes such as the Godel numbers, which are sufficient to
describe all computable functions [8] so that a program P is represented by its
numerical code y=#(P). Under fault-free conditions, the output of program y
with input « is denoted by @, (z) = o(z), which is also specified by a partially
computable function ¢(z,y) by the Universality Theorem [8]; here, &(.) is uni-
versal in that it “executes” any program y with x as its input. Under fault-free
conditions, both y are x specified initially, and neither is altered at any point
during the execution of y. Under faulty conditions, however, both can be altered
any time during the execution in two ways: contents of y and x can be altered
through data corruption, and instructions of y can be erroneously executed due
to hardware faults. Then, under faulty conditions, the output of y with input x
is denoted by @ (z) = g(x) such that o(x) # g(zo) for some zo.



Undecidability of Membership in Resilient Computation Classes Let
yr denote a resilient version of the original program y such that under faulty
conditions it produces the same output as y under fault-free conditions. For
a given input z, let g(x) and ggr(z) = o(x) denote the outputs of functions
computed by programs y and ygr under faulty conditions, respectively. Thus, yr
accounts for faults in y and z, and yet produces the correct output. For example,
consider a hypothetical single-fault case of y producing a Boolean output which
is complemented; then, yr can simply execute y and complement its output to
produce the correct answer.

We now show that there is no algorithm for verifying if a given program
y possesses the resilience property implemented by a set of resilient codes of
type ygr, by showing the underlying decision problem to be undecidable. Let
A be a set of original programs that halt under fault-free conditions, but run
erroneously under faulty conditions, namely, they either do not halt or produce
incorrect or undefined output; A is assumed to be non-trivial [8] which implies
it is non-empty and does not span all codes. Then, the corresponding non-trivial
set of all A-resilient programs is denoted by R = {yg|y € A}, which is assumed
to exist and may be custom designed to overcome the faults that are specific
to programs in A. For example, R could consist of all resilient versions of a set
of non-linear solvers A that are designed to correct for ALU faults. We assume
that errors are such that y € A by itself is not a resilient version of any other
original program y; € A. Then, the index set of these .A-resilient programs R is

Rr = {t € N|oI' e R},
which we show to be a non-computable set.

Theorem 1. The index set of A-resilient programs Ry is not computable, that
18, the problem of verifying if a given program belongs to R under faulty condi-
tions is undecidable for any non-trivial set of original programs A.

Proof: The proof is through contradiction. Consider that Rz is computable,
and consider gr € R is a resilient version of the original (non-resilient) g € A.
Let us define a function

gr(z) ift ¢ Rg.
Then, the following function is partially computable [8]
h(t’x) = lrg (t)g(x) + [1 —1rg (t)]-gR('T)a

under faulty conditions, where 1g(.) is the indicator function for set S: 1g(t) =1
if and only if t € S and 15(¢) = 0 otherwise. In particular, a program to compute
h(t,z) is composed by using that for 1g,(.) as a sub-routine. Then, by the
Recursion Theorem, there is a program e such that

&7 (1) = hie,a) = {9@) ifor ¢ R

Wt z) = {g(w) ift e Rp

o(xr) ifdF ¢ R,

Q

=
8

~—
I



where &%’ (z) = &' (z, e) for a universal partially computable function ¢ speci-
fied by the Universality Theorem applied under faulty conditions. Now consider
that e € Ry that is, it is A-resilient and can be executed under faulty conditions
such that @' (x) = o(x); but, by definition of h(e, ), we have ¥ (x) = g(x) and
in particular ®% (zg) = g(wo) # o(xg) = ®¥(x0). On the other hand, consider
that e ¢ Rg, that is, it is not A-resilient, namely & (zg) # o(zo); then, by
above definition of h(e,z), we have ®I'(z) = gr(z) = f(x), and in particular,
& (20) = o(x0) # P (20). Thus, in both cases we have a contradiction, which
proves the theorem. [J

This result is a particular application of the well-known Rice’s Theorem to
resilience computations. Informally, it implies that it is not possible to verify
if a given program possesses the resilience property embodied by Rr. While
establishing the undecidability with respect to classes of resilient computations,
this result does not pinpoint the sources of undecidability in individual programs.
We next show that the dynamic loops created by the faults are sufficient to lead
to undecidability of verifying the resilience of individual codes.

Infinite Loops The halting problem is specified by the predicate HALT (x, y)
which is true if and only if the program y with input z halts. This problem is
undecidable in that there does not exit a program written in £ that can decide if
this proposition is true or false (Theorem 2.1, Chapter 4, [8]). We consider a class
of failures that can be captured by the failure function, f(x,y) = (xs,yy) that
replaces x by z; and y by y just before the execution of y is initiated, and no
other failures occur. We note that this characterization is limited to deterministic
failures since such functions are not sufficient to characterize random errors,
which indeed can occur in Exascale systems. We consider that the execution of
y with input = produces yes/no answer in a finite time on a failure-free machine.

