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1 Introduction

This document reports on work performed for cooperative agreement DE-FC02-06ER25764,
the Rice University effort of Performance Engineering Research Institute (PERI), which was
an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing
(SciDAC-2) program as part as the Department of Energy’s Office of Science (DOE SC)
Advanced Scientific Computing Research (ASCR) program.

The main priority of this institute is to enhance the performance of SciDAC applications
on petascale systems. To address this objective, PERI has implemented three research
thrusts: (1) performance modeling and prediction; (2) automatic performance tuning; and
(3) performance engineering of high profile applications.

The PERI effort at Rice University focused on (1) research and development of tools for
measurement and analysis of application program performance, and (2) engagement with
SciDAC-2 application teams.

The goal of the performance tools research at Rice was to advance the state of the
art in measurement, attribution, analysis, and diagnosis of inefficiencies in executions of
fully-optimized applications. The project team worked to extend Rice’s HPCToolkit
suite of multiplatform performance analysis tools to provide effective support for application
triage. The project team delivered an open source implementation of HPCToolkit for
measurement and analysis of application performance on clusters and DOE leadership-class
systems.

2 Summary of Research Performed

In this section we briefly describe the research activities and accomplishments under PERI
by Rice University researchers. These efforts were tightly coordinated with open source
software development supported by Center for Scalable Application Development Software
(CScADS).

2.1 Performance Tools for Application Triage

2.1.1 Call Path Profiling of Optimized Code

In modern, modular scientific programs, it is important to attribute the costs incurred by
each procedure to the contexts in which the procedure is called. The costs of communication
primitives, operations on data structures, and library routines can vary widely depending
upon their calling context. Because there are often layered implementations within appli-
cations and libraries, it is insufficient to insert instrumentation at any one level, nor is it
sufficient to distinguish costs based only upon the immediate caller.

To unwind the call stack of optimized applications, we perform on-the-fly binary analysis
of each procedure that appears in an application’s call stack. Our binary analyzer creates an
unwind recipe for each distinct interval within a procedure. An interval is of the form [s, e)
and its unwind recipe describes where to find the caller’s program counter, frame pointer
(FP) register value, and stack pointer (SP). For example, the caller’s program counter (the
current frame’s return address) can be in a register, at an offset relative to SP or at an offset
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relative to FP; the value of the caller’s FP register, which may or may not be used by the
caller as a frame pointer, is analogous.

The initial interval begins with (and includes) the first instruction. The recipe for this
interval describes the frame’s state immediately after a call. For example, on x86-64, a
procedure frame begins with its return address on the top of stack, the caller’s value of
FP in register FP, and the caller’s value of SP at SP−8, just below the return address. In
contrast, on MIPS, the return address is in register RA and the caller’s value of FP and SP
are in registers FP and SP, respectively.

The analyzer then computes unwind recipes for each interval in the procedure by de-
termining where each interval ends. (Intervals are contiguous and cannot overlap.) To do
this, it performs a linear scan of each instruction in the procedure. For each instruction,
the analyzer determines whether that instruction affects the frame. If so, the analyzer ends
the current interval and creates a new interval at the next instruction. The unwind recipe
for the new interval is typically created by applying the instruction’s effects to the previous
interval’s recipe. An interval ends when an instruction:

1. modifies the stack pointer (pushing registers on the stack, subtracting a fixed offset
from SP to reserve space for a procedure’s local variables, subtracting a variable offset
from SP to support alloca, restoring SP with a frame pointer from FP, popping a
saved register),

2. assigns the value of SP to FP to set up a frame pointer,

3. jumps using a constant displacement to an address outside the bounds of the current
procedure (performing a tail call),

4. jumps to an address in a register when SP points to the return address,

5. returns to the caller,

6. stores the caller’s FP value to an address in the stack, or

7. restores the caller’s FP value from a location in the stack.

There are several subtleties to the process sketched above: following a return or a tail
call (items 4 and 5 above), a new interval begins. What recipe should the new interval have?
We initialize the interval following a tail call or a return with the recipe for the interval
that we identify as the canonical frame. We use the following heuristic to determine the
canonical frame C. If a frame pointer relative (FP) interval was found in the procedure
(FP was saved to the stack and later initialized to SP), let C be the first FP interval.
Otherwise, we continue to advance C along the chain of intervals while the frame size (the
offset to the return address from the SP) is non-decreasing, and the interval does not contain
a branch, jump, or call. We use such an interval as a signal that the prologue is complete
and the current frame is the canonical frame. In addition, whenever a return instruction is
encountered during instruction stream processing, we check to make sure that the interval
has the expected state: e.g., for x86-64, the return address should be on top of the stack,
and the FP should have been restored. If the interval for the return instruction is not in the
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expected state, then the interval that was most recently initialized from the canonical frame
is at fault. When a return instruction interval anomaly is detected, we adjust all of the
intervals from the interval reaching the return back to the interval that was most recently
initialized from the canonical frame.

