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Abstract 

Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical 

behavior of concentrated solid solutions is relatively poorly understood. A special subset of these 

materials includes alloys in which the constituent elements are present in equal atomic 

proportions, including the high-entropy alloys of recent interest. A unique characteristic of 

equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the 

textbook picture of dislocations moving through a solvent lattice and encountering discrete solute 

obstacles. To clarify the mechanical behavior of this interesting new class of materials, we 

investigate here a family of equiatomic binary, ternary, and quaternary alloys based on the 

elements Fe, Ni, Co, Cr, and Mn that were previously shown to be single-phase face-centered 

cubic solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled, and 

recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests 

were performed at an engineering strain rate of 10
-3 

s
-1

 at temperatures in the range 77-673 K. 
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Unalloyed FCC Ni was processed similarly and tested for comparison. The flow stresses depend 

to varying degrees on temperature, with some (e.g., NiCoCr, NiCoCrMn and FeNiCoCr) 

exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while 

others (e.g., NiCo and Ni) exhibit very weak temperature dependencies. To better understand this 

behavior, the temperature dependencies of the yield strength and strain hardening were analyzed 

separately. Lattice friction appears to be the predominant component of the temperature-

dependent yield stress, possibly because the Peierls barrier height decreases with increasing 

temperature due to a thermally induced increase of dislocation width. In the early stages of 

plastic flow (5~13% strain, depending on material), the temperature dependence of strain 

hardening is due mainly to the temperature dependence of the shear modulus. In all the 

equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. 

Keywords: High entropy alloy; Face-centered cubic crystals; Solid solution strengthening; 
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1. Introduction 

Dissolved solute atoms, to varying degrees, affect the mechanical properties of metals. 

Conventional treatments of solid solution strengthening assume that dislocations move through a 

solvent lattice of like atoms and encounter discrete unlike atoms (solutes) that can affect their 

mobility. The simplest case to consider is the energetics of, and the force resulting from, the 

elastic interaction of a dislocation with the strain field of a single solute atom [e.g., 1-7]. Both 

atomic size misfit and modulus mismatch between the solute and solvent atoms can contribute to 

this interaction. In reality, however, a dislocation interacts with multiple solute atoms 

simultaneously, and the net force exerted by all the solute atoms needs to be considered. For 

dilute solutions, early theories assumed that the interaction force between the dislocation and the 

solute atoms is either the maximum value possible (strong obstacles lying exactly in the slip 

plane), or zero (obstacles lying above or below the slip plane) [8, 9]. Taking into account the 

Friedel [10] separation between strong obstacles encountered by a dislocation, Fleischer 

developed a description in which the critical shear stress to overcome obstacles varied as the 

square root of the solute concentration, a result that was confirmed by early computer 

simulations [11, 12]. For more concentrated solutions, Labusch [13-15] developed a statistical 

treatment of a dislocation moving through an array of obstacles with a distribution of interaction 

strengths, rather than the binary interaction assumed in Fleischer’s treatment, and obtained a 

critical shear stress that varied as the two-thirds power of solute concentration. Since the 

development of these early theories, there have been many refinements over the years [e.g., 16-

21]. 

The picture of a dislocation moving through a solvent lattice and encountering discrete solute 

obstacles breaks down as the solute concentration and compositional complexity increase. 
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Relatively little is known about the fundamental mechanisms of solid solution strengthening in 

compositionally complex alloys, i.e., alloys comprised of multiple elements in high 

concentrations. An interesting subset of compositionally complex alloys is one in which the 

constituent elements are present in equal atomic concentrations. In such equiatomic alloys, there 

is no “solvent” or “solute” in the conventional sense. Therefore, rather than considering a 

dislocation moving through a solvent lattice and interacting with discrete solute atoms, it may be 

more appropriate to envisage the dislocation as moving through a mythical “average solvent” or 

“effective medium.” In other words, the equiatomic alloy is not a simple extension or 

extrapolation from the dilute solution limits but rather a distinct new state akin to a 

stoichiometric compound with fixed atomic ratios, albeit disordered. 

In order to develop accurate effective medium theories of solid solution strengthening, it is 

desirable to experimentally characterize the mechanical behavior of a range of equiatomic solid 

solution alloys. To this end, we investigate here several equiatomic binary, ternary and 

quaternary alloys that were previously shown to be single-phase face centered cubic (FCC) [22]. 

In addition, the alloys are all subsets of an equiatomic, quinary high-entropy alloy, FeNiCoCrMn, 

that is known to be a FCC-structured single-phase solid solution alloy [23-28]. Tensile tests 

showed that the yield and ultimate strengths of this high-entropy alloy increase as the 

temperature is decreased [24, 26]. 

The term high-entropy alloy (HE alloy) was coined by Yeh et al. [29] to denote alloys 

containing five or more elements in approximately equiatomic concentrations. These authors 

reasoned that the high configurational entropies of such alloys would stabilize the formation of a 

solid solution by counteracting the enthalpies of phase separation and compound formation. 

