
SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA
LOCALITY

MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

Abstract. We investigate a technique – segmental refinement (SR) – proposed by Brandt
in the 1970s as a low memory multigrid method. The technique is attractive for modern
computer architectures because it provides high data locality, minimizes network commu-
nication, is amenable to loop fusion, and is naturally highly parallel and asynchronous.
The network communication minimization property was recognized by Brandt and Diskin
in 1994; we continue this work by developing a segmental refinement method for a finite
volume discretization of the 3D Laplacian on massively parallel computers. An understand-
ing of the asymptotic complexities, required to maintain textbook multigrid efficiency, are
explored experimentally with a simple SR method. A two-level memory model is developed
to compare the asymptotic communication complexity of a proposed SR method with tradi-
tional parallel multigrid. Performance and scalability are evaluated with a Cray XC30 with
up to 64K cores. We achieve modest improvement in scalability from traditional parallel
multigrid with a simple SR implementation.

1. Introduction

Full multigrid (FMG) is a provably asymptotically exact, non-iterative, algebraic equation
solver with work complexity of about five residual calculation for the constant coefficient
Laplacian – textbook multigrid efficiency. Multigrid has been developed for many applications
in the past 40 years and continues to be an active area of research and development. Textbook
multigrid efficiency, or nearly so, has been observed experimentally in many applications
[BD81, TDB01, TOS01, ASB10]. FMG is a highly parallel algorithm with a computational
depth of log2 n, where n is the number of equations; the theoretical lower bound for solving
that Laplacian is log n. While textbook multigrid efficiency is only provable for a few classes
of problems, FMG is applied widely in practice, which makes it an important solution method
to adapt to the rapidly changing computer architectures that we are encountering today and
anticipate in the future.

Memory movement, in both intra-node and inter-node communication, is the primary
driver of costs, in power and time, for partial differential equations (PDE) simulations on
current, and anticipated future, computer architectures. Memory movement pressures are
not new but have been accumulating for decades and the powering and moving of memory
will become more central to the cost of PDE solves in the future. The desire to continue
the exponential growth of extreme-scale PDE simulations combined with an economic need
to not increase power budgets exponentially presents a challenge to computer engineers and
they will not be able to deliver machines that maintain the historic balance of compute
and communication performance. Engineers have often innovated past the worst fears of
the community; the degree to which they do so in the next ten years is an open question.

Key words and phrases. multigrid,parallel multigrid,extreme-scale algorithms,segmental refinement.
Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, Berkeley, CA.

1

Award: DE-SC0008532
Period of Performance: 08/01/2012 – 07/13/2013

2 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

There is the potential to significantly increase productivity on future machines by exploring
algorithms now that are designed with memory movement, and not flops, as the primary
resource to be conserved.

This paper develops low memory movement techniques to maintain, and allow for the
continued expansion of, multigrid methods on future architectures. Brandt proposed seg-
mental refinement (SR) as a low memory complexity technique for FMG in the 1970s [Bra77]
§7.5; [BL11] §8.7; [Din79];[BD94]) that does not store the entire solution in memory at any
one time – evanescent data. This algorithm requires that the multigrid algorithm be pro-
cessed “vertically” as opposed to the traditional “horizontal” approach where entire grids
are processed sequentially, from fine to coarse and back again in the classic V–cycle. Though
SR was originally proposed as a serial, low memory, method that “sweeps” across the grid,
it was later recognized to have attractive properties for parallel computing by Brandt and
Diskin [BD94]. This algorithm is inherently asynchronous and highly parallel and amenable
to loop fusion [WKS+12], with a modest amount of extra storage and work in SR buffer cells.
The goal of this paper is to continue the development of this technique on modern parallel
computers, quantify the extra costs experimentally, understand the asymptotic behavior of
the method to better design future instantiations, and develop a memory model useful in
analyzing multilevel solver methods from the perspective of memory movement.

We proceed by presenting some multigrid background in §2; an SR data model and tech-
nique for cell centered discretizations is described in §3; the accuracy of this SR data model
with respect to the parameters of the method is experimentally investigated in §4; a new SR
data model, appropriate for asymptotic analysis and computation, is defined and compared
to traditional parallel multigrid with a two level memory model in §5; the performance of
SR on a Cray XC30 with up to 64K processes is investigated in §6; and we conclude in §7.