To handle procedures that have been split via hot-cold optimization, we check the end of
the current procedure p for a pattern that indicates that p is not an independent procedure,
but rather part of another one. The pattern has two parts:

1. p ends with an unconditional branch to an address a that is in the interior of another
procedure q.

2. The instruction preceding a is conditional branch to the beginning of p.

When the hot-cold pattern is detected, all intervals in p are adjusted according to the interval
computed for a.

In the linear scan between the start and end address of a procedure, the analyzer may
encounter embedded data such as jump tables. This may cause decoding to fail or lead to
corrupt intervals that would leave us unable to unwind. Although such corrupt intervals
could cause unwind failures (we note such failures in a log file), we have not found them to
be a problem in practice.

2.1.2 Associating Measurements with Source Code Structure

Modern scientific codes frequently employ sophisticated object-oriented design. In these
codes, deep loop nests are often spread across multiple routines. To achieve high perfor-
mance, such codes rely on compilers to inline routines and optimize loops. Consequently,
to effectively interpret performance, transformed loops must be understood in the calling
context of transformed routines.

To correlate performance data with the static structure of fully optimized binaries, we
built a mapping between object code and its associated source code structure. Since the most
important elements of the source code structure are procedures and loop nests — procedures
embody the actual executable code while loops often consume the bulk of the executable time
— we focus our efforts recovering them. We developed two novel binary analysis techniques:
1) on-the-fly analysis of optimized machine code to enable minimally intrusive and accurate
attribution of costs to dynamic calling contexts; and 2) post-mortem analysis of optimized
machine code and its debugging sections to recover its program structure and reconstruct
a mapping back to its source code. By combining the recovered static program structure
with dynamic calling context information, we can accurately attribute performance metrics
to calling contexts, procedures, loops, and in-lined instances of procedures.

This technique used only minimal symbolic information, for any portion of the calling
context, even without the source code itself. Using binary analysis to recover source code
structure addresses the complexity of real sys- tems in which source code for libraries is of-
ten missing. We conclude that our binary analyses enable a unique combination of call path
data and static source code structure; and this combination provides unique insight into the
performance of modular applications that have been subjected to complex compiler trans-
formations. The publication of this technique [16] received the distinguished paper award
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at the ACM Conference on Programming Language Design and Implementation (PLDI) in
2009 for a paper about their work on call stack profiling of optimized code.

2.1.3 Pinpointing Performance Bottlenecks on Multicore Nodes

Understanding why the performance of a multithreaded program does not improve linearly
with the number of cores in a shared-memory node populated with one or more multicore
processors is a problem of great importance since the number of cores in multicore processors
is steadily increasing. With support from PERI, we have developed new techniques for
measurement and analysis of the performance of multithreaded programs and prototyped
them in the context of the HPCToolkit performance tools.

Quantifying insufficient parallelism. To quantify insufficient parallelism, we describe
how to efficiently and directly measure parallel idleness, i.e., when threads are idling or
blocked and unable to perform useful work. Our measurements of idleness are based on
sampling of a time-based counter such as the wall clock or a hardware cycle counter. Mea-
surement overhead is low and controllable by adjusting the sampling frequency. When a
sample event occurs, a signal handler collects the context for the sample and associates the
sample count with its context.1 Collecting parallel idleness on a node with n processor cores
requires minor adjustments to traditional time-based sampling. The first adjustment is to
extend the run-time system to always maintain nw and nw, the number of working and idle
processor cores, respectively. This can be done by maintaining a node-wide counter repre-
senting nw. When a core acquires a unit of useful work (e.g., acquiring a procedure activation
using work stealing or plucking a unit of work from a task queue), it atomically increments
nw. Similarly, when a core finishes a unit of work, it atomically decrements nw to indicate
that it is no longer actively working. In this scheme nw = n− nw.

Consider a run-time system that has one worker thread per core. On each sample, each
thread receives an asynchronous signal. If a sample event occurs in a thread that is not
working, we ignore it. When a sample event occurs in a thread that is actively working,
the thread attributes one sample to a work metric for the sample context. It then obtains
nw and nw and attributes a fractional sample nw/nw to an idleness metric for the sample
context. This charges the thread its proportional responsibility for not keeping the idle
processors busy at that moment at that point in the program. For example, if three threads
are active on a quad core processor, whenever a sample event for the cycle counter interrupts
a working thread, the working thread will record one sample of work in its work metric, and
1/3 sample of idleness in its idleness metric. The 1/3 sample of idleness represents its share
of the responsibility for the core that is sitting idle.