However, most of the so-called HE alloys discussed in the literature are multi-phase alloys [e.g., 
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30-32] whose configurational entropies, as pointed out by Otto et al. [27], should in fact be low 

rather than high. There are only a few multi-element alloys that are true single-phase solid 

solutions with FCC [23-28] or BCC crystal structures [33-35]. The configurational entropy of 

these single-phase alloys is likely to be high, approaching the value of the ideal mixture assumed 

in the analysis of Yeh et al. [29]. The present study of equiatomic binaries, ternaries, and 

quaternaries aims to provide an experimental basis to understand the mechanical behavior of all 

equiatomic alloys, including the more complex HE alloys containing five or more elements. 

 

2. Experimental Methods 

2.1. Alloy Preparation and Characterization 

The equiatomic alloys listed in Table I were produced by arc melting the elements Fe, Ni, Co, 

Cr, and Mn (>99.9% pure) in a water-cooled copper hearth under Ar atmosphere. All these alloys 

are single-phase, FCC solid solution alloys, as shown in an earlier paper [22], and all are subsets 

of the quinary, single-phase, FCC-structured, high-entropy alloy, FeNiCoCrMn [23-27]. For 

comparison, pure Ni was produced using the same process. When Mn was added as an alloying 

element, special care was taken in the processing because of its high vapor pressure and tendency 

to oxidize rapidly, as discussed elsewhere [22, 24, 26, 27]. The arc-melted buttons were flipped 

and re-melted at least five times to promote thorough mixing and then drop-cast into copper 

molds to produce rectangular ingots measuring 12.7 mm  25.4 mm  127 mm. The drop-cast 

ingots were homogenized for 24 hours at either 1373 or 1473 K (see Table ), followed by water 

quenching. They were then cold rolled along the longitudinal ingot direction to a total thickness 

reduction of 90-92% (Table ) without cross-rolling or intermediate annealing. Annealing studies 
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were conducted on the rolled sheets to determine the temperatures and times that would yield 

fully recrystallized microstructures and comparable grain sizes (see Table ). In addition, the 

grain size of one of the alloys (FeNiCoCr) was systematically varied to investigate its influence 

on mechanical behavior. The annealed samples were ground (through 800-grit SiC paper), 

polished (through 20-nm colloidal silica suspension) and their microstructures examined in a 

JEOL 6500 SEM operated in the back-scattered electron (BSE) mode. 

 

2.2. Tensile Tests 

Flat dog-bone-type specimens with a gage length of 10 mm were cut from the cold-rolled 

sheets by electrical discharge machining (EDM) with their longitudinal axes perpendicular to the 

rolling direction. The specimens were annealed at the temperatures and times listed in Table 1, 

and all faces of their gage sections ground through 600-grit SiC paper. Nine Vickers 

microhardness indents spaced 1 mm apart were made along the specimen gage lengths using a 

LECO LM 100AT Vickers Hardness tester with a force of 200 g. Uniform elongations to fracture 

were calculated by averaging the change in the distance between adjacent indents, excluding the 

two indents on either side of the fracture plane. 

Tensile tests were performed with a screw-driven tensile testing machine (Instron) at an 

engineering strain rate of 10
-3 

s
-1

 and temperatures of 77, 203, 293, 473, and 673 K. For the tests 

below room temperature, the specimens and grips were first fully immersed in a bath of liquid 

nitrogen (77 K tests) or a dry ice plus ethanol mixture (203 K tests) for about 15 minutes before 

starting the test. During the tests, the baths were topped off as needed to keep the specimen and 

grips fully immersed at all times. Room-temperature tests were performed in ordinary ambient 



8 
 

air and those above room temperature in vacuum. X-ray diffraction was performed on the gage 

sections of specimens tested at 77 and 673 K to determine whether any phase transformation or 

second phase precipitation had occurred. No significant changes indicative of any phase 

transformations were observed on the XRD patterns. Fracture surfaces were examined in a JEOL 

JCM-5000 microscope operated at 10 kV. 

 

2.3. Melting Temperature, Shear Modulus and Poisson’s Ratio Measurements 

The melting temperatures of the materials were measured using a NETZSCH 404 C 

differential scanning calorimeter (DSC). The melting point was determined during heating from 

room temperature as the start temperature of the endothermic melting peak observed on the DSC 

trace. 

To determine the room-temperature elastic constants, densities were first measured with an 

AccuPyc 1330 pycnometer. Right cylindrical samples (7 mm length  6 mm diameter) were cut 

from the homogenized ingots and ground through 600-grit SiC paper followed by compression to 

~3 mm before being used for the density measurements. The purpose of this ~60% compression 

was to close up any casting pores that may have been present. After density measurements, the 

samples were annealed at 900
 
°C for 3 h to produce fully recrystallized microstructures. The 

annealed samples were carefully ground, their thicknesses measured, and time of flight 

measurements made with appropriate acoustic transducers to obtain longitudinal and shear wave 

velocities. Assuming the recrystallized (polycrystalline) materials are isotropic, their two 

independent elastic constants were calculated from the longitudinal and shear wave velocities 

using techniques described elsewhere [36]. 
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The temperature dependence of the shear modulus of the FeNiCoCr alloy was measured using 

resonant ultrasound spectroscopy (RUS) using a commercial RUS system (RUSpec
®
, Quasar 

International Inc., Albuquerque, NM, USA) with a tripod transducer configuration. To make the 

measurements, a cylindrical ingot of this alloy, 25.4 mm in diameter, was cast and homogenized 

at 1473
 
K for 24 hours. A7-mm-thick slice of this ingot was then compressed to 3 mm and 

annealed at 1073
 
K for 3 hours. From this slice, a cylindrical specimen 25.4 mm in diameter and 

3mm thick was cut using EDM and used for the RUS measurements. Additional details of the 

measurement procedures are described elsewhere [37]. 

