
LA-UR-14-27446
Approved for public release; distribution is unlimited.

Title: Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear
Material Containers. Part 2. Canister Filter Test Standards for
Aerosol Capture Rates.

Author(s): Brown, Austin Douglas
Runnels, Joel T.
Moore, Murray E.
Reeves, Kirk Patrick

Intended for: Report

Issued: 2014-11-02 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

LA-UR-14-27446
Approved for public release; distribution is unlimited.

Title: Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear
Material Containers. Part 2. Canister Filter Test Standards for
Aerosol Capture Rates.

Author(s): Brown, Austin Douglas
Runnels, Joel T.
Moore, Murray E.
Reeves, Kirk Patrick

Intended for: Report

Issued: 2014-09-23

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

1

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

2

LAUR-14-27446 Final Report: WAS Project No.: 2013-HS-2013008:

I. In-Place Filter Testing Instrument for Nuclear Material Containers

II. Canister Filter Test Standards for Aerosol Leak Rates

A.D. Brown, J.T. Runnels, M.E. Moore, K. Reeves

Los Alamos National Laboratory, Los Alamos, NM 87544, USA

This project was funded by the US Department of Energy Health, Safety and Security Program,

WAS Project No.: 2013-HS-2013008, B&R No. HU1004500.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

3

Abstract

A portable instrument has been developed to assess the functionality of filters and o-rings on

nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of

fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the

Los Alamos Filter Test System.

The US Department of Energy uses several thousand canisters for storing nuclear material in

different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to

escape, and to maintain an internal ambient pressure while containing radioactive contaminants.

Diagnosing the condition of container filters and canister integrity is important to ensure worker and

public safety and for determining the handling requirements of legacy apparatus. This report describes

the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that

were developed at the Los Alamos National Laboratory to determine the “as found” condition of

unopened storage canisters. The Instrument Operating Method provides instructions for future

evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister

interfaces were developed for pressure-port access and to apply a suction clamping force for the interface.

These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased

from NFT (Nuclear Filter Technology, Golden, CO).

Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept)

unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument

Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter

clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister

leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair) fouling

of o-rings, (B) leakage through simulated cracks in o-rings, and (C) air leakage due to inadequately

tightened canister lids. The Los Alamos POC instrument determined pertinent air flow and pressure

quantities, and this knowledge was used to specify a customized Isaac® (Zaxis, Salt Lake City, UT) leak

test module. The final Los Alamos IPFT (incorporating the Isaac® leak test module) was used to repeat

the tests in the Instrument Development Plan (with simulated filter clogging tests and canister leak

pathway tests).

The Los Alamos IPFT instrument is capable of determining filter clogging and leak rate

conditions, without requiring removal of the container lid. The IPFT measures pressure decay rate from

1.7E-03 inWC/sec to 1.7E-01 inWC/sec. On the same unit scale, helium leak testing of canisters has a

range from 5.7E-07 inWC/sec to 1.9E-03 inWC/sec. For a 5-quart storage canister, the IPFT measures

equivalent leak flow rates from 0.03 to 3.0 cc/sec. The IPFT does not provide the same sensitivity as

helium leak testing, but is able to gauge the assembled condition of as-found and in-situ canisters.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

4

Abstract .. 3

LIST OF DEFINITIONS ... 5

PART I. .. 7

IN-PLACE-FILTER-TESTER FOR NUCLEAR MATERIAL CONTAINERS 7

(1) INTRODUCTION ... 8

(2) BACKGROUND ... 8

(3) IPFT SYSTEM OPERATION SUMMARY ... 12

(4) DEVELOPMENTAL EQUIPMENT AND ACTIVITIES .. 16

1. Los Alamos Proof-of-concept (POC) ... 22

2. Instrument Development Plan (IDP) ... 26

3. Incorporation of the Isaac ® unit into the LANL IPFT .. 33

(5) DELIVERABLES ... 37

1. Los Alamos In-Place-Filter-Tester (IPFT) .. 37

2. Instrument Operating Method (IOM) ... 41

(6) SUMMARY ... 47

PART II.CANISTER FILTER TEST STANDARDS FOR AEROSOL LEAK RATES 50

ACKNOWLEDGEMENTS ... 57

REFERENCES .. 58

APPENDICES ... 60

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

5

LIST OF DEFINITIONS

Canister (Container). A stainless steel vessel designed for the long term storage of nuclear materials in

various physical and chemical forms. The Hagan and SAVY canisters (NFT Inc.) have a filter integrated

into the canister lid.

Canister Interface. A stainless steel fitting designed by Los Alamos to fit over the Hagan or SAVY

canister filter. The canister interface has two concentric chambers, one measure the air pressure in the

canister, the other chamber uses a suction force from a pump to clamp the canister interface onto the

canister lid. (The Hagan interface is different from the SAVY interface.)

Hagan canister. A type of nuclear material storage canister, introduced in the 1980s. This canister

includes a carbon fiber filter, and the lid requires about seven full turns for complete sealing, and the

canister has been shown to leak after drop testing. The Hagan o-ring is mounted on the top lip edge of the

cylindrical canister body, and easily falls out of its groove.

IDP (Instrument Development Plan). A variety of laboratory tests that mimic filter clogging and o-ring

failure mechanisms. These were used to determine operating conditions for the initial Proof-of-Concept

test device. They are not intended for field testing of canisters that contain nuclear materials.

IOM (Instrument Operating Method). A series of instructions for an IPFT (In-Place-Filter-Tester)

device to field-test the integrity of storage canisters that are packaged with nuclear materials.

IPFT (In-Place-Filter-Tester). This is the final prototype device designed by the Los Alamos team,

using quantitative input from the IDP (Instrument Development Plan). It used the same Canister

Interfaces that were developed with the first POC device.

Isaac™ leak tester. A leak tester module manufactured by the Zaxis company, Salt Lake City, UT.

LANL. Los Alamos National Laboratory.

NCR. Non Compliance Report. In this report, this refers to a set of Hagan canister lids that are utilized

by NFT Inc for standards testing.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

6

NFT Inc. Nuclear Filter Technology Inc. (Golden CO) Manufacturer of Hagan and SAVY-4000

nuclear material storage canisters.

POC (Proof-of-Concept). In this report, it is the first in-place-filter-tester built by the Los Alamos

design team. It is an automated device that determines if a canister filter is clogged, or if the o-ring leaks.

It uses an Arduino™ microprocessor with LANL software to control air flows and to measure pressure

quantities.

Pressure (air or gas). In this report, air (or gas) pressure is typically expressed in terms of the gas gauge

pressure (e.g. inches of water column, inWC). A standard atmosphere is defined as 405 inches of water

column (in WC), or as 101.1 kPa. The ambient air pressure at the Los Alamos test facility is 308 inWC.

SAVY canister (aka the “SAVY-4000”). A nuclear material storage canister introduced by NFT in

2011. It contains a non-fouling ceramic fiber filter, the lid is sealed with a bayonet mount (partial turn),

and was shown to be leak-tight after drop tests. The SAVY o-ring is mounted in the canister lid, and does

not readily fall out of its groove.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

7

PART I.

IN-PLACE-FILTER-TESTER FOR NUCLEAR MATERIAL CONTAINERS

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

8

(1) INTRODUCTION
Nuclear Filter Technology (NFT Inc., Golden, CO) manufactures nuclear material storage canisters

with high performance filters integrated into the lids of the canisters. In addition, NFT also manufactures

filters for use with waste drums, and bag-out bags. Los Alamos National Laboratory uses several

thousand containers to store nuclear material in various chemical formulations. The containers have an

air filter (see Figure 1) mounted in the canister lid, and they employ an o-ring seal to maintain a leak-tight

boundary. The goal of this project was to develop a portable In-Place-Filter-Tester instrument that will

assess filter and o-ring functionality of a container, without requiring removal of the container lid. The

instrument does not measure aerosol collection efficiency or capture, but can gauge filter performance

and leak rate conditions from pressure drop measurements.

Figure 1. A SAVY storage canister from NFT Inc. (1) Canister (2) Lid. (3) O-ring. The lid close-up shows
twenty five holes, 3 mm diameter, for filter air flow. The filter material is a 25 mm diameter disk,
pressed between two plates which form the entire lid.

(2) BACKGROUND
The canister filters allow air (and hydrogen gas generated from radiolysis) to pass through a matrix of

carbon or ceramic fibers, but the filters are designed to trap radioactive aerosol particles when air passes

from the container interior through the filter (Moore ME et al 2011). The gas flow is driven by the

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

9

pressure force of hydrogen generated inside the containers and by pressure gradients due to atmospheric

air pressure fluctuations.

 In this report, filter performance will be described in terms of the “leak percent” (Table 1), that is,

the amount of aerosol that passes through a filter (Moore ME et al 2011). The leak percent is similar to

“aerosol penetration”, but it is defined as a value measured over a range of particle sizes, whereas aerosol

penetration is defined at discrete particle size diameters.

Table 1. Nomenclature to describe filter performance.

 Filter leak testing HEPA filters defined by ASME AG-1

Aerosol
Measurement
Instrument

Single Channel (Photometer) Multi-Channel Spectrometer

Test Aerosol The aerosol concentration of a
polydisperse distribution of sizes is
measured by a single channel photometer
(e.g. mean size of DOP oil at 0.45 μm).

Aerosol concentrations are measured at
each individual particle size, i.e.
“essentially monodispersed 0.3 μm” as
mentioned in ASME AG-1.

 Leak of Aerosol = CD/CU P = Penetration = CD/CU

 Capture of Aerosol = 1 - CD/CU E = Efficiency = 1 - CD/CU

Canisters at Los Alamos (Figure 2) are designed to have a maximum normal operating pressure

range of 0.25 to 0.50 inWC (1 to 2 kPa). In this report, air (or gas) pressure is typically expressed in terms

of the gas gauge pressure (e.g. inches of water column, inWC). A standard atmosphere is defined as 405

inches of water column (in WC), or as 101.1 kPa. The ambient air pressure at the Los Alamos test facility

is 308 inWC.

Sufficiently thin walls are implemented for content inspection, thus overpressure can result in

visible deformation. Current designs have a “no-maintenance” life of five years, however, the desired life

extension to a service life of 40 years or greater would substantially reduce laboratory resources. Studies

of o-ring degradation indicate that the expected service life far exceeds five years, but service life

limitations for both the o-ring and filter are unknown at this time. Surveillance of in-service canisters is

necessary for this life-extension goal to ensure the ability to meet design criteria, and to detect potential

problems that might be introduced during storage. Canister filters must deliver a minimum of 200 ml/min

of air at no more than 1.0 inch water column (in WC) pressure differential, while capturing greater than

99.97% of 0.45 micron mean diameter aerosol. Current evaluation includes visual deformation inspection

for canister overpressure caused by a clogged filter, and contamination surveys indicating possible o-ring

seal failures (Anderson LL et al 2013).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

10

Figure 2. A side-by-side graphical comparison of the SAVY and Hagan containers.

The Hagan canister (Brassell GW and RP Brugger, 1985) was developed by NFT in the 1980s,

and the new generation SAVY canister (Stone TA, Smith PH 2011) was recently introduced (Anderson

LL et al 2013). Both the Hagan and SAVY canisters (Figure 2) are manufactured from stainless steel, but

the new generation SAVY container has several improved safety and operational features (see Table 2

and Figure 2). The SAVY canister has a ceramic fiber filter that resists the chemical fouling issues that

have been noticed (Havrilla GJ 2000, and Havrilla GJ and S Bowen 2002). Filter clogging of the older

Hagan style canisters was investigated in these studies (Havrilla GJ 2000, and Havrilla GJ and S Bowen

2002) where they concluded that the clogging was not due to the test aerosol that was used to measure the

filter penetration.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

11

Table 2. Comparison of some features of the Hagan and SAVY canisters.

Feature Hagan canister (1980s design) SAVY canister (2011 and
beyond)

Stainless steel construction 304 316

Filter fiber composition Carbon fiber filter Ceramic fibers (resists chemical
fouling)

Number of turns to seal the lid About seven turns of the lid One-quarter of a turn (bayonet)

Integral lockpin No Yes

O-ring location On canister On lid

Filter location Protruding above lid Recessed and integrated into lid

Mechanical sealing of the Hagan canister depends upon the twist-tightening the lid onto the

canister body, but the SAVY canister seal is maintained by the press-fit seal of the o-ring when the lid is

pressed into place in the top of the canister. The SAVY container lid has an o-ring which slides into the

container and does not rotate while the lid is positioned into its locked-tight location. The Hagan o-ring

lies on the top of the can, and it may slide across the inner face of the lid while it is threaded multiple

revolutions into a locked-tight location.

A list of additional differences between the Hagan and the SAVY canister (Anderson LL et al

2013) is available for reference.

 Technical standards (ASTM 2013) and procedures (Moore ME 2013a) for leak testing have been

developed and implemented where a vessel or a container is “charged” or “filled” with a positive pressure

(or with a vacuum). When a predetermined pressure or vacuum is established (Figure 3), and after a

defined time to allow the canister pressure to “settle”, the test system monitors the rate of change of the

internal pressure of the canister.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

12

Figure 3. ASTM E2930 “Illustration of pressure decay test data.”

(3) IPFT SYSTEM OPERATION SUMMARY
The Los Alamos IPFT (In-Place-Filter-Tester) is designed to assess the filter and o-ring functionality

of nuclear material storage canisters, without the need to remove the container lid (Figure 4). To evaluate

a canister, a customized canister interface (Figures 5 and 6) is placed on the top of the canister lid, above

the canister filter.

Due to the different filter housings associated with the two lids, multiple canister interfaces were

fabricated. They are both, however, geometrically equivalent for all testing purposes. The outer annulus

is designed to provide a clamping force between the inerface, and the lid of the container, while the inner

most volume applies a test vacuum directly to the filter being tested. These two testing ports are contained

between 70 durometer o-rings which prevent cross flow. The recessed design of SAVY filters requires

alignment pins to assure proper placement of the test fixture. The Hagan filter housing on the other hand,

protrudes inside the measurement port and self-aligns its test fixture. The described interface features are

portrayed below (Figure 5).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

13

Figure 4. The IPFT (In-Place-Filter-Tester) assesses filter clogging or canister leakage

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

14

Figure 5. Customized canister interfaces (Title) for the SAVY and Hagan storage canisters.

Figure 6. Photo of the canister interface on SAVY (left) and Hagan (right).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

15

Once the canister interface has been placed over the canister filter, and the IPFT test cycle is

initiated, a vacuum air flow is applied to the filter (Figure 7). The canister interface is clamped to the

canister by suction force applied to an annulus that concentrically surrounds the measurement port.

Figure 7. Detail of the internal air flow pathways of the canister and canister interface.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

16

(4) DEVELOPMENTAL EQUIPMENT AND ACTIVITIES

The final Los Alamos IPFT system was developed during an iterative process. Initially, a POC

(Proof-of-Concept system) had to be fabricated. This POC device was used to determine the air

leakage characteristics of nuclear material storage canisters.

Table 3. The Los Alamos POC (Proof-of-Concept) system (development sequence).

The Los Alamos POC (Proof-of-Concept) system.

(1) The Los Alamos POC system borrowed several capabilities from the cart-mounted Los Alamos

FTS (Filter Test System) (Moore ME, Reeves, KP, 2013). The FTS device (Figure 11) measures

the leak percent of oil droplet aerosol through a canister filter.

(2) The Los Alamos POC tested and evaluated the canister interfaces (Figures 5 and 6) that connect

the SAVY and Hagan canisters to the Los Alamos POC.

(3) Tests performed on actual canisters required an integrated Proof-of-Concept system.

(4) The Los Alamos Proof-of-Concept system quantified the operational air flow rates and pressure

drops. This information defined the specifications needed for the customized Isaac® unit that

became part of the final Los Alamos IPFT system.

Table 4. The Los Alamos IPFT system incorporates an Isaac® leak tester device.

The Los Alamos IPFT system incorporates an Isaac® device into final design prototype.

(1) Two vendors were approached to build a final Los Alamos IPFT (based on the Los Alamos POC
system). The first vendor specializes in mass manufacturing, but they were unsuited to a
prototype to execute a design-build process, and they were passed over for the project.

(2) Upon receiving quotes from a second vendor, it was discovered that the cost and complexity of a
final IPFT system (based on the Los Alamos POC design) would be higher than purchasing a
customized Isaac® leak tester module.

(3) Los Alamos takes advantage of an existing supply chain of leak tester products from the Zaxis
company.

(4) Los Alamos did not share knowledge or information to the Zaxis company about the design of the
canister interface, the Instrument Development Plan or the Instrument Operating Method.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

17

Figure 8. The Los Alamos POC (Proof-of-Concept) system.

Figure 9. The Los Alamos IPFT (In-Place-Filter-Tester) system.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

18

Table 5. The IDP (Instrument Development Plan) bridges the project from start to completion.

Los Alamos POC (Proof-of-
Concept) system

IDP (Instrument Development
Plan) – Common Design Tool

Final Los Alamos IPFT (In-
Place-Filter-Tester) system

(1) Canister interfaces for
Hagan and SAVY
canisters

 (1) Canister interfaces for Hagan
and SAVY containers

(2) Los Alamos POC
microprocessor unit and
software (see Figure 8)

 (2) Isaac® microprocessor unit
and software from the Zaxis
company

(3) Pumps and valves were
integrated into the LANL
POC microprocessor unit

 (3) A portable, external pump
that does not require solenoid
controls is utilized.

(4) Instrument Operating
Method (IOM) for
testing unknown
canisters was developed
with the LANL POC.

 (4) Instrument operating method
IOM) for testing unknown
canisters was verified with the
final LANL IPFT system.

 (5) The IDP (Instrument
Development Plan) guided the
completion of the POC unit, and
was used to verify and measure
performance of the final Los
Alamos IPFT system.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

19

Figure 10. A project chart describing the devices and methods developed in the IPFT project.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

20

Table 6. Comparison of the FTS(Filter Test System) to the IPFT(In-Place-Filter-Tester)

Feature Los Alamos FTS (Filter Test

System) (Figure 11)

Los Alamos IPFT (In-Place-

Filter-Tester) (Figure 9)

Size 4’*2’*4’ (L*W*H) Desktop / portable system

Measures leak of aerosols? Yes No

Determines if an assembled can
has an air leak?

No Yes

Requires removal of lid from
can?

Yes No

Contains canister lid clamp
(arbor press)?

Yes No

Determines if filter is clogged? Yes Yes

Measures pressure drop through
a filter at a specified air flowrate?

Yes No

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

21

Figure 11. The Los Alamos FTS (Filter Test System) for nuclear material storage canisters. This was
developed in 2013, and some of its subsystems were used as templates for the initial Los Alamos POC
Proof-of-Concept system.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

22

1. Los Alamos Proof-of-concept (POC)
The Los Alamos POC is a portable desktop unit which encapsulates all pneumatic controls inside its

housing. It requires an external power supply to run the pumps, valves and onboard microprocessor unit

(an Arduino™ project development board). Aside from the custom fabricated canister interfaces, the

remaining electrical and mechanical components are commercially available. The POC software

(Appendix I) was created during the Instrument Development Plan process. This system is automatically

controlled once an operator initiates the test. The POC device contains independent instrument checks for

each testing component, and the capability to self-calibrate its internal working volume. The POC has

been described in a complete piping and instrumentation diagram (P&ID) seen in Figure 12. A power

distribution and data transfer schematic can be seen in the Build Request (Appendix F).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

23

Figure 12. P&ID diagram of the Los Alamos POC (Proof-of-Concept) system. Filters are used for purifying
air flow.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

24

Table 7. List of components in the Los Alamos POC (Proof-of-Concept) system.
P&ID Label Description

CI101 Computer indication link to pressure transducer
PI101

CI102 Computer indication link to pressure transducer
PI102

CI103 Computer indication link to pressure transducer
PI103

CI104 Computer indication link to flow meter FI101
CIC101 Computer control link to VC101
CIC102 Computer control link to VC102
CIC103 Computer control link to VC103
CIC104 Computer control link to VC104
CIC105 Computer control link to FPC101
CIC106 Computer control link to FPC102
FI101 Mass flow meter
FPC101 Measurement pump
FPC102 Suction force clamping pump
N101- N107 Filter, HEPA

P101 The canister interface port for measuring canister
pressure.

P102 Canister interface port for the suction clamping seal.
P103 The nuclear material canister to be tested.
PI101 Differential pressure gauge (measurement port)
PI102 Differential pressure gauge (clamping port)
PI103 Absolute pressure gauge
PP101-PP109 Bulkhead for vacuum / pressure relief connections
VC101-
VC104 Two-way solenoid valve

To start the test process, the canister interface is placed atop the canister lid by the operator. The

operator then initiates a command instruction on the main startup screen of the POC software. At this

point, the system opens solenoid valve VC103. The computer then activates the FPC102 pump, drawing a

vacuum on the suction fitting while at the same time monitoring the vacuum pressure through the PI102

pressure gauge. When the suction fitting has been sufficiently evacuated (current target vacuum is about

185 inWC), the computer closes the VC103 valve and turns off the FPC102 pump. The computer

monitors the pressure change (if any) through the PI101 pressure gauge. If a pressure change is detected,

the computer will alert the operator to the fact that there is a leak in the suction seal for the system

canister interface. (That is, at this point, the canister interface is now sealed to the canister lid, and test

measurements may now proceed.)

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

25

Once the canister interface is sealed, the computer will begin the canister evaluation

measurement. The computer will close the VC101 valve, while opening the VC102 valve. The computer

then activates the FPC101 measurement pump, drawing air through the P101 canister interface. While the

pump is active, the computer will monitor internal vacuum pressure of the system through PI101 gauge,

and mass flow rate from the canister is measured through the FI101 mass flow meter. When a defined

(programmable) pressure differential is detected by the PI101 pressure gauge (default test pressure is 5.0

inWC), the system will close the VC102 valve and turn off the FPC101 measurement port pump. The

system will then record the pressure rise (if any) across the PI101 gauge for a given time period. This rate

pressure change is the defined canister leak rate. The POC Arduino™ computer then stops the test

process, opening the VC101 and VC104 valves, allowing ambient air to fill the system. At this point, the

test is complete.

The POC computer determines the status of the canister filter (i.e. is it clogged) by first

calculating the total volume of the system, determined by a derivation from the ideal gas equation of state:

 𝑉𝑐𝑎𝑛𝑖𝑠𝑡𝑒𝑟 =
𝑃0∆𝑚
ρ∆𝑃

 − 𝑉𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡

(1)

where 𝑉𝑐𝑎𝑛𝑖𝑠𝑡𝑒𝑟 is the volume of the canister, 𝑉𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 is the internal volume of the system between

canister interface boundary at measurement port P102 and the measurement pump FPC101, 𝑃0 is the

initial atmospheric pressure (measured by the PI103 gauge), ρ is the density of air at current conditions,

∆𝑚 is the mass of air removed from the system, and ∆𝑃 is the final pressure drop across the system

(measured by the PI101 gauge). With this setup, ∆𝑚 may be calculated by equation (2):

∆𝑚 = � 𝑚̇𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

(2)

where 𝑡𝑠𝑡𝑎𝑟𝑡 is the start time, 𝑡𝑒𝑛𝑑 is the end time, and 𝑚̇ is the mass flow rate measured by the FI101

mass flow meter. The system will calculate this integral numerically using the trapezoidal rule or another

similar numerical integration scheme. The internal volume of the system, 𝑉𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 , can be determined

through a one-time measurement by plugging the inlet at the P102 measurement port and running the

system as if it were doing a (normal) canister test. The density of air may be calculated using ambient

atmospheric pressure, and assuming a constant temperature and humidity. (These assumptions are likely

valid given the expected climate-controlled operating environment of the instrument. However, it may

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

26

become necessary to add instruments which measure the temperature and humidity of the air in order to

make a more precise calculation of density.)

Once the volume of the system is computed, the onboard computer can analyze the data. If the

volume of the canister is calculated to be zero or very near zero, the system will conclude that the filter is

clogged, since little or no air passed through the filter during the test. On the other hand, if the volume

computed is some amount greater than zero, the system will conclude that the filter is not clogged.

Finally, if the volume of the system is computed to be very large (near infinity), then the system will

conclude that the canister has a leaky o-ring seal.

The possibility of a leaky o-ring is determined by monitoring the subsequent pressure rise after

the sample has been taken. The mass leak rate through the o-ring is given by the following equation:

 𝑄𝐿𝐸𝐴𝐾 = � 𝑉
𝑃𝑜
� �∆𝑃

Δt
� (3)

∆𝑃 is the change measured by the PI101 pressure gauge over the test period (time), and 𝑉 is the volume

of both the instrument and the canister. Upon completing the test, the system will display the status of the

canister (e.g. clogged filter, working filter, leaky o-ring, working o-ring).

2. Instrument Development Plan (IDP)
The Los Alamos POC instrument was used to create an Instrument Development Plan:

(1) to measure the air flow and pressure characteristics associated with canister filter clogging, and

(2) to test simulated configurations that mimicked canister leakage paths.

The canister leakage scenarios included quantifying:

(A) air leakage due to foreign material (i.e. dust and hair) fouling of o-rings,

(B) leakage through simulated cracks in o-rings, and

(C) air leakage due to inadequately tightened canister lids.

All of this information must be gathered by experimental measurements, which required an operating

Proof-of-Concept (POC) device.

 The POC system can determine if a canister filter is clogged, but it must first measure the internal

volume of the test system itself. The POC has a calibration feature which measures the system volume

when the canister interface is placed on a smooth blank surface (e.g. the blank open space on top of a

Hagan container, or a smooth tabletop surface). To establish a criterion, tests were conducted on a 5 quart

Hagan canister and its respective internal Vollrath™ canister, as well as on simulated clogged filters.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

27

Table 8 below shows POC measurements for each test. (The estimated volume of dead air space of 2021

cc was estimated by water volume displacement measurements.)

 Table 8. Tabular data explained by the filter clogging and canister leak rate flow chart.
Sequential Proof-of-Concept volumetric measurements on a 5 quart Hagan

canister

Volume measure with canister
interface on blank surface (cc)

 Volume measure
with a simulated
clogged filter (cc)

Measure headspace volume of a
partially filled 5 QT canister.

3.48 -2.92 2108.48
3.57 -2.00 2135.67
3.52 -2.42 2093.68
3.81 -0.66 2093.75
3.89 -1.63 2104.43

Figure 13. Filter clogging and canister leak rate flow chart.

In Table 8, the sequential volumetric measurements for both the blank surface, and clogged filter

tests deviate by less than 1.0 cc, while the larger volumetric test data deviate by roughly 15cc. To further

analyze the system’s ability to produce accurate measurements, a 5 quart Hagan canister was

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

28

incrementally filled with 500ml of water. The POC system was then used to calculate the internal air

volume. Figure 14 shows a plot of the actual volume compared with that measured by the system.