After measurement is completed, idleness can be computed for each program context.
Since samples are accumulated during measurement, the idleness value for a given thread
and context is

∑
nwi

over all samples i for that context. It is often useful to express this
idleness metric as a percentage of the total idleness for the program. Total idleness may
be computed post-mortem by summing idleness metric over all threads and contexts in the

1We attribute costs to their full calling context using call path profiling. In this section, we use the term
context rather than calling context since idleness can be measured with or without full calling context.
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parallel
idleness overhead interpretation

low low effectively parallel; focus on serial performance
low high coarsen concurrency granularity
high low refine concurrency granularity
high high switch strategies; e.g., consider task parallelization

Table 1: Using parallel idleness and overhead to determine if the given application and input
are effectively parallel on n cores.

program. The idleness value may be converted to a time unit by multiplying by the sample
period. One can also divide the idleness for each context by the application’s total effort—
the sum of work and idleness everywhere across all threads—to understand the fraction of
total effort that was wasted in each context.

This approach incurs < 5% overhead on a quantum chemistry application that makes
extensive use of locking (65M distinct locks, a maximum of 340K live locks, and an average
of 30K lock acquisitions per second per thread) and attributes lock contention to its full
static and dynamic calling contexts [13].

Quantifying parallelization overhead. Parallel overhead occurs when a thread is per-
forming miscellaneous work other than executing the user’s computation. Sources of parallel
overhead include costs such as those for synchronization or dynamically managing the dis-
tribution of work.

For library-based parallel programming models such as Pthreads, identifying parallel
overhead is easy: any time spent in a routine in the Pthreads library can be labeled as parallel
overhead. For language-based parallel programming models, one must rely on compiler
support to identify inlined sources of parallel overhead. A compiler for a multi-threaded
programming model, such as OpenMP or Cilk, can tag statements in its generated code
to indicate which are associated with parallelization overhead. In a post-mortem analysis,
we recover compiler-recorded information about overhead statements, identify instructions
associated with overhead statements and run-time library routines, and attribute any samples
of work associated with them to parallelization overhead [18]. The tags therefore partition
the application code — the ‘work’ — into useful work and overhead (distinct from idleness).

This scheme has two important benefits. First, compiler generated tags may be designed
to partition sources of overhead into multiple types, thereby providing detailed information to
users or analysis tools. For example, it may be useful to distinguish between synchronization
overhead and all other overhead. The second benefit is that, tags are only meta-information;
they can be inserted and overhead can be associated with them using post-mortem analysis
without affecting run time performance in any way. In particular, tags do not have any
associated instrumentation. While the mapping between instructions and tags consume
space, it need not induce any run time cost. For example, the mapping can be located within
a section of a compiled binary that is not loaded into memory at run time or maintained in
a separate file.
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Analyzing efficiency. In a parallel program, we must consider two kinds of efficiency:
parallel efficiency across multiple processor cores and efficiency on individual processor cores.
With information about parallel idleness and overhead attributed hierarchically over loops,2

procedures, and the calling contexts of a program, we can directly assess parallel efficiency
and provide guidance for how to improve it (see Table 1). If a region of the program (e.g.,
a parallel loop) is attributed with high idleness and low overhead, the granularity of the
parallelism could profitably be reduced to enhance parallel efficiency. If the overhead is
high and the idleness low, the granularity of the parallelism should be increased to reduce
overhead. If the overhead is high and there is still insufficient parallelism, the parallelism
is inefficient and no granularity adjustment will help; perhaps the idle processors could be
kept busy with a completely different type of work (functional parallelism).

One can assess the efficiency of work and identify rate limiting factors on individual
processor cores by using metrics derived from hardware performance counter measurements.
Many different factors can limit an application’s performance such as instruction mix, mem-
ory bandwidth, memory latency, and pipeline stalls. For each of these factors, information
from hardware performance counters can be used to compute derived metrics that quantify
the extent to which the factor is a rate limiter. Consider how to assess whether memory
bandwidth is a rate limiter. During an execution, one can sample hardware counter events
for total cycles and memory bus transactions. By multiplying the sampling period by the
sample count for each instruction, one can obtain an estimate of how many bus transactions
are associated with each instruction. By multiplying the number of bus transactions by the
transaction granularity (e.g., the line size for the lowest level cache), one can compute the
amount of data transferred by each instruction. By dividing the amount of data transferred
by instructions within a scope (e.g., loop) by the total number of cycles spent in that scope,
one can compute the memory bandwidth consumed in that scope. By comparing that with a
model of peak bandwidth achievable on the architecture, one can determine whether a loop
is bandwidth bound or not. Attributing metrics to static scopes such as loops and dynamic
contexts such as call paths to support such analysis of multithreaded programs is the topic
of the next section.