 

3. Results and Discussion 

    Figure 1 shows the recrystallized microstructures of the equiatomic alloys and pure Ni after 

the annealing treatments listed in Table . The BSE images in this figure were taken on cross-

sections perpendicular to the rolling direction. All of the alloys have equiaxed microstructures 

and similar grain sizes (24-48 µm), as summarized in Table , but with different densities of 

annealing twins. Unfortunately, a pure Ni specimen with a grain size in this range could not be 

produced. As discussed in a previous paper [22], Ni undergoes abnormal grain growth at 

temperatures below 1073 K when processed by the methods employed here. Normal grain 

growth occurs only at 1073 K and above. The smallest grain size we could produce at 1073 K 

was 85 m, so the test results presented for pure Ni here are for this larger grain size. 

Figure 2 shows the engineering stress vs. engineering plastic strain curves of the equiatomic 

alloys and pure Ni as a function of temperature. The curves were obtained from the tensile load-

displacement data with the crosshead displacement calibrated using the elongation of the gage 

http://www.magnet.fsu.edu/inhouseresearch/rus/
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length determined from the microhardness indents described earlier. To compute the plastic 

components of the strain, a line was fit to the linear elastic portion of the stress-strain curves and 

the amount of the elastic strain at a given point on the curve was subtracted from the total strain 

to obtain the plastic strain. In general, the flow stress (σflow) decreases with increasing 

temperature, and the stress-strain curves systematically shift up with decreasing temperature. 

Some of the alloys, namely, NiCoCr, FeNiMn, NiCoMn, FeNiCoMn and NiCoCrMn, exhibit 

pronounced serrations on their 673-K stress-strain curves that extend essentially from the yield 

point all the way to the start of necking. In two of the alloys, FeNiMn and NiCoMn, the 

serrations were also observed at 473 K. Such serrations are often associated with dynamic strain 

aging [38]. 

Figure 3 summarizes the 0.2% offset yield strengths (σy), ultimate tensile strengths (UTS), and 

uniform elongations to fracture, all of which increase with decreasing temperature, with 

maximum values attained at liquid nitrogen temperature (77 K). Since there are variations in the 

melting points of the different alloys (Table II), we also plotted yield strengths versus 

homologous temperatures (not shown here). Basically the same trends and order of the different 

alloys as seen in Fig. 3 were observed also in the homologous temperature plots. At any given 

temperature, the alloys have large ranges of strength and ductility, with the ternary alloy, NiCoCr, 

having the highest values overall.  

Broadly speaking, there are two types of effects evident in the mechanical properties shown in 

Figs. 2 and 3 – those due to the different alloying elements and those due to temperature. 

Considering first the former effect, it has been speculated [29] that equiatomic HE alloys will 

have higher strengths than conventional alloys containing just one principal element due to the 

higher degree of solid solution hardening from the increased number of elements. However, the 



11 
 

current results show that yield strength is not a simple function of the number of elements in the 

equiatomic alloys. In fact, the yield strength does not increase monotonically as the number of 

elements increases: one of the ternary alloys (NiCoCr) has the highest strength, two of the 

quaternaries (FeNiCoCr and NiCoCrMn) are next, and all three have higher yield strengths 

(Fig. 3) than the five-element equiatomic alloy, FeNiCoCrMn [26]. Therefore, strength is not 

solely determined by the number of elements but also depends on the type of added elements. In 

the present family of alloys, Cr appears to be the most potent strengthener. A similar behavior 

was observed previously in the microhardness data of these alloys [22]. 

While traditional notions of solid solution hardening may shed some light on possible 

mechanisms by which composition affects strength, as noted before, because of their equiatomic 

compositions, there are no “solvents” or “solutes” in these alloys. Therefore, new “averaging” 

schemes may be needed to properly account for the complex atomic arrangements that are 

present both in the dislocation cores and in the surrounding lattice. Nevertheless, among the 

factors that can produce solid solution hardening, such as size misfit, modulus mismatch, 

stacking fault energy changes, and short-range ordering, the first two may be important based on 

trends observed in relatively dilute alloys [39]. For the elements in our alloys (Fe, Ni, Co, Cr and 

Mn), the largest (pair-wise) differences in atomic sizes and Young’s moduli are 3.7% between Ni 

and Mn [40] and 40.9% between Cr and Mn [41], respectively, suggesting that the observed 

differences in strength may be due to modulus mismatch rather than size misfit. However, further 

studies are needed to develop a deeper understanding of compositional effects in equiatomic 

alloys. 