Consider the predicate RESILIFY (z, y, f) which is true if and only if there
exists a program Py that “executes” y; with input xy and produces the output
identical to that produced by y with input z. Now, we further restrict f(.)
to functions Fj, that create infinite loops due to data and program corruption
that modify one or both y and z, for example, by using (but not limited to)
mechanisms listed in Section 3.

We next show that RESILIFY (z,y, f), f € FL is not a computable predicate,
by reducing the following simpler problem to it. Let NO-LOOP(z,y) denote the
predicate that the program y with input = does not loop forever, that is, it will
produce yes/no output in a finite number of steps.

Theorem 2. RESILIFY(x,y, f), f € FL is not a computable predicate under
program and data corruption.

Proof: We prove this theorem in three steps. First, RESILYFY (zf,ys, I) true
if and only if RESILYFY (z,y, f) true, where f changes y to yy, for y; € Fi,
x to xy, and I is the identity function. Next, we note that NO-LOOP(z¢, yy)
is true if and only if RESILIFY (xf,ys,I) is true, thereby showing that the
undecidability of the former implies that of the latter by restriction. We now show



that NO-LOOP(z, y) is an undecidable predicate by contradiction using the well-
known proof method used in [8]; we present the details here for completeness.
Let us assume NO-LOOP(z,y) is computable, and hence can be inserted into
the following program P:
[P]: if NO-LOOP(z,z) go to P
else return NO

This program takes a single input & and uses NO-LOOP(z, z) as a subroutine.
Based on the above code, P keeps looping while NO-LOOP(z, x) is true, that
is it halts if and if only if the predicate NO-LOOP(z,z) is not true, that is
~NO-LOOP(z,z). Now let yo =#(P) denote the code of the above program
P expressed under Godel’s numbering. By using y = yg in the definition we
have: NO-LOOP(x, yo) if and only if yo =#(P) does not loop forever, that is
~NO-LOOP(z, z) is true by the definition of P. Since the above statement is
valid for any value of x, we choose x = yy which leads to the contradiction:
NO-LOOP(yo, yo) if and only if ~NO-LOOP (yo, yo). O

Informally, this theorem shows that there is no algorithm to determine if the
failures cause the code execution to be stuck in an infinite loop. But, for very
restricted cases in which infinite loops can be created by known mechanisms,
this problem could be decidable. More generally, there might be other complex
failures, such as purely random errors or introduction of non-compressible strings
[4], that could potentially lead to undecidable resilient computation problems.
Also, under certain strictly component-level failures, one can develop targeted
component diagnosis codes [21] that can verify that no stuck-at failures have
occurred during the code execution.

4.2 Turing Machines for Resilient Computations

We now repeat the result of Theorem 2 within the formulation of UTM that
“executes” a given TM M on input w. This formulation abstracts a general
purpose computer by UTM that executes a program specified by M using w
as its input. A Turing machine M is composed of a tape of cells that holds w,
and is also used for holding intermediate results; the operation of M is specified
by a finite set of transitions such that in each the tape head reads a cell and
moves left or right by possibly writing a symbol in the cell. Details of Turing
machines can be found in introductory computing theory books, and we use the
specific formulation from [6] and details of the dynamic states from [7]. In this
formulation, TM M plays the role of program y in the previous section, and
UTM plays the role of @ in “executing” M by emulating its transitions.

While the overall undecidabilty result is same as in the previous section,
this formulation is based on using reduction from the haltinng problem and
illustrates additional aspects of complex errors. The TM M and its input w are
both represented as strings on the tape, and hence they can be corrupted by
“memory” faults either at the start of computation (as in the previous section)
or dynamically at any time during UTM operation that executes M (similar to
the case of a virus [7]). Another source of faults is in the execution of transitions
of M by UTM, wherein the contents on the tape, namely the instructions, may



be read incorrectly, or may be written incorrectly onto the tape; these abstract
data transfer errors, for example, between memory and ALU. Also, the transition
operations of UTM may be incorrect, for example, tape head being stuck or
moving to an incorrect tape cell, and these faults abstract errors in CPU control
units. Thus in this model, the failures in string M are analogous to corruption
in program codes, and failures in w or in other tape cells are analogous to data
corruption errors. Also, UTM transition and state errors are analogous to the
errors in ALU and control units.

A Resilient TM Mg takes as input TM M and its w under the failure function
f, and halts and produces the same output as M with input w under no failures.
As in the previous section the fault function f, changes Mp’s input to My and
wy dynamically as the input is being read as a result of executional and data
corruption.

Theorem 3. The resilient Turing machine Mg that produces under the failure
function f the same output as M with input w under no failures, does not exist
under executional errors and data corruption.