Quantifying OpenMP performance bottlenecks. We have developed a measurement
methodology that attributes blame for work and inefficiency back to program contexts.
We show how to integrate prior work on measurement methodologies that employ directed
and undirected blame shifting and extend the approach to support dynamic thread-level
parallelism in both time-shared and dedicated environments.

We also developed a novel deferred context resolution method that supports online attri-
bution of performance metrics to full calling contexts within an OpenMP program execution.
This approach enables us to collect compact call path profiles for OpenMP program execu-
tions without the need for traces. Support for our approach is an integral part of an emerging
standard performance tool application programming interface for OpenMP. We demonstrate

2Because we collect performance metrics using statistical sampling of hardware performance counters,
which associates counts directly with instructions, and use binary analysis to associate instructions with
higher-level program structures such as loops, we can directly compute and attribute metrics at the level of
individual loops.
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the effectiveness of our approach by applying our tool to analyze four well-known applica-
tion benchmarks that cover the spectrum of OpenMP features. In case studies with these
benchmarks, insights from our tool helped us significantly improve the performance of these
codes.

We demonstrated that an implementation of these techniques in HPCToolkit pro-
vides deep insight into the performance of threaded program executions by measuring and
attributing informative metrics including idleness, work, overhead, and lock waiting. Our
OpenMP profiler employs online deferred context resolution to efficiently and accurately at-
tribute these metrics to full calling contexts in compact profiles, avoiding the space overhead
of traces required by prior tools. Reducing the space overhead is an important aspect of our
strategy that will enable it to scale to large parallel systems [8].

2.1.4 Logical Call-Path Profiles

To enable effective performance analysis of higher-level programming languages it is neces-
sary to bridge the gap between the user’s abstractions and their instantiation at run time.
A key aspect of this is recovering logical user-level calling contexts. We extend the notion of
call path profiling by defining logical call paths and describing how to generally and efficiently
obtain logical call path profiles using a logical calling context tree. Note that this technique
applies to both parallel and serial applications. To explore the utility of of logical call path
profiling, we used it to construct a system for measurement and analysis of multithreaded
Cilk program executions, which are managed by a work-stealing run-time system [15].

2.2 ARRA Supplement: Support for Accelerated Computing

Rice University received supplemental funding from the ARRA/DOE-S: SciDAC-e program
to work with the University of North Carolina and Lawrence Berkeley National Laboratory
on a project entitled Enhancing Productivity of Materials Discovery Computations for Solar
Fuels and Next Generation Photovoltaics. This project has brought together a group of
computer scientists and applied mathematicians from the SciDAC Performance Engineering
Research Institute (PERI) to work on improving the productivity of the computational
activities of the University of North Carolina’s EFRC, as well as its overall research program.
Distinct from other PERI activities, these researchers have applied the full breadth of their
knowledge and technologies, beyond that used in SciDAC projects, to this problem.

Here, we describe the contributions of Rice University to the overall Scidac-e project.
Rice University’s specific charge for this project was two-fold: (1) develop methods for
performance analysis of programming systems that employed NVIDA GPUs, and (2) explore
strategies for GPU-acceleration of linear algebra.

2.2.1 Measurement and Analysis of GPU-accelerated Applications

Our first task was to develop viable methods for analyzing the performance of GPU-enhanced
codes. There were two subtasks of this effort: (1) understand methods for analyzing the
performance of GPU kernels, and (2) develop methods for analyzing the systemic behavior
of CPU+GPU systems. Below we describe our work on each of these tasks.
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Modern GPUs have performance counters, but access to these counters is tedious and
limited. Prior to the development of NVIDIA’s CUDA Profiling Tool Inferface (CUPTI),
programmers instrumented their GPU-accelerated programs by hand. For each kernel of
interest, GPU programmers would start and stop some embedded performance counters,
storing the results in auxiliary program variables. The performance values would be analyzed
later.

NVIDIA did make some progress to ease the burden of analyzing GPU kernels with later
versions of CUPTI. Regrettably, the latest CUPTI is not sufficient to allow a comprehensive
treatment of GPU performance analysis. From our perspective, CUPTI has the following
weaknesses:

• No sampling on GPUs. This is the most crucial weakness with GPU performance anal-
ysis. No sampling means that performance analysis must come from instrumentation.
Extensive instrumentation makes data collection very slow — slow enough to actually
distort results. The lack of sampling capability on GPUs is in stark contrast to the
situation on standard GPUs.