The second broad trend that can be seen in the data in Figs. 2 and 3 is that the flow stress, σflow, 

depends to varying degrees on the test temperature. It is convenient to think of the flow stress as 
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consisting of two parts:(1) the yield stress (σy), which depends on the initial dislocation density 

(i), and (2) an incremental hardening (σρ) due to the evolution of dislocation density () with 

strain, such that: 

    (1) 

Consequently, the temperature dependence of flow stress seen in Figs. 2 and 3 may be due to 

the temperature dependencies of either, or both, of the terms on the right hand side. In the 

following sections we address the potential mechanisms by which temperature can affect the 

yield strength and strain hardening behavior of the equiatomic alloys. 

 

3.1. Effects of Temperature on Yield Strength 

Because of their negligible Peierls-Nabarro barriers, the yield strengths of pure FCC metals 

are relatively insensitive to changes in temperature (at least at low homologous temperatures), as 

has been confirmed by previous studies [42-45], as well as our present results on pure Ni (Fig. 

3a). Nevertheless, temperature-dependent yield strengths have been reported for binary FCC 

alloys, including Cu-Mn [46, 47], Cu-Al [48-50], Cu-Ge [51-53], Cu-Zn [54, 55], Cu-Ni [56], 

Au-Ag [56], and Al-Mg [57], with the yield strength typically increasing at lower temperatures. 

Both the thermal and athermal portions of the yield strength vs. temperature curves of these 

binaries often shift to higher values as the solute concentration increases [58, 59], suggesting an 

increase in the number of both short-range dislocation obstacles that can be overcome by thermal 

activation and longer range obstacles that cannot. Consistent with previous observations in 

binary alloys (most of which were relatively dilute solid solutions), the compositionally complex 

s flow (T ) =s y (T) + Ds r (T)
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equiatomic alloys examined here also exhibit varying degrees of strengthening at lower 

temperatures, with at least some, for example NiCoCr, NiCoCrMn, and FeNiCoCr, exhibiting 

significant strengthening as the temperature is decreased into the cryogenic range. 

Yield stress is a combination of the frictional stress (σfr), or the intrinsic lattice resistance to 

dislocation motion, plus the various incremental strengthening contributions, such as those due to 

the initial dislocation density (σρi), solid solution hardening (σss), precipitate hardening (σppt), 

and grain boundary (Hall-Petch) strengthening (σgb). A general expression for the yield strength 

can therefore be written as: 

.   (2) 

In the present analysis, two of the terms on the right hand side (σppt and σρi) can be eliminated 

immediately. First, no precipitates are present in our alloys, at least based on their x-ray 

diffraction spectra and BSE images [22], both of which indicate that the alloys are single-phase 

solid solutions, so σppt can be ignored. Higher magnification transmission electron microscopy 

(TEM) also failed to reveal any precipitates in the related FCC quinary FeNiCoCrMn [26]. Since 

all the alloys investigated here are equiatomic FCC subsets of this “parent” alloy, it seems 

reasonable to assume that the lower order alloys are also free of second phases. Second, TEM of 

the equiatomic quinary alloy, FeNiCoCrMn, found that representative images from foils of the 

recrystallized alloy contained practically no dislocations [26]. Since the current alloys were 

processed similarly and fully recrystallized to produce comparable grain sizes, it is reasonable to 

assume that their initial dislocation densities are also very low. Assuming that is the case, we 

ignore the limited contribution of initial dislocation density to yield stress in our analysis. 

gbpptssifry   
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Next, we address the third term on the right, ss. Mechanistically, as mentioned before, solid 

solution strengthening has traditionally been considered in relatively dilute solutions where there 

is a solvent lattice through which the dislocations move and interact with discrete solute atoms. 

In such cases, the dislocation core is comprised almost exclusively of like (solvent) atoms that 

encounters unlike (solute) atoms as it moves through the lattice. At low solute concentrations, the 

flexibility of the dislocation line allows it to bend around obstacles and take on low-energy 

configurations. This becomes progressively more difficult as the spacing between obstacles 

decreases. In the limit of the equiatomic alloys, there is no “solvent” lattice through which the 

dislocations move and no “solute” atoms that they occasionally encounter, assuming the 

constituent atoms are truly randomly arranged on the FCC lattice. In this sense, the equiatomic 

alloys represent a new state of material more akin to a stoichiometric compound with fixed 

atomic ratios, albeit disordered, than a traditional dilute solid solution. When viewed in this light, 

it is logical to fold the solid solution hardening term (σss) in Eq. (2) into the lattice friction term 

(σfr), where the latter now represents some “average” resistance offered by all the constituent 

atoms rather than a single type of solvent atom. This allows us to simplify the expression for the 

yield strength to: 

s y (T ) =s fr (T ) + Ds gb (T ),     (3) 

where the temperature dependence of yield strength can be the result of either, or both, of the 

two terms on the right. In what follows, we first address the second term on the right, gb, 

which is the contribution of grain boundaries to strength, and then focus mostly on the lattice 

friction σfr. 
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In the classical Hall-Petch treatment of grain boundary strengthening, a plot of yield strength 

versus the inverse square root of grain size is linear. Figure 4 is such a plot for one of the 

quaternary equiatomic alloys, FeNiCoCr, at five different temperatures. If the grain boundary 

strengthening term in Eq. (3) were temperature-dependent, then the Hall-Petch slopes would vary 

with temperature. However, it is apparent that the slopes in Fig. 4 are all essentially the same. 