Figure 14. Incremental volumes of water were added to a canister, and POC measurements were
compared to the known headspace.

The data (Figure 14) shows a smaller absolute error as the test volume decreases. Because tests

on larger volumes require larger air flow volumes, and longer times to achieve test pressure requirements,

the data acquisition system incorporated into the POC experiences an increase in signal drift. Any

inherent leaks in the system or canister integrity will also affect the calculated volume, by definition,

based on the mass flow of air during the test. This data was used to produce a preliminary volume

criterion to distinguish between a clogged filter, and a fully packed canister. The POC declares any test

volume within 100cc of the calibrated system volume as a clogged filter.

 To correctly tighten the Hagan canister lid, the lids have a reference for the sealed position of the

lid (Figure 15). After roughly seven complete revolutions, the line on the lid should be flush with the

midpoint of the sealed reference frame (the solid black box). To establish a convention for lid location, a

“negative 1.0 inch” to “positive 1.0 inch” coordinate system is also depicted in the figure.

0
1000
2000
3000
4000
5000
6000
7000
8000

0 2 4 6 8 10 12

Vo
lu

m
e

(c
c)

Index

Measured Vs Actual Volume

Actual volume Measured Volume

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

29

Figure 15. Hagan canister alignment marks.

Early tests showed inherent leak rates in the POC Proof-of-Concept system (with no attached

canister or canister interface) to be about 0.004 cc/sec. Hagan lids installed to the sealed alignment mark

with un-fouled o-rings measured a leak rate at about 0.1 to 0.2 cc/sec. “Arizona road dust” (developed as

a test contaminant for air-filter testing) was used for these measurements. Commercially available road

dust of about 9µm diameter (ISO 12103-1, Powder Technology Inc, Burnsville, MN) was used as an

intentional fouling agent on Hagan canister o-rings. The o-rings were coated with a thin layer of silicon

grease, and then covered with a layer of road dust. Leak rates averaging 0.13 𝑐𝑐
𝑠𝑒𝑐

 resulted after this

intentional fouling, but the leak rate was within the measured range of un-fouled o-rings. As such, the

POC system could not identify a leak caused by this fouling agent.

 O-ring polymers can exhibit cracks due to ageing and degradation, especially after exposure to

elevated temperatures, and after radiation exposure. Cracks were simulated by partially cutting halfway

through the thickness of the o-rings. The accumulation of such effects degrade the ability of the o-ring to

form a leak tight seal. Figure 16 shows an actual aged o-ring with visible cracks, and Figure 17 indicates

the coordinate system used to describe the direction of the cuts that were made halfway through the

diameter of tested o-rings.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

30

Figure 16. Actual aged o-ring

Figure 17. O-ring coordinate system for cutting (slicing) the o-rings.

The leak-tight integrity of the Hagan lid was measured with multiple simulated cracks. Leak rates were

measured from the “-1.0” alignment mark (completely tightened, see Figure 15), and measurements were

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

31

continued in ¼ inch increments as the lid was loosened. This test shows the effect of simulated cracks

(type #2, Figure 17) on the leak rate, as a function of lid location.

Figure 18. Simulated degradation test performed on a Hagan 5 quart canister. This test covers multiple
sealed locations.

The leak rate increases as the number of cuts increases from one, to two, to three (Figure 18).

While the leak rate for one or two cuts remains within the range of a sealed canisters measurements, both

cases with one or two cuts in the o-ring fail to hold vacuum at the “0.0” alignment mark (Figure 18).

Results using the final IPFT system (see next section) are shown in Figure 19.

Both Hagan and SAVY canister designs require an active user input (i.e. a force manually applied

by hand) to compress the o-ring and “activate” the o-ring seal. Without a lock pin mechanism (see Table

2) present in the Hagan design, the lid and thus the o-ring seal might become loosened over time. Further

tests were conducted over the entire canister alignment range to identify leak characteristics of an

inadequately tightened lid. These tests (see Figure 20) did not include any intentional fouling agents or

simulated degradation (i.e. cuts in the o-ring) effects.

0.01

0.1

1

10

-1 -0.75 -0.5 -0.25 0

PO
C

m
ea

su
re

d
le

ak
 fl

ow
, c

c/
se

c

Hagan can alignment marks

Hagan 5 quart canister with simulated cracks

1-Cut 2-Cuts 3-Cuts Breached seal POC Baseline leak range

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

32

Figure 19. ISAAC-Hagan - 0807-05199_O-ring 03 pg 148.xlsx

0.001

0.01

0.1

1

10

-1 -0.5 0 0.5 1 1.5

IP
FT

 m
ea

su
re

d
le

ak
 fl

ow
, i

nc
he

s o
f w

at
er

/s
ec

Hagan can alignment marks

Hagan 0807-05199 leak rates with simulated cracks.

1-Cut

Leak on machined steel
surface

Breached seal

2-Cuts

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

33

Figure 20. Incremental loosening of the lid with associated leak rates (with unaltered o-ring).

In Figure 20, if the lid is loosened up to a full (1.0) inch past the sealed alignment mark, the

canister leak rate does not deviate from previous baseline measurements of leak rates of unaltered

canisters. When the Hagan canister lid was moved to the “+2.0” inch alignment mark, a breached seal

resulted (where the canister cannot even maintain a test vacuum).

 In a similar manner, removal of the internal o-ring completely prevented the achievement of an

internal test vacuum, implying that the POC device could identify a leak caused by a missing o-ring.

3. Incorporation of the Isaac ® unit into the LANL IPFT
Data from the IDP Instrument Development Plan was used to specify parameters for a customized

Isaac™ leak tester from the Zaxis Company. The Isaac™ leak tester system is the user interface for the

LANL IPFT In-Place-Filter-Tester, and provides a pathway for future canister test activities. Table 8

compares the first POC Proof-of-Concept system to the final LANL IPFT device (which includes the

Isaac leak tester).

0.01

0.1

1

10

-2 -1 0 1 2 3PO
C

m
ea

su
re

d
le

ak
 fl

ow
, c

c/
se

c

Hagan can alignment marks

Hagan 5 quart inadequately tightened lid test

Hagan 0807-05199 POC Baseline leak range Breached seal

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

34

Table 8: POC Proof-of-Concept compared to IPFT In-Place-Filter-Tester.

Test / feature / issue

POC

capability

IPFT

capability

Is this a
LANL/DOE
request or

requirement?

Filter clog test. Yes Yes Yes

Canister leak measure Yes Yes Yes

Measure volume of
dead air space Yes Possible-

TBD No

Volume leak rate
(cc/min) Yes Possible-

TBD Yes

Pressure decay rate
(inWC/sec) Yes Yes N/A

Canister interfaces
provide a

measurement port and
also suction clamping

for canister
evaluations.

Two canister
interfaces were
developed for

Hagan and
SAVY canisters

The same
canister

interfaces
were utilized
in the final

IPFT
prototype.

N/A

Knowledge of the
operational parameters

of flowrate and
pressure decay (from
the IDP Instrument
Development Plan)

The parameters
were developed
and measured
by the LANL

POC (Proof-of
–Concept)

device

These
parameters

were needed
to specify
the custom
Isaac unit,
which was

incorporated
into the

LANL IPFT
final

prototype.

N/A

The Los Alamos IPFT system utilizes the canister interfaces in the same manner described for the

POC Proof-of-Concept device. After following the Leak Test Procedure (Moore ME, 2013A) the canister

interface still would not provide a perfect seal, and an intrinsic leak rate was measured as a threshold

value in the IPFT system. The lower IPFT measurement range was measured (Figures 21 and 22) as the

leak rate of the Isaac™ instrument with a plugged sample measurement port. Tests with multiple

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

35

canisters, fouling agents, and simulated crack degradation tests define the IPFT measurement range. The

upper boundary of the IPFT measurement range is defined by the largest measured leak rate measured by

the experiments during the IDP (Instrument Development Plan) process.

Current Los Alamos leak test procedures for the Hagan and SAVY canisters specify a helium gas

leak test on clean, empty storage canisters. Based on mass spectrometry, the helium leak test is about

three orders of magnitude more sensitive than the air leakage method described in this project report. The

lower boundary of the helium leak range is the SAVY-4000 leak criterion and the upper helium range is

the SAVY-4000 post-drop test helium leak criterion (Anderson LL et al 2013).

Figure 21. Relation between helium leak rates and the LANL IPFT In-Place-Filter-Tester test range.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

36

Figure 22. Relevant thresholds compared to measurements of IDP (Instrument Development Plan) tests.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

37

(5) DELIVERABLES

1. Los Alamos In-Place-Filter-Tester (IPFT)
The IPFT system does not currently have a flow meter to measure volumetric air flow rate, therefore,

the presence of a clogged filter is determined on the time interval required to attain a specified vacuum

inside the tested canister. During application of vacuum to the tested canister, the pump air flow rate

decreases as the pressure differential increases. The canister pressure eventually plateaus at the test value,

and air flow then stops. Smaller volumes experience a more rapid pressure change due to the restriction of

gases available for removal. Figure 23 shows a characteristic pressure rise over time as the pump

evacuates the test volume (fill section) of an empty five quart canister, and simulated clogged filter.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

38

Figure 23. Vacuum decay test comparison - Hagan functioning vs clogged filter

The empty 5 quart canister, with a volume of 5380 cc, exhibits a more gradual curve over the 40

seconds needed for the test to reach the established pressure. The pressure vs time curve seen in the

clogged filter simulation shows a much more abrupt transition from ambient to test pressure, taking less

than 2 seconds. Canisters in the as-found condition will be storing different volumes of materials, and

with working filters will have curves that lie in between the empty can and clogged filter data sets. To

establish a minimal fill time (to signify a completely clogged filter) time versus pressure tests were

conducted on Hagan 5, 8 and 12 quart containers loaded with their respective internal Vollrath™ slip

containers (Table 9).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

39

Table 9: Fill time vs. maximum test pressure achieved for multiple configurations.

Clogged Lid
Hagan 8 QT 08/06-08083

Vollrath 88060

Fill
Time (S)

Max
Test P

(in H2O)

Within
Tolerance ?
(Yes / No)

Fill
Time (S)

Max
Test P

(in H2O)

Within
Tolerance ?
(Yes / No)

2.2 4.93 Yes 45 4.9 Yes
2.1 4.91 Yes 43 4.89 No

2 4.87 No 40 4.87 No

Hagan 5 QT 08/07-05199 Hagan 12 QT 09/02-12213
Vollrath 88030 Vollrath 88080

Fill
Time (S)

Max
Test P

(in H2O)

Within
Tolerance ?
(Yes / No)

Fill
Time (S)

Max
Test P

(in H2O)

Within
Tolerance ?
(Yes / No)

35 4.9 Yes 85 4.92 Yes
31 4.89 No 75 4.84 No
28 4.85 No

60 4.65 No
25 4.8 No
20 4.64 No

45 4.34 No
15 4.4 No

The empty volumes remaining in each canister that mimic as-found conditions are large enough to

require, at a minimum, 35 seconds for the IPFT to reach the necessary test volume. This data was

combined with clogged filter simulations to establish a minimum fill time test capable of identifying a

clogged filter.

The first POC Proof-of-Concept system established the flow and pressure parameters used in the

sampling and clamping portions of experimental canister testing. Based on early data sets, a customizable

leak test system (the Isaac™ from Zaxis) was specified and purchased. The stainless steel canister

interfaces are interchangeable between both the first POC device and the final IPFT system. The proven

programming and user interface incorporated from the Isaac™ leak test module provides a high

confidence of repeatability for scenarios involving multiple testing apparatus and/or technicians. The

LANL IPFT system runs with external pumps supplying both the measurement and clamping vacuum.

The clamping flow passes directly from the canister interface to its supplying pump, while the flow which

is used for all measurement purposes is routed through the inner workings of the Isaac module. A dial

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

40

gauge on the back of the test unit regulates the flow and pressure supplied from the external pump to the

measurement port.

The Isaac™ software allows user input to control the specified test pressures and tolerances, the

acceptable leak rate, and the amount of time for each section of the test being performed. The sections of

a standard leak test include: “fill”, “settle” and “test” (Figure 24). During the fill stage a valve opens the

measurement port to the established measurement vacuum. If the test pressure is within the specified

tolerances at the end of the programmed “fill” time, the Isaac system will close the valve to the pump and

start the “settle” stage. During this stage, a steady state leak is achieved. The “test” stage allows the Isaac

system to monitor the change of pressure (inWC) over the specified test time interval.

Figure 24. Vacuum decay test including expanded view

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

41

2. Instrument Operating Method (IOM)
The IOM (Instrument Operating Method) requires user programing and decision making to properly

assess as-found canisters that contain nuclear material. With both pumps and the Isaac™ unit turned on,

the canister interface is placed atop the canister lid. The vacuum air flow in the outer annulus of the

canister interface immediately begins to apply suction force to clamp the canister interface to the canister

lid. In the lower right hand corner of the touchscreen interface, a numerical value with units of inches of

water (inWC) displays the vacuum exerted from the clamping flow on the internal volume of the can. A

decrease in this pressure is indicative of a leak between the concentric clamping and measurement ports.

This will happen during setup, but must equalize and maintain a constant value to insure that the interface

is sealed correctly. The manual valve located in the measurement port of the canister interface is opened

to reset the canister volume to ambient pressure conditions, and closed once again for tests. If the internal

pressure of the canister exceeds 0.2 inWC vacuum, or surpasses a pressure decay rate of 0.01 inWC/sec, it

is assumed that the inner o-ring of the canister interface is “leaking vacuum” (i.e. the canister interface

shall be reseated according to the IOM).

Once the canister interface is sealed, the minimal fill time test parameters are entered into the Isaac

settings menu according to Table 10, and the test sequence is started (see IPFT flowchart in Figure 25). If

the filter is clogged, the leak test system experiences a smaller volume than if the filter was not clogged,

and the test pressure is achieved within a minimal fill time. If the test pressure is not reached, a new fill

time is prescribed based on container size (Table 10). The fill time is now sufficient for an unclogged

filter. If the test pressure is still unable to be reached with the new fill time, canister leak-tight integrity

cannot be confirmed, and the Isaac tester displays a low pressure warning. Thus, either the o-ring fails to

meet the leak rate criteria or the canister itself is leaking. Once the proper test pressure has been achieved,

the leak-tight integrity of the container can be quantified. Leaks within the defined range will be shown in

the lower right hand corner of the touchscreen to one ten thousandth of an inch of water column (0.0001

inWC). Any leak rate larger than that specified during the test setup will immediately trigger the Isaac

unit to stop testing, and notify the user that a gross leak was detected. It should be noted that the leak rate

tolerance can be set to the same value as the test pressure to produce numerical leak rate values covering

the largest range. In this configuration it will be left to the user’s discretion to identify leak rates which

are not tolerable, the Isaac unit will declare a passing leak rate for every test.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

42

Figure 25. Instrument Operating Method flow chart

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

43

Table 10. Established test parameters to be applied to the IOM

Test Parameters

Test pressure 5.00 in WC ±0.1
Actual supplied pressure 5.00 in WC ±0.05

Settle Time 2 Seconds
Test Time 3 Seconds
Fill Time Variable

Leak (Vacuum decay) tolerance 5 in WC

Minimal fill time

Fill time for both Hagan and SAVY 2.5 Seconds

Test times for multiple canister sizes

Nominal size
(QT)

Actual Size with
tubing and canister

interface
included(cc)

Fill time

5 (empty) 5380 40 Seconds
8 (empty) 8865 70 Seconds

12 (empty) 12827 130 Seconds
5, with

Vollrath 88030
2021 35 Seconds

8, with
Vollrath 88060

3038 45 Seconds

12, with
Vollrath 88080

4427 85 Seconds

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

44

Figure 26. IPFT In-Place-Filter-tester system assembly

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

45

Figure 27. The third port from the left of the Test Ports (#4) is connected to the Canister Interface
Measurement Port.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

46

Figure 28. The Supply Port (#7) is connected to the Measurement Pump.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

47

(6) SUMMARY

Figure 29. Relation between helium leak rates and the LANL IPFT In-Place-Filter-Tester test range.

Both the POC (Proof-of-Concept) and the Final IPFT (In-Place-Filter-Tester) systems assess the

filter and o-ring functionality on nuclear material storage canisters, without requiring removal of the

canister lid. An IDP (Instrument Development Plan) provided preliminary results which served as

pertinent information to the construction of the final IPFT. An IOM (Instrument Operating Method) was

then developed as a means to systematically test canisters for filter clogging, fouled o-rings, and overall

leak-tight integrity. The need for such a device comes from the demand of containment capabilities

involved with nuclear material storage. The very nature of nuclear storage combines radioactive

contamination with a gas flow being driven by the pressure force of hydrogen generated inside the

containers and by pressure gradients due to atmospheric air pressure fluctuations. Diagnosing the

condition of container filters and canister integrity is important to ensure worker and public safety and for

determining the handling requirements of legacy apparatus.

 Hagan and SAVY-4000 canisters are employed in Los Alamos National Laboratory storage. The

newer SAVY construction canisters are designed to have a maximum normal operating pressure range of

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

48

0.25 to 0.50 inWC (1 to 2 kPa), and a filtration capability of capturing greater than 99.97% of 0.45 micron

mean diameter aerosol. Sufficiently thin walls are implemented for content inspection, thus overpressure

can result in visible deformation. The lid-canister interface is sealed by compression of an o-ring, thus

non leak-tight conditions would present a pathway for radioactive material contamination. Current

designs have a “no-maintenance” life of five years, however, the desired life extension to a service life of

40 years or greater would substantially reduce laboratory resources. As o-ring degradation and filter

lifetime tests increase canister service life, the necessity for in-service canister surveillance will increase

to meet design criteria and detect potential problems. The current evaluations include visual deformation

inspections for canister overpressure caused by clogged filters, and contamination surveys indicating

possible o-ring seal failures.

Two canister interfaces were designed to provide a connection for the different styles of canister

lids, and the testing hardware. Each canister interface is designed to supply a clamping vacuum (with an

external pump) to create a seal with the canister lid. An additional measurement port is routed through

both the leak test system and an internal channel of the canister interface before it penetrates through the

filter for test data.

 The POC and IPFT systems collect and analyze data in different manners due to their varied

mechanical constructions. The Los Alamos POC instrument was used to create an Instrument

Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter

clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister

leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair) fouling

of o-rings, (B) leakage through simulated cracks in o-rings, and (C) air leakage due to inadequately

tightened canister lids. The POC determines if a filter is clogged and it measures leak rate in terms of

volumetric flow rate, since it has an air flow meter. With less than a 0.7% deviation from a calibrated

system volume, clogged filter simulations were confidently identified. Un-fouled o-ring configurations

were used to establish stable canisters at a leak rate between 0.1 to 0.2 cc/sec. This baseline leak range

was then used to characterize the tests in the Instrument Development Plan. Leaks from both simulated

cracks, and inadequately tightened canister lids were distinguishable from un-fouled, properly sealed

canisters. The Los Alamos POC instrument determined pertinent air flow and pressure quantities which

were used to specify a customized Isaac® (Zaxis, Salt Lake City, UT) leak tester device. The Isaac®

module was then incorporated as the user interface for the final IPFT.

Tests from the Instrument Development Plan validated the IPFT system for determining clogged

filters, and for the canister leak measurements based on pressure decay rates. To establish a minimal fill

time, which upon being reached would signify a completely clogged filter, time versus pressure tests were

conducted on Hagan 5, 8 and 12 quart containers. The results were used to create test parameters and an

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

49

associated minimum fill time which could distinguish clogged filters from fully functional ones. When

compared with current helium gas leak test procedures, the IPFT is about three orders of magnitude less

sensitive. It was necessary to develop an observed leak rate range of stable canisters to characterize leaky

conditions. As with the POC, leaks from both simulated cracks, and inadequately tightened canister lids

were observable. These results indicate that the Los Alamos IPFT instrument is capable of determining if

a filter is clogged and the leak rate conditions in nuclear canister, without requiring removal of the

container lid.

The IPFT determines if a filter is clogged, and it measures leak rate in terms of the pressure decay

rate. The IOM (Instrument Operating Method) systematically walks a user through the required sequence

to properly assess as-found canisters. Test parameters are prescribed based on the type of test (clogged

filter or leak rate condition) as well as the size of canister. Full compliance to the IOM produces all the

necessary results for as-found canister analysis.

 The IPFT measures pressure decay rate from 1.7E-03 inWC/sec to 1.7E-01 inWC/sec. On the

same unit scale, helium leak testing of canisters at Los Alamos has a range from 5.7E-07 inWC/sec to

1.9E-03 inWC/sec. For a 5-quart storage canister, the IPFT measures equivalent leak flow rates from

0.03 to 3.0 cc/sec. The helium leak volumetric flow rate criterion is 1.0E-05 cc/sec, and the upper range

of the helium leak range is 0.034 cc/sec. (This is the design qualification leak rate, which is the criterion

for post-drop tested canisters). The IPFT does not provide the same sensitivity as helium leak testing, but

is able to gauge the assembled condition of as-found and in-situ canisters.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

50

PART II.CANISTER FILTER TEST STANDARDS FOR AEROSOL LEAK RATES

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

51

Filter Standards Protocol: Execution, Data Gathering, Evaluation and Conclusions
A series of filter test standards were needed to verify performance of the Los Alamos FTS (Filter

Test System, Figure 11) for nuclear material storage canisters. The LANL FTS measures (1) the percent

leak of oil droplet aerosols through a canister filter, and (2) the pressure drop across a filter. Both of these

tests are performed at air flows of 200 cc/min, and both tests require the canister lid to be removed from

the canister for the experimental tests.

Verify the Los Alamos FTS matches the NFT results – using older Hagan NCR canister lids
The LANL FTS was completed before the IPFT In-Place-Filter-Tester project, and conversations

about the FTS operation were instrumental for pursuing the possibility of determining the “as-found”

condition of unopened storage canisters.

When the NFT company manufactures canister lids, they also measure the aerosol leak rate and

pressure drop for those canister lids. Since October 2002, they have used a set of fourteen Hagan canister

lids as a library of “standard filters” (Figure 30). These lids have never been placed “in service” with

nuclear material and have been marked as “NCR” (Non Compliance Report). The NCR lids were sent

from NFT to Los Alamos for round-robin comparison testing of the two filter test systems.

Figure 30. NCR Hagan lids used for system comparison.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

52

Testing at Los Alamos of the Hagan canister NCR lids commenced in June 2013, and the first set

of tests at Los Alamos did not match the NFT historical data set. Based on statistical (t-test) analysis, the

Los Alamos aerosol leak and pressure drop measurements deviated (unsatisfactorily) from the NFT

results. A series of equipment and procedure modifications were executed to reconcile the test results

from Los Alamos and NFT (Golden CO).

LANL FTS equipment modifications pertinent to measuring aerosol leak rate

• Initially, a TSI model 3079 aerosol generator was being used, but it was removed and replaced by

a modified ATI model 6D aerosol generator. (The TSI 3079 delivered the correct air flow rate for

the FTS system, but it produces an aerosol distribution larger than the SAVY-4000 test

requirements.)

• The ATI model 6D aerosol generator was modified to use a smaller pump, in order to scale the air

flow rate to the 200 cc/min requirement of the canister tests. (The ATI 6D is designed to produce

aerosol for air flows of 1000 CFM (cubic feet per minute), therefore, the original factory pump

was oversized for this application.

LANL FTS equipment and process modifications pertinent to measuring pressure drop across the

filter

• Operation of the electronic flow controller was examined, and was set to the correct reference

pressure. This issue was explained and rectified. (Moore ME 2013b).

• The LabView software driver was periodically registering null (zero) values for pressure drop

data in its data acquisition string. This issue was corrected.

• The altitude density correction. The pressure drop measurements (across the tested filters at Los

Alamos) were corrected to the altitude at Golden CO, where the NFT company performs their

measurements. The values calculated as “ΔPLANL-corrected” were then directly compared to the

values measured at Golden CO as “ΔPNFT”.

ΔPLANL-corrected = ΔPLANL-measured*(RGolden/RLosAlamos), (4)

where

RGolden = the ratio of atmospheric pressure at Golden CO to sea level pressure (i.e. 0.81), and,

RLosAlamos = the ratio of atmospheric pressure at Los Alamos to sea level pressure (i.e. 0.76).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

53

 After these system modifications were performed, the fourteen Hagan NCR canister lids were re-

measured for aerosol leak rate and for filter pressure drop (Figures 31 and 32). The statistical comparison

of both data sets is presented in Table 9 (Milton JS and JC Arnold 1986).

Figure 31. Los Alamos leak percent tests (on Hagan NCR lids) compared to NFT results.

Figure 32. Los Alamos pressure drop tests (on Hagan NCR lids) compared to NFT results.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

54

Table 9. Paired t-test summary compares the LANL results to the NFT data.
Paired t-test (two tails) p-value Answer to the mean test

Are the measured differences in

aerosol leak (in between NFT

and LANL) due to chance?

(PEN% 5/9/2013 (NFT data)

versus PEN% 10/30/2013 (LANL

data))

0.30
Yes.

(The p-value is 0.30 > 0.05)

Conclusion: the data sets are a

statistical match.

Are the measured differences in

pressure drop (in between NFT

and LANL) due to chance?

(DP 5/9/2013 (NFT data) versus

DP 06/04/2014 (LANL data))

0.27
Yes.

(The p-value is 0.27 > 0.05)

Conclusion: the data sets are a

statistical match.

Procurement of new SAVY-4000 style filter standards

A series of reference standard filters based on the SAVY-4000 filter design were purchased

(Figures 33 and 34). These filter standards will be used to verify the performance of Los Alamos FTS

Filter Test System located in the Los Alamos plutonium facility (a rad area) in relation to the FTS Filter

Test System located in the Aerosol Engineering Facility (a non-rad area). There were fifteen filter

standards procured. Three of the fifteen filter standards were manufactured with two layers of the ceramic

filter material while the other twelve were manufactured with the standard three layers of material. These

filters came with a test performance sheet and will provide another metric for comparing the Los Alamos

systems to the manufacturer’s system. On the SAVY-4000 filters, a leak (percent) of aerosol through the

filter is not detectable in most cases (Table 10), due to a lower limit of measurability of the photometer

used to measure the aerosol concentration. The filter standards with two layers of filter material were

intended to provide a measured leak percentage larger than 0.0001%. The data sheets supplied with the

filter standards indicate that a percent leak is still at 0.0001% while the pressure drop across the filter did

decrease. A sample of these filter standards will be intentionally damaged with a “pinhole leak” so that a

measurable amount of aerosol leakage may be measured.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

55

Figure 33. Top surfaces of the Hagan, SAVY-4000 and NFT filter standard (clockwise from upper left).

Figure 34. Lower surfaces of the Hagan, SAVY-4000 and NFT filter standard (clockwise from upper left).