• Must Serialize Kernels. Caliper-based measurement of GPU performance metrics can-
not be separated on a per-kernel basis. Best practice has programmers instrumenting
each kernel, and collecting hardware-counter performance data one kernel at a time.
Furthermore, even when collecting data on a single kernel, the kernels must be serial-
ized. Otherwise, data from one thread (or stream) would bleed into another thread or
stream.

In spite of these weaknesses, we were able to integrate the collection and analysis of GPU-
specific performance information into the HPCToolkit framework.

To date, much of the work on performance analysis of heterogeneous architectures focused
on identifying performance problems in GPU kernels. While identifying GPU kernel-level
issues is important, this is only one aspect of the larger problem. Whole application per-
formance analysis is equally important for tuning large GPU-accelerated applications. Such
analysis requires a system-level view of performance data. Hence, the data collection ques-
tion reduces to deciding what kinds of system-level analyses can best augment standard
component-level profiles and traces.

Studies have demonstrated that dynamically partitioning an application’s work between
CPU and GPU is important for delivering high efficiency for a variety of applications. Con-
sequently, we developed an analysis technique to address the work-partitioning issue. Eval-
uating the effectiveness of an application’s work partitioning is a systemic question. It is not
easily addressed by focusing on individual components.

Any tool that focuses on hot spot analysis can only quantify where a program spends its
resources. Each component may have different hot spots. At best, hot spot analysis measures
and reports the symptoms of performance problems. Hot spot analysis doesn’t necessarily
guide the developer towards root causes of performance problems in GPU-accelerated ap-
plications. The sample shown in Figure 1 highlights this point. If the CPU code executing
during the interval labeled Kernel A cannot be tuned further, then improving Kernel A, a
GPU kernel whose execution is overlapped with A, will not shorten the execution by more
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than 5%—the time that the CPU sits idle awaiting the results of Kernel A. However, in the
same application, the CPU sits idle for 40% of the execution awaiting the completion of GPU
Kernel B; hence, tuning Kernel B could reduce the execution time by up to 40%. Hot spot
analysis would point to Kernel A as the most time consuming GPU kernel, and thus fail
to guide a programmer to Kernel B. Kernel B represents a better opportunity for tuning.
This problem is exacerbated in full applications with several kernels and more complicated
execution schedules.

Figure 1: Tuning the right kernel

Likewise, choosing the appropriate CPU function to optimize in a CPU+GPU system
can benefit from a blame-shifting analysis. In Figure 2, the interval labeled CPU Part A

has the GPU idle for a significant fraction of the execution time. CPU Part B, however has
extremely good overlap with the GPU. Hotspot analysis, however, would identify CPU Part

B as the routine that takes more time. In Figure 2, improving CPU Part B would not yield
any improvement — more time would be spent idling waiting for the GPU to finish.

The difference between hot-spot analysis and blame-shifting analysis can be dramatic.
Figure 3 illustrates these differences for a LULESH (a sophisticated Euler-Lagrange dynamics
code)

To address the limitations of hot spot analysis, we supplement it with novel systemic
idleness analysis. Our idleness analysis identifies CPU code regions that cause GPU re-
sources to sit idle. Symmetrically, our approach also pinpoints GPU kernels that cause
CPU cores to sit idle. Moreover, our analysis quantifies the amount of idleness due to each
offending CPU code region or GPU kernel. Normally, this sort of systemic analysis would
require postmortem analysis of execution traces. Our analysis, however, requires only a pro-
file. The reason the idleness analysis can be done without traces is due to a technique that
we developed called CPU-GPU blame shifting.

11



Figure 2: Picking the right CPU function

Figure 3: Hot-spot vs. Blame-shifting in LULESH

The effectiveness of blame-shifting for CPU+GPU systems led us to implement the ap-
proach in HPCToolkit. A publication about our GPU blame shifting work appeared in
SC13 [4].
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2.2.2 GPU-accelerated Linear Algebra

At the start of this subcontract, the BLAS2 linear algebra routines has been implemented
in the University of Tennessee’s MAGMA package. MAGMA, at the inception of this sub-
contract, lacked the dense eigenvalue (BLAS3) routines that are an important component
in computational quantum chemistry. As part of our charge, we began to develop the miss-
ing eigenvalue routines. Before the contract was completed, however, the MAGMA team
released MAGMA version 1.3. This MAGMA release has all of the necessary eigenvalue rou-
tines, and works on multiple GPUs. Furthermore, the MAGMA approach was better than
our approach. Our approach was to do the bulk of the calculation on the GPU, much like
the BLAS2 implementations. The MAGMA team found a way to favorably divide eigenvalue
computation between the CPU and GPU leading to better overall performance.
In conclusion, we evaluated the MAGMA offering, and since it was better than our own,
that was our recommendation.