This, coupled with the fact that the alloys in Fig. 3a all had roughly the same grain size (Table I), 

leads us to conclude that grain boundary strengthening does not contribute significantly to the 

observed temperature dependence of yield strength in the present study. 

    Therefore, the only remaining factor that could produce the observed temperature dependence 

of yield stress is a temperature-dependent lattice friction stress (σfr). To analyze this, we note that 

the Peierls-Nabarro stress (henceforth referred to as the Peierls stress, 𝜎p), which is commonly 

used to explain lattice friction, is given by [39]: 

s p =
2G

1-n
exp

-2pw

b

æ

è
ç

ö

ø
÷,    (4) 

where G is the shear modulus, ν is Poisson’s ratio, ω is the dislocation width, and b is the 

magnitude of the Burgers vector. The temperature dependencies of G and b in this expression 

can obviously lead to a small temperature dependence of the Peierls stress. However, it has been 

pointed out that the dislocation width ω can also be temperature dependent, and, since it appears 

in the expression inside the exponential, it may be the dominant factor. The dependence of 

dislocation width on temperature has been approximated by Dietze [60] as: 

w

b
=

w

b

æ

è
ç

ö

ø
÷

0

exp
T

3Tm

æ

è
ç

ö

ø
÷,     (5) 
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Where indicates values at 0 K, T is the test temperature, and Tm is the melting temperature. 

Ignoring the change of b with temperature, and using a simple Taylor expansion, we can rewrite 

equation (5) as: 

w » w0 1+
T

3Tm

æ

è
ç

ö

ø
÷,     (6)  

where 𝜔0 is the dislocation width at 0 K. This indicates a linear relationship between dislocation 

width and absolute temperature provided the temperature is low compared to the melting 

temperature, a relationship used previously by Petch [61]. Therefore, to a first approximation: 

w =w0 1+aT( ),     (7) 

Where  is a small positive constant. Combining equations (7) and (4), the temperature 

dependence of the Peierls stress becomes: 

s p =
2G

1-n
exp

-2pw0

b

æ

è
ç

ö

ø
÷*exp

-2pw0

b
aT

æ

è
ç

ö

ø
÷  (8).  

From the above expression, the Peierls stress at 0 K can be obtained as: 

s p 0( ) =
2G

1-n
exp

-2pw0

b

æ

è
ç

ö

ø
÷     (9).  

This suggests that if the temperature-dependence of yield stress is the same as that of the Peierls 

stress, the yield stress will decay with temperature in an exponential way. 

To check the validity of these concepts, the yield stress data are re-plotted in Fig. 5, along 

with data obtained previously for the equiatomic quinary alloy FeNiCoCrMn of comparable 

w

b

æ

è
ç

ö

ø
÷

0
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grain size [26]. It was found that the data are well described by curve fits (dashed lines) shown in 

Fig. 5 of the form: 

s y T( ) =s a exp
-T

C

æ

è
ç

ö

ø
÷ +s b

,    (10) 

Where σa, C, and σb are fitting constants. When written this way, the first term on the right 

represents the thermal or temperature-dependent part of the yield strength and the second term is 

the temperature-independent or athermal part. Equating the temperature-dependent part of Eq. 

(10) with the temperature-dependent Peierls stress in Eq. (8) yields: 

s a =s p 0( ) =
2G

1-n
exp

-2pw0

b

æ

è
ç

ö

ø
÷    (11) 

and 

C =
b

2pw0a
      (12). 

Values of the parameters a, C, and b determined from least squares fits of the experimental 

data are listed in Table III. Since it has been shown [62, 63] that Eq. 4 is a reasonable 

approximation of the Peierls stress over the range ~0.4<ω/b< ~2.1 (i.e., 0.5b<ω < 2b), the table 

also includes values of the Peierls stress at 0 K, p(0), calculated from Eq. 9 assuming ω0 = 0.5b, 

b, 1.5b and 2b,which can be compared with the values of a found from the curve fits. The shear 

moduli and Poisson’s ratios used in the calculations were measured by ultrasonic techniques and 

are given in Table II. For the equiatomic alloys, the calculated Peierls stress at 0 K (p (0)) has 

the best match with the fitted a values when ω0 = b. For pure Ni, on the other hand, the match is 

better when ω0 = 1.5b. We are not aware of any published data for the dislocation widths in pure 
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Ni, but a value of 1.5b has been reported for pure Cu [53, 66], and this agrees well with the value 

derived here for Ni. The reasonable match between the calculated and fitted values lends 

credence to the analysis and suggests that the dislocations in the equiatomic alloys are narrower 

than in pure FCC metals. Additionally, the analysis suggests that the temperature dependence of 

the yield strength of the equiatomic alloys may be due to thermally-induced changes in 

dislocation width that, in turn, produce a temperature dependence of the Peierls stress. 

To further check the validity of this analysis, values for α in Eq. (8) were calculated from the 

fitted C values by means of Eq. 12 where it was assumed that ω0 = b for the equiatomic alloys 

and 1.5b for pure Ni. These are listed in Table III, along with values for the product of α and Tm. 