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

56

Table 10. Performance summary of the new SAVY-style standard filters.

Filter ID

Pressure
Drop

%
Leak

243568-2L-001 0.64 0.0001

243568-2L-002 0.66 0.0001

243568-2L-003 0.66 0.0001

243568-3L-001 0.77 0.0001

243568-3L-002 0.76 0.0001

243568-3L-003 0.78 0.0001

243568-3L-004 0.82 0.0001

243568-3L-005 0.73 0.0009

243568-3L-006 0.72 0.0001

243568-3L-007 0.82 0.0001

243568-3L-008 0.74 0.0001

243568-3L-009 0.91 0.0001

243568-3L-010 0.68 0.0001

243568-3L-011 0.82 0.0001

243568-3L-012 0.87 0.0001

Table 10 contains the manufacturer data for each of the lids. The filter ID contains information

regarding the number of layers of filter material. As seen in Table 10, the percent leak on almost all the

filter standards are 0.0001%.

 As seen in the side-by-side photos (Figures 33 and 34), the NFT filter standard is not a

complete lid, since it lacks an outer latch mechanism, outer ring and handle. These filter standards can

still be utilized with the LANL FTS Filter Test System, since the filter standards will be held in place

with the arbor press (Figure 11) located on the FTS.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

57

ACKNOWLEDGEMENTS

This project was funded by the US Department of Energy Health, Safety and Security Program, WAS

Project No.: 2013-HS-2013008, B&R No. HU1004500.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

58

REFERENCES

Anderson LL, Blair MW, Hamilton EJ, Kelly EJ, Moore ME, Smith PH, Stone TA, Teague JG, Veirs

DK, Weis E and Yarbro TF, Safety Analysis Report for the SAVY 4000 Container Series, Revision 3.

Los Alamos National Laboratory, Los Alamos Controlled Publication, LA-CP 13-01502, 2013

ASTM F2338-09. Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum

Decay Method. American Society for Testing and Materials. 2013.

ASTM E2930-13. Standard Practice for Pressure Decay Leak Test Method. American Society for Testing

and Materials. 2013.

Brassell GW and Brugger RP. “Bonded carbon or ceramic fiber composite filter vent for radioactive

waste”, U.S. Patent Number 4,500,328; 1985.

Havrilla GJ, Bowen S. 2002 LAUR 02-7568 RFETS Drum Filter Evaluation with Stainless Steel

Containers - Final Report, Los Alamos National Laboratory Unclassified Report. 2002.

Havrilla GJ 2000 LAUR-00-3034 Characterization of RFETS Drum Vent Filters, Los Alamos National

Laboratory Unclassified Report. 2000.

Milton JS and JC Arnold. Probability and Statistics in the Engineering and Computing Sciences.

McGraw-Hill. 1986.

Moore ME, Smith PH, Veirs DK, Anderson LL, Klemm R, 2011. Low Flow Filter Efficiency Testing,

Los Alamos National Laboratory, Los Alamos Unclassified Report LAUR 11-10891, 2011

Moore ME, Reeves, KP, 2013. Filter Measurement System for Nuclear Material Storage Canisters - End

of Year Report FY 2013. Los Alamos National Laboratory, Los Alamos Unclassified Report LAUR-14-

20641.

Moore ME, 2013a. RP2 RIC Aerosol Engineering Facility Leak Test Procedure, Los Alamos National

Laboratory, RP2-RIC-DP-77, R0.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

59

Moore ME. 2013b. Pressure drop measurement - reconciled - LANL vs. NucFilt filter - flow controller 8-

15-13.docx. Personal communication. Los Alamos National Laboratory. 2013.

Stone TA, Smith PH 2011. Los Alamos National Laboratory overview of the SAVY-4000 design:

meeting the challenge for worker safety. Los Alamos National Laboratory, Los Alamos Unclassified

Report. LAUR-11-03986.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

60

APPENDICES

See separate file.

Brown Runnels Moore Reeves 2014 LAUR-14-27446 LANL - IPFT and Filter Standards - for DOE NSRD

61

APPENDIX CONTENTS

A. Product information sheet – Los Alamos IPFT In-Place-Filter-Tester .. 62

B. POC component list .. 64

C. Specification e-mail to Zaxis Inc for a custom Isaac™ unit ... 65

D. LANL PCB – Printed Circuit Board ... 68

E. Canister Interface ... 71

F. Build Request to vendor of IPFT device .. 73

G. Pressure drop reconciliation .. 81

H. NFT reference filter standards ... 83

I. POC driver code .. 95

Final Report: WAS Project No.: 2013-HS-2013008:

62

A. Product information sheet – Los Alamos IPFT In-Place-Filter-Tester

Final Report: WAS Project No.: 2013-HS-2013008:

63

Final Report: WAS Project No.: 2013-HS-2013008:

64

B. POC component list

Final Report: WAS Project No.: 2013-HS-2013008:

65

C. Specification e-mail to Zaxis Inc for a custom Isaac™ unit

From: Moore, Murray E
Sent: Wednesday, May 07, 2014 4:17 PM
To: Harding, Doug
Cc: Brown, Austin D
Subject: May 7, 2014. Los Alamos (In-Place-Filter-Tester) specs (Moore)

Hi Doug,
Can you provide a quote for a system for the following specifications?

(1) The dead air space of the suction cup above the canister filter is 100 mL.
(2) We would like a test flow rate of 100 cc/min. Is this a variable quantity?
(3) We would like to leak test canisters in different sizes: 1, 3, 5, 8 and 12 quarts.
(4) We would like a clamp force on our suction cup of 80 inches of water. The clamp flow rate can

be 100 cc/sec.
(5) How low is your resolution for leak rate? Our custom tester prototype has a baseline leak rate

of 0.004 cc/sec.
(6) When the tested container has been measured as ‘leaktight’, the leak rate was about 0.3

cc/sec.
(7) During tests, we measure leak rates over a span from 0.3 cc/sec to about 10 cc/sec.

We will use an Alita pump (Alita model AL-80) from Tech Associates (Tech Assoc model #
AP4V). (attached spec sheet). It has a dead-head vacuum of about 0.57 bars, and a free flow rate of 120
LPM.
Thank you for your help,
Murray

*

- Murray E. Moore, Ph.D., P.E.
- Desk phone: 505-665-9661
- R&D Engineer
- Los Alamos National Laboratory
- Radiation Protection Division, Group RP-SVS
- Aerosol Engineering Facility
http://www.lanl.gov/orgs/rp/wind_tunnel.shtml
http://int.lanl.gov/orgs/rp/rp2/wind_tunnel.shtml
* Shipping:
SM-30 Bikini Atoll Rd. TA-3, Bldg-130, D.P. 01U,
Los Alamos NM 87545
- Mailing:
Group RP-SVS, Mail Stop G-761, Los Alamos NM 87545
~ Cell: 505-699-8264
~ Pager: 505-664-8140
~ Fax: 505-665-6071
~ Email: memoore@lanl.gov

http://www.lanl.gov/orgs/rp/wind_tunnel.shtml
http://int.lanl.gov/orgs/rp/rp2/wind_tunnel.shtml
mailto:memoore@lanl.gov

Final Report: WAS Project No.: 2013-HS-2013008:

66

Final Report: WAS Project No.: 2013-HS-2013008:

67

Final Report: WAS Project No.: 2013-HS-2013008:

68

D. LANL PCB – Printed Circuit Board

Final Report: WAS Project No.: 2013-HS-2013008:

69

Final Report: WAS Project No.: 2013-HS-2013008:

70

Final Report: WAS Project No.: 2013-HS-2013008:

71

E. Canister Interface

Final Report: WAS Project No.: 2013-HS-2013008:

72

Final Report: WAS Project No.: 2013-HS-2013008:

73

F. Build Request to vendor of IPFT device

Final Report: WAS Project No.: 2013-HS-2013008:

74

Vendor would supply two(2) of these units:

Instrument plate with the indicated items installed. The assembly does NOT have to be UL listed or QA/QC approved.

This sketch indicates only two of the eight total aluminum plates from the 8020.net package. The four pillars are shown

for sake of mechanically connecting the two pates together. There are six exterior plates and two internal plates. See

attachments.

Final Report: WAS Project No.: 2013-HS-2013008:

75

Final Report: WAS Project No.: 2013-HS-2013008:

76

Final Report: WAS Project No.: 2013-HS-2013008:

77

Final Report: WAS Project No.: 2013-HS-2013008:

78

Final Report: WAS Project No.: 2013-HS-2013008:

79

Final Report: WAS Project No.: 2013-HS-2013008:

80

Final Report: WAS Project No.: 2013-HS-2013008:

81

G. Pressure drop reconciliation

From: Moore, Murray E

Sent: Thursday, August 15, 2013 1:39 PM

To: Veirs, Douglas K; Smith, Paul Herrick; Kirk Reeves

Subject: Pressure drop measurement - reconciled. (LANL vs. NucFilt filter pressure drop)

Hello all,

I am happy to announce that we have reconciled the pressure drop measurement discrepancy that happened

during a set of paired comparison tests.

(1) Previously, the mistake made on 5-30-2013 (p.81 logbook LANL-NucFilt Moore #4) involved using the
volumetric flowrate value of 200 accm as the setpoint for the flow controller. This is incorrect, since the flow
controller measures the internal volumetric flow (downstream of its transducer), this is NOT the same as the
volumetric flow that enters into the filter test system and passes through the filter.

In summary, from this day forward, to establish a flow rate of 200 accm through a test filter:

(1) Set the mass flowrate through the flow controller FIC102 to be 152 sccm (mass flow).
(2) When the flow controller has an established flow of 152 sccm, a typical absolute pressure in the flow controller

will be about 8.49 psia (internal pressure, downstream of the flow controller), and the flow controller will
indicate about 263 accm (volumetric flow).

(3) To verify the system operation, a dry piston primary calibrator is connected to the inlet port of the flow
controller. (On August 15, 2013, the corresponding mass flowrate through the dry piston calibrator was 151
sccm (mass flow)). The dry piston calibrator display indicates that the 152 sccm in mass flow is equivalent to
200 accm in volumetric flow.

(4) The required volumetric flow (200 accm) has to be measured at the inlet to the system, and expressed in
terms of mass flow (152 sccm).

152 sccm / 200 accm = 0.76 (the local Los Alamos pressure ratio)

(5) The mass flow of 152 sccm must be used as the setpoint for the flow controller.
(6) In reference to the included sketch, the mass flowrate through the system remains constant, but the volumetric

flowrate does not. The volumetric flowrate is locally defined, based on the local air pressure.

Final Report: WAS Project No.: 2013-HS-2013008:

82

We were able to measure the pressure drop across one of the reference Hagan-type filters at the measured

mass flowrate of 152 sccm (corresponding to the correct 200 accm through the filter-that-was-tested).

The measured pressure drop matched the value that was previously measured by NFT Inc (about 0.8 inches of

water column, in W.C.).

To be done: a full measurement of all the reference filters (about 20 total) with the correct air flowrate value

and the correct aerosol size distribution.

*

- Murray E. Moore, Ph.D., P.E.

- Desk phone: 505-665-9661

Final Report: WAS Project No.: 2013-HS-2013008:

83

H. NFT reference filter standards

Final Report: WAS Project No.: 2013-HS-2013008:

84

Final Report: WAS Project No.: 2013-HS-2013008:

85

Final Report: WAS Project No.: 2013-HS-2013008:

86

Final Report: WAS Project No.: 2013-HS-2013008:

87

Final Report: WAS Project No.: 2013-HS-2013008:

88

Final Report: WAS Project No.: 2013-HS-2013008:

89

Final Report: WAS Project No.: 2013-HS-2013008:

90

Final Report: WAS Project No.: 2013-HS-2013008:

91

Final Report: WAS Project No.: 2013-HS-2013008:

92

Final Report: WAS Project No.: 2013-HS-2013008:

93

Final Report: WAS Project No.: 2013-HS-2013008:

94

Final Report: WAS Project No.: 2013-HS-2013008:

95

I. POC driver code
LANL POC driver code
v03_00_02 08/06/2014

/**
 * Project: On-Canister Filter Tester
 *
 * @file OCFT_reader_v00_01_11.ino
 * @version 0.1.11
 * @author Joel Runnels
 * @date 2013-08-14
 *
 * @brief
 * This file contains the setup function and the loop function for the
 * OCFT driver code.
 *
 * @details
 * Menu-driven function added in later 0.0.x versions.
 * The transition to version 0.1.x represents the shift to a touch-screen
 * driven interface. Serial commands are not used in this version at all,
 * and serial output is used only for debugging.
 *
 * As of this version, the code is mostly functional. Major issues lie in
 * the system volume calibration function.
 *
 * Major improvements include:
 * --EEPROM storage of sample pressure, sample time, and calibrated container volume
 * --Menu driven touch screen interface
 *
 * Basic functionality of testing a contianer volume is still working.
 *
 * Note that there are still several debugging print lines in the
 * code; some of them are commented out, some not.
 *
 *
 *
 *
 *
 *
 *
 * A NOTE ON LIBRARIES (read this if the code won't compile on your computer!):
 * This program uses three external libraries provided by Adafruit for interfacing
 * with touchscreen. These libraries are included in the "libraries" subfolder
 * included with this package. If you do not already have these libraries installed,
 * you need to do so, otherwise the code will not compile. To install these
 * libraries, follow the following steps:
 *
 * If you are using Aruino 1.0.5 or newer:
 *

Final Report: WAS Project No.: 2013-HS-2013008:

96

 * 1) Open the Arduino IDE
 * 2) Click on "Sketch" in the menu bar
 * 3) Click on "Import Library"
 * 4) Click on "Add Library"
 * 5) You will be prompted to select the library you would like to add. Navigate to
 * the "lib" subfolder within the OCFT folder that contains the source code for
 * the OCFT.
 * 6) Select the first library .zip file in the list.
 * 7) Repeat steps 2-6 for the remaining libraries in the subfolder.
 * 8) Restart the Arduino IDE.
 *
 *
 *
 * If you are using Arduino 1.0.4 or older (or if you want to do a manual install):
 *
 * 1) Locate and navigate to your Arduino sketchbook folder. For Windows, this will
 * likely be located under "My Documents/Arduino", unless you have moved it
 * somewhere else.
 * 2) Open the libraries folder within your sketchbook folder.
 * 3) In a separate file browser window, navigate to the OCFT code folder.
 * 4) Navigate to the "lib" subfolder in the OCFT folder.
 * 5) In the "lib" folder you should find three .zip files. Unzip all of them.
 * 6) Drag the contents of the unzipped files into the "libraries" subfolder within
 * your sketchbook.
 * 7) If you have the Arduino IDE running, close and restart it.
 *
 *
 * @todo Finish auto volume calibration feature, add more error handling capabilities.
 *
 **/

/************************/
/* INCLUDE STATEMENTS */
/************************/

#include "functions.h"
#include "define.h"
#include <TouchScreen.h>
#include "buttons.h"
#include <EEPROM.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library

/********************/
/* SETUP FUNCTION */

Final Report: WAS Project No.: 2013-HS-2013008:

97

/********************/

/**
 *
 * The setup function is the function which runs only once, at the beginning of
 * the program. In this function, pins are designated as outputs and brought to
 * their default state. Serial communication also commences. The system also
 * does a check to make sure that the system's internal volume has already been
 * calibrated.
 *
 * @param void
 *
 * @retval void
 *
 */

void setup ()
{
 //Set pins for relay control as outputs, set them high (off)

 pinMode(CC_101, OUTPUT);
 pinMode(CC_102, OUTPUT);
 pinMode(CC_103, OUTPUT);
 pinMode(CC_104, OUTPUT);
 pinMode(CC_105, OUTPUT);
 pinMode(CC_106, OUTPUT);

 digitalWrite(CC_101, OFF);
 digitalWrite(CC_102, OFF);
 digitalWrite(CC_103, OFF);
 digitalWrite(CC_104, OFF);
 digitalWrite(CC_105, OFF);
 digitalWrite(CC_106, OFF);

 //Begin serial communications. Ultimately serial communication will not be used in final product
 Serial.begin(9600);

 if((abs(settings_read_int_volume(1) + 1.00)) < (1.0))
 {
 Serial.print("System detects that you have never measured the internal system volume! This must be done
before any tests are performed, otherwise results will be innacurate.\r\n");

 }

Final Report: WAS Project No.: 2013-HS-2013008:

98

 Serial.println("Serial communication is working! HA-HA!:) ");

}

/*******************/
/* LOOP FUNCTION */
/*******************/

/**
 *
 * The loop function holds the code that runs repeatedly until the microcontroller
 * is powered off. In the loop function, two objects are created; one for
 * controlling the LCD and one for controlling the touchscreen. The LCD is reset,
 * then communication is initialized. The function sets the proper rotation and
 * fills the screen to white. The function then passes pointers to the touchscreen
 * and LCD to the \ref main_menu function, at which point the logic of the \ref main_menu
 * function takes control of the program. \ref main_menu runs until the user selects
 * an option. After the user's requests are executed, main_menu exits and passes
 * control back to \ref loop(), at which point loop runs again.
 *
 * @param void
 *
 * @retval void
 *
 */

void loop ()
{

 //Touchscreen and LCD objects are created in loop function, and passed "by reference" throughout the menus.

 Adafruit_TFTLCD tft;
 TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);
 uint16_t identifier;

 tft.reset();
 identifier = (tft).readID();
 tft.begin(identifier);
 tft.setRotation(1);
 tft.fillScreen(WHITE);

Final Report: WAS Project No.: 2013-HS-2013008:

99

 main_menu(&tft, &ts);

}

/**
 * Project: On-Canister Filter Tester
 * @file buttons.cpp
 * @version 0.1.11
 * @author Joel Runnels
 * @date 2013-08-14
 *
 * @brief This file contains the button class definition
 *
 * @details
 * Function stores button class constructor, destructor, draw and
 * get_status functions. Linked to buttons.h
 *
 * @todo
 *
 */

#include "buttons.h"
#include "define.h"
#include <TouchScreen.h>
#include <Arduino.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <stdint.h>

/***************************************
/// BUTTON CLASS FUNCTION DEFINITIONS
/**************************************/

/**
 * @brief Button Class constructor
 *
 * This function contains the basic button construction. It copies user
 * input to button class variables.
 *
 * @param uint16_t s_x: Left edge coordinate of button
 * @param uint16_t s_y: Upper edge coordinate of button
 * @param char * s_text_string: Button text
 * @param size_t s_text_length: Length of button text

Final Report: WAS Project No.: 2013-HS-2013008:

100

 * @param size_t text_size: Size of button text
 * @param Adafruit_TFTLCD * new_tft: Pointer to LCD object
 * @param TouchScreen * new_ts: Pointer to touchscreen object
 */

button::button(uint16_t s_x, uint16_t s_y, char * s_text_string, size_t s_text_length, size_t s_text_size, Adafruit_TFTLCD
* new_tft, TouchScreen * new_ts)
{

 //Assign input variables to the object's local values

 x = s_x;
 y = s_y;

 text_string = s_text_string;
 text_length = s_text_length;
 text_size = s_text_size;

 tft = new_tft;
 ts = new_ts;

}

/**
 * @brief Button Class destructor
 *
 **/

button::~button(void)
{
 ;
}

/**
 *
 * @brief This function is responsible for displaying the button to the screen using assigned colors
 *
 * The draw function determines the required height and width of the button
 * to be drawn. It then draws the button using user-assigned colors, and fills in
 * the text from the text string. It also assigns the color values to the object's
 * local variables.

Final Report: WAS Project No.: 2013-HS-2013008:

101

 *
 * @param uint16_t s_fill_color: Fill color of button
 * @param uint16_t s_outline_color: Outline color of button
 * @param uint16_t s_fill_color: Color for button text
 *
 * @retval void
 *
 **/

void button::draw(uint16_t s_fill_color, uint16_t s_outline_color, uint16_t s_text_color)
{

 byte i = 0;

 //Assign fill color values to object variables

 fill_color = s_fill_color;
 outline_color = s_outline_color;

 text_color = s_text_color;

 //Calculate length and width of button

 x_length = (text_length * text_size * 6) + (text_size * 5);
 y_length = (text_size * 7) + (text_size * 10);

 //Draw button

 (*tft).fillRoundRect(x, y, x_length, y_length, 5, fill_color);
 (*tft).drawRoundRect(x, y, x_length, y_length, 5, outline_color);

 (*tft).setCursor(x + (text_size * 5), y + (text_size * 5));
 (*tft).setTextColor(text_color);
 (*tft).setTextSize(text_size);

 //Fill in text

 for(i = 0; i < text_length; i++)
 {

 (*tft).write(*(text_string + i));

 }

 return;
}

Final Report: WAS Project No.: 2013-HS-2013008:

102

/**
 * @brief This function gets the status of the button (pressed or un-pressed) and returns
 * it to calling function
 *
 * This function checks whether or not the button has been pressed. If it has been,
 * the function temporarily redraws the button with alternate colors; then draws the
 * button back with its proper colors. Return value is dependent on status of button.
 *
 * @retval byte: returns status of button (0 = unpressed, 1 = pressed)
 *
 **/

byte button::get_status(void)
{

 int tmp = 0;
 byte button_status = 0;
 byte i = 0;

 //Check status of button

 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);
 Point p = (*ts).getPoint();
 digitalWrite(13, LOW);
 pinMode(XM, OUTPUT);
 pinMode(YP, OUTPUT);

 //Copy object colors to temporary storage

 uint16_t tmp_fill = fill_color;
 uint16_t tmp_text = text_color;
 uint16_t tmp_outline = outline_color;

 //Map coordinates of touchscreen contact to standard pixel coordinates
 p.x = map(p.x, TS_MINX, TS_MAXX, (*tft).height(), 0);
 p.y = map(p.y, TS_MINY, TS_MAXY, (*tft).width(), 0);

 //These lines account for the fact that the screen is rotated by 90 degrees
 tmp = p.y;
 p.y = (*tft).height() - p.x;

Final Report: WAS Project No.: 2013-HS-2013008:

103

 p.x = tmp;

 //If statement determines whether touchscreen pressure is large enough to be considered a true "touch"
 if(p.z > MINPRESSURE && p.z < MAXPRESSURE)
 {

 //Nested if statements determine whether touch is inside button coordinates or outside
 if((p.x > x) && (p.x < (x + x_length)))
 {
 if((p.y > y) && (p.y < (y + y_length)))
 {

 //redraw button with alternate colors
 draw(tmp_text, tmp_text, tmp_fill);
 button_status = 1;

 //Small delay
 delay(BUTTON_LAG_TIME);

 //Draw button with correct colors
 draw(tmp_fill, tmp_outline, tmp_text);

 //If button was pressed, function returns 1 to calling function
 return (1);

 }
 }
 }

 //If button not pressed, function returns 0 to calling function
 return(0);

}

/**
 * Project: On-Canister Filter Tester
 * @file buttons.h
 * @version 0.1.11
 * @author Joel Runnels
 * @date 2013-08-14
 *
 * @brief This file contains the prototype for the button class, as well as several
 * define macros specific for operation of buttons or touchscreen.
 *
 * @details
 * Define macros borrowed from adafruit libraries for touchscreen and LCD interface
 *

Final Report: WAS Project No.: 2013-HS-2013008:

104

 * @todo
 *
 */

#ifndef BUTTONS_H
#define BUTTONS_H

#include <Arduino.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library

#include <stdint.h>
#include <TouchScreen.h>

/************************/
/* DEFINE STATEMENTS */
/************************/

// These are the pins for the shield!
/// Define pins needed for operation of touchscreen shield
#define YP A1 // must be an analog pin, use "An" notation!
#define XM A2 // must be an analog pin, use "An" notation!
#define YM 7 // can be a digital pin
#define XP 6 // can be a digital pin

#define MINPRESSURE 10 ///< Minimum pressure threshold before a "touch" on the touchscreen is detected
#define MAXPRESSURE 10000 ///< Maximum pressure threshold above which a "touch" is not detected

#define TS_MINX 150 ///< The minimum x coordinate that will be returned from a touchscreen point
#define TS_MINY 120 ///< The minimum y coordinate that will be returned from a touchscreen point
#define TS_MAXX 920 ///< The maximum x coordinate that will be returned from a touchscreen point
#define TS_MAXY 940 ///< The maximum y coordinate that will be returned from a touchscreen point

/// Define some standard color values
#define BLACK 0x0000 ///< Black hex value
#define BLUE 0x001F ///< Blue hex value
#define RED 0xF800 ///< Red hex value
#define GREEN 0x07E0 ///< Green hex value
#define CYAN 0x07FF ///< Cyan hex value
#define MAGENTA 0xF81F ///< Magenta hex value
#define YELLOW 0xFFE0 ///< Yellow hex value
#define WHITE 0xFFFF ///< White hex value

Final Report: WAS Project No.: 2013-HS-2013008:

105

#define BUTTON_LAG_TIME 100 ///< Time which button "waits" after being pressed

/**********************/
/* BUTTON PROTOTYPE */
/**********************/

/**
 *
 * @brief Basic class to support button input through touchscreen
 *
 * This class allows for basic, oval shaped buttons. It allows user to enter
 * arbitrary text with an arbitrary size, and the function automatically draws
 * the button to be the right size for the text (unless text is too large for
 * screen). The function allows for individual selection of text color, fill
 * color, and outline color. Button automatically handles alternate coloring
 * during button pressing, as long as the get_status function is being called.
 *
 * @param uint16_t x: The coordinate of the left edge of the button
 * @param uint16_t y: The coordinate of the top edge of the button
 * @param uint16_t x_length: The length of the button in the x direction
 * @param uint16_t y_length: The length of the button in the y direction
 * @param uint16_t fill_color: Default fill color of the button
 * @param uint16_t outline_color: Default outline color of the buttn
 * @param uint16_t text_color: Default text color
 * @param char * text_string: String containing button text
 * @paran size_t text_length: Length of text string
 * @param uint16_t text_size: Size of button text
 * @param Adafruit_TFTLCD * tft: Pointer to LCD object
 * @param TouchScreen * ts: Pointer to touchscreen object
 *
 *
 */
class button
{

 uint16_t x;
 uint16_t y;
 uint16_t x_length;
 uint16_t y_length;
 uint16_t fill_color;
 uint16_t outline_color;
 uint16_t text_color;
 char * text_string;
 size_t text_length;
 uint16_t text_size;

Final Report: WAS Project No.: 2013-HS-2013008:

106

 Adafruit_TFTLCD * tft;
 TouchScreen * ts;
 // uint16_t identifier;

public:

 button(uint16_t, uint16_t, char *, size_t, uint16_t, Adafruit_TFTLCD *, TouchScreen *);

 ~button(void);

 void draw(uint16_t, uint16_t, uint16_t);
 byte get_status(void);

};