3 Application Engagement

Applying Rice’s HPCToolkit to SciDAC and INCITE applications has been one of the
principal modes of engaging with the SciDAC application teams.

As part of the Tiger Team efforts in PERI, HPCToolkit has been used to study many
SciDAC application. Below, we briefly mention summarize our engagement work with a few
of these applications.

Chroma. Chroma is a C++ application for lattice quantum chromodynamics developed
as part of the US Lattice Quantum Chromodynamics project. Chroma served as a test case
for binary analysis of inlined and templated C++ code. Chroma is built upon the QDP++
package, which uses a highly modular design that makes extensive use of C++ expression
templates. Because of its use of expression templates, at compile time complex templates
are instantiated, customized for the many different contexts in which they are used, and
sometimes inlined.

A challenge for performance tools is being able to cope with the dramatic transformations
of user programs performed by the C++ compiler as it compiles template metaprograms that
use expression templates. To address this issue, HPCToolkit’s call path profiler measured
dynamic call path information during execution of Chroma. This dynamic information was
combined with information about inlining and loops recovered by HPCToolkit’s binary
analyzer through static analysis of Chroma’s executable [11]. In 2009, at RENCI’s request
Rice enhanced the support for binary analysis in HPCToolkit to handle the complexity
that arises from the use of template metaprogramming. In collaboration with researchers
at Jefferson Laboratory, RENCI was able to use the improved HPCToolkit to identify
several performance issues previously buried under the template framework. HPCToolkit
is unique in its use of binary analysis to recover information about loops and inlined code.

FLASH. FLASH is a code for modeling astrophysical thermonuclear flashes. We per-
formed a weak scaling study of a white dwarf explosion by executing 256-core and 8192-core
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simulations on both Jaguar (Cray XT) and Intrepid (IBM BlueGene/P). Both the input and
the number of cores are 32x larger for the 8192-core execution. With perfect scaling, we
would expect identical run times and call path profiles for both configurations.

We discovered that on BG/P there was a 24.4% loss of parallel efficiency (AKA, scaling
loss), whereas on the XT4 the loss was larger, 32.5%. An execution of FLASH is divided
into three phases, initialization (Driver_initFlash), simulation (Driver_evolveFlash),
and finalization (Driver_finalizeFlash). In our benchmark runs, on BG/P 42.9% of the
scaling loss (10.5% of the run time) came from initialization while the remaining 57.1% of
the scaling loss (13.9% of the run time) came from simulation. In contrast, on the XT4,
the initialization and simulation phases account for 54% and 46% of the scaling loss (about
17.6% and 15% of the run time), respectively.

HPCToolkit enables us to quickly pinpoint exactly two calls that account for about
70% of FLASH’s scaling loss on BG/P. It is interesting to note that the these two calls relate
to two of BG/P specialized networks: the MPI_Allreduce to the global collective network
and the MPI_Barrier to the global barrier network.

On Cray/XT, we discovered that 27.5% of the losses are due to barrier synchronization
(the execution of MPIR_Barrier routine from the MPI library). By inspecting the callers
of this routine, we found that 12.1% of the scaling losses are due to barrier synchronization
in the routine amr_setup_runtime_parameters. This routine contains a loop that iterates
over each of the processor IDs. On each iteration of the loop, the processor whose ID
is equal to the loop induction variable opens the input file, reads a set of program input
parameters, and then closes the file. All processors meet at the bottom of the loop at a
barrier. This represents a scaling bottleneck whose severity increases with the number of
processors. Fortunately, it has a remedy: one processor can open the input file and broadcast
its contents to the rest of the processors; this change transforms the operation from O(p)
time to O(log p) time.

We also investigated local_tree_build routine which is part of the PARAMESH library
used by Flash. The function’s two call sites account for 26.5% of the scaling losses and
8.62% of execution time on 8192 processors. This function builds an oct-tree as part of
the structured adaptive mesh refinement. It scales poorly as the number of processors is
increased. local_tree_build uses a communication pattern known as a digital orrery, in
which all-to-all communication is implemented by circulating content from each processor
around a ring of all processors. The communication phase takes O(p) time. We found that
local_tree_build is called both within FLASH’s initialization and simulation phases. In
the initialization phase it accounts for 18.5% of the scaling loss; in simulation it accounts
for about 7.9%. We have had preliminary discussions with the FLASH team about how to
improve the scaling of local_tree_build.