For most of the equiatomic alloys and pure Ni, the product of α and Tm lies in the neighborhood 

of 1 (~0.8-1.5), implying that 𝛼 ≈  
1

𝑇𝑚
. Inserting this into equation (8) gives: 

s p »
2G

1-n
exp

-2pw0

b

æ

è
ç

ö

ø
÷* exp

-2pw0

bTm
T

æ

è
ç

ö

ø
÷ =s p 0( ) * exp

-2pw0

bTm
T

æ

è
ç

ö

ø
÷  (13). 

This expression is very similar to an equation derived by Dietze [60] to take into account the 

increase of dislocation width with temperature and consequent decrease in the Peierls stress: 

s p » s p 0( ) * exp
-2pw0

3bTm
T

æ

è
ç

ö

ø
÷       (14). 

The only difference between equations (13) and (14) is the factor 3, which, as noted by Nabarro 

[65], is unlikely to be significant in light of the various assumptions made in the derivations. 

It is generally believed that Peierls barriers are high in BCC metals and relatively low in FCC 

metals and that a major factor contributing to this difference is the relative widths of the 
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dislocations. The present analysis suggests that the dislocations in equiatomic FCC alloys may be 

narrower than those in pure FCC metals, which could lead to a stronger Peierls barrier and 

temperature dependence of strength. However, the temperature dependence of the equiatomic 

alloys, while stronger than that of pure FCC metals, is not as strong as that of BCC metals. 

Specifically, from room temperature to liquid nitrogen temperature the yield stress of the 

equiatomic FCC alloys increases by a factor of ~1.3-2.0 in comparison to a factor of ~3.5 for 

BCC metals such as iron [66] and tantalum [67]. Thus, the Peierls barrier height of the FCC 

equiatomic alloys is likely intermediate to that of pure FCC and BCC metals. 

It should be noted that all of these arguments are premised on the notion that the primary 

source of the temperature dependence of the yield strength is the temperature-dependent height 

of the Peierls barrier. Other temperature dependences could accrue from the thermally activated 

processes that control dislocation mobility during glide, but these have not been explicitly 

addressed here. Detailed knowledge of the specific mechanisms responsible for these thermally 

activated processes would be needed to model them accurately in future investigations. 

 

3.2. Effects of Temperature on Strain Hardening 

    Since flow stress depends on the yield stress and work hardening [Eq. (1)], either one or 

both could cause the observed temperature dependence of flow stress in the equiatomic alloys. 

As discussed above, yield stress does indeed depend on temperature, and its origin can be 

ascribed to a temperature-induced change in the dislocation width and friction stress. To 

investigate the temperature dependence of strain hardening, we first note that the engineering 

stress-strain curves of some of the equiatomic alloys in Fig. 2 appear to be parallel to each 
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other at different temperatures. If this is generally true, it implies that the strain-hardening 

component of the flow stress (σρ) is essentially temperature independent, leaving the 

temperature dependence of the yield stress (σy) as the primary contributor. To determine 

whether this is in fact the case, the engineering stress-strain curves in Fig. 2 were converted to 

true stress-strain curves and the 0.2% yield stress was subtracted from each value of stress to 

give the portion of the flow stress associated with strain hardening, σρ = σflow - σy. The 

results are shown in Fig. 6. Clearly, the curves do not fully converge, indicating that the strain 

hardening (σρ) does indeed depend on temperature to some extent.  

    The classical Taylor model [39] for strain hardening due to forest dislocations is usually 

described by 

Ds p = bGbr
1
2 ,     (15) 

Where  is a constant that depends on the strength of the dislocation-dislocation interaction, G 

is the shear modulus, b is the magnitude of the Burgers vector, and ρ is the dislocation density. 

Among the terms on the right hand side of Eq. 15, the shear modulus G is certainly 

temperature dependent. To investigate if this is the primary origin of the temperature 

dependence of the strain hardening, the isotropic shear modulus of FeNiCoCr was measured at 

293, 473 and 673 K using resonant ultrasound spectroscopy. The shear moduli of pure Ni at 

these temperatures were obtained from [68], and the modulus of FeNi was calculated from 

known single crystal elastic constants C11, C12 and C44 [68] using the formula given by Hashin 

and Shtrikman [69]. Table V lists the measured and calculated shear moduli. 
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    The strain hardening curves for FeNiCoCr, FeNi, and Ni in Fig. 6 were normalized using 

their respective temperature-dependent shear moduli in Table V, and the resulting values 

(σρ/G) are plotted in Fig. 7 as a function of plastic strain. These normalized curves generally 

converge up to certain strains, namely, ~13% for the two alloys and ~5% for pure Ni. This 

suggests that, at low strains, the temperature dependence of strain hardening in equation (14) 

is indeed mainly due to the temperature dependence of shear modulus and that dislocation 

multiplication, interaction and accumulation occur in a temperature-independent manner 

during the early stages of plastic deformation.  

In addition to displaying higher strengths, many of the equiatomic alloys are significantly 

more ductile than pure Ni, and their ductilities generally increase with decreasing temperature, as 

shown in Fig. 3. Similar trends were reported in earlier papers on high and medium entropy 

alloys [24, 26], where the high ductilities were ascribed to their high work hardening capability, 

which postpones the onset of necking instability according to Considere’s criterion. To evaluate 

whether its role in the present study, the extent of work hardening, defined here as the difference 

between the ultimate tensile strength (UTS) and the yield strength, is plotted as a function of 

temperature in Fig. 8 for the equiatomic alloys and pure Ni. To varying degrees, the work 

hardening capability of all the materials increases with decreasing temperature, similar to what 

was observed before in the equiatomic quinary alloy FeNiCoCrMn [24, 26], as well as in other 

FCC alloys [70-75]. It appears therefore that this may be the reason for the increasing ductility 

with decreasing temperature. 