#endif

/**
 * Project: On-Canister Filter Tester
 * @file define.h
 * @version 0.1.11
 * @author Joel Runnels
 * @date 2013-08-14
 *
 * @brief
 * This file contains the #define statements used in OCFT.
 *
 * @details
 * This file contains various #define macros used in the other files of the
 * OCFT driver system. Statements below are sorted by type, grouped into the
 * following categories:
 *
 * - Computer control links
 *
 * Contains #define macros that link P&ID codes for computer control links
 * to specific pins on microcontroller. These pins usually control relays
 * or other instrument control devices. These #define macros allow pins to
 * be rearranged without replacing values in every part of code. If wires
 * must be routed to different pins, their pin numbers can be modified in
 * this file, and the rest of the code will function accordingly.
 *

Final Report: WAS Project No.: 2013-HS-2013008:

107

 *
 * - Instrument Computer Inputs
 *
 * Contains #define macros that link P&ID codes for computer indication links
 * to specific pins on microcontroller. These pins are usually analog input
 * pins (although they could also be used for SPI CS pins or I2C addresses,
 * SPI or I2C instruments are ever added). These #define macros allow pins
 * to be rearranged without replacing values in every part of code. If wires
 * must be routed to different pins, their pin numbers can be modified in
 * this file, and the rest of the code will function accordingly.
 *
 *
 * - Instrument Identifiers
 *
 * Contains #define macros that link P&ID codes for specific instruments to
 * simple integer values for use in functions. These macros are useful when
 * specific instruments need to be specified within the code. For instance,
 * the read_pressure function accepts the instrument code and pin number to
 * determine which instrument transfer function to use.
 *
 *
 * - Instrument Control Variables
 *
 * Contains #define macros that store values for instrument interfacing. These
 * macros are usually commands that are sent to an interface, and link the
 * numeric value sent to the instrument to a human-readable value.
 *
 *
 * - EEPROM Addresses
 *
 * Contains #define macros that store the EEPROM addresses for system-specific
 * values stored in non-volatile onboard EEPROM.
 *
 *
 * - Menu Options
 *
 * Contains #define macros that link menu function outputs to human-readable
 * text. The purpose of these macros is to make menu logic code more readable
 * and traceable. Further divided into groups of macros for specific menus as
 * follows:
 *
 * - Main Menu
 * - Configuration Menu
 * - Diagnostic Menu
 * - Yes/No Menu
 * - Continue/Cancel Menu
 * .
 *
 *
 *

Final Report: WAS Project No.: 2013-HS-2013008:

108

 * - Process Function Values --
 *
 * Contains #define macros that define set values for various process
 * functions. Some examples include leak check runtime, number of volume
 * calibration points, etc. Further divided into groups of macros for various
 * function types as follows:
 *
 * - Filter Test/Volume Measure Variables
 * - System Volume Calibration Variables
 * .
 *
 *
 * @todo
 *
 **/

#ifndef DEFINE_H
#define DEFINE_H

/****************************/
/* Computer Control Links */
/****************************/
/**
 * @name Computer Control Links
 * Contains #define macros that link P&ID codes for computer control links
 * to specific pins on microcontroller. These pins usually control relays
 * or other instrument control devices. These #define macros allow pins to
 * be rearranged without replacing values in every part of code. If wires
 * must be routed to different pins, their pin numbers can be modified in
 * this file, and the rest of the code will function accordingly.
 *
 */
//@{
#define CC_101 51 ///< Computer control link to relay controlling VC101 (test volume relief) relay 5
#define CC_102 52 ///< Computer control link to relay controlling VC102 (test volume capture) relay 7
#define CC_103 53 ///< Computer control link to relay controlling FPC101 (test volume pump) relay 3
#define CC_104 50 ///< Computer control link to relay controlling FPC102 (suction head pump) relay 2
#define CC_105 49 ///< Computer control link to relay controlling VC103 (suction head capture) relay 6
#define CC_106 48 ///< Computer control link to relay controlling VC104 (suction head relief) relay 4
//@}

Final Report: WAS Project No.: 2013-HS-2013008:

109

/*******************************/
/* Computer Indication Links */
/*******************************/
/**
 * @anchor ci_links
 * @name Instrument Computer Inputs
 * Contains #define macros that link P&ID codes for computer indication links
 * to specific pins on microcontroller. These pins are usually analog input
 * pins (although they could also be used for SPI CS pins or I2C addresses,
 * SPI or I2C instruments are ever added). These #define macros allow pins
 * to be rearranged without replacing values in every part of code. If wires
 * must be routed to different pins, their pin numbers can be modified in
 * this file, and the rest of the code will function accordingly.
 */
//@{
#define CI_101 10 ///< Computer interface to PI101 (analog read pin)
#define CI_102 11 ///< Computer interface to PI102 (analog read pin)
#define CI_103 9 ///< Computer interface to PI103 (analog read pin)
#define CI_104 12 ///< Computer interface to FI101 (analog read pin)
//@}

/****************************/
/* Instrument Identifiers */
/****************************/
/**
 * @anchor instrument_id
 * @name Instrument Identifiers
 * Contains #define macros that link P&ID codes for specific instruments to
 * simple integer values for use in functions. These macros are useful when
 * specific instruments need to be specified within the code. For instance,
 * the read_pressure function accepts the instrument code and pin number to
 * determine which instrument transfer function to use.
 */
//@{
#define FI_101 1 ///< Mass flow indicator (measures mass flow out of sample container)

#define PI_101 1 ///< Differential pressure gauge (measures pressure drop between sample container and atmospheric)
#define PI_102 2 ///< Differential pressure gauge (measures vacuum pressure of suction head)
#define PI_103 3 ///< Absolute Pressure Gauge (measures atmospheric pressure for determining density of air)
//@}

Final Report: WAS Project No.: 2013-HS-2013008:

110

/*********************************/
/* Intrument Control Variables */
/*********************************/
/**
 * @anchor instrument_control
 * @name Instrument Control Variables
 * Contains #define macros that store values for instrument interfacing. These
 * macros are usually commands that are sent to an interface, and link the
 * numeric value sent to the instrument to a human-readable value.
 */
//@{
#define ON LOW ///< Pin value for turning relay on
#define OFF HIGH ///< Pin value for turning relay off
//@}

/**********************/
/* EEPROM Addresses */
/**********************/
/**
 * @anchor EEPROM_addresses
 * @name EEPROM Addresses
 * Contains #define macros that store the EEPROM addresses for system-specific
 * values stored in non-volatile onboard EEPROM.
 */
//@{
#define SAMPLE_PRESSURE_ADDRESS 20 ///< EEPROM address for sample pressure set point (starting address)
#define MAX_TIME_ADDRESS 30 ///< EEPROM address for maximum sample time
#define SUCTION_PRESSURE_ADDRESS 40 ///< EEPROM address for suction pressure set point

#define INT_VOLUME_ADDRESS 100 ///< EEPROM address for internal volume calibration address (starting address)
//@}

Final Report: WAS Project No.: 2013-HS-2013008:

111

/******************/
/* Menu Options */
/******************/
/**
 * @name Menu Options
 * Contains #define macros that link menu function outputs to human-readable
 * text. The purpose of these macros is to make menu logic code more readable
 * and traceable. Further divided into groups of macros for specific menus as
 * follows:
 * - Main Menu
 * - Configuration Menu
 * - Diagnostic Menu
 * - Yes/No Menu
 * - Continue/Cancel Menu
 */
//@{

#define CONTINUE_CANCEL 1
#define ACCEPT_REJECT 2

#define EXIT 0 ///< Value passed to calling function from menu for "Exit"

// Main Menu
#define RUN_TEST 1 ///< Value passed to calling function from menu for "Run Test"
#define CONFIGURE 2 ///< Value passed to calling function from menu for "Configure"
#define SECURE_TEST 3 ///< Value passed to calling function from menu for "Secure Test"

// Configuration Menu
#define SET_SAMPLE_PRESSURE 1 ///< Value passed to calling function from menu for "Set Sample Pressure"
#define SET_SAMPLE_TIME 2 ///< Value passed to calling function from menu for "Set Sample Time"
#define DIAGNOSTICS 3 ///< Value passed to calling function from menu for "Diagnostics"

// Secure Test Menu
#define SET_SUCTION_PRESSURE 1 ///< Value passed to calling function from menu
#define SECURE_HARDWARE 2 ///< Value passed to calling function from menu
#define RELEASE_HARDWARE 3 ///< Value passed to calling function from menu

// Diagnostic Menu
#define CALIB_SYSTEM_VOLUME 1 ///< Value passed to calling function from menu for "Calibrate System Volume"

// Yes/No Menu
#define YES (byte) 1 ///< Value passed to calling function from menu for "Yes"

Final Report: WAS Project No.: 2013-HS-2013008:

112

#define NO (byte) 0 ///< Value passed to calling function from menu for "No"

// Continue/Cancel Menu
#define CONTINUE 1 ///< Value passed to calling function from menu for "Continue"
#define CANCEL 0 ///< Value passed to calling function from menu for "Cancel"

// Accept/Reject Menu
#define ACCEPT 1 ///< Value passed to calling function from menu for "Accept"
#define REJECT 0 ///< Value passed to calling function from menu for "Reject

//@}

/*****************************/
/* Process Function Values */
/*****************************/
/**
 * @name Process Function Values
 * Contains #define macros that define set values for various process
 * functions. Some examples include leak check runtime, number of volume
 * calibration points, etc. Further divided into groups of macros for various
 * function types as follows:
 * - Filter Test/Volume Measure Variables
 * - System Volume Calibration Variables
 */
//@{

// Filter Test/Volume Measure Variables

#define MAX_SAMPLE_PRESSURE 20 ///< Max pressure to allow user to enter for standard tests ("H2O, warning level)
#define MIN_SAMPLE_PRESSURE 2 ///< Min pressure to allow user to enter for standard tests ("H2O, warning level)
#define MAX_SUCTION_PRESSURE 250 ///< Max pressure to allow user to enter for standard tests ("H2O, warning level)
#define MIN_SUCTION_PRESSURE 10 ///< Min pressure to allow user to enter for standard tests ("H2O, warning level)
#define MAX_SAMPLE_TIME 120 ///< Max number of seconds to allow user to enter for max sample time (warning
level)
#define MIN_SAMPLE_TIME 20 ///< Minimum number of seconds to allow user to enter for max sample time (warning
level)

#define LEAK_CHECK_WAIT_TIME 10000000 ///< Number of microseconds to wait during leak-checking procedures

Final Report: WAS Project No.: 2013-HS-2013008:

113

#define CLOGGED_FILTER_THRESHOLD 10 ///< Minimum number of cc's that must be measured to confirm non-clogged
filter

#define LEAK_FREE_FLOW_RATE 1 ///< Maximum flowrate through an O-ring at which the O-ring can be considered
"secure" (in scc/s). The CORRECT value is 10e-5, but this value may be adjusted during the programing process for error
checking purposes.

#define LEAKY 1;
#define SECURE 0;

#define RELAY_LAG_TIME 500 ///< Number of milliseconds to wait before throwing relays in sequence (prevent
microcontroller current surge)

#define SCREEN_PRINT_INTERVAL 500 ///< Number of milliseconds to wait before refreshing on-screen measurement
data

// System Volume Calibration Variables

#define NUMBER_VOLUME_CALIB_POINTS 1 ///< Number of sets of volume points for system volume calibration (for
averaging)
#define MINIMUM_VOLUME_CALIB_PRESSURE 3 ///< Starting pressure for each volume measurement set
#define PRESSURE_INCREMENT 3 ///< Difference between pressure values in volume measurement sets
#define NUMBER_VOLUME_CALIB_READS 1 ///< Number of volume measurement points per set of volume points

#define RERUN 1

#define TEST_VOLUME 1
#define SUCTION_VOLUME 2
#define SUCTION_HEAD_VOLUME 50.0

// Abort Codes
#define USER_ABORT 1
#define ORING_FAILED 2

//@}

#endif

/**
 * Project: On-Canister Filter Tester
 *
 * @file functions.cpp
 * @version 0.1.11
 * @author Joel Runnels

Final Report: WAS Project No.: 2013-HS-2013008:

114

 * @date 2013-08-14
 *
 * @brief This file contains all the function definitions for the functions
 * used in OCFT driver code.
 *
 * @details
 * Functions grouped by type, then sorted alphabetically. Functions stored by
 * the following categories:
 *
 * - Menu Logic Functions
 *
 * This category contains functions which handle flow control and logic of
 * the programming. These functions are generally the highest-level functions
 * in the program which pass user input and output to calling functions.
 *
 *
 * - Computational Functions
 *
 * This category contains functions which perform some sort of computational
 * function. These functions generally do not involve any instrument or
 * hardware interfacing, and are designed to be as general as possible.
 * Examples include trapezoidal integration function and the volume computation
 * function.
 *
 *
 * - Hardware and Instrumentation Interface Functions
 *
 * This category contains functions which interface directly with hardware
 * and instrumentation. These functions usually involve interfacing directly
 * with instrument pins, and return values of sensor readings if available.
 *
 * - EEPROM Interface Functions
 *
 * This category contains functions which read or write to microcontroller
 * onboard EEPROM. Functions are specifically designed to read or write a
 * particular value to EEPROM. Examples include the function which reads the
 * max sample time from EEPROM.
 *
 * - Process Functions
 *
 * This category contains functions which control higher-level processes
 * onboard the instrument. Examples of functions in this category include
 * the functions responsible for measuring volume of a container and running
 * filter tests. These functions often involve controlling hardware,
 * interfacing with instruments, and performing computations. These functions
 * usually call multiple lower-level functions during the course of their
 * execution. These functions also interface with the touchscreen to display
 * current data as needed.
 *
 * - Touchscreen Interface Functions

Final Report: WAS Project No.: 2013-HS-2013008:

115

 *
 * This category contains functions which are responsible solely for
 * touchscreen interfacing, both displaying data to touchscreen and receiving
 * user input from touchscreen. These functions often pass user input directly
 * to the logic flow control functions of the software.
 *
 *
 *
 * @todo
 * Continue commenting effort, add support for vacuum suction clamping mechanism.
 *
 * Also, many functions in this file make heavy use of the millis() and micros()
 * functions for keeping track of time. These numbers will overflow (see
 * http://arduino.cc/en/Reference/Micros for more information) after a given
 * amount of time. Currently the functions do not include error handling for
 * millis() and micros() overflow. It is currently unknown what the consequences
 * of such an overflow might be on the performance of the functions. This
 * problem needs to be investigated and error handlers need to be put in place
 * where needed. micros() has an overflow time of about 70 minutes, so if the
 * microcontroller is left running longer than that erroneous results may occur.
 *
 **/

/*************************/
/* INCLUDE STATEMENTS */
/*************************/

#include <Arduino.h>
#include <EEPROM.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <TouchScreen.h>
#include "buttons.h"
#include "define.h"
#include "functions.h"

/****************************/

Final Report: WAS Project No.: 2013-HS-2013008:

116

/* FUNCTION DEFINITIONS */
/****************************/

/**************************/
/* Menu Logic Functions */
/**************************/

/**
 * @name Menu Logic Functions
 *
 *
 * This category contains functions which handle flow control and logic of
 * the programming. These functions are generally the highest-level functions
 * in the program which pass user input and output to calling functions.
 *
 *
 */

//@{

/**
 *
 * Function contains logic of main menu and directs program to sub-menu or sub-function
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 */

int main_menu(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

Final Report: WAS Project No.: 2013-HS-2013008:

117

 char menu_opt = 0;

 /// Function calls draw_main_menu to display menu options to user and pass user selection to function
 menu_opt = draw_main_menu(3, 3, tft, ts);

 /// Switch case based on user input
 switch (menu_opt)
 {
 case RUN_TEST:
 {

 /// Display confirmation menu to user, give user option to cancel run

 char run_header [] = "Run Test";
 char run_message [] = "Please make sure mask is\r\n placed securely over\r\n canister. When mask is\r\n
secure, press\r\n \"Continue\".";

 menu_opt = draw_continue_cancel(2, 2, run_header, sizeof(run_header), run_message, sizeof(run_message),
CONTINUE_CANCEL, tft, ts);

 /// If user selects continue, run filter test
 if(menu_opt == CONTINUE)
 {

 run_test_ts(tft, ts);

 }

 break;

 }

 case CONFIGURE:

 /// If user selects configure option, display configure menu
 configure_menu(tft, ts);
 break;

 case SECURE_TEST:

Final Report: WAS Project No.: 2013-HS-2013008:

118

 /// If user selects secure test option, display secure test menu
 secure_test_menu(tft, ts);
 break;
 }
 return (0);

 }

/**
 *
 * Function contains logic of configure menu and passes control to appropriate sub-menus
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 */

int configure_menu(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char menu_opt = 0;
 char repeat = 1;

 /// Main logic sits inside a repeat loop. Menu logic repeats until user exits menu.
 while (repeat)
 {

Final Report: WAS Project No.: 2013-HS-2013008:

119

 /// Displays menu to user through LCD, returns user selection to menu_opt
 menu_opt = draw_configure_menu(3, 2, tft, ts);

 /// Switch statement based on menu_opt
 switch (menu_opt)
 {

 /// This case executes is user selects to set sample pressure
 case SET_SAMPLE_PRESSURE:
 {

 ///Read current max_pressure from EEPROM
 double max_pressure = settings_read_pressure();
 repeat = 1;

 /// Rest of case resides in a while loop for convenient repeating as needed.
 while(repeat)
 {

 {

 char sample_pressure_header [] = "Sample pressure drop";
 char in_water [] = "\"H2O";

 /// Input to the scroll_menu function was so complicated that I decided to lump it
 /// all into one structure for increased code readability.
 scroll_menu_input pressure_menu;

 pressure_menu.header_size = 2;
 pressure_menu.button_size = 3;
 pressure_menu.scroll_title = sample_pressure_header;
 pressure_menu.scroll_size = sizeof(sample_pressure_header);
 pressure_menu.units = in_water;
 pressure_menu.unit_size = sizeof(in_water);
 pressure_menu.val_init = max_pressure;
 pressure_menu.val_min = 0;
 pressure_menu.val_max = 255;
 pressure_menu.warning_min = 2;
 pressure_menu.warning_max = MAX_SAMPLE_PRESSURE;
 pressure_menu.increment = 0.5;

 /// Draws scroll menu which allows user to enter max pressure drop. Returns entered value
 /// from menu to max_pressure variable.

Final Report: WAS Project No.: 2013-HS-2013008:

120

 max_pressure = draw_scroll_menu(pressure_menu, tft, ts);

 }

 /// If the user entered a pressure considered to be too large, then the program displays a warning
 if((max_pressure > MAX_SAMPLE_PRESSURE) || (max_pressure < MIN_SAMPLE_PRESSURE))
 {

 char sample_pressure_header [] = "Pressure Error";
 char sample_pressure_error [] = "You have entered a sample pressure which is outside of the
recommended range for this system. Would\r\n you like to enter a\r\n different sample\r\n pressure?";

 menu_opt = draw_yes_no_menu (3, 2, sample_pressure_header,
sizeof(sample_pressure_header), sample_pressure_error, sizeof(sample_pressure_error), tft, ts);

 /// If user acknowledges warning message and decides to change pressure, loop repeats.
 if(menu_opt == YES)
 {
 repeat = 1;

 }

 /// If user ignores warning, the repeat variable is set to zero and the pressure entered
 /// by the user is written to EEPROM
 else
 {
 settings_write_pressure(max_pressure);
 repeat = 0;
 }

 }

 /// If user enters a pressure within the system specs, no warning is given.
 else
 {
 settings_write_pressure(max_pressure);
 repeat = 0;
 }

 }

 /// Once out of sub-while loop, set repeat back to 1 for repeating of main menu
 repeat = 1;

 break;

 }

Final Report: WAS Project No.: 2013-HS-2013008:

121

 /// This case executes if user selects to set the time
 case SET_SAMPLE_TIME:
 {
 /// Read current sample time from EEPROM and assign to sample_time
 byte sample_time = settings_read_time();
 repeat = 1;

 /// Logic sits in nested while loop for easy repeating
 while (repeat)
 {

 char sample_time_header [] = "Max sample time";
 char seconds [] = "seconds";

 // As noted above, clumped these variables into a struct to increase readability.
 scroll_menu_input time_menu;

 time_menu.header_size = 2;
 time_menu.button_size = 3;
 time_menu.scroll_title = sample_time_header;
 time_menu.scroll_size = sizeof(sample_time_header);
 time_menu.units = seconds;
 time_menu.unit_size = sizeof(seconds);
 time_menu.val_init = sample_time;
 time_menu.val_min = 0;
 time_menu.val_max = 255;
 time_menu.warning_min = 2;
 time_menu.warning_max = MAX_SAMPLE_TIME;
 time_menu.increment = 10;

 /// Draw scroll menu for user to enter new sample time
 sample_time = draw_scroll_menu(time_menu, tft, ts);

 /// If user enters sample time outside of recommended range of system, system enters conditional
 /// to display warning to user
 if((sample_time > MAX_SAMPLE_TIME) || (sample_time < MIN_SAMPLE_TIME))
 {

 char sample_time_header [] = "Sample Time Error";
 char sample_time_error [] = "You have entered a sample time which is outside of the
recommended range for this system. Would you\r\n like to enter a different sample time?";

Final Report: WAS Project No.: 2013-HS-2013008:

122

 /// Display warning to user to ask whether they would like to change their entered time to
 /// a time within system limits.
 menu_opt = draw_yes_no_menu (3, 2, sample_time_header, sizeof(sample_time_header),
sample_time_error, sizeof(sample_time_error), tft, ts);

 /// If user selects to enter new time, value is not written to EEPROM and sub while loop repeats
 if(menu_opt == YES)
 {
 repeat = 1;
 }

 /// If user selects to ignore warning, sample time is written to EEPROM and loop exits.
 else
 {
 settings_write_time(sample_time);
 repeat = 0;
 }
 }

 /// If user enters valid time, no warning is given and value is simply written to EEPROM.
 else
 {
 settings_write_time(sample_time);
 repeat = 0;
 }
 }

 repeat = 1;

 break;

 }

 /// This case executes if user selects diagnostics
 case DIAGNOSTICS:

 /// Display diagnostics menu to user, repeat configuration menu upon exiting.
 diagnostics_menu(tft, ts);

 repeat = 1;

 break;

 /// This case executes if user selects to exit menu
 case EXIT:

Final Report: WAS Project No.: 2013-HS-2013008:

123

 /// Exit configuration menu, return back to main menu
 repeat = 0;

 break;
 }
 }

 return (0);

}

/**
 *
 * Function contains logic of the SECURE TEST menu and passes control to appropriate sub-menus
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 */

int secure_test_menu(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

Final Report: WAS Project No.: 2013-HS-2013008:

124

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char menu_opt = 0;
 char repeat = 1;

 /// Main logic sits inside a repeat loop. Menu logic repeats until user exits menu.
 while (repeat)
 {

 /// Displays menu to user through LCD, returns user selection to menu_opt
 menu_opt = draw_secure_test_menu(3, 2, tft, ts);

 /// Switch statement based on menu_opt
 switch (menu_opt)
 {

 /// This case executes is user selects to set SUCTION pressure
 case SET_SUCTION_PRESSURE:
 {

 ///Read current max_pressure from EEPROM
 double max_pressure1 = settings_read_pressure1();
 repeat = 1;

 /// Rest of case resides in a while loop for convenient repeating as needed.
 while(repeat)
 {

 {

 char suction_pressure_header [] = "Suction pressure ";
 char in_water [] = "\"H2O";

 /// Input to the scroll_menu function was so complicated that I decided to lump it
 /// all into one structure for increased code readability.
 scroll_menu_input pressure_menu;

 pressure_menu.header_size = 2;
 pressure_menu.button_size = 3;
 pressure_menu.scroll_title = suction_pressure_header;
 pressure_menu.scroll_size = sizeof(suction_pressure_header);
 pressure_menu.units = in_water;
 pressure_menu.unit_size = sizeof(in_water);
 pressure_menu.val_init = max_pressure1;
 pressure_menu.val_min = 0;

Final Report: WAS Project No.: 2013-HS-2013008:

125

 pressure_menu.val_max = 350;
 pressure_menu.warning_min = MIN_SUCTION_PRESSURE;
 pressure_menu.warning_max = MAX_SUCTION_PRESSURE;
 pressure_menu.increment = 10;

 /// Draws scroll menu which allows user to enter max pressure drop. Returns entered value
 /// from menu to max_pressure variable.
 max_pressure1 = draw_scroll_menu(pressure_menu, tft, ts);

 }

 /// If the user entered a pressure considered to be too large, then the program displays a warning
 if((max_pressure1 > MAX_SUCTION_PRESSURE) || (max_pressure1 < MIN_SUCTION_PRESSURE))
 {

 char sample_pressure_header [] = "Pressure Error";
 char sample_pressure_error [] = "You have entered a suction pressure which is outside of the
recommended range for this system. Would\r\n you like to enter a\r\n different suction\r\n pressure?";

 menu_opt = draw_yes_no_menu (3, 2, sample_pressure_header,
sizeof(sample_pressure_header), sample_pressure_error, sizeof(sample_pressure_error), tft, ts);

 /// If user acknowledges warning message and decides to change pressure, loop repeats.
 if(menu_opt == YES)
 {
 repeat = 1;

 }

 /// If user ignores warning, the repeat variable is set to zero and the pressure entered
 /// by the user is written to EEPROM
 else
 {
 settings_write_pressure1(max_pressure1);
 repeat = 0;
 }

 }

 /// If user enters a pressure within the system specs, no warning is given.
 else
 {
 settings_write_pressure1(max_pressure1);
 repeat = 0;
 }

Final Report: WAS Project No.: 2013-HS-2013008:

126

 }

 /// Once out of sub-while loop, set repeat back to 1 for repeating of main menu
 repeat = 1;

 break;
 }

 /// secures hardware
 case SECURE_HARDWARE:
 {

 /// Display confirmation menu to user, give user option to cancel run

 char run_header [] = "Secure Hardware";
 char run_message [] = "Please make sure both o-rings are in place, and hardware fits securely over\r\n
canister." ;

 menu_opt = draw_continue_cancel(2, 2, run_header, sizeof(run_header), run_message, sizeof(run_message),
CONTINUE_CANCEL, tft, ts);

 /// If user selects continue, secure hardware
 if(menu_opt == CONTINUE)
 {

 run_secure_hardware_ts(tft, ts);

 }

 break;

 }

 ///releases hardware.
 ///****NEED TO ADD SECONDARY LEAK CHECK TO CONFIRM SEAL DURING ALL TESTS!!!!!
 case RELEASE_HARDWARE:{

 char run_header [] = "Release Hardware";
 char run_message [] = "Would you like to release the hardware, and finish testing?" ;

 menu_opt = draw_continue_cancel(2, 2, run_header, sizeof(run_header), run_message, sizeof(run_message),
CONTINUE_CANCEL, tft, ts);