Our tool also showed that on Cray/XT, 15.5% of the total scaling loss is for MPI_

AllReduce calls that are used to exchange information about blocks to set up communi-
cation prior to guard cell filling and flux conservation. In contrast, the same max reduction
on BG/P accounts for 40.6% of the scaling loss.

iMesh. The iMesh interface for meshes is being developed by the ITAPS SciDAC project.
As part of work to indentify opportunities for applying dynamic reoptimization to codes and
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frameworks based on the Common Component Architecture (CCA), we studied the iMesh
wrapper for ANL’s MOAB mesh library using HPCToolkit. Surprisingly, we found that
the implementation of the iMESH wrapper added more overhead than expected because of
memory copies introduced in the wrapper. We discussed possible alternate implementation
strategies to avoid the copy overhead with the developers of the MOAB package.

MADNESS. We have investigated Multiresolution Adaptive Numerical Environment for
Scientific Simulation (MADNESS) quantum chemistry code to identify performance bottle-
neck with a collaboration with RENCI and ORNL. This led to a deep engagement that
involved analyzing node-level performance for multi-core, multi-socket systems. The result
of these measurements was that the code was spending increasing amounts of time in locks
when scaled from 2 to 4 quad-core processors. Using our new blame-shifting technique, we
discovered that the contention was due to contention by threads to access a single shared
work queue on which futures are enqueued. Rice provided information back to MADNESS
team about the insight into lock contention that we were able to glean using the new support
for measurement and analysis in HPCToolkit. ORNL team adjusted MADNESS to in-
clude support for dynamically controlling the granularity of work taken from the queue. This
improved efficiency and helped the code run efficiently on 12 cores. Previously, performance
degraded substantially beyond 6-8 cores. A paper about the new strategy for analyzing lock
contention appeared in PPoPP 2010 [13].

MILC. MILC is a lattice quantum chronodynamics (QCD) simultation with dynamical
Kogut-Susskind fermions from MILC, or MIMD Lattice Computation package. MILC is one
of six application benchmarks in a suite used to evaluate bids for an NSF-funded petascale
computer. We performed a weak scaling study by profiling 512-core and 8192-core simula-
tions on both Jaguar (Cray XT) and Intrepid (IBM Blue Gene/P). To keep execution time
for the scaling study reasonable, we altered the default NSF problem size by decreasing the
number of trajectories. In our scaling study, the input data and the number of cores are
scaled by a factor of 16 so if scaling is ideal we should expect identical run times and call
path profiles for both core counts.

Our tool identified that MILC has 18.3% total scaling loss on a BG/P. The lattice update
phase scales relatively well and only has a 6.2% scaling loss. Most of the scaling losses in
the update phase are due to waiting for scatter-gatter communication to complete. For the
short execution studied, MILC’s setup phase accounts for most of the scaling losses.

Routine make_lattice accounts for 83.4% of the scaling loss and 16.3% of the run time.
The reason that this loop causes a scaling loss is that it initializes local data for an MPI
process by having each processor iterate over the entire lattice (all possible x, y, z, and t
values), test each lattice point to see if it belongs to the current process, and then perform
initialization only when the test succeeds. To avoid this kind of scaling loss, the application
would need to be reworked to iterate only over a process’s local lattice points rather than
over the entire domain. Without a deeper understanding of the application, it is unclear
whether this is feasible. Furthermore, it is not clear that losses due to initialization will be
significant for production executions.
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PFLOTRAN PFLOTRAN is a code for predicting the migration of contaminants under-
ground by modeling multi-phase, multi-component flow, and reactive transport. It solves a
coupled system of mass and energy conservation equations for multiple compounds. PFLO-
TRAN is designed for execution on platforms with large-scale parallelism. The code employs
the PETSc library’s Newton-Krylov solver framework.

Performance analysis of large-scale parallel runs of PFLOTRAN by members of the PERI
tiger team at NC State showed that a significant amount of time was spent in MPI AllReduce.
Scatter plots of time spent in MPI AllReduce across all nodes showed a wide discrepancy
across the nodes of the system. Did this indicate a problem with the implementation of
MPI AllReduce, or something about how it was used in PFLOTRAN? Rice University mem-
bers of the PERI team took on understanding the nature of this issue as a challenge problem
for the HPCToolkit performance tools. A second question of interest was identifying tar-
gets of opportunity for node-level autotuning within PFLOTRAN or its supporting libraries.

To understand the first issue, in collaboration with the Center for Scalable Application
Development Software, the PERI team at Rice University augmented their HPCToolkit
performance tools with support for analyzing the variability of costs across nodes in a
parallel system. The HPCToolkit performance tools measure the performance of node
threads/processes in a parallel run using statistical sampling to collect call path profiles.
This enables HPCToolkit to precisely attribute costs to the full calling context in which
they are incurred. Using this new capability for analyzing variability, it became clear that
much of the variability in time that was spent in MPI AllReduce was due to load imbalance
in the PETSc Newton-Krylov solver.