Proof: Consider that Mp exits, which requires that there is a program that
detects when M does not halt, and intervenes and reproduces the output of M,
that is, it solves the halting problem of M;. We now present the undecidability
proof of this halting problem for completeness, and also illustrate some details
specific to resilient computations. Let M be a TM that produces output yes if
M produces yes with input My, and produces no otherwise. Then, we construct
another Turing machine My that simply flips the output of Mg, namely, it
outputs yes if My outputs no or does not halt with input My, and outputs
no if M; outputs yes with input M;. Now consider the behavior of Mp with
input Mp. If Mg outputs yes means My outputs no with input Mg, which is a
contradiction. On the other hand, if My outputs yes it means that Mz outputs
no or does not halt on input Mg, which is again a contradiction. Hence Mg does
not exist. [

Notice that in the above proof, to establish the non-existence of My it is not
necessary to require that it produces the same result as M ; instead, it is sufficient
to require that it detects non-halting execution of M;. We note that non-halting
computations may be created during the execution of My due to errors in UTM
transitions, even if M does not initially contain infinite loops; this scenario is
analogous to the errors due to certain viruses [7], and typically these undecid-
ability proofs require more detailed dynamic versions of TMs. Furthermore, it
is possible that they are other complex failures that could lead to undecidable
resilient computation problems beyond the halting problem as described next.

Beyond Halting Problems In the relativization framework, a computing task
G is abstracted to be carried out by an oracle to gain insights into the residual
underlying complexity. In particular, by using H-oracle that solves the halting
problem, a hierarchy of problems is shown to exist, each of which “more un-
solvable” than the preceding one (through the so-called the jump process of G,



10

Theorem 4.10 [8]). Let Az denote the original programs that are not resilient
under a class of faults F, and let R 4, denote their resilient versions. Let Br
denote the original programs that remain non-resilient under H-oracle relativiza-
tion, and let R, denote their resilient versions; it is, however, an open question
if faults exit that lead to such non-resilient programs. A set of programs A is
called non-trivial, if it is non-empty and there is at least one program that is not
contained in it. Based on a relativised version of the Rice theorem (Theorem 8.1,
Chapter 16, [8]), the halting problem is one-one reducible to that of checking
the membership in a non-trivial class of programs A; this result means that the
halting problem is no harder than checking the membership in A. Within the
context of resilient computations, if there are programs that belongs to B and
resilient versions of them exist, then Rp, is a non-trivial class. Then by The-
orem 1, the problem of checking the resilience property of programs in Rp, is
undecidable under H-oracle, and is harder than the halting problem. Considering
the broad spectrum of potential faults in Exascale systems, B would be non-
empty unless all possible faults are shown to lead to problems no harder than
the halting problem; without such proof, undecidable problems persist beyond
the halting problem in resilient computations.

4.3 Assertions on Error Corrections

Several computations on FExascale systems involve arithmetic operations, and
it would be of interest to prove certain assertions about their outputs when
executed on a failure-prone system, such as, a statement that errors will always
be corrected. We now show a formulation wherein such assertions may turn out
to be very difficult to prove or disprove. Consider a program to compute an
integer function G(x,a) = z* on a failure-prone system wherein x is corrupted
at the beginning to a smaller value x;. Consider a class of error correcting
algorithms that only compute integer functions of the form G(y,a) = y*, y < x
and make an additive correction to make up the difference such that the correct
answer G(z,a) = G(zy,a) + G(y, a) is produced. However, such guarantee for
arbitrary values of @ > 2 contradicts the Fermat’s last theorem that states that
the correction term does not exist; furthermore, the proof of this theorem itself
remained open for more than 300 years (until resolved by Andrew Wiles in
1995). In particular, assertions that broad classes of errors will be corrected by
a proposed method should rule out their dependence on assertions such as the
existence of resilient TMs described in Theorem 3.

5 Conclusions

We addressed certain limits on algorithmic solutions to resilient computation
problems under a broad class of failures in large computing systems, and showed
that no general algorithms exist to achieve resilient computations if the classes
of faults are unrestricted. However, effective solutions may be found for certain
smaller classes of errors, provided it is established that those are a complete set
of faults for the given system. In another direction, the algorithmic solutions



11

may be combined with other co-design methods to overcome the limitations of
these purely algorithmic methods. For example, individual components may be
monitored using hardware monitors to ensure their proper operation during the
execution of codes. Also, hardware replication methods may be used to mask
component errors. Software replication and checkpoint methods may be utilized
to correct certain faults. Moreover, such methods may be combined to gener-
ate ecosystems [18] to support resilient computations using both hardware and
software methods. However, it is very critical that such solutions clearly specify
their target class of faults. When faults are limited to individual components
and are non-sporadic, targeted fault detection algorithms may be designed and
executed along with the codes. And, if no faults are detected, confidence mea-
sures may be assigned to indicate fault-free execution of codes. However, even
under a simple failure model of circuit-level faults, the underlying computational
problems, while decidable, can be computationally intractable [13].