Final Report: WAS Project No.: 2013-HS-2013008:

127

 /// If user selects continue, secure hardware
 if(menu_opt == CONTINUE)
 {

 run_release_hardware_ts(tft, ts);

 }

 break;

 }
 /// This case executes if user selects to exit menu
 case EXIT:

 /// Exit configuration menu, return back to main menu
 repeat = 0;

 break;
 }

 }

}

/**
 *
 * This function contains the logic for the diagnostics sub-menu. Note that
 * this menu will need to be expanded upon the addition of more diagnostic tools.
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 */

int diagnostics_menu(Adafruit_TFTLCD * tft, TouchScreen * ts)

Final Report: WAS Project No.: 2013-HS-2013008:

128

{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char menu_opt = 0;
 byte repeat = 1;
 byte i = 0;
 byte leak;
 double system_volume = 0.0;
 double avg_system_volume = 0.0;

 /// Menu logic in while loop. Loop repeats until user decides to exit menu.
 while (repeat)
 {

 /// Display graphical diagnostic menu to user, pass user input to menu_opt
 menu_opt = draw_diagnostic_menu(3, 2, tft, ts);

 /// Switch based on user input
 switch (menu_opt)
 {

 /// This case executes if user selects to calibrate system volume
 case CALIB_SYSTEM_VOLUME:
 {

 /// If user selects to recalibrate system volume, software displays message asking user to confirm
 /// action and to cover system inlet

 char calib_header [] = "Volume Calibration";
 char calib_message [] = "You have chosen to\r\n recalibrate the system\r\n volume. To proceed,\r\n
please cover the system\r\n sample inlet securely\r\n so that no air can enter\r\n the system test volume.\r\n When
system is secure,\r\n press \"Continue\".";

 /// Pass user input to menu_opt
 menu_opt = draw_continue_cancel(2, 2, calib_header, sizeof(calib_header), calib_message,
sizeof(calib_message), CONTINUE_CANCEL, tft, ts);

 /// If user selects to continue with volume calib, run the calib_system_volume_ts
 if(menu_opt == CONTINUE)
 {

 calib_system_volume_ts(tft, ts);

Final Report: WAS Project No.: 2013-HS-2013008:

129

 }

 /// Repeat menu upon completion
 repeat = 1;

 break;

 }

 /// This case executes if user selects to exit menu
 case EXIT:
 /// If user selects to exit diagnostic menu, repeat is set to zero, menu exits.
 repeat = 0;
 break;

 }

 }

 return (0);

}

//@}

/*****************************/
/* Computational Functions */
/*****************************/

Final Report: WAS Project No.: 2013-HS-2013008:

130

/**
 * @anchor comp_functions
 * @name Computational Functions
 *
 * This category contains functions which perform some sort of computational
 * function. These functions generally do not involve any instrument or
 * hardware interfacing, and are designed to be as general as possible.
 * Examples include trapezoidal integration function and the volume computation
 * function.
 *
 */

//@{

/**
 *
 * Function computes mass flow into a container given pressure change, container volume, and starting density
 *
 * @param double P1: The initial pressure of container (inches of water, absolute pressure)
 * @param double dP: Pressure drop during the course of the run (inches of water, differential pressure)
 * @param double V: Volume of container (cubic centimeters)
 * @param double rho: density of air inside container (NOT the same as density
 * of air at current atmospheric pressure, nescessarily. Can be derived from
 * P1/P_stp. (dimensionless, normalized to STP density)
 *
 * @retval double volume, returns computed volume of container
 *
 */

double compute_mass_flow_in(double P1, double dP, double V, double rho)
{

 /// See derivation for computation of volume on page 57 of OCFT lab book

 return((V*rho*dP)/P1);

}

Final Report: WAS Project No.: 2013-HS-2013008:

131

/**
 *
 * Function computes volume of container given pressure drop, mass flow out, and density
 *
 * @param double P1: The initial pressure of container (inches of water, absolute pressure)
 * @param double dP: Pressure drop during the course of the run (inches of water, differential pressure)
 * @param double dm: Mass flow out of container (standard cubic centimeters, positive = mass flow OUT of container)
 * @param double rho: density of air (dimensionless, normalized to STP density)
 *
 * @retval double volume, returns computed volume of container
 *
 */

double compute_volume(double P1, double dP, double dm, double rho)
{

 /// See derivation for computation of volume on page 42 of OCFT lab book

 return((dm*P1)/(dP*rho));

}

/**
 *
 * Performs a trapezoidal integration of x = f(t) from t to t+dt.
 *
 * @param double dx_current: dx/dt(t+dt)
 * @param double dx_last: dx/dt(t)
 * @param double dt: time (in seconds)
 *
 * @retval double: Trapezoidal integral
 *
 */

double trap_integrate(double dx_current, double dx_last, double dt)
{

Final Report: WAS Project No.: 2013-HS-2013008:

132

 return (((dx_current + dx_last)*(dt/2.0)));

}

/**
 *
 * Computes the average derivative of x = f(t) from t to t + dt.
 *
 * @param double x_current: x(t + dt)
 * @param double x_last: x(t)
 * @param double dt: time (in seconds)
 *
 * @retval double: Average derivative
 *
 */

double derivative(double x_current, double x_last, double dt)
{

 return ((x_current - x_last)/dt);

}

//@}

/***/
/* Hardware and Instrument Interface Functions */
/***/

Final Report: WAS Project No.: 2013-HS-2013008:

133

/**
 * @anchor instrument_interface_functions
 * @name Hardware and Instrument Interface Functions
 *
 *
 * This category contains functions which interface directly with hardware
 * and instrumentation. These functions usually involve interfacing directly
 * with instrument pins, and return values of sensor readings if available.
 *
 */

//@{

/**
 *
 * This function reads mass flow through Honeywell HAFBLF0750CAAX5 mass flow meter
 * The derivation of the transfer function for this meter can be found on page 38 of OCFT logbook 1
 *
 * @param int mass_pin: Analog read pin to which v_out of the mass flow meter is connected
 * @param char sensor: Type of sensor being read. See \ref define.h for more details. Note
 * that currently only one mass flow sensor is supported, so the sensor variable is not
 * used in the function.
 *
 * @retval double flow: returns the flow through the mass flow meter (in scc/s)
 *
 *
 *
 */

double read_mass_flow(int mass_pin, char sensor)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-
 double flow;

 ///Analog read of v_out from mass flow meter
 int sensor_value = 0.0;

 sensor_value = analogRead(mass_pin);

Final Report: WAS Project No.: 2013-HS-2013008:

134

 ///Calculate flow according to transfer function
 flow = ((1875.0*((sensor_value/1023.0)-0.5))/60.0);

 /// In tests, output vs. actual flow rate was found to vary slightly
 /// between positive and negative values. This if statement accounts
 /// for that discrepancy. Note that these terms are specific to this
 /// individual flow meter. Ultimately a calibration function should
 /// be included.
 if(flow > 0)
 {
 flow = (flow * 1.1224) + 0.8338;
 }
 else
 {
 flow = (flow * 1.086) + 1.8761;
 }

 return(flow);

}

/**
 *
 * This function reads pressure off of pressure sensors in the OCFT system.
 * Currently, the function includes the capability to read from two
 * different sensors: Honeywell SSCDRRN020NDAA5, and Honeywell SSCDANN030PAAA5.
 *
 * @param int pressure_pin: Analog pin to which v_out of the pressure sensor is connected
 * @param char sensor: Type of sensor being read. See \ref define.h for more details
 *
 * @retval double pressure: pressure read from sensor (in "H2O)
 *
 * \ingroup hardware_instrument_function_def
 *
 */

Final Report: WAS Project No.: 2013-HS-2013008:

135

double read_pressure(int pressure_pin, char sensor, byte rolling_average)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-
 double pressure = 0.0;

 double current_pressure = 0;

 int i = 0;

 /// Analog read of v_out from pressure sensor
 int sensor_value = 0;

 for(i = 0; i < rolling_average; i++)
 {

 sensor_value = analogRead(pressure_pin);

 /// Select transfer function based on sensor type
 switch (sensor)
 {
 case PI_101:
 /// Pressure transfer function derived on page 34 of OCFT logbook 1
 pressure = pressure + ((((sensor_value/1023.0)-0.1)*(50.0)) - 20.0)*-1;
 break;

 case PI_102:
 /// Pressure transfer function derived on page 73 of OCFT logbook 1
 /// Note conversion factor of 27.67... to convert from PSI to "H2O

 pressure = pressure + (((((sensor_value/1024.0)-0.1)*(37.5)) - 15.0)*(-27.6704523));

 break;

 case PI_103:
 /// Pressure transfer function derived on page 45 of OCFT logbook 1
 /// Note conversion factor of 27.67... to convert from PSI to "H2O
 pressure = pressure + (sensor_value - (102.3))*(30.0/(818.4)) * 27.6704523;
 break;

 }

 if (rolling_average > 1)

Final Report: WAS Project No.: 2013-HS-2013008:

136

 {

 delay(1);

 }

 }

 if (rolling_average > 1)
 {

 pressure = pressure/double(i);

 }

 return(pressure);

}

//@}

/********************************/
/* EEPROM Interface Functions */
/********************************/

/**
 * @name EEPROM Interface Functions
 *
 * This category contains functions which read or write to microcontroller

Final Report: WAS Project No.: 2013-HS-2013008:

137

 * onboard EEPROM. Functions are specifically designed to read or write a
 * particular value to EEPROM. Examples include the function which reads the
 * max sample time from EEPROM.
 *
 *
 */

//@{

/**
 *
 * This function interfaces with the microcontroller's EEPROM to read the maximum
 * sample read time set by users.
 *
 * @param void
 *
 * @retval byte maximum sample time
 *
 */

byte settings_read_time(void)
{

 return (EEPROM.read(MAX_TIME_ADDRESS));

}

/**
 *
 * This function interfaces with the microcontroller onboard EEPROM memory to
 * write the internal system volume calibration to be stored in memory. Function
 * writes an array of volume data with corresponding pressure drops.
 *
 * @param pv_data * data_array: pointer to an array of pressure-volume data array
 *
 * @retval byte 0: returns 0 upon completion
 *
 */

Final Report: WAS Project No.: 2013-HS-2013008:

138

byte settings_write_int_volume(pv_data * data_array)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-
 byte digits [6];

 double volume;
 float power_of_ten = 1000;

 int i = 0;
 int j = 0;

 ///For loop iterates through array of pressure/volume data
 for(j = 0; j < NUMBER_VOLUME_CALIB_POINTS; j++)
 {

 ///Pulls current volume value out of array and stores it in the volume variable
 volume = ((*(data_array + j)).volume);

 ///For loop splits volume into 6 bytes with each byte representing one decimal place of the value
 for(i = 0; i < 6; i++)
 {
 digits [i] = volume/power_of_ten;

 volume = volume - (digits[i] * power_of_ten);

 EEPROM.write((INT_VOLUME_ADDRESS + i + (j*10)), digits [i]);

 power_of_ten = power_of_ten/10.0;

 }

 power_of_ten = 1000;

 ///Writes a zero to the next byte after volume information to indicate to parent function that volume has been
stored.
 EEPROM.write((INT_VOLUME_ADDRESS + i + (j*10)), 0);

 ///Writes corresponding pressure information to EEPROM
 EEPROM.write((INT_VOLUME_ADDRESS + i + (j*10) + 1), (*(data_array + j)).pressure);

 }

 return (0);

Final Report: WAS Project No.: 2013-HS-2013008:

139

}

/**
 *
 * Function writes user-determined maximum pressure drop for standard runs to microcontroller onboard EEPROM
 *
 * @param double max_pressure: Maximum pressure for standard volume reads
 *
 * @retval byte 0: returns 0 upon completion
 *
 */

byte settings_write_pressure(double max_pressure)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 byte integers;
 byte decimals;

 /// Pull current value of pressure from EEPROM
 double current_val = EEPROM.read(SAMPLE_PRESSURE_ADDRESS) + ((EEPROM.read(SAMPLE_PRESSURE_ADDRESS
+ 1))/100.0);

 /// If current value is different from the new value, write the new value to EEPROM
 if(abs(current_val - max_pressure) > 0.1)
 {

 /// Value stored in two bytes of EEPROM; one byte for integer (>1) and one byte for decimal places

 integers = max_pressure/1;

Final Report: WAS Project No.: 2013-HS-2013008:

140

 EEPROM.write(SAMPLE_PRESSURE_ADDRESS, integers);

 decimals = (int)((max_pressure - integers) * 100.0);

 EEPROM.write(SAMPLE_PRESSURE_ADDRESS + 1, decimals);

 }

 return (0);

}

/**
 *
 * Function writes user-determined SUCTION pressure drop for standard runs to microcontroller onboard EEPROM
 *
 * @param double max_pressure: Maximum pressure for standard volume reads
 *
 * @retval byte 0: returns 0 upon completion
 *
 */

byte settings_write_pressure1(double max_pressure1)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 unsigned char write_val = 0;
 unsigned char current_val = 0;

 /// Pull current value of pressure from EEPROM
 current_val = EEPROM.read(SUCTION_PRESSURE_ADDRESS);

 write_val = max_pressure1/10;

 /// If current value is different from the new value, write the new value to EEPROM
 if(write_val != current_val)
 {

 /// Value stored in two bytes of EEPROM; one byte for integer (>1) and one byte for decimal places

 EEPROM.write(SUCTION_PRESSURE_ADDRESS, write_val);

 }

 return (0);

Final Report: WAS Project No.: 2013-HS-2013008:

141

}

/**
 *
 * Function writes maximum time for standard sample to microcontroller EEPROM
 *
 * @param byte max_time: Maximum time for a standard read (in seconds, max 255)
 *
 * @retval byte 0: returns 0 upon completion
 *
 */

byte settings_write_time(byte max_time)
{
 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 /// Reads current value of max time from EEPROM
 byte current_val = EEPROM.read(MAX_TIME_ADDRESS);

 /// Compares current value to new value. If they are different, function writes new time.
 if(current_val != max_time)
 {
 EEPROM.write(MAX_TIME_ADDRESS, max_time);
 }

 return (0);

}

Final Report: WAS Project No.: 2013-HS-2013008:

142

/**
 *
 * Function reads maximum pressure for a standard run from EEPROM
 *
 * @param void
 *
 * @retval double pressure: returns pressure reading
 *
 */

double settings_read_pressure(void)
{
 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 double pressure = 0;

 /// Value stored in two bytes of EEPROM; one byte for integer (>1) and one byte for decimal places

 pressure = EEPROM.read(SAMPLE_PRESSURE_ADDRESS);

 pressure = pressure + ((EEPROM.read(SAMPLE_PRESSURE_ADDRESS + 1))/100.0);

 return (pressure);

}

/**
 *
 * Function reads maximum SUCTION pressure for a standard run from EEPROM
 *
 * @param void
 *
 * @retval double pressure: returns pressure reading
 *
 */

double settings_read_pressure1(void)
{
 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 double pressure1 = 0;

 /// Value stored in two bytes of EEPROM; one byte for integer (>1) and one byte for decimal places

 pressure1 = EEPROM.read(SUCTION_PRESSURE_ADDRESS)*10;

Final Report: WAS Project No.: 2013-HS-2013008:

143

 return (pressure1);

}

/**
 *
 * Function reads internal volume of system. Function returns volume as a function
 * of pressure drop (to account for the fact that the system includes some flexible
 * tubing, and returns a higher volume for greater pressure drops). Function reads
 * pressure, and performs linear interpolation between stored volume data points to
 * get most accurate volume.
 *
 * @param double pressure: pressure to search for in pressure vs. volume data
 *
 * @retval double volume: returns linearly interpolated volume for given pressure drop
 *
 */

double settings_read_int_volume(double pressure)
{
 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 double volume = 0;
 double slope = 0;
 double v_last = 0;

 float power_of_ten = 1000;

 byte data_pressure;
 int i = 0;
 int j = 0;

 pv_data data_array [NUMBER_VOLUME_CALIB_POINTS];

 /// Simple error check. If the system volume has been written to, then condition value will
 /// be zero, so condition will be false

Final Report: WAS Project No.: 2013-HS-2013008:

144

 if(EEPROM.read(INT_VOLUME_ADDRESS + 6))
 {
 return(-1);
 }

 /// For loop runs through the volume data points stored in EEPROM and stores them in a temporary
 /// array for easier manipulation.
 for(j = 0; j < NUMBER_VOLUME_CALIB_POINTS; j++)
 {
 for(i = 0; i < 6; i++)
 {

 volume = volume + (EEPROM.read((INT_VOLUME_ADDRESS + i + (j*10))) * power_of_ten);

 power_of_ten = power_of_ten/10.0;

 }

 (*(data_array + j)).volume = volume;
 (*(data_array + j)).pressure = EEPROM.read(INT_VOLUME_ADDRESS + 7 + (j*10));

 power_of_ten = 1000;
 volume = 0;

 }

 j = 0;

 /// While loop sorts through newly created pressure/volume data array until it finds a
 /// pressure greater than the input pressure, or until it reaches the end of the array.
 while(((pressure > (*(data_array + j)).pressure)) && (j < (NUMBER_VOLUME_CALIB_POINTS - 1)))
 {
 j++;

 /// If the pressure entered is the same as a pressure stored in the data array, function
 /// returns the corresponding volume value
 if(pressure == ((*(data_array + j)).pressure))
 {
 return ((*(data_array + j)).volume);
 }

 }

Final Report: WAS Project No.: 2013-HS-2013008:

145

 /// If the pressure entered is lower than the lowest pressure in the array, then the function
 /// returns the volume corresponding to the lowest logged pressure drop.
 if(j == 0)
 {

 return ((*(data_array + 0)).volume);

 }

 /// If the pressure entered is higher than the highest pressure in the array, the function
 /// returns the volume corresponding to the highest pressure drop.
 if (j == (NUMBER_VOLUME_CALIB_POINTS - 1))
 {
 return ((*(data_array + j)).volume);
 }

 /// Assuming that the pressure drop is between the minimum and maximum pressure values in
 /// the array and not exactly the same as a pressure drop in the array, function performs a
 /// linear interpolation to get most accurate volume.

 slope = (((*(data_array + j)).volume) - ((*(data_array + j - 1)).volume))/(((*(data_array + j)).pressure) - ((*(data_array
+ j - 1)).pressure));

 volume = ((*(data_array + j-1)).volume) + ((pressure - ((*(data_array + j - 1)).pressure)) * slope);

 return (volume);

}

//@}

Final Report: WAS Project No.: 2013-HS-2013008:

146

/***********************/
/* Process Functions */
/***********************/

/**
 * @name Process Functions
 *
 * This category contains functions which control higher-level processes
 * onboard the instrument. Examples of functions in this category include
 * the functions responsible for measuring volume of a container and running
 * filter tests. These functions often involve controlling hardware,
 * interfacing with instruments, and performing computations. These functions
 * usually call multiple lower-level functions during the course of their
 * execution. These functions also interface with the touchscreen to display
 * current data as needed.
 *
 *
 */

//@{

/**
 *
 * This function measures and calibrates the system volume for a range of pressure drops,
 * determined by the parameters set in define.h. The function performs several volume
 * reads for pre-determined pressure drops, and logs each data point in a 2D array of
 * pv_data structures. It then takes the average volume for each pressure range (if each
 * pressure range was read more than once). It then displays the data collected to the
 * user for approval. Upon approval from user, function logs data to onboard EEPROM memory.
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 * @todo Finish writing function. So far, the actual volume reading is working just fine,
 * but the data display has yet to be written. I would like to add a graphing feature that
 * graphs the data to the user, but it remains to be seen whether or not I have time to do so.
 */

Final Report: WAS Project No.: 2013-HS-2013008:

147

int calib_system_volume_ts(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-
 /// Create test variables
 double system_volume = 0;
 byte leak = 0;
 byte clogged = 0;
 byte abort_status = 0;

 char abort_button_text [] = "Abort";
 char done_button_text [] = "Done";

 byte i = 0;

 double suction_pressure = 0;

 /// Create and draw abort button
 button abort_button((*tft).width() - 90, (*tft).height() - 40, abort_button_text, sizeof(abort_button_text), 2, tft, ts);

 /// Display secure hardware header to LCD
 (*tft).fillScreen(WHITE);

 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Filter Test");

 (*tft).setCursor(0, 50);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Securing hardware to lid");

 (*tft).setCursor(0, 90);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Sample P: \"H2O");

Final Report: WAS Project No.: 2013-HS-2013008:

148

 (*tft).setCursor(0, 120);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);\
 (*tft).print(" Suction P: \"H2O");

 abort_button.draw(WHITE, BLACK, RED);

 suction_pressure = settings_read_pressure1();

 secure_hardware_ts(&abort_status, tft, &abort_button, &suction_pressure);

 //*******

// char abort_button_text [] = "Abort";
// char done_button_text [] = "Done";

// byte i = 0;
 byte j = 0;

 /// Draw calibration information to LCD

 (*tft).fillScreen(WHITE);

 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("System Volume");

 (*tft).setCursor(0, 50);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Calibration in progress..");

 (*tft).setCursor(0, 90);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Delta P: \"H2O");

 (*tft).setCursor(0, 120);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);\
 (*tft).print(" dm: scc/s");

Final Report: WAS Project No.: 2013-HS-2013008:

149

 (*tft).setCursor(0, 150);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Delta M: scc");

 (*tft).setCursor(0, 180);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Volume: cc");

 (*tft).setCursor(0, 210);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Iteration: ");

 /// Create abort button object in lower corner of screen
// button abort_button((*tft).width() - 90, (*tft).height() - 40, abort_button_text, sizeof(abort_button_text), 2, tft,
ts);

 abort_button.draw(WHITE, BLACK, RED);

 (*tft).setTextColor(BLACK);

// byte abort_status = 0;
// byte clogged = 0;
// byte leak = 0;
 int num_runs = 0;

 double pressure_input = 0;
// double system_volume = 0;
 double volume = 0;

 /// Create two pv_data arrays, one for average data and one to log each individual data point
 pv_data data_array [NUMBER_VOLUME_CALIB_READS][NUMBER_VOLUME_CALIB_POINTS];
 pv_data avg_data_array [NUMBER_VOLUME_CALIB_POINTS];

 /// Fill average array with zeroes
 for(j = 0; j < NUMBER_VOLUME_CALIB_POINTS; j++)
 {
 (*(avg_data_array + i)).pressure = 0;
 (*(avg_data_array + i)).volume = 0;

Final Report: WAS Project No.: 2013-HS-2013008:

150

 }

 /// This for loop repeats each set of reads as specified in define.h
 for(j = 0; j < NUMBER_VOLUME_CALIB_READS; j++)
 {

 /// This for loop cycles through each pressure drop level specified in define.h
 for(i = 0; i < NUMBER_VOLUME_CALIB_POINTS; i++)
 {

 volume = 0;
 pressure_input = 0;

 num_runs = num_runs + 1;

 /// Draw blank spot on LCD for new data, update iteration number
 (*tft).fillRect(130, 210, 100, 15, WHITE);
 (*tft).setCursor(0, 210);
 (*tft).print(" ");
 (*tft).print(num_runs);
 (*tft).print("/");
 (*tft).print(NUMBER_VOLUME_CALIB_POINTS * NUMBER_VOLUME_CALIB_READS);

 /// Get next pressure drop level
 pressure_input = ((i * PRESSURE_INCREMENT) + MINIMUM_VOLUME_CALIB_PRESSURE);

 /// Measure system volume at specified pressure drop
double q_leak=0;
 if (num_runs == NUMBER_VOLUME_CALIB_POINTS * NUMBER_VOLUME_CALIB_READS)
 {

 measure_volume_ts(pressure_input, settings_read_time(), 0, &volume, &leak, &abort_status, YES, tft,
&abort_button, &q_leak);

 }
 else
 {

 measure_volume_ts(pressure_input, settings_read_time(), 0, &volume, &leak, &abort_status, NO, tft,
&abort_button, &q_leak);

 }

 /// Assign volume measured to next spot in data_array
 data_array[j][i].volume = volume;

 /// Assign current pressure drop to next spot in data_array

Final Report: WAS Project No.: 2013-HS-2013008:

151

 data_array[j][i].pressure = pressure_input;

 /// Reset volume and pressure_input to zero
 volume = 0;
 pressure_input = 0;

 /// Add current readings to correct slots in the avg_data_array
 avg_data_array[i].pressure = avg_data_array[i].pressure + data_array[j][i].pressure;

 avg_data_array[i].volume = avg_data_array[i].volume + data_array[j][i].volume;

 /// If the read has been aborted, then exit nested for loops
 if(abort_status || leak)
 {
 i = NUMBER_VOLUME_CALIB_POINTS;
 j = NUMBER_VOLUME_CALIB_READS;
 }

 delay(1000);

 }
 }

 /// If the calibration has not been aborted, then draw data on screen to user.
 /// (Note: this is where there is a lot of work still to be done!)
 if(!abort_status && !leak)
 {

 /// Take the average of all the readings collected
 for(j = 0; j < NUMBER_VOLUME_CALIB_READS; j++)
 {
 (*(avg_data_array + j)).pressure = (*(avg_data_array + j)).pressure / NUMBER_VOLUME_CALIB_READS;
 (*(avg_data_array + j)).volume = (*(avg_data_array + j)).volume / NUMBER_VOLUME_CALIB_READS;
 }

 /// Create variables used in drawing data to screen
 double max_pressure = 0;
 double min_pressure = 10000;
 double max_volume = 0;
 double min_volume = 10000;
 double p_divisions = ((*tft).width() - 42)/42;

Final Report: WAS Project No.: 2013-HS-2013008:

152

 double v_divisions = ((*tft).height() - 108)/14;

 int p_max_graph = 0;
 int p_min_graph = 10000;
 int v_max_graph = 0;
 int v_min_graph = 10000;
 int v_division_value ;
 float p_division_value ;

 /// Clear LCD
 (*tft).fillScreen(WHITE);
 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 /// Print header
 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Calib. Curve");

 ///Print volume axis
 (*tft).setCursor(5, (*tft).height()/2);
 (*tft).setTextSize(2);
 (*tft).print("V\r\n");
 (*tft).setTextSize(1);
 (*tft).print("(cc)");

 /// These nested for loops search through the data_array to find max and minimum values of pressure
 for(j = 0; j < NUMBER_VOLUME_CALIB_READS; j++)
 {
 for(i = 0; i < NUMBER_VOLUME_CALIB_POINTS; i++)
 {

 if(((*((*(data_array + j)) + i)).volume) > max_volume)
 {
 max_volume = ((*((*((data_array) + j)) + i)).volume);

 }

 if(((*((*(data_array + j)) + i)).pressure) > max_pressure)
 {
 max_pressure = ((*((*(data_array + j)) + i)).pressure);
 }

 if(((*((*(data_array + j)) + i)).volume) < min_volume)
 {
 min_volume = ((*((*((data_array) + j)) + i)).volume);
 }