The call to SNESComputeJacobian occurs before the call to SNES KSPSolve. What
became apparent from this plot and others similar ones was that (1) there is load imbalance
in PFLOTRAN within the PETSc solver, and (2) the load imbalance contributed to uneven
waiting times in MPI AllReduce. The load imbalance in SNESComputeJacobian is evident
because the higher numbered cores spend less time in the routine than the lower numbered
cores; this is evident from the downward slope of the graph as one moves to the right along
the X axis. One can clearly see that the nodes that spent the least time in SNESCom-
puteJacobian spent the most time in SNES KSPSolve and routines it calls. This time was
actually spent waiting in a call to MPI AllReduce at the beginning of SNES KSPSolve.
Thus, load imbalance was reflected in the imbalance in core timings for MPI AllReduce.
As part of the enhancements to HPCToolkit to support this analysis of PFLOTRAN,
the Rice team developed a technique for automatically pinpointing such instances of load
imbalance in large-scale parallel executions. In essence, HPCToolkit can automatically
identify at what points in the code load imbalance occurs, quantify its effect on program
performance, and guide the user to inspect these points in a program using HPCToolkit’s
hpcviewer user interface. This work was presented at SuperComputing 2010 [14].

Early profiling of PFLOTRAN with the TAU performance tools failed to capture enough
detail about the location of performance losses to identify opportunities for autotuning. Us-
ing Rice University’s HPCToolkit performance tools to collect call path profiles of PFLO-
TRAN executions revealed some problematic kernels in the PETSc solver that are targets
of opportunity for autotuning. Each Opteron core on an XT5 node has a maximum peak
performance of four double-precision floating point operations (FLOPs) per cycle. Therefore,
one can compute floating point waste by subtracting actual floating point throughput from
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ideal throughput as follows: (4*cycles) - FLOPs. The presentation tool computes this FP
waste metric using the cycle and FLOPs summary metrics generated by summing over all
processes in the execution. This metric is exclusive, meaning that it excludes callees (hence
the ‘E’ modifier). The second metric is inclusive FLOPs per cycle. Overall, this execution
of PFLOTRAN performed 0.160 floating point operations per cycle, which is only 4.0% of
peak.

Although this dgemv n (matrix-vector multiply routine) consumes 14.4% of the execu-
tion’s cycles, it has a floating point efficiency of 0.187 FLOPs/cycle. For comparison, the
matrix-matrix multiply routine dgemm kernel (not shown) delivers 2.28 floating point oper-
ations per cycle. This low efficiency was worthy of further investigation and analysis to see
if it can be addressed with autotuning.

4 Products of the Research

4.1 Tools for Performance Analysis of Parallel Programs

With support from the PERI project, we augmented Rice University’s HPCToolkit perfor-
mance tools to support measurement and attribution of multithreaded and optimized codes
to support application Triage for the PERI project. HPCToolkit is available as open source
software.

4.2 Performance Monitoring of GPU-accelerated Applications

Support for performance analysis of GPU-accelerated code is included in the open-source
HPCToolkit performance tools. This software uses blame-shifting to identify idleness of
either CPU or GPU hardware and blame that idleness on the software apparently responsible
for the idleness.

5 Technical Communications

5.1 Theses

• Nathan Tallent, Doctor of Philosophy. ”Performance Analysis for Parallel Programs:
From Multicore to Petascale.” (2010).3 He is currently an senior computer scientist at
Pacific Northwest National Laboratory.

• Xu Liu. Doctor of Philosophy. Performance Analysis of Program Executions on Mod-
ern Parallel Architectures (2014).4 He is currently an assistant professor at The College
of William and Mary.

3Nathan Tallent’s Ph.D. research was partially supported by PERI.
4Xu Liu’s Ph.D. research was partially supported by PERI.
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5.2 Other Synergistic Activities

The Rice research team is active in many IEEE and ACM technical conferences and work-
shops such as CGO, PPoPP, PGAS conferences, Supercomputing, and PLDI. Research on
performance analysis of multithreaded computations laid the foundation for blame-shifting
performance analysis in the OMPT performance tool API, which is an emerging standard
interface for performance analysis of OpenMP node programs.

5.3 Awards

• A paper about HPCToolkit’s use of static and dynamic binary analysis to attribute
performance measurements to full calling contexts for optimized binaries [16] received
the distinguished paper award at the ACM Conference on Programming Language
Design and Implementation (PLDI) in 2009.

• Nathan Tallent, a member of the HPCToolkit project team, was named one of two
George Michael Memorial HPC Fellows for 2009.
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