This work explores only a very small fraction of the complex problem space of
computations that produce correct results on failure-prone computing systems,
in particular Exascale systems with complex failures. However, these general un-
decidability results motivate a deeper study and understanding of various types
of faults that can occur in Exascale systems and their taxonomy so that solutions
may be appropriately targeted. It would be of future interest to investigate sim-
ilar computational limits of probabilistic computations that guarantee correct
results with a specified probability, or deterministic computations that provide
confidence measures for computations under probabilistic faults.

Acknowledgments

This work is funded by the Mathematics of Complex, Distributed, Interconnected Sys-
tems Program, Office of Advanced Computing Research, U.S. Department of Energy at
Oak Ridge National Laboratory managed by UT-Battelle, LLC for U.S. Department
of Energy under Contract No. DE-AC05-000R22725.

References

1. F. Cappello. Fault tolerance in petascale/exascale systems: Current knowledge,
challenges and research opportunities. Journal of High Performance Computing Ap-
plications, 23(3):212-226, 2009.

2. F. Cappello, A. Geist, B. Gropp, S. Kale, B. Kramer, and M. Snir. Towards exas-
cale resilience. Journal of High Performance Computing Applications, 23(4):374-388,
2011.

3. M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quantitaive realiability for
programs that execute on unreliable hardware. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), 2013.

4. G. J. Chaitin. Information, Randomness and Incompleteness. World Scientific Pub,
1990. Second Edition.

5. Z. Chen. Online-abft: An online algorithm based fault tolerance scheme for soft
error detection in iterative methods. In ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 2013.



12

6. D. 1. A. Cohen. Inroduction to Computer Theory. John Wiley and Sons, Inc., 1986.

7. F. B. Cohen. Computational aspects of computer virus. Computer & Security,
8:325-344, 1989.

8. M. D. Davies and E. J. Weyuker. Computability, Complezity, and Languages. Aca-
demic Press, Inc, 1983.

9. T. Davies and X. Chen. Correcting soft errors online in lu factorization. In Sympo-
sium on High-Performance Parallel and Distributed Computing, 2013.

10. M. de Kruijif, S. Nomura, and K. Sankaralingam. Relax: An architectural frame-
work for software recovery of hardware faults. In International Symposium on Com-
puter Architecture (ISCA), 2010.

11. J. Dongarra, P Beckman, and et al. The international exascale software roadmap.
International Journal of High Performance Computer Applications, 25(1), 2011.

12. M. Erez, N. Jayasena, T. J. Knight, and W. J. Dally. Fault tolerance techniques
for the merrimac streaming supercomputer. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2005.

13. H. Fujiwara and S. Toida. The complexity of fault detection problems for combi-
national logic circuits. IEEE Trans. on Computers, C-31(6):553-560, 1982.

14. K. Godel. On formally undecidable propositions of principia mathematica and
related systems i. Monatshefte fur Math. und Physik, 38:173-198, 1931. Englishe
translation by B. Meltzer, published by Dover Publications, Inc, 1992.

15. HPL - a portable implementation of the high-performance linpack benchmark for
distributed-memory computers. http://www.netlib.org/benchmark/hpl.

16. Y. Huang and C. Kintala. Software fault tolerance of the application layer. In
M. R. Lyu, editor, Software Fault Tolerance, pages 231-248. 1995.

17. Y. Jia, P. Luszczek, G. Bosilca, and J. Dongarra. Cpu-gpu hybrid bidiagonal
reduction with soft error resilience. In Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA). 2013.

18. D. Li, Z. Chen, P. Wu, and J. S. Vetter. Rethinking algorithm-based fault tolerance
with a cooperative software-hardware approach. In ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis. 2013.

19. M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou. Un-
derstanding the propagation of hard errors to software and implications for resilient
system design. In Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2008.

20. C. Lu and D. A. Reed. Assessing fault sensitivity in mpi applications. In Proceed-
ings of the 2004 ACM/IEEE conference on Supercomputing, 2004.

21. N. S. V. Rao. Fault detection in multi-core processors using chaotic maps. In 3rd
Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS 2018), 2013.

22. S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S. Adve, and Y. Zhou.
Using likely program invariants to detect hardware errors. In International Conf. on
Dependable Systems and Networks, 2008.

23. A. N. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Society, 42(3,4):230-265, 1936.

24. V. A. Uspensky. Godel’s Incompleteness Theorem. Mir Publsihers, 1987. English
translation.

25. J. S. Vetter, editor. Contemporary High Performance Computing: From Petascale
toward Ezxascale. Chapman and Hall, 2013.