Final Report: WAS Project No.: 2013-HS-2013008:

153

 if(((*((*(data_array + j)) + i)).pressure) < min_pressure)
 {
 min_pressure = ((*((*(data_array + j)) + i)).pressure);
 }

 }
 }

 /// Integer value for the max value of pressure on pressure axis
 p_max_graph = (max_pressure/1) + 2;

 /// Integer value for max volume on volume axis
 v_max_graph = max_volume/v_divisions;
 v_max_graph = (v_max_graph + 2) * v_divisions;

 /// Integer value for min value of pressure on pressure axis
 p_min_graph = (min_pressure/1);

 /// Integer value for min value of volume on volume axis
 v_min_graph = min_volume/v_divisions;
 v_min_graph = (v_min_graph - 1) * v_divisions;

 //Debugging print statements; uncomment as needed
 /* Serial.println(max_pressure); */
 /* Serial.println(min_pressure); */
 /* Serial.println(p_divisions); */
 /* Serial.println(p_max_graph); */
 /* Serial.println(p_min_graph); */

 /// Calculate the pressure divisions for pressure axis
 p_division_value = (p_max_graph - p_min_graph)/p_divisions;

 /// Calculate the volume divisions for volume axis
 v_division_value = (v_max_graph - v_min_graph)/v_divisions;

 /// Set cursor to print volume axis
 (*tft).setCursor(0, 48);
 (*tft).setTextSize(1);

 /// Print volume axis
 for (i = 0; i < v_divisions; i++)
 {
 (*tft).print(" ");
 (*tft).print(v_max_graph - (v_division_value * i));
 (*tft).print("\r\n\r\n");

Final Report: WAS Project No.: 2013-HS-2013008:

154

 }

 (*tft).print(" ");

 /// Print pressure axis
 for (i = 0; i < p_divisions; i++)
 {
 (*tft).print(" ");
 (*tft).print(p_min_graph + (p_division_value * i));
 }
 (*tft).setTextSize(2);

 (*tft).print("\r\n P (\"H2O)");

 (*tft).drawLine(50, 36, 50, 200, BLACK);
 (*tft).drawLine(24, 186, 320, 186, BLACK);

 uint16_t x_coord_1 = 0;
 uint16_t y_coord_1 = 0;

 uint16_t x_coord_2 = 0;
 uint16_t y_coord_2 = 0;

 uint16_t color = BLUE;

 for(j = 0; j < NUMBER_VOLUME_CALIB_READS; j++)
 {
 for(i = 0; i < NUMBER_VOLUME_CALIB_POINTS; i++)
 {

 x_coord_1 = (((data_array[j][i].pressure) - p_min_graph) * (270/(p_max_graph-p_min_graph))) + 60;

 y_coord_1 = ((v_max_graph - (data_array[j][i].volume)) * (150/(v_max_graph-v_min_graph))) + 40;

 (*tft).fillCircle(x_coord_1, y_coord_1, 2, color);

 }

 cycle_color(&color);

 }

Final Report: WAS Project No.: 2013-HS-2013008:

155

 for(j = 0; j < NUMBER_VOLUME_CALIB_POINTS; j++)
 {
 if(j)
 {

 x_coord_1 = ((uint16_t)((avg_data_array[j].pressure) - p_min_graph) * (270/(p_max_graph-
p_min_graph))) + 60;

 y_coord_1 = (v_max_graph - (uint16_t)((avg_data_array[j].volume) * (150/(v_max_graph-
v_min_graph)))) + 40;

 x_coord_2 = ((uint16_t)((avg_data_array[j - 1].pressure) - p_min_graph) * (270/(p_max_graph-
p_min_graph))) + 60;

 y_coord_2 = (v_max_graph - (uint16_t)(avg_data_array[j - 1].volume) * (150/(v_max_graph-
v_min_graph))) + 40;

 (*tft).fillCircle(x_coord_1, y_coord_1, 2, BLACK);
 (*tft).fillCircle(x_coord_2, y_coord_2, 2, BLACK);

 (*tft).drawLine(x_coord_1, y_coord_1, x_coord_2, y_coord_2, BLACK);

 }
 }

 (*tft).print("\r\n Tap screen to continue");

 Point p;

 do
 {

 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);
 p = (*ts).getPoint();
 digitalWrite(13, LOW);
 pinMode(XM, OUTPUT);
 pinMode(YP, OUTPUT);
 } while(p.z < MINPRESSURE);

 char accept_header [] = "Accept or reject";
 char accept_text [] = "Would you like to accept\r\n or reject the volume\r\n calibration?";
 byte menu_opt;

 menu_opt = draw_continue_cancel(3, 2, accept_header, sizeof(accept_header), accept_text,
sizeof(accept_text), ACCEPT_REJECT, tft, ts);

Final Report: WAS Project No.: 2013-HS-2013008:

156

 if(menu_opt == ACCEPT)
 {

 settings_write_int_volume(avg_data_array);

 settings_read_int_volume(15);
 }
 else
 {

 char do_new_header [] = "New Calibration?";
 char do_new_text [] = "Would you like to run a\r\n new calibration?";

 menu_opt = draw_yes_no_menu(3, 2, do_new_header, sizeof(do_new_header), do_new_text,
sizeof(do_new_text), tft, ts);

 if(menu_opt == YES)
 {
 return RERUN;
 }

 }

 }

 if(abort_status)
 {

 /// Clear LCD
 (*tft).fillScreen(WHITE);
 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 /// Print header
 (*tft).setCursor(10, 10);
 (*tft).setTextColor(RED);
 (*tft).setTextSize(3);
 (*tft).print("TEST ABORTED");

 (*tft).print("\r\n\r\n");

 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);

 (*tft).print(" Results not saved\r\n Tap screen to continue");

Final Report: WAS Project No.: 2013-HS-2013008:

157

 Point p;

 do
 {

 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);
 p = (*ts).getPoint();
 digitalWrite(13, LOW);
 pinMode(XM, OUTPUT);
 pinMode(YP, OUTPUT);
 } while(p.z < MINPRESSURE);

 }

 if(leak)
 {

 /// Clear LCD
 (*tft).fillScreen(WHITE);
 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 /// Print header
 (*tft).setCursor(10, 10);
 (*tft).setTextColor(RED);
 (*tft).setTextSize(3);

 (*tft).print("LEAK DETECTED");

 (*tft).print("\r\n\r\n");

 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);

 (*tft).print(" Results not saved\r\n Tap screen to continue");

 Point p;

 do
 {

 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);
 p = (*ts).getPoint();

Final Report: WAS Project No.: 2013-HS-2013008:

158

 digitalWrite(13, LOW);
 pinMode(XM, OUTPUT);
 pinMode(YP, OUTPUT);
 } while(p.z < MINPRESSURE);

 }

 return (0);

}

/**
 *
 * This function performs a leak check on the container in question. The function
 * first check to see whether the volume is up to a given sample pressure. If
 * it's not, then the function runs FPC101 to bring the sample volume to the
 * correct pressure. The function then shuts system valves and monitors the
 * container pressure for a period specified by LEAK_CHECK_WAIT_TIME. It
 * calculates the total mass flow into the container using compute_mass_flow_in,
 * and determines whether the mass flow rate through the seal is above the
 * LEAK_FREE_FLOW_RATE. If it is, then the leak_status byte is set high,
 * otherwise leak_status is set low. Note that this function IS NOT responsible
 * for opening valves after leak check to equilize pressure; calling function

Final Report: WAS Project No.: 2013-HS-2013008:

159

 * must do this. (This might be changed in later versions.)
 *
 * @param double * target_pressure: Pointer to double that stores function target pressure
 * @param double * volume: Pointer to double which stores volume of container (cc)
 * @param double * mass_flow_in: Pointer to double which stores mass flow into container (scc)
 * @param double * mass_flow_out: Pointer to double which stores mass flow out of container (scc)
 * @param byte * abort_status: Pointer to abort_status variable in calling function
 * @param byte * leak_status: Pointer to leak_status variable in calling function
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 * @param button * abort: Pointer to the abort button in the calling function. If there is
 * no abort button in the calling function, then a NULL pointer should be passed to this
 * function, otherwise a memory error will occur, or else the code won't compile.
 * @param byte test_case: Determines whether leak checking on test volume or on suction head
 *
 * @retval int 0: returns 0 upon successful completion
 */

int leak_check_ts(double * target_pressure, double * volume, double * mass_flow_in, double * mass_flow_out, byte *
abort_status, byte * leak_status, Adafruit_TFTLCD * tft, button * abort, byte test_case, double * q_leak)
{

 /// PSUEDO-CODE INCLUDED IN INLINE COMMENTS BELOW:

 unsigned long start_time = 0;
 unsigned long last_time = 0;
 unsigned long current_time = 0;

 int print_status = 0;

 double pressure_init = 0.0;
 double pressure_fin = 0.0;
 double delta_P = 0.0;
 double rho = 0.0;
 double d_m = 0.0;
 double d_m_max = 0.0;
 double qrt_nom = 0.0;
 double vol_nom = 0.0;
 double del_P = 0.0;
 double q_leak_nomV = 0.0;

 double percent_diff = 0.0;
 double p_atm = 0.0;
 double h2o = 0.0;

 int CI_link;
 int PI_link;
 int FPC_link;
 int relief_valve;
 int capture_valve;

Final Report: WAS Project No.: 2013-HS-2013008:

160

 /// Depending on what volume is being leak checked, the correct pressure transducer links are set.
 if(test_case == TEST_VOLUME)
 {
 CI_link = CI_101;
 PI_link = PI_101;
 FPC_link = CC_103;
 relief_valve = CC_101;
 capture_valve = CC_102;

 }
 else
 {
 CI_link = CI_102;
 PI_link = PI_102;
 FPC_link = CC_104;
 relief_valve = CC_106;
 capture_valve = CC_105;

 }

 /// Clear LCD
 (*tft).fillScreen(WHITE);
 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

/// Print header
 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);

 (*tft).print("Leak Check");
 Serial.println("Entered leak check function");

 // YOU SHOULD ADD THE CURRENT LEAK RATE CRITERIA
HERE***
 (*tft).setCursor(10, 40);
 (*tft).setTextSize(2);
 (*tft).print("\r\n Leak Rate Criteria: \r\n ");
 (*tft).print(LEAK_FREE_FLOW_RATE);
 (*tft).print(" cc/sec\r\n");

 delay(3000);

 /// Check status of abort button. If abort button is pressed, then *abort_status is
 /// set to zero. (This convention is repeated throughout function.)
 *abort_status = (*abort).get_status();

 /// Read atmospheric pressure

Final Report: WAS Project No.: 2013-HS-2013008:

161

 p_atm = read_pressure(CI_103, PI_103, 3);

 /// Read current internal pressure
 pressure_init = read_pressure(CI_link, PI_link, 3);

 /// Calculate internal air density ratio (compared to atmospheric pressure
 rho = pressure_init/p_atm;

 /// Log start time
 //start_time = micros();

 //current_time = start_time;

 //last_time = start_time;

 //delay(1);

 // DEBUG PRINT STATMENTS
 Serial.print("P init\t");
 Serial.println(pressure_init);

 Serial.print("P atm\t");
 Serial.println(p_atm);

 if(test_case != TEST_VOLUME)
 {

 //(*tft).setCursor(0, 120);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);\
 //(*tft).print("q_leak_nomV: scc/sec");

 //(*tft).setCursor(0, 150);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);
 //(*tft).print("q_leak_nomV: scc/sec");

Final Report: WAS Project No.: 2013-HS-2013008:

162

 }

 /// Enter "while" loop. This loop runs for however long is specified in the \ref LEAK_CHECK_WAIT_TIME
 /// variable
 //while((current_time - start_time < LEAK_CHECK_WAIT_TIME) && !(*abort_status))
 //{

 Serial.println("Running leak check...");

 //nominal value of canister
 h2o=500*0;

 //volume is the nominal value converted to cc, plus the system value 150cc
 vol_nom = (5230-h2o)+ 150.0;

 pressure_init = read_pressure(CI_link, PI_link, 3);
 Serial.print("Initial Pressure");
 Serial.println(pressure_init);

 Serial.println("Wait 10 seconds");
 delay(10000);

 pressure_fin = read_pressure(CI_link, PI_link, 3);
 Serial.print("Final Pressure");
 Serial.println(pressure_fin);

 /// Read atmospheric pressure
 p_atm = read_pressure(CI_103, PI_103, 3);
 Serial.print("Ambient Pressure");
 Serial.println(p_atm);

 /// Calculate drop in pressure from initial pressure to current pressure
 del_P = pressure_fin - pressure_init;
 Serial.print("Decay in Pressure");
 Serial.println(del_P);

 Serial.print("Calculated Volume");
 Serial.println(*volume);

 //q_leak_nomV = -100*del_P * vol_nom / p_atm / 10.0;
 //Serial.print("Leak Rate Nominal");

Final Report: WAS Project No.: 2013-HS-2013008:

163

 //Serial.println(q_leak_nomV);

 *q_leak = -1*del_P * *volume / p_atm / 10.0;
 Serial.print("Leak Rate Calculated");
 Serial.println(*q_leak);

 //percent_diff = 100 * abs(q_leak_nomV-q_leak_calcV)/q_leak_nomV;
 //Serial.print("Percent Difference");
 //Serial.println(percent_diff);

 /// Log current time
 //current_time = micros();

 // Compute total mass flow into container based on total pressure drop
 //*mass_flow_in = compute_mass_flow_in(pressure_init, delta_P, *volume, rho);

 /// Compute current average mass flow into container
 //d_m = derivative(*mass_flow_in, 0, (current_time - start_time)/1000000.0);

 /// Update current time
 //last_time = current_time;

 /// Update max mass flow rate
 //if((d_m) < (d_m_max))
 //{
 //d_m_max = (d_m);
 //}

 /// Print volume information to LCD if *tft is valid
 if((tft != NULL) && (print_status != (millis()/SCREEN_PRINT_INTERVAL)))
 {
 /// Clear LCD
 //(*tft).fillScreen(WHITE);
 //(*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 /// Print header
 //(*tft).setCursor(10, 10);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(3);

 //(*tft).print("LEAK DETECTED");

 //(*tft).setCursor(5, 120);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);\
 //(*tft).print(" leak_nom:");

Final Report: WAS Project No.: 2013-HS-2013008:

164

 //(*tft).setCursor(5, 150);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);
 //(*tft).print("leak_calc:");

 //(*tft).setCursor(5, 180);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);
 //(*tft).print(" % diff: ");

 //(*tft).setCursor(200, 120);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);
 //(*tft).print(q_leak_nomV);

 //(*tft).setCursor(200, 150);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);
 //(*tft).print(q_leak);

 //(*tft).fillRect(110, 90, 90, 80, WHITE);
 //(*tft).setTextColor(BLACK);
 //(*tft).setTextSize(2);
 //(*tft).setCursor(200, 180);
 //(*tft).print(percent_diff);

 delay(100);
 //Serial.print(read_pressure(CI_link, PI_link, 3));
 //(*tft).setCursor(110, 120);
 //if((abs(delta_P) > 10) || (delta_P < 0.0))
 //{
 //print_scientific(tft, d_m, 1);
 //}
 //else
 //{
 //print_scientific(tft, d_m);
 //}
 //(*tft).setCursor(110, 150);
 //(*tft).print((*mass_flow_out) + (*mass_flow_in));

 }

Final Report: WAS Project No.: 2013-HS-2013008:

165

 //print_status = millis()/SCREEN_PRINT_INTERVAL;

 //*abort_status = (*abort).get_status();

 //delay(1);
//
 //}

 //Serial.println(d_m_max);
 //Serial.print(LEAK_FREE_FLOW_RATE);

 if ((*q_leak) > (LEAK_FREE_FLOW_RATE))
 {

 *leak_status = LEAKY;
 return LEAKY;

 }

 *leak_status = SECURE;

 return SECURE;

}

//This function secures the test apparatus to the container.

int secure_hardware_ts(byte * abort_status,Adafruit_TFTLCD * tft, button * abort, double * final_pressure)
{

Final Report: WAS Project No.: 2013-HS-2013008:

166

 /// Check status of abort button. If abort button is pressed, then *abort_status is
 /// set to zero. (This convention is repeated throughout function.)
 *abort_status = (*abort).get_status();

 Serial.println("Entered secure hardware function");
 int print_status = 0;
 int max_p = settings_read_pressure1();

 unsigned long start_time = 0;

 float suction_pressure = 0.0;
 float sample_pressure = 0.0;

 Serial.print("Target pressure:\t");
 Serial.println(max_p);

 if(!(*abort_status))
 {
 Serial.println("Turning on pump and valve");

 /// Release any residual pressure on sample chamber.
 digitalWrite(CC_101, ON);

 delay(RELAY_LAG_TIME);

 digitalWrite(CC_102, ON);

 delay(1000);

 digitalWrite(CC_101, OFF);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_102, OFF);

 delay(RELAY_LAG_TIME);

 //Open VC102, turn on FPC102
 digitalWrite(CC_105, ON);
 delay(500);
 digitalWrite(CC_104, ON);

 }

 delay(500);

 Serial.println("Reading pressure...");

Final Report: WAS Project No.: 2013-HS-2013008:

167

 Serial.println("calculting pressure");

 suction_pressure = read_pressure(CI_102, PI_102);
 sample_pressure = read_pressure(CI_101, PI_101);

 Serial.println("Entering while loop");

 start_time = millis();

 while (((millis() - start_time) < 5000)&&(!(*abort_status)))
 {

 suction_pressure = read_pressure(CI_102, PI_102);
 sample_pressure = read_pressure(CI_101, PI_101);

 Serial.println("iteration");
 Serial.print("Suction pressure:\t");
 Serial.println(suction_pressure);

 Serial.print("Sample pressure:\t");
 Serial.println(sample_pressure);

 *final_pressure = suction_pressure;

 /// Check on abort button, update *abort_status
 if((*abort).get_status())
 {
 *abort_status = USER_ABORT;
 }

 /// If the function has been passed a valid LCD object, function will update volume read status to screen
 /// Also, the frequency of updates is determined by SCREEN_PRINT_INTERVAL
 if ((tft != NULL) && (print_status != (millis()/SCREEN_PRINT_INTERVAL)))
 {
 (*tft).fillRect(110, 90, 90, 120, WHITE);

 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).setCursor(130, 90);
 (*tft).print(sample_pressure);

 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).setCursor(130, 120);
 (*tft).print(suction_pressure);

Final Report: WAS Project No.: 2013-HS-2013008:

168

 }

 /// Update the print_status variable to prevent function from printing too often
 print_status = millis()/SCREEN_PRINT_INTERVAL;

 /// Check to see whether the sample pressure is rising. If it is, then the O-ring is insecure and the suction sealing
process should be aborted.
 if (sample_pressure > 10.0)
 {

 *abort_status = ORING_FAILED;
 Serial.println("O-ring failure");

 digitalWrite(CC_101, OFF);
 digitalWrite(CC_102, OFF);
 digitalWrite(CC_103, OFF);
 digitalWrite(CC_104, OFF);
 digitalWrite(CC_105, OFF);
 digitalWrite(CC_106, OFF);
 }

 }

 /// If loop exits with a positive abort, print that volume read is aborting
 if((*abort_status))
 {
 (*tft).setCursor(0, 210);
 (*tft).print("Aborting...");
 }

 /// Return 0 upon successful completion
 return 0;

}

Final Report: WAS Project No.: 2013-HS-2013008:

169

/**
 *
 * This function measures the volume of a container. Function manages all sensor and
 * hardware interfacing. Note that the measure_volume_ts is a variation on the
 * original measure_volume function (legacy, no longer included in source code), with
 * touchscreen and LCD interfacing capabilities included. This is a general volume
 * measurement function and is tied both to standard filter measurements as well as
 * to internal system volume calibration.
 *
 * @param double target_pressure: Differential vacuum pressure to which the system will
 * attempt to draw the sample volume ("H2O)
 * @param int run_time: Maximum amount of time for which the system will attempt to bring
 * the sample volume's pressure down to the target pressure (seconds)
 * @param double v_int: Internal volume of system plumbing. Note, if doing an internal
 * volume calibration, then calling function should pass zero for this variable
 * @param double * volume: Pointer to the volume variable in the calling function (scc)
 * @param byte * leak: Pointer to the leak variable in calling function. If a leak is
 * detected during the course of the volume measurement, then this variable is set to 1.
 * Otherwise it is held at 0.
 * @param byte * abort_status: Pointer to the abort_status variable in calling function. If
 * volume measurement is aborted mid-measurement, this variable is set to 1, otherwise it
 * is held at 0.
 * @param byte do_leak_check: Tells code whether to do a leak check.
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 * @param button * abort: Pointer to the abort button in the calling function. If there is
 * no abort button in the calling function, then a NULL pointer should be passed to this
 * function, otherwise a memory error will occur, or else the code won't compile.
 *
 * @retval int 0: returns 0 upon successful completion
 *
 * @todo Add real leak-checking criteria (Kirk Reeves, OCFT logbook 1, p. 56). Currently
 * the leak-check criteria are completely arbitrary, and shouldn't be used for determining
 * O-ring status.
 *
 */

int measure_volume_ts(double target_pressure, int run_time, double v_int, double * volume, byte * leak, byte *
abort_status, byte do_leak_check, Adafruit_TFTLCD * tft, button * abort, double * q_leak)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 unsigned long start_time = 0;
 unsigned long last_time = 0;
 unsigned long stop_time;

Final Report: WAS Project No.: 2013-HS-2013008:

170

 int print_status = 0;

 //FLOAT TYPE VARIABLES

 double air_density = 0.0;
 double atm_pressure = 0.0;
 double delta_mass_in = 0.0;
 double delta_mass_out = 0.0;
 double mass_flow = 0.0;
 double mass_flow_last = 0.0;
 double pressure_in = 0.0;
 double pressure_initial = 0;
 double pressure_out = 0.0;

 Serial.println("Entered volume function");

 /// Set leak variable to zero
 *leak = 0;

 /// Check status of abort button. If abort button is pressed, then *abort_status is
 /// set to zero. (This convention is repeated throughout function.)
 *abort_status = (*abort).get_status();

 /// Open VC101, VC102 allow system pressure to equalize, then close valves
 digitalWrite(CC_101, ON);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_102, ON);

 Serial.println("equalizing pressure");

 /// If abort button is pressed during pressure equalization, then while loop exits before pressure has equalized.
 while((read_pressure(CI_101, PI_101) > 0.5) && !(*abort_status))
 {
 *abort_status = (*abort).get_status();
 Serial.println("Checking abort status");
 }

 Serial.print("Exited while loop");
 delay(RELAY_LAG_TIME);

 /// Close VC101, VC102
 digitalWrite(CC_101, OFF);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_102, OFF);
 delay(RELAY_LAG_TIME);

Final Report: WAS Project No.: 2013-HS-2013008:

171

 Serial.println("Turning on valve and pump");

 /// If read is not aborted, enter main volume measurement sequence
 if(!(*abort_status))
 {

 //Open VC102, turn on FPC101
 digitalWrite(CC_102, ON);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_103, ON);

 }

 /// Log time at which pump was activated, log initial pressure
 last_time = micros();
 start_time = last_time;

 pressure_initial = read_pressure(CI_101, PI_101);

 /// Enter loop that runs until pressure desired target pressure
 while((pressure_out - pressure_initial < target_pressure) && (!(*abort_status)))
 {

 Serial.println("Entered while loop");

 /// Read pressure and mass flow (these variables will need to be renamed, as we are adding more pressure
sensors
 pressure_out = read_pressure(CI_101, PI_101);

 mass_flow = read_mass_flow(CI_104, FI_101);

 if(mass_flow < 0.3)
 {
 mass_flow = 0;
 }

 /// Calculate mass flow out, using trapezoidal integration
 delta_mass_out = delta_mass_out + trap_integrate(mass_flow, mass_flow_last, (micros()-
last_time)/(1000000.0));

 mass_flow_last = mass_flow;

Final Report: WAS Project No.: 2013-HS-2013008:

172

 last_time = micros();

 /// Check to see how long the volume read has been going. If it has been going longer than the max run time,
exit while loop
 if ((last_time - start_time)/1000000 > run_time)
 {
 *leak = 1;

 break;
 }

 /// Check on abort button, update *abort_status
 *abort_status = (*abort).get_status();

 /// If the function has been passed a valid LCD object, function will update volume read status to screen
 /// Also, the frequency of updates is determined by SCREEN_PRINT_INTERVAL
 if ((tft != NULL) && (print_status != (millis()/SCREEN_PRINT_INTERVAL)))
 {
 (*tft).fillRect(110, 90, 90, 120, WHITE);

 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).setCursor(110, 90);
 (*tft).print(pressure_out);
 (*tft).setCursor(110, 120);
 (*tft).print(mass_flow);
 (*tft).setCursor(110, 150);
 (*tft).print(delta_mass_out);
 }

 /// Update the print_status variable to prevent function from printing too often
 print_status = millis()/SCREEN_PRINT_INTERVAL;

 //Print out data for trouble-shooting purposes and data collection... uncomment as needed
 // Serial.print("Timestamp =\t");
 // Serial.print(millis());
 // Serial.print("\tPressure =\t");
 // Serial.print(pressure_out);
 // Serial.print("\tMass flow rate =\t");
 // Serial.print(mass_flow);
 // Serial.print("\tTotal mass out =\t");
 // Serial.println(delta_mass_out);

Final Report: WAS Project No.: 2013-HS-2013008:

173

 }

 /// If loop exits with a positive abort, print that volume read is aborting
 if((*abort_status))
 {
 (*tft).setCursor(0, 210);
 (*tft).print("Aborting...");
 }

 /// Close solenoid valve, wait 0.1 seconds, then turn off the pump.
 digitalWrite(CC_102, OFF);

 /// Record the time at which the valve was close
 stop_time = micros();

 delay(RELAY_LAG_TIME);
 digitalWrite(CC_103, OFF);

 /// Reset value of mass_flow_last variable
 mass_flow_last = 0.0;

 /// Read current atmospheric pressure;
 atm_pressure = read_pressure(CI_103, PI_103);

 /// Calculate normalized air density based only on atmospheric pressure. Note that this
 /// assumes STP conditions for temperature and humidity and only takes atmospheric pressure
 /// into account. We may need to add a temperature and humidity sensor down the road, depending
 /// on final applications of product.
 air_density = atm_pressure/406.64355;

 /// If function has a valid LCD pointer and read has not been aborted, function prints final volume results to
touchscreen
 if((tft != NULL) && (!(*abort_status)))
 {

 /// Compute volume
 *volume = compute_volume(atm_pressure, pressure_out - pressure_initial, delta_mass_out, air_density) -
v_int;