One of the mechanisms for the much higher work hardening capability at cryogenic 

temperatures in the FeNiCoCrMn alloy is deformation-induced twinning [26], which can provide 

strengthening because of the additional internal twin boundaries generated, the so-called 
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“dynamic Hall-Petch” effect. Deformation twinning occurs in FCC metals and alloys with low 

stacking fault energy (γSFE) such as 70:30 brass, [76], but not in FCC metals with medium or 

high stacking fault energy such as Al [77]. The critical stacking fault energy below which 

twinning occurs in FCC materials has been reported to be ~45mJ/m2. At higher stacking fault 

energies (>45 mJ/m2), deformation is controlled by dislocation glide whereas at very low 

stacking fault energies (<18 mJ/m
2
), martensitic transformation is favored over deformation 

twinning [78, 79]. At low temperatures, even materials with γSFE> 45 mJ/m
2
are found to be 

mechanically twinned, for example, Cu [80], whose γSFE is ~80 mJ/m
2 

[39]. Even in pure Ni 

(γSFE ~ 150 mJ/m
2
) [39], deformation twinning occurs under shock loading conditions [81]. 

Previous studies have shown that the addition of Fe, Co, Cr and Mn to pure Ni all reduce the 

stacking fault energy, with Cr having the largest effect and Fe the smallest [82, 83]. Additional 

work is needed to confirm whether, and to what extent, twinning contributes to work hardening 

in the present alloys. Martensitic transformation appears not to be a contributing factor since 

post-fracture x-ray diffraction performed on specimens tested at 77 K revealed no new phases. 

The representative fracture surfaces in Fig. 9 show that there is significantly less macroscopic 

necking in the equiatomic alloy, FeNi, than in pure Ni, consistent with its higher tensile ductility 

and work hardening capability that postpones the onset of necking instability according to 

Considere’s criterion. Microscopically, however, both exhibit ductile dimples on their fracture 

surfaces. A similar lack of necking was observed in the other equiatomic alloys that exhibited 

high ductilities. Microscopically, all the FCC alloys examined here exhibited ductile dimples on 

their fracture surfaces. 
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5. Summary and Conclusions 

    Several binary, ternary and quaternary alloys with equiatomic compositions were arc-melted, 

cast, cold rolled and recrystallized to produce equiaxed grains of comparable size. All the alloys 

are subsets of a quinary FCC high-entropy alloy that was previously investigated (FeNiCoCrMn) 

and consisted of single-phase solid solutions with the FCC structure. For comparison, unalloyed 

FCC Ni was also investigated. The effects of temperature on tensile properties were quantified 

over the temperature range of 77-673 K yielding the following observations: 

(1) The flow stress of the equiatomic alloys is temperature dependent to varying degrees 

depending on the alloy. The yield and ultimate strengths of NiCoCr, NiCoCrMn, and 

FeNiCoCr increase strongly with decreasing temperature whereas those of NiCo and Ni 

exhibit very weak temperature dependencies. 

(2) Alloying affects both the thermal and athermal portions of the yield stress vs. temperature 

curves.  

(3) The stronger alloys are not necessarily the ones with the most elements. The nature of the 

constituent elements is also important, with the Cr-containing alloys in general being the 

strongest. 

(4) The Hall-Petch slopes of the FeNiCoCr alloy are essentially independent of test 

temperature. This implies that grain-boundary strengthening is unlikely to be a major 

contributor to the observed temperature dependence of the yield strength.  

(5) An analysis suggests that the temperature dependence of the yield strength in the alloys 

may be determined by Peierls-barrier-dominated lattice friction, with the height of the 

Peierl's barrier controlled by thermal influences on the width of the dislocation. By fitting 

the experimental yield stress vs. temperature curves to the Peierls-Nabarro equation, the 
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barriers in the equiatomic FCC alloys appear to be stronger than those in pure FCC 

metals but weaker than those in pure BCC metals.  

(6) The ultimate tensile strength and uniform elongation to fracture of all the equiatomic 

alloys increase with decreasing temperature, with the largest increase occurring between 

77 and 293 K. It is possible that deformation twinning similar to that observed in the 

FeNiCoCrMn high-entropy alloy [26] contributes to the enhanced ductility at cryogenic 

temperatures in some of the alloys. Additional work is needed to verify this. 

(7) During the initial stages of plastic deformation (5-13% strain, depending on material), the 

temperature dependence of strain hardening is due almost entirely to the temperature 

dependence of the shear modulus. This indicates the athermal nature of dislocation 

multiplication, accumulation and interaction during the early stages of deformation. 
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Figure Captions 

Fig. 1.  Back-scattered electron images of: (a) FeNiCoCr, (b) FeNiCo, (c) NiCoCr, (d) FeNi, (e) NiCo, (f) 

FeNiMn, (g) NiCoMn, (h) FeNiCoMn, (i) NiCoCrMn,and (j) pure Ni after cold-rolling and annealing 

(annealing temperatures and times are shown in Table I). 