 /// Print volume information to LCD
 (*tft).fillRect(110, 90, 90, 120, WHITE);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);

Final Report: WAS Project No.: 2013-HS-2013008:

174

 (*tft).setCursor(110, 90);
 (*tft).print(pressure_out);
 (*tft).setCursor(110, 120);
 (*tft).print(mass_flow);
 (*tft).setCursor(110, 150);
 (*tft).print(delta_mass_out);
 (*tft).setCursor(110, 180);
 (*tft).print(*volume);

 }

 /// If leak has not already been detected and read was not aborted, then proceed to check integrity of
 /// O-ring. Note that the whole "leak-checking" parameters are so far completely arbitrary. Need to
 /// implement the helium leak criteria from OCFT logbook 1, page 56
 if(!(*leak) && (!(*abort_status)) && (do_leak_check == YES))
 {
 /// Compute air density again (this is redundant)
 atm_pressure = read_pressure(CI_103, PI_103);
 air_density = atm_pressure/406.64355;

 /// Compute volume again, passing it to *volume
 *volume = compute_volume(atm_pressure, pressure_out - pressure_initial, delta_mass_out, air_density) -
v_int;

 leak_check_ts(&target_pressure, volume, &delta_mass_in, &delta_mass_out, abort_status, leak, tft, abort,
TEST_VOLUME, q_leak);

 }

 if(do_leak_check == NO)
 {

 delay(RELAY_LAG_TIME);

 }

 digitalWrite(CC_104, OFF);

 /// Open VC101, VC102 allow system pressure to equalize
 digitalWrite(CC_101, ON);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_102, ON);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_106, ON);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_105, ON);

Final Report: WAS Project No.: 2013-HS-2013008:

175

 /// Keep valves open until system pressure has equalized, or until user aborts
 while((read_pressure(CI_102, PI_102) > 0.5) && !(*abort_status))
 {
 *abort_status = (*abort).get_status();
 }

 delay(RELAY_LAG_TIME);

 /// Close VC101, VC102
 digitalWrite(CC_101, OFF);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_102, OFF);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_105, OFF);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_106, OFF);

 /// Return 0 upon successful completion
 return (0);

}

Final Report: WAS Project No.: 2013-HS-2013008:

176

/**
 *
 * This function runs is responsible for running a typical filter test. Note that
 * this function is a variation on the original "run_test" function (legacy, no
 * longer included in source code), with touchscreen support added. The function
 * first draws test information on the touchscreen and creates an abort button. It
 * then passes control to the measure_volume_ts function. Upon completion of
 * measure_volume_ts, the function displays data from the test to user on LCD,
 * including measured volume, and determined filter and O-ring status (if available).
 * Function prompts user to continue through a continue button.
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 */

int run_test_ts(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 /// Create test variables
 double system_volume = 0;
 byte leak = 0;
 byte clogged = 0;
 byte abort_status = 0;

 char abort_button_text [] = "Abort";
 char done_button_text [] = "Done";

 byte i = 0;

 double suction_pressure = 0;

 /// Create and draw abort button

Final Report: WAS Project No.: 2013-HS-2013008:

177

 button abort_button((*tft).width() - 90, (*tft).height() - 40, abort_button_text, sizeof(abort_button_text), 2, tft, ts);

 /// Display secure hardware header to LCD
 (*tft).fillScreen(WHITE);

 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Filter Test");

 (*tft).setCursor(0, 50);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Securing hardware to lid");

 (*tft).setCursor(0, 90);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Sample P: \"H2O");

 (*tft).setCursor(0, 120);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);\
 (*tft).print(" Suction P: \"H2O");

 abort_button.draw(WHITE, BLACK, RED);

 suction_pressure = settings_read_pressure1();

 secure_hardware_ts(&abort_status, tft, &abort_button, &suction_pressure);

 /// Display test information header to LCD
 (*tft).fillScreen(WHITE);

 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Filter Test");

Final Report: WAS Project No.: 2013-HS-2013008:

178

 (*tft).setCursor(0, 50);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Test in progress...");

 (*tft).setCursor(0, 90);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Delta P: \"H2O");

 (*tft).setCursor(0, 120);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);\
 (*tft).print(" dm: scc/s");

 (*tft).setCursor(0, 150);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Delta m: scc");

 (*tft).setCursor(0, 180);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Volume: cc");

 abort_button.draw(WHITE, BLACK, RED);

 /// Function passes control to measure_volume_ts()
double q_leak = 0;
 if(!abort_status)
 {

 abort_status = abort_button.get_status();

 measure_volume_ts(settings_read_pressure(), settings_read_time(),
settings_read_int_volume(settings_read_pressure()), &system_volume, &leak, &abort_status, YES, tft, &abort_button,
&q_leak);

 }

Final Report: WAS Project No.: 2013-HS-2013008:

179

 // Debugging print statements; comment or uncomment as needed
 Serial.println(settings_read_int_volume(settings_read_pressure()));
 Serial.println(system_volume);

 /// Clear display
 (*tft).fillScreen(WHITE);

 /// Create and draw "Done" button
 button done_button((*tft).width() - 90, (*tft).height() - 40, done_button_text, sizeof(done_button_text), 2, tft, ts);

 done_button.draw(WHITE, BLACK, BLACK);

 /// Display test data
 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Filter Test");

 (*tft).setTextSize(2);

 (*tft).setCursor(0, 50);

 (*tft).println(" Test results: \r\n");

 digitalWrite(CC_106, OFF);

 delay(RELAY_LAG_TIME);

 digitalWrite(CC_105, OFF);

 delay(RELAY_LAG_TIME);

 digitalWrite(CC_104, OFF);

 delay(RELAY_LAG_TIME);

 digitalWrite(CC_103, OFF);

 delay(RELAY_LAG_TIME);

 digitalWrite(CC_102, OFF);

 delay(RELAY_LAG_TIME);

Final Report: WAS Project No.: 2013-HS-2013008:

180

 digitalWrite(CC_101, OFF);

 /// If run was not aborted, display data.
 if(!abort_status)
 {

 /// Display measured volume
 (*tft).print(" Volume: ");
 (*tft).print(system_volume);
 (*tft).print(" cc\r\n");

 (*tft).print("\r\n Leak Rate: ");

Final Report: WAS Project No.: 2013-HS-2013008:

181

 (*tft).print(q_leak);
 (*tft).print(" cc/sec\r\n");

 (*tft).print("\r\n Filter status: ");

 /// If filter is clogged, display "CLOGGED" message, otherwise display "GOOD" message
 if(system_volume < CLOGGED_FILTER_THRESHOLD)
 {
 (*tft).setTextColor(RED);
 (*tft).println("CLOGGED");
 clogged = 1;
 }
 else
 {
 (*tft).setTextColor(GREEN);
 (*tft).println("GOOD");
 }

 /// Display O-ring status
 (*tft).setTextColor(BLACK);
 (*tft).print("\r\n O-ring status: ");

 /// If the filter was clogged, O-ring status is "UNKNOWN"
 if(clogged)
 {
 (*tft).setTextColor(YELLOW);
 (*tft).print("UNKNOWN\r\n");
 }

 /// Otherwise, determine O-ring status based on leakiness of container, display results accordingly
 else
 {
 if(leak)
 {
 (*tft).setTextColor(RED);
 (*tft).print("LEAKY\r\n");
 }
 else
 {
 (*tft).setTextColor(GREEN);
 (*tft).print("SECURE\r\n");
 }
 }

 }

Final Report: WAS Project No.: 2013-HS-2013008:

182

 /// If run was aborted, display simple abort message.
 else
 {

 if(abort_status == USER_ABORT)
 {

 (*tft).fillScreen(WHITE);
 (*tft).setTextColor(RED);
 (*tft).print(" Test aborted by user\r\n\r\n");
 (*tft).print(" Results invalid.");
 }

 if(abort_status == ORING_FAILED)
 {

 (*tft).fillScreen(WHITE);
 (*tft).setTextColor(RED);
 (*tft).print(" System O-Ring Failed!\r\n Recheck seals before proceeding.\r\n");
 (*tft).print(" Results invalid.");
 }

 }
 done_button.draw(WHITE, BLACK, BLACK);

 /// Do nothing until user presses the "Done" button
 while(!done_button.get_status())
 {
 ;
 }

 /// Return zero upon successful completion
 return (0);

}

//@}

Final Report: WAS Project No.: 2013-HS-2013008:

183

/**
 *
 * This function runs is responsible for SECURING THE TEST HARDWARE. Note that
 * this function is a variation on the original "run_test" function (legacy, no
 * longer included in source code), with touchscreen support added. The function
 * first draws test information on the touchscreen and creates an abort button. It
 * then passes control to the measure_volume_ts function. Upon completion of
 * measure_volume_ts, the function displays data from the test to user on LCD,
 * including measured volume, and determined filter and O-ring status (if available).
 * Function prompts user to continue through a continue button.
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int 0: returns 0 upon successful completion
 *
 *///double target_pressure, int run_time, double v_int, double * volume, byte * leak, byte * abort_status, byte
do_leak_check, Adafruit_TFTLCD * tft, button * abort)

int run_secure_hardware_ts(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 byte abort_status = 0;
 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char abort_button_text [] = "Abort";
 char done_button_text [] = "Done";

 byte i = 0;

 /// Display test information header to LCD
 (*tft).fillScreen(WHITE);

 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Secure Test");

Final Report: WAS Project No.: 2013-HS-2013008:

184

 (*tft).setCursor(0, 50);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Test in progress...");

 (*tft).setCursor(0, 90);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(2);
 (*tft).print(" Delta P: \"H2O");

 /// Create and draw abort button
 button abort_button((*tft).width() - 90, (*tft).height() - 40, abort_button_text, sizeof(abort_button_text), 2, tft, ts);

 abort_button.draw(WHITE, BLACK, RED);

 //settings_read_pressure(), settings_read_time(), settings_read_int_volume(settings_read_pressure()),
&system_volume, &leak, &abort_status, YES, tft, &abort_button);

 ///Passes control to the secure hardware function.....
 double secure_pressure = 0;
 double delta_mass_in = 0;
 double delta_mass_out = 0;
 byte leak;
 double suction_head_volume = SUCTION_HEAD_VOLUME;
 secure_hardware_ts(&abort_status, tft, &abort_button, &secure_pressure);

 double q_leak=0;

 if(!abort_status)
 {
 leak_check_ts(&secure_pressure, &suction_head_volume, &delta_mass_in, &delta_mass_out, &abort_status,
&leak, tft, &abort_button, SUCTION_VOLUME, &q_leak);
 }
 /// Clear display
 (*tft).fillScreen(WHITE);

 /// Create and draw "Done" button
 button done_button((*tft).width() - 90, (*tft).height() - 40, done_button_text, sizeof(done_button_text), 2, tft, ts);

 done_button.draw(WHITE, BLACK, BLACK);

Final Report: WAS Project No.: 2013-HS-2013008:

185

 /// Display test data
 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Secure Test");

 (*tft).setTextSize(2);

 (*tft).setCursor(0, 50);

 /// If run was not aborted, display data.
 if(!abort_status)
 {

 /// Display measured volume
 (*tft).print(" Secured to: ");
 (*tft).print(secure_pressure);
 (*tft).print("\"H2O\r\n");

 }

 /// If run was aborted, display simple abort message.
 else
 {

 (*tft).fillScreen(WHITE);
 (*tft).setTextColor(RED);
 (*tft).print(" Secure aborted...\r\n\r\n");
 (*tft).print(" Test is not secure");

 }
 done_button.draw(WHITE, BLACK, BLACK);

 /// Do nothing until user presses the "Done" button
 while(!done_button.get_status())
 {
 ;
 }

Final Report: WAS Project No.: 2013-HS-2013008:

186

 /// Return zero upon successful completion
 return (0);

}

/// This function is resposable for RELEASING TEST HARDWARE.

int run_release_hardware_ts(Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 char done_button_text [] = "Done";

 byte i = 0;

 /// Display test information header to LCD
 (*tft).fillScreen(WHITE);

 (*tft).fillRect(0, (36), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(3);
 (*tft).print("Release Hardware");

 (*tft).setCursor(0, 50);
 (*tft).setTextColor(BLACK);

Final Report: WAS Project No.: 2013-HS-2013008:

187

 (*tft).setTextSize(2);
 (*tft).print(" In progress...");

 //Procedure for releasing the hardware
 digitalWrite(CC_106, ON);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_105, ON);

 delay(1500);

 digitalWrite(CC_106, OFF);
 delay(RELAY_LAG_TIME);
 digitalWrite(CC_105, OFF);

 /// Display hardware has been released
 (*tft).print(" Hardware Released ");

 /// Create and draw "Done" button
 button done_button((*tft).width() - 90, (*tft).height() - 40, done_button_text, sizeof(done_button_text), 2, tft, ts);

 done_button.draw(WHITE, BLACK, BLACK);

 /// Do nothing until user presses the "Done" button
 while(!done_button.get_status())
 {
 ;
 }

 /// Return zero upon successful completion
 return (0);

}

/*************************************/
/* Touchscreen Interface Functions */
/*************************************/

Final Report: WAS Project No.: 2013-HS-2013008:

188

/**
 * @anchor ts_interface
 * @name Touchscreen Interface Functions
 *
 * This category contains functions which are responsible solely for
 * touchscreen interfacing, both displaying data to touchscreen and receiving
 * user input from touchscreen. These functions often pass user input directly
 * to the logic flow control functions of the software.
 *
 *
 */

//@{

/**
 *
 * This is a simple function designed to cycle a color variable through standard
 * color values. It cycles the color variable to the next pre-determined color
 * each time it is called.
 *
 * @param uint16_t * color Pointer to the current color value
 *
 * @retval int returns 0 upon completion
 *
 */

int cycle_color(uint16_t * color)
{

 switch (*color)
 {

 case BLUE:
 *color = RED;
 break;

 case RED:
 *color = GREEN;
 break;

 case GREEN:
 *color = CYAN;

Final Report: WAS Project No.: 2013-HS-2013008:

189

 break;

 case CYAN:
 *color = MAGENTA;
 break;

 case MAGENTA:
 *color = YELLOW;
 break;

 case YELLOW:
 *color = BLUE;

 }

 return (0);
}

/**
 *
 * This function is responsible for drawing numeric value input menus to the touchscreen,
 * and reporting the entered value to the user. The function accepts a custom structure
 * of data that contains all the necessary information to draw the touchscreen. The
 * function allows the calling function to enter a current "starting" value, increment

Final Report: WAS Project No.: 2013-HS-2013008:

190

 * value, max and min values, warning values, custom units, and a custom header for the
 * menu. The function draws the menu to the touchscreen, and waits for user input. Function
 * blocks user from setting variable outside of the maximum and minimum values, and warns
 * user if they are setting value outside of warning limits (with red text). When user is
 * done setting variable, function returns value set by user to calling function.
 *
 * @param scroll_menu_input menu_data: Contains all the data needed to display scroll menu
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval double value: returns the value entered by user to the calling function
 *
 * @todo Add support for negative numbers, numbers larger than 1000. Specifically, the box
 * surrounding the variable needs to be dynamically sized based on the size and sign of the
 * number. Also, possibly could add support for calling function to determine how many
 * numbers they want to display, how many decimal places, etc. This is only needed if the
 * function is to be used for a more general case though.
 *
 */

double draw_scroll_menu (scroll_menu_input menu_data, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char plus_text [] = "+";
 char minus_text [] = "-";
 char exit_text [] = " Done ";

 byte i = 0;
 byte places = 0;
 double value = menu_data.val_init;

 /// Clear screen
 (*tft).fillScreen(WHITE);

 /// Draw menu
 (*tft).fillRect(0, ((menu_data.header_size) * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(menu_data.header_size);

 /// Print user-inputted menu title
 for(i = 0; i < menu_data.scroll_size; i++)
 {

Final Report: WAS Project No.: 2013-HS-2013008:

191

 (*tft).write(*((menu_data.scroll_title) + i));

 }

 (*tft).setCursor(10, ((menu_data.header_size) * 12) + ((menu_data.button_size) * 20) + 50);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(menu_data.button_size - 1);

 /// Print user-inputted units
 for(i = 0; i < menu_data.unit_size; i++)
 {

 (*tft).write(*((menu_data.units) + i));

 }

 ///Draw menu rectangles
 (*tft).fillRoundRect(10, ((menu_data.header_size) * 12) + 50, ((menu_data.button_size) * 5 * 6),
((menu_data.button_size) * 7 * 2), 5, WHITE);
 (*tft).drawRoundRect(10, ((menu_data.header_size) * 12) + 50, ((menu_data.button_size) * 5 * 6),
((menu_data.button_size) * 7 * 2), 5, BLACK);
 (*tft).setCursor(10 + ((menu_data.button_size) * 5), ((menu_data.header_size) * 12) + ((menu_data.button_size) *
3) + 50);

 /// Print initial value in appropriate box

 /// If the value is above or below warning levels, print in red, otherwise print in black
 if(value > menu_data.warning_max)
 {
 (*tft).setTextColor(RED);
 }
 else if(value < menu_data.warning_min)
 {
 (*tft).setTextColor(RED);
 }
 else
 {
 (*tft).setTextColor(BLACK);
 }

 (*tft).setTextSize(menu_data.button_size);

 /// Function supports decimals and integers. Following if statements control the decimal place printed based on size
of number

Final Report: WAS Project No.: 2013-HS-2013008:

192

 if((int)(value/100))
 {
 (*tft).print(value, 0);
 }
 else if ((int)(value/10))
 {
 (*tft).print(value, 1);
 }
 else
 {
 (*tft).print(value, 2);
 }

 /// Create "+", "-", and "Done" button objects
 button button_plus(((*tft).width() - (menu_data.button_size * 25)), (menu_data.header_size * 12) +
(menu_data.button_size * 3) + 10, plus_text, sizeof(plus_text), menu_data.button_size, tft, ts);

 button button_minus(((*tft).width() - (menu_data.button_size * 25)), (menu_data.header_size * 12) +
(menu_data.button_size * 23) + 10, minus_text, sizeof(minus_text), menu_data.button_size, tft, ts);

 button button_exit(((*tft).width() - (menu_data.button_size * 35)), (*tft).height() - (menu_data.button_size * 20),
exit_text, sizeof(exit_text), menu_data.button_size - 1, tft, ts);

 /// Draw buttons
 button_plus.draw(WHITE, BLACK, BLACK);
 button_minus.draw(WHITE, BLACK, BLACK);
 button_exit.draw(WHITE, BLACK, BLACK);

 /// Enter while loop in which function waits for user to finish entering number
 while(1)
 {

 /// This if statement executes if the "+" button is pressed
 if(button_plus.get_status())
 {

 /// Increment the value by one "increment"
 value = value + menu_data.increment;

 /// If the value is too high, set the value to max value
 if(value > menu_data.val_max)
 {
 value = menu_data.val_max;
 }

Final Report: WAS Project No.: 2013-HS-2013008:

193

 /// Draw white rectangle over old value and set cursor to print new value
 (*tft).fillRoundRect(10, (menu_data.header_size * 12) + 50, (menu_data.button_size * 5 * 6),
(menu_data.button_size * 7 * 2), 5, WHITE);

 (*tft).drawRoundRect(10, (menu_data.header_size * 12) + 50, (menu_data.button_size * 5 * 6),
(menu_data.button_size * 7 * 2), 5, BLACK);

 (*tft).setCursor(10 + (menu_data.button_size * 5), (menu_data.header_size * 12) +
(menu_data.button_size * 3) + 50);

 /// IF the new value is above the warning max or below the warning min, set text color to red, otherwise
set to black
 if(value > menu_data.warning_max)
 {
 (*tft).setTextColor(RED);
 }
 else if(value < menu_data.warning_min)
 {
 (*tft).setTextColor(RED);
 }
 else
 {
 (*tft).setTextColor(BLACK);
 }

 /// Set text size
 (*tft).setTextSize(menu_data.button_size);

 /// Determine decimal place to print value to based on value of number
 if((int)(value/100))
 {
 (*tft).print(value, 0);
 }
 else if ((int)(value/10))
 {
 (*tft).print(value, 1);
 }
 else
 {
 (*tft).print(value, 2);
 }
 }

 /// This if statement executes if the "-" button is pressed
 if(button_minus.get_status())
 {

 /// Decrement the value by one "increment"

Final Report: WAS Project No.: 2013-HS-2013008:

194

 value = value - menu_data.increment;

 /// If the value is too low, set the value to min value
 if(value < menu_data.val_min)
 {
 value = menu_data.val_min;
 }

 /// Draw white rectangle over old value and set cursor to print new value
 (*tft).fillRoundRect(10, (menu_data.header_size * 12) + 50, (menu_data.button_size * 5 * 6),
(menu_data.button_size * 7 * 2), 5, WHITE);
 (*tft).drawRoundRect(10, (menu_data.header_size * 12) + 50, (menu_data.button_size * 5 * 6),
(menu_data.button_size * 7 * 2), 5, BLACK);
 (*tft).setCursor(10 + (menu_data.button_size * 5), (menu_data.header_size * 12) +
(menu_data.button_size * 3) + 50);

 /// If new value is above the warning max or below the warning min, set the text color to red, otherwise
set to black
 if(value > menu_data.warning_max)
 {
 (*tft).setTextColor(RED);
 }
 else if(value < menu_data.warning_min)
 {
 (*tft).setTextColor(RED);
 }
 else
 {
 (*tft).setTextColor(BLACK);
 }

 /// Set text size
 (*tft).setTextSize(menu_data.button_size);

 /// Determine decimal place to which to print value, based on value of
 /// number (note, menu currently doesn't support values larger than 1000)
 if((int)(value/100))
 {
 (*tft).print(value, 0);
 }
 else if ((int)(value/10))
 {
 (*tft).print(value, 1);
 }
 else
 {
 (*tft).print(value, 2);
 }

Final Report: WAS Project No.: 2013-HS-2013008:

195

 }

 /// This if statement executes if user presses the "Done"/"Exit" button
 if(button_exit.get_status())
 {
 /// Function returns the user-entered value to calling function
 return(value);
 }

 }

 // This line of code will never run... EVER!!!
 return(0);

}

/**
 *
 * This function draws a "Continue"/"Cancel" menu to the LCD. It then
 * waits for user input. Function allows for the text of the menu to
 * be determined by the calling function. However, the function does not
 * include support for rejecting text that is too large. So if the
 * calling function sends text that is too big for the screen, the text
 * will run over into the button area. Also, note that function includes
 * no support for word-wrapping. Currently it is up to the calling
 * function to ensure that the text has newline characters in place where
 * needed for proper word wrapping. (Menu will TEXT wrap, but not word
 * wrap.)
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param char * header: String of header text
 * @param size_t header_length: Length of header string
 * @param char * text: String of menu text
 * @param size_t text_length: Length of menu text string
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object

Final Report: WAS Project No.: 2013-HS-2013008:

196

 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add automatic word-wrapping
 *
 */

int draw_continue_cancel(uint16_t header_size, uint16_t button_size, char * header, size_t header_length, char * text,
size_t text_length, uint16_t menu_type, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char continue_text [] = " Continue ";
 char cancel_text [] = " Cancel ";

 char accept_text [] = " Accept ";
 char reject_text [] = " Reject ";

 byte i = 0;

 /// Draw blank screen
 (*tft).fillScreen(WHITE);

 /// Draw header bar and header text
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

 for(i = 0; i < header_length; i++)
 {
 (*tft).write(*(header + i));
 }

 /// Draw menu text
 (*tft).setCursor(10, (header_size * 12) + 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(button_size);

 for(i = 0; i < text_length; i++)
 {
 (*tft).write(*(text + i));
 }

Final Report: WAS Project No.: 2013-HS-2013008:

197

 switch (menu_type)
 {

 case CONTINUE_CANCEL:
 {

 /// Create and draw "Continue" and "Cancel" buttons
 button button_continue(((*tft).width()/2) - (button_size * 60) - 20, (*tft).height() - (button_size * 20) - 10,
continue_text, sizeof(continue_text), button_size, tft, ts);
 button button_cancel(((*tft).width()/2) + 20, (*tft).height() - (button_size * 20) - 10, cancel_text,
sizeof(cancel_text), button_size, tft, ts);

 button_continue.draw(WHITE, BLACK, BLACK);
 button_cancel.draw(WHITE, BLACK, BLACK);

 /// Enter while loop and wait for user to make selection
 while(1)
 {

 /// This if statement executes if user selects "Continue"
 if(button_continue.get_status())
 {
 /// Return "Continue"
 return(CONTINUE);
 }

 /// This if statement executes if user selects "Cancel"
 if(button_cancel.get_status())
 {
 /// Return "Cancel"
 return(CANCEL);
 }
 }

 break;

 }

 case ACCEPT_REJECT:

 {

 /// Create and draw "Accept" and "Reject" buttons
 button button_accept(((*tft).width()/2) - (button_size * 60) - 20, (*tft).height() - (button_size * 20) - 10,
accept_text, sizeof(accept_text), button_size, tft, ts);
 button button_reject(((*tft).width()/2) + 20, (*tft).height() - (button_size * 20) - 10, reject_text,
sizeof(reject_text), button_size, tft, ts);

Final Report: WAS Project No.: 2013-HS-2013008:

198

 button_accept.draw(WHITE, BLACK, BLACK);
 button_reject.draw(WHITE, BLACK, BLACK);

 /// Enter while loop and wait for user to make selection
 while(1)
 {

 /// This if statement executes if user selects "Accept"
 if(button_accept.get_status())
 {
 /// Return "Accept"
 return(ACCEPT);
 }

 /// This if statement executes if user selects "Reject"
 if(button_reject.get_status())
 {
 /// Return "Reject"
 return(REJECT);
 }
 }

 }

 }

 // Return zero... just because.
 return(0);

}

Final Report: WAS Project No.: 2013-HS-2013008:

199

/**
 *
 * This function draws the main menu of the OCFT system to the LCD. It waits for user to
 * select an option, then returns the option to the calling function. Currently, the menu
 * only has two options: "Run Test" and "Configure". Implementing more options shouldn't
 * be too difficult, provided the menu is small enough to fit on one screen. If more options
 * are needed, then the function will have to be modified to include support for scrolling,
 * or else it will have to be split into two submenus, with the menus linked to each other
 * through "Next" and "Previous" menu options.
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add support for other main menu options (if needed)
 ***********SECURE TEST MENU WAS ADDED
 */

int draw_main_menu(uint16_t header_size, uint16_t button_size, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char header [] = "Main Menu";
 char button_1_text [] = " Run Test ";
 char button_2_text [] = " Configure ";
 char button_3_text [] = " Secure Test ";

 byte i = 0;

 /// Draw blank screen
 (*tft).fillScreen(WHITE);

 /// Draw menu header bar and header text
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);

Final Report: WAS Project No.: 2013-HS-2013008:

200

 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

 for(i = 0; i < sizeof(header); i++)
 {

 (*tft).write(*(header + i));

 }

 /// Create and draw menu option buttons.

 // Note the generic "button_x" naming convention. This makes it somewhat easier to add buttons to the function
later
 button button_1(10, ((header_size*12) + 10), button_1_text, sizeof(button_1_text), button_size, tft, ts);
 button button_2(10, ((header_size*12) + 10 + (button_size * 20)), button_2_text, sizeof(button_2_text),
button_size, tft, ts);
 button button_3(10, ((header_size*12) + 10 + (2 * button_size * 20)), button_3_text, sizeof(button_3_text),
button_size, tft, ts);

 button_1.draw(WHITE, BLACK, BLACK);
 button_2.draw(WHITE, BLACK, BLACK);
 button_3.draw(WHITE, BLACK, BLACK);

 /// Enter while loop, waiting for user to select an option
 while(1)
 {

 /// This if statement executes if the user selects option 1
 if(button_1.get_status())
 {
 /// Return user selection
 return(RUN_TEST);
 }

 /// This if statement executes if the user selects option 2
 if(button_2.get_status())
 {
 /// Return user selection
 return(CONFIGURE);
 }
 /// This if statement executes if the user selects option 3
 if(button_3.get_status())
 {

Final Report: WAS Project No.: 2013-HS-2013008:

201

 /// Return user selection
 return(SECURE_TEST);
 }

 }

 /// This line of code will never see the light of day!
 return(0);

}

/**
 *
 * This function draws the configuration menu for to the LCD. It then waits
 * for user to select an option. Once the user has selected an option, it
 * returns the selection to the calling function. As with other menu drawing
 * functions, this function does not currently include and support for
 * "scrolling." If more options are added, support for some kind of scrolling
 * may have to be added.
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add support for other configuration menu options (if needed)
 *
 */

int draw_configure_menu(uint16_t header_size, uint16_t button_size, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

Final Report: WAS Project No.: 2013-HS-2013008:

202

 char header [] = "Configure";
 char button_1_text [] = "Sample Pressure Drop";
 char button_2_text [] = "Max Sample Time ";
 char button_3_text [] = "Diagnostics ";
 char button_4_text [] = "Back ";

 byte i = 0;

 /// Draw blank screen
 (*tft).fillScreen(WHITE);

 /// Draw header bar and print header
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

 // Note that this for loop prints the header text. I used for loops before
 // I discovered that the "tft.print" function would work on strings, as
 // long as the string was hard coded into the function (i.e. not passed to
 // the function). In other words, this for loop could be replaced with
 //
 // (*tft).print("Configure");
 //
 // I just havent gotten around to doing so.
 for(i = 0; i < sizeof(header); i++)
 {
 (*tft).write(*(header + i));
 }

 /// Create and print button objects
 button button_1(10, ((header_size*12) + 10), button_1_text, sizeof(button_1_text), button_size, tft, ts);
 button button_2(10, ((header_size*12) + 10 + (1 * button_size * 20)), button_2_text, sizeof(button_2_text),
button_size, tft, ts);
 button button_3(10, ((header_size*12) + 10 + (2 * button_size * 20)), button_3_text, sizeof(button_3_text),
button_size, tft, ts);
 button button_4(10, ((header_size*12) + 10 + (3 * button_size * 20)), button_4_text, sizeof(button_4_text),
button_size, tft, ts);

 button_1.draw(WHITE, BLACK, BLACK);
 button_2.draw(WHITE, BLACK, BLACK);
 button_3.draw(WHITE, BLACK, BLACK);

Final Report: WAS Project No.: 2013-HS-2013008:

203

 button_4.draw(WHITE, BLACK, BLACK);

 /// Enter while loop, wait for user input
 while(1)
 {

 /// This if statement executes if user selects option 1
 if(button_1.get_status())
 {
 /// Return user selection
 return(SET_SAMPLE_PRESSURE);
 }

 /// This if statement executes if user selects option 2
 if(button_2.get_status())
 {
 /// Return user selection
 return(SET_SAMPLE_TIME);
 }

 /// This if statement executes if user selects option 3
 if(button_3.get_status())
 {
 /// Return user selection
 return(DIAGNOSTICS);
 }

 /// This if statement executes if user selects option 4
 if(button_4.get_status())
 {
 /// Return user selection
 return(EXIT);
 }

 }

 // Why is this line of code here? It never gets executed.... but it's tradition.
 // Besides, what if the function somehow mysteriously managed to escape the while(1) loop?
 return(0);

}

/**
 *
 * This function draws the SECURE TEST menu to the LCD. It then waits for the
 * user to select an option. Note that as with every other menu draw function,
 * this function has no support for "scrolling", so if buttons are added such
 * that they don't all fit on one screen, scrolling of some kind will need to

Final Report: WAS Project No.: 2013-HS-2013008:

204

 * be added.
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add support for other configuration menu options (if needed)
 *
 */

int draw_secure_test_menu(uint16_t header_size, uint16_t button_size, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char header [] = "Secure Test ";
 char button_1_text [] = "Suction Pressure";
 char button_2_text [] = "Secure Hardware ";
 char button_3_text [] = "Release Hardware ";
 char button_4_text [] = "Back ";

 byte i = 0;

 /// Draw blank screen
 (*tft).fillScreen(WHITE);

 /// Draw header bar and print header
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

 for(i = 0; i < sizeof(header); i++)
 {
 (*tft).write(*(header + i));
 }

 /// Create and print button objects
 button button_1(10, ((header_size*12) + 10), button_1_text, sizeof(button_1_text), button_size, tft, ts);

Final Report: WAS Project No.: 2013-HS-2013008:

205

 button button_2(10, ((header_size*12) + 10 + (1 * button_size * 20)), button_2_text, sizeof(button_2_text),
button_size, tft, ts);
 button button_3(10, ((header_size*12) + 10 + (2 * button_size * 20)), button_3_text, sizeof(button_3_text),
button_size, tft, ts);
 button button_4(10, ((header_size*12) + 10 + (3 * button_size * 20)), button_4_text, sizeof(button_4_text),
button_size, tft, ts);

 button_1.draw(WHITE, BLACK, BLACK);
 button_2.draw(WHITE, BLACK, BLACK);
 button_3.draw(WHITE, BLACK, BLACK);
 button_4.draw(WHITE, BLACK, BLACK);

 /// Enter while loop, wait for user input

 while(1)
 {

 /// This if statement executes if user selects option 1
 if(button_1.get_status())
 {
 /// Return user selection
 return(SET_SUCTION_PRESSURE);
 }

 /// This if statement executes if user selects option 2
 if(button_2.get_status())
 {
 /// Return user selection
 return(SECURE_HARDWARE);
 }

 /// This if statement executes if user selects option 3
 if(button_3.get_status())
 {
 /// Return user selection
 return(RELEASE_HARDWARE);
 }

 /// This if statement executes if user selects option 4
 if(button_4.get_status())
 {
 /// Return user selection
 return(EXIT);
 }

 }

 // Why is this line of code here? It never gets executed.... but it's tradition.
 // Besides, what if the function somehow mysteriously managed to escape the while(1) loop?

Final Report: WAS Project No.: 2013-HS-2013008:

206

 return(0);

}

/**
 *
 * This function draws the diagnostics menu to the LCD. It then waits for the
 * user to select an option. Note that as with every other menu draw function,
 * this function has no support for "scrolling", so if buttons are added such
 * that they don't all fit on one screen, scrolling of some kind will need to
 * be added.
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add support for other configuration menu options (if needed)
 *
 */

int draw_diagnostic_menu(uint16_t header_size, uint16_t button_size, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char header [] = "Diagnostics";
 char button_1_text [] = "Measure System Volume";
 char button_2_text [] = "Back ";

 byte i = 0;

 /// Draw blank screen

Final Report: WAS Project No.: 2013-HS-2013008:

207

 (*tft).fillScreen(WHITE);

 /// Draw header bar and print header
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

 // Another unnescessary for loop
 for(i = 0; i < sizeof(header); i++)
 {

 (*tft).write(*(header + i));

 }

 /// Create and print menu option buttons
 button button_1(10, ((header_size*12) + 10), button_1_text, sizeof(button_1_text), button_size, tft, ts);
 button button_2(10, ((header_size*12) + 10 + (1 * button_size * 20)), button_2_text, sizeof(button_2_text),
button_size, tft, ts);

 button_1.draw(WHITE, BLACK, BLACK);
 button_2.draw(WHITE, BLACK, BLACK);

 /// Enter while loop waiting for user input
 while(1)
 {

 /// This if statement executes if user selects option 1
 if(button_1.get_status())
 {
 /// Return user selection
 return(CALIB_SYSTEM_VOLUME);
 }

 /// This if statement executes if user selects option 2
 if(button_2.get_status())
 {
 /// Return user selection
 return(EXIT);
 }
 }

 // Another line of code that will never run
 return(0);

}

Final Report: WAS Project No.: 2013-HS-2013008:

208

/**
 *
 * This function draws a "Yes/No" menu to the LCD, and waits for user input. Function
 * allows for the text of the menu to be determined by the calling function. However,
 * the function does not include support for rejecting text that is too large. So if
 * the calling function sends text that is too big for the screen, the text will run
 * over into the button area. Also, note that function includes no support for
 * word-wrapping. Currently it is up to the calling function to ensure that the text
 * has newline characters in place where needed for proper word wrapping. (Menu will
 * TEXT wrap, but not word wrap.)
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param char * header: String of header text
 * @param size_t header_length: Length of header string
 * @param char * text: String of menu text
 * @param size_t text_length: Length of menu text string
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add automatic word-wrapping
 *
 */

Final Report: WAS Project No.: 2013-HS-2013008:

209

int draw_yes_no_menu (uint16_t header_size, uint16_t button_size, char * header, size_t header_length, char * text,
size_t text_length, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char yes_text [] = " Yes ";
 char no_text [] = " No ";

 byte i = 0;

 /// Draw blank screen
 (*tft).fillScreen(WHITE);

 /// Draw header bar and header
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

 // Note, this for loop IS needed, since the string was passed to the function from the calling function
 for(i = 0; i < header_length; i++)
 {
 (*tft).write(*(header + i));
 }

 /// Print menu text
 (*tft).setCursor(10, (header_size * 12) + 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(button_size);

 // This for loop is also nescessary
 for(i = 0; i < text_length; i++)
 {

 (*tft).write(*(text + i));

 }

 /// Create and draw "Yes" and "No" buttons
 button button_yes(((*tft).width()/2) - (button_size * 35) - 20, (*tft).height() - (button_size * 20) - 10, yes_text,
sizeof(yes_text), button_size, tft, ts);
 button button_no(((*tft).width()/2) + 20, (*tft).height() - (button_size * 20) - 10, no_text, sizeof(no_text),
button_size, tft, ts);

Final Report: WAS Project No.: 2013-HS-2013008:

210

 button_yes.draw(WHITE, BLACK, BLACK);
 button_no.draw(WHITE, BLACK, BLACK);

 /// Enter while loop and wait for user input
 while(1)
 {

 /// This if statement executes if user selects "Yes"
 if(button_yes.get_status())
 {
 /// Return YES
 return(YES);
 }

 /// This if statement executes if user selects "No"
 if(button_no.get_status())
 {
 /// Return NO
 return(NO);
 }
 }

 // Yes, I include the
 //
 // return(0);
 //
 // statement, regardless of whether it's needed. You should too.
 return(0);

}

/**

Final Report: WAS Project No.: 2013-HS-2013008:

211

 *
 * This function draws a "Continue"/"Cancel" menu to the LCD. It then
 * waits for user input. Function allows for the text of the menu to
 * be determined by the calling function. However, the function does not
 * include support for rejecting text that is too large. So if the
 * calling function sends text that is too big for the screen, the text
 * will run over into the button area. Also, note that function includes
 * no support for word-wrapping. Currently it is up to the calling
 * function to ensure that the text has newline characters in place where
 * needed for proper word wrapping. (Menu will TEXT wrap, but not word
 * wrap.)
 *
 * @param uint16_t header_size: Size in which to print the header text
 * @param uint16_t button_size: Size in which to print button text
 * @param char * header: String of header text
 * @param size_t header_length: Length of header string
 * @param char * text: String of menu text
 * @param size_t text_length: Length of menu text string
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param Touchscreen * ts: Pointer to touchscreen interface object
 *
 * @retval int option: Returns option selected by user
 *
 * @todo Add automatic word-wrapping
 *
 */

int draw_continue_cancel(uint16_t header_size, uint16_t button_size, char * header, size_t header_length, char * text,
size_t text_length, Adafruit_TFTLCD * tft, TouchScreen * ts)
{

 /// -PSUEDO CODE INCLUDED IN INLINE COMMENTS BELOW-

 char continue_text [] = " Continue ";
 char cancel_text [] = " Cancel ";

 byte i = 0;

 /// Draw blank screen
 (*tft).fillScreen(WHITE);

 /// Draw header bar and header text
 (*tft).fillRect(0, (header_size * 12), (*tft).width(), 5, BLACK);

 (*tft).setCursor(10, 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(header_size);

Final Report: WAS Project No.: 2013-HS-2013008:

212

 for(i = 0; i < header_length; i++)
 {
 (*tft).write(*(header + i));
 }

 /// Draw menu text
 (*tft).setCursor(10, (header_size * 12) + 10);
 (*tft).setTextColor(BLACK);
 (*tft).setTextSize(button_size);

 for(i = 0; i < text_length; i++)
 {
 (*tft).write(*(text + i));
 }

 /// Create and draw "Continue" and "Cancel" buttons
 button button_continue(((*tft).width()/2) - (button_size * 60) - 20, (*tft).height() - (button_size * 20) - 10,
continue_text, sizeof(continue_text), button_size, tft, ts);
 button button_cancel(((*tft).width()/2) + 20, (*tft).height() - (button_size * 20) - 10, cancel_text, sizeof(cancel_text),
button_size, tft, ts);

 button_continue.draw(WHITE, BLACK, BLACK);
 button_cancel.draw(WHITE, BLACK, BLACK);

 /// Enter while loop and wait for user to make selection
 while(1)
 {

 /// This if statement executes if user selects "Continue"
 if(button_continue.get_status())
 {
 /// Return "Continue"
 return(CONTINUE);
 }

 /// This if statement executes if user selects "Cancel"
 if(button_cancel.get_status())
 {
 /// Return "Cancel"
 return(CANCEL);
 }
 }

 // Return zero... just because.
 return(0);

}

Final Report: WAS Project No.: 2013-HS-2013008:

213

/**
 * This function prints a number to the touchscreen in scientific format.
 *
 * @param Adafruit_TFTLCD * tft: Pointer to LCD display object
 * @param double value: Value to be printed
 * @param int places: Number of decimal places to which to print value
 *
 * @retval int 0: return 0 when function exits
 *
 */

int print_scientific(Adafruit_TFTLCD * tft, double value, int places)
{

 int i = 0;
 char negative = 0;

 /// Store sign information of number
 if(value < 0)
 {
 negative = 1;
 }

 /// Set number to absolute value for conversion process
 value = abs(value);

 /// This if statement handles the number if it is greater than 10
 if (abs(value) > 10.0)
 {

 /// While loop divides by 10 until number is less than 10
 while (abs(value) > 10.0)
 {

 i++;

 value = value/10.0;

 }

Final Report: WAS Project No.: 2013-HS-2013008:

214

 /// Revert to original sign
 if(negative)
 {
 value = -value;
 }

 /// Print value with power
 (*tft).print(value, places);

 (*tft).print("e+");

 (*tft).print(i);

 return (0);

 }

 /// This if statement handles the number if it is less than 1
 if (abs(value) < 1.0)
 {

 /// While loop multiplies number by 10 until number is greater than 1
 while (abs(value) < 1.0)
 {

 i++;

 value = value * 10.0;

 }

 /// Revert to original sign
 if(negative)
 {
 value = -value;
 }

 /// Print value with power
 (*tft).print(value, places);

 (*tft).print("e-");

 (*tft).print(i);

 return (0);

Final Report: WAS Project No.: 2013-HS-2013008:

215

 }

 /// If number is greater than 1 and less than 10, the function simply prints the value with the power.

 if(negative)
 {
 value = -value;
 }

 (*tft).print(value, places);

 (*tft).print("e+");

 (*tft).print(0);

 return (0);

}

//@}

\
/**
 * Project: On-Canister Filter Tester
 *
 * @file functions.h
 * @version 0.1.11
 * @author Joel Runnels
 * @date 2013-08-14
 *
 * @brief This file contains function prototypes for functions used in OCFT,
 * and some structure definitions
 *
 * @details
 * Functions grouped by type, then sorted alphabetically. Functions stored by the
 * following categories:
 *
 * - Computational Functions
 *
 * This category contains functions which perform some sort of computational
 * function. These functions generally do not involve any instrument or
 * hardware interfacing, and are designed to be as general as possible.

Final Report: WAS Project No.: 2013-HS-2013008:

216

 * Examples include trapezoidal integration function and the volume computation
 * function.
 *
 *
 * - Hardware and Instrumentation Interface Functions
 *
 * This category contains functions which interface directly with hardware
 * and instrumentation. These functions usually involve interfacing directly
 * with instrument pins, and return values of sensor readings if available.
 *
 * - EEPROM Interface Functions
 *
 * This category contains functions which read or write to microcontroller
 * onboard EEPROM. Functions are specifically designed to read or write a
 * particular value to EEPROM. Examples include the function which reads the
 * max sample time from EEPROM.
 *
 * - Menu Logic Functions
 *
 * This category contains functions which handle flow control and logic of
 * the programming. These functions are generally the highest-level functions
 * in the program which pass user input and output to calling functions.
 *
 * - Process Functions
 *
 * This category contains functions which control higher-level processes
 * onboard the instrument. Examples of functions in this category include
 * the functions responsible for measuring volume of a container and running
 * filter tests. These functions often involve controlling hardware,
 * interfacing with instruments, and performing computations. These functions
 * usually call multiple lower-level functions during the course of their
 * execution. These functions also interface with the touchscreen to display
 * current data as needed.
 *
 * - Touchscreen Interface Functions
 *
 * This category contains functions which are responsible solely for
 * touchscreen interfacing, both displaying data to touchscreen and receiving
 * user input from touchscreen. These functions often pass user input directly
 * to the logic flow control functions of the software.
 *
 *
 * @todo Continue documentation and commenting effort
 *
 */

#ifndef FUNCTIONS_H
#define FUNCTIONS_H

Final Report: WAS Project No.: 2013-HS-2013008:

217

#include <Arduino.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <TouchScreen.h>
#include "buttons.h"
#include "define.h"

/***************************/
/* Structure Definitions */
/***************************/

/**
 *
 * @brief Simple data structure for storing pressure and correlated volume readings
 *
 */

struct pv_data
{
 byte pressure; ///< Pressure, usually in inches of water
 double volume; ///< Volume, usually in cm^3
};

/**
 *
 * @brief Data structure for compacting data to pass to scroll menu
 *
 * This structure is only used when calling the draw_scroll_menu function. Note
 * that if more parameters need to be added to the scroll menu, they can be
 * included in this structure.
 *
 */

struct scroll_menu_input
{
 uint16_t header_size; ///< Size of header text
 uint16_t button_size; ///< Size of button text
 char * scroll_title; ///< Scroll menu title string
 size_t scroll_size; ///< Length of scroll title string
 char * units; ///< Units sting
 size_t unit_size; ///< Length of unit string
 double val_init; ///< Initial variable value
 double val_min; ///< Minimum value for variable
 double val_max; ///< Maximum value for variable

Final Report: WAS Project No.: 2013-HS-2013008:

218

 double warning_min; ///< Value at which menu gives warning
 double warning_max; ///< Value at which menu gives warning
 double increment; ///< Amount by which to increment variable up or down
};

/**************************/
/* FUNCTION PROTOTYPES */
/**************************/

/* Menu Logic Functions */
/**
 * @anchor menu_logic_functions
 * @name Menu Logic Functions
 *
 * This category contains functions which handle flow control and logic of
 * the programming. These functions are generally the highest-level functions
 * in the program which pass user input and output to calling functions.
 */
//@{
int main_menu(Adafruit_TFTLCD *, TouchScreen *);
int configure_menu(Adafruit_TFTLCD *, TouchScreen *);
int diagnostics_menu(Adafruit_TFTLCD *, TouchScreen *);
int secure_test_menu(Adafruit_TFTLCD *, TouchScreen *);
//@}

/* Computational Functions */
/**
 * @name Computational Functions

Final Report: WAS Project No.: 2013-HS-2013008:

219

 *
 * This category contains functions which perform some sort of computational
 * function. These functions generally do not involve any instrument or
 * hardware interfacing, and are designed to be as general as possible.
 * Examples include trapezoidal integration function and the volume computation
 * function.
 */
//@{
double compute_mass_flow_in(double, double, double, double);
double compute_volume(double, double, double, double);
double derivative(double, double, double);
double trap_integrate(double, double, double);
//@}

/* Hardware and Instrument Interface Functions */
/**
 * @name Hardware and Instrument Interface Functions
 *
 * This category contains functions which interface directly with hardware
 * and instrumentation. These functions usually involve interfacing directly
 * with instrument pins, and return values of sensor readings if available.
 */
//@{
double read_mass_flow(int, char);
double read_pressure(int, char, byte rolling_average = 1);
//@}

/* EEPROM Interface Functions */
/**
 * @name EEPROM Interface Functions

Final Report: WAS Project No.: 2013-HS-2013008:

220

 *
 * This category contains functions which read or write to microcontroller
 * onboard EEPROM. Functions are specifically designed to read or write a
 * particular value to EEPROM. Examples include the function which reads the
 * max sample time from EEPROM.
 */
//@{
byte settings_read_time(void);
byte settings_write_int_volume(pv_data *);
byte settings_write_pressure(double);
byte settings_write_pressure1(double);
byte settings_write_time(byte);

double settings_read_pressure(void);
double settings_read_pressure1(void);
double settings_read_int_volume(double);
//@}

/* Process Functions */
/**
 * @anchor process_functions
 * @name Process Functions
 *
 * This category contains functions which control higher-level processes
 * onboard the instrument. Examples of functions in this category include
 * the functions responsible for measuring volume of a container and running
 * filter tests. These functions often involve controlling hardware,
 * interfacing with instruments, and performing computations. These functions
 * usually call multiple lower-level functions during the course of their
 * execution. These functions also interface with the touchscreen to display
 * current data as needed.
 */
//@{
int calib_system_volume_ts(Adafruit_TFTLCD *, TouchScreen *);
int leak_check_ts(double *, double *, double *, double *, byte *, byte *, Adafruit_TFTLCD *, TouchScreen *, byte);
int measure_volume_ts(double, int, double, double *, byte *, byte *, byte, Adafruit_TFTLCD *, button *, double *);
int run_test_ts(Adafruit_TFTLCD *, TouchScreen *);
int run_secure_hardware_ts(Adafruit_TFTLCD *, TouchScreen *);

Final Report: WAS Project No.: 2013-HS-2013008:

221

int run_release_hardware_ts(Adafruit_TFTLCD *, TouchScreen *);
int secure_hardware_ts(byte *,Adafruit_TFTLCD *, button *, double *);
//@}

/* Touchscreen Interface Functions */

/**
 * @name Touchscreen Interface Functions
 *
 * This category contains functions which are responsible solely for
 * touchscreen interfacing, both displaying data to touchscreen and receiving
 * user input from touchscreen. These functions often pass user input directly
 * to the logic flow control functions of the software.
 */
//@{
double draw_scroll_menu (scroll_menu_input, Adafruit_TFTLCD *, TouchScreen *);

int cycle_color(uint16_t *);
int draw_configure_menu(uint16_t, uint16_t, Adafruit_TFTLCD *, TouchScreen *);
int draw_continue_cancel(uint16_t, uint16_t, char *, size_t, char *, size_t, uint16_t, Adafruit_TFTLCD *, TouchScreen *);
int draw_diagnostic_menu(uint16_t, uint16_t, Adafruit_TFTLCD *, TouchScreen *);
int draw_main_menu(uint16_t, uint16_t, Adafruit_TFTLCD *, TouchScreen *);
int draw_secure_test_menu(uint16_t, uint16_t, Adafruit_TFTLCD *, TouchScreen *);
int draw_yes_no_menu (uint16_t, uint16_t, char *, size_t, char *, size_t, Adafruit_TFTLCD *, TouchScreen *);
int print_scientific(Adafruit_TFTLCD *, double, int places = 2);

//@}

#endif

	COVER LAUR-14-27446 first RASSTI doc-2
	MAIN Brown etal 2014 LANL - IPFT and Filter Standards - for DOE NSRD
	Abstract
	Abstract 3
	LIST OF DEFINITIONS 5
	PART I. 7
	IN-PLACE-FILTER-TESTER FOR NUCLEAR MATERIAL CONTAINERS 7
	(1) INTRODUCTION 8
	(2) BACKGROUND 8
	(3) IPFT SYSTEM OPERATION SUMMARY 12
	(4) DEVELOPMENTAL EQUIPMENT AND ACTIVITIES 16
	(5) DELIVERABLES 37
	(6) SUMMARY 47
	PART II.CANISTER FILTER TEST STANDARDS FOR AEROSOL LEAK RATES 50
	ACKNOWLEDGEMENTS 57
	REFERENCES 58
	APPENDICES 60
	LIST OF DEFINITIONS
	PART I.
	IN-PLACE-FILTER-TESTER FOR NUCLEAR MATERIAL CONTAINERS
	(1) INTRODUCTION
	(2) BACKGROUND
	(3) IPFT SYSTEM OPERATION SUMMARY
	(4) DEVELOPMENTAL EQUIPMENT AND ACTIVITIES
	1. Los Alamos Proof-of-concept (POC)
	2. Instrument Development Plan (IDP)
	3. Incorporation of the Isaac ® unit into the LANL IPFT

	The Los Alamos POC (Proof-of-Concept) system.
	(5) DELIVERABLES
	1. Los Alamos In-Place-Filter-Tester (IPFT)
	2. Instrument Operating Method (IOM)

	(6) SUMMARY
	PART II.CANISTER FILTER TEST STANDARDS FOR AEROSOL LEAK RATES
	LANL FTS equipment modifications pertinent to measuring aerosol leak rate
	LANL FTS equipment and process modifications pertinent to measuring pressure drop across the filter

	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDICES

	APPENDICES Brown etal 2014 LANL - IPFT and Filter Standards - for DOE NSRD
	A. Product information sheet – Los Alamos IPFT In-Place-Filter-Tester
	B. POC component list
	C. Specification e-mail to Zaxis Inc for a custom Isaac™ unit
	D. LANL PCB – Printed Circuit Board
	E. Canister Interface
	F. Build Request to vendor of IPFT device
	G. Pressure drop reconciliation
	H. NFT reference filter standards
	I. POC driver code