Fig. 2. Engineering stress vs. engineering plastic strain as a function of temperature for the equiatomic 

alloys. 

Fig. 3. Temperature dependence of: (a) the 0.2% offset yield stress (σy); (b) the ultimate tensile strength 

(UTS); and (c) the uniform elongation to fracture for the equiatomic alloys. 

Fig. 4. Hall-Petch plots showing the effects of grain size, d, on the yield strength of the FeNiCoCr 

equiatomic alloy at different temperatures. 

Fig. 5. The temperature dependence of the 0.2% offset yield stress of the equiatomic alloys and pure Ni. 

The dashed lines are curve fits to the form of Eq. 10. Data for the quinary alloy FeNiCoCrMn are from 

[26]. 

Fig. 6. Strain hardening portion of the flow stress (Δσρ = σflow – σy) vs. true plastic strain as a function of 

temperature for the equiatomic alloys. 

Fig. 7. Shear modulus corrected strain hardening versus true plastic strain curves for: (a) the FeNiCoCr 

equiatomic alloy; (b) the FeNi equiatomic alloy; and (c) pure Ni. 

Fig. 8. Temperature dependence of the extent of work hardening (UTS – σy) for the equiatomic alloys. 

Fig. 9.  High and low magnification fractographs of tensile samples tested to failure at 77 K: (a, b) FeNi 

and (c, d) Ni. 
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List of Tables 

Table I. Processing conditions and grain sizes of the equiatomic alloys. 

Alloy 

Homogenization 

temperature (K) 

Reduction in 

thickness (%) 

Annealing temperature (K), time 

(h) 

Grain size (m) 

FeNiCoCr 1473 92 1173, 1 24 

FeNiCoMn 1373 90 1273, 1 48 

NiCoCrMn 1373 90 1273, 1 36 

FeNiCo 1473 92 1173, 1 28 

NiCoCr 1473 92 1273, 1 41 

FeNiMn 1373 90 1173, 1 30 

NiCoMn 1373 90 1173, 1 32 

FeNi 1473 92 1173, 1 35 

NiCo 1473 92 1073, 1 35 

Ni 1473 92 1073, 0.5 85 
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Table II. Measured melting temperatures, room temperature shear moduli and Poisson’s ratios of 

the equiatomic alloys. 

 

Alloy 
Melting temperature 

(K) 
Shear modulus (GPa) Poisson’s ratio 

FeNiCoCrMn 1553 80 0.26 

FeNiCoCr 1695 84 0.28 

FeNiCoMn 1533 77 0.22 

NiCoCrMn 1489 78 0.25 

FeNiCo 1724 60 0.35 

NiCoCr 1690 87 0.30 

FeNiMn 1473 73 0.24 

NiCoMn 1462 77 0.23 

FeNi 1703 62 0.34 

NiCo 1735 84 0.29 

Ni 1728 76 0.31 

  



34 
 

Table III. The fitting parameters σa, C, and σb obtained from curve fits of the data in Fig. 5 

according to the form of Eq. 10. The table also lists: the 0 K Peierls stress, σp(0), calculated by 

assuming ω0 = 0.5b, b, 1.5b, and 2b; the constant α; the melting temperatures (Tm); and the product 

of α and Tm. Additional descriptions of the parameters and their symbols are given in the text. 

 

alloy 

σa 

(MPa) 

C 

(K) 

σb 

(MPa) 

σp(0) (MPa) 

(ω0=0.5b) 

σp(0) (MPa) 

(ω0=b) 

σp(0) (MPa) 

(ω0=1.5b) 

σp(0) (MPa) 

(ω0=2b) 

α 

(K
-1

) 

Tm(K) 

Tm*α 

 

FeNiCoCrMn 423 180 109 9358 405 17 0.76 0.00088 1553 1.37 

FeNiCoCr 443 184 184 9858 426 18 0.80 0.00087 1695 1.46 

FeNiCoMn 282 219 101 8545 369 16 0.69 0.00073 1533 1.11 

NiCoCrMn 491 207 166 9002 389 16 0.73 0.00077 1489 1.14 

FeNiCo 292 252 125 7990 345 14 0.65 0.00063 1724 1.08 

NiCoCr 489 228 167 10758 465 20 0.87 0.00070 1690 1.18 

FeNiMn 283 195 182 8314 359 15 0.67 0.00082 1473 1.20 

NiCoMn 302 190 170 8656 374 16 0.70 0.00084 1462 1.22 

FeNi 341 291 74 8000 346 14 0.65 0.00055 1703 0.93 

NiCo 130 336 50 10241 443 19 0.83 0.00047 1735 0.82 

Ni 46 308 70 9534 412 17 0.77 0.00052 1728 0.89 
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Table V. Temperature dependence of the shear modulus of FeNiCoCr (this study), FeNi (calculated 

from [68]), and pure Ni (extracted from [68]). 

 

 Shear modulus (GPa) 

Temperature (K) FeNiCoCr FeNi Ni 

77 -- 68 84 

203 -- 66 80 

293 84 62 76 

473 79 62 73 

673 72 60 70 

 

 

 

 

 

 