2. Multigrid Background

Multigrid is an effective method for solving systems of algebraic equations that arise from
discretized PDEs. Modern multigrid’s antecedents go back to Southwell in the 1930s [Sou40],
Fedorenko in the early 1960s [Fed61], and others [TOS01]. Brandt developed multigrid’s
modern form in the 1970s, with orders of magnitude lower work complexity, equivalent to a
few residual calculations (work units) – textbook multigrid efficiency – applied to complex
domains, variable coefficients and nonlinear problems [Bra73]. A substantial body of liter-
ature, both theoretical and experimental, exists that proves and demonstrates the efficacy
of multigrid [TOS01, BL11]. Full Approximation Scheme (or Full Approximation Storage,
FAS) multigrid as also been demonstrated to be an effective nonlinear solver with costs very
similar to that of a linearized multigrid solve ([TOS01] §5.3.3, [ASB10], and many others).

2.1. Multigrid V–cycle. Multigrid methods are motivated by the observation that a low
resolution discretization of an operator can capture modes or components of the error that
are expensive to compute directly on a highly resolved discretization. More generally, any
poorly locally-determined solution component has the potential to be resolved with a coarser
representation. This process can be applied recursively with a series of coarse “grids”,
thereby requiring that each grid resolve only the components of the error that it can resolve
efficiently. This process is known as a V–cycle (see Figure 1). These coarse grids have fewer
grid points, typically a factor of two or more in each dimension. The total amount of work
in the multigrid process is a geometric sum that converges to a small factor of the work

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 3

on the finest mesh. The multigrid approach has proven to be effective in separating the
near-field from the far-field contributions in the solution of elliptic operators – the coarse
grid correction captures the far-field contribution and the near-field is resolved with a local
process called a smoother. These concepts can be applied to problems with particles/atoms
or pixels as well as the traditional grid or cell variables considered here.

The coarse grid space can be represented algebraically as the columns of the prolongation
operator IhH , where h is the fine grid mesh spacing, and H is the coarse grid mesh spacing.
The prolongation operator is used to map corrections to the solution from the coarse grid to
the fine grid. Residuals are mapped from the fine grid to the coarse grid with the restriction
operator IHh ; IHh is often equal to the transpose of IhH . The coarse grid matrix can be
formed in one of two ways (with some exceptions), either algebraically to form Galerkin (or
variational) coarse grids (LH ← IHh LhI

h
H) or, by creating a new operator on each coarse grid

if an explicit coarse grid with boundary conditions is available.

2.2. Nonlinear multigrid. The multigrid V–cycle can be adapted to a nonlinear method
by observing that for solving Lu = f the coarse grid residual equation can be written as

(1) rH = LH(uH)− LH(ûH) = LH(ûH + eH)− LH(ûH),

where u is the exact solution, ûH approximates IHh u
h, the full solution represented on the

coarse grid, hence the name Full Approximation Scheme (FAS), and e is the error. With this,
and an approximate solution on the fine grid ũh, the coarse grid equation can be written as

(2) LH
(
IHh ũh + eH

)
= LH

(
IHh ũh

)
+ IHh (fh − Lhũh) = fH = IHh (fh) + τHh ,

and is solved approximately; τHh is the tau correction, which represents a correction to the
coarse grid from the fine grid and is instrumental in the use of evanescent data and other
techniques (§15 in [BL11]). After IHh ũh is subtracted from the IHh ũh+eH term the correction
is applied to the fine grid with the standard prolongation process.

Figure 1 is an FAS multigrid V (ν1, ν2)–cycle with a nonlinear smoother u← S(L, u, f).

u =function FASMGV (LF , uF , fF)
if F not coarsest grid

uF ← Sν1(LF , uF , fF) – ν1 iterations of the (pre) smoother
rF ← fF − LFuF
uC ← ÎCF (uF) – restriction of solution to coarse grid
rC ← ICF (rF) – restriction of residual to coarse grid
tC ← uC – temporary store of coarse grid solution
wC ← FASMGV (LC , uC , rC + LCuC)
uF ← uF + IFC (wC − tC) – update with correction
uF ← Sν2(LF , uF , fF) – ν2 iterations of the (post) smoother

else
uF ← L−1

F fF – exact solve of coarsest grid
return uF

Figure 1. FAS Multigrid V -cycle Algorithm

A lower order restriction operator, ÎCF , can be use to restrict the solution, if a higher order
ICF is used for the residual, because the coarse grid solves for a correction and this restricted
solution is subtracted off of the coarse grid update in Figure 1.

4 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

2.3. Full Multigrid. An effective V–cycle reduces the error by a constant fraction and is
thus an iterative method. The V–cycle can be used to build a non-iterative, asymptotically
exact, solver that reduces the algebraic error to the order of the incremental error, or trunca-
tion error. Moreover, the error is reduced at each level at the same rate as the discretization
(eg, quadratically), with O(N) work complexity. FMG starts on the coarsest grid, where
an inexpensive accurate solve is available, prolongates the solution to the next finest level,
applies a V–cycle, and continues until a desired resolution is reached. FMG is well know
to be the most efficient multigrid cycle, when a textbook efficient V–cycle is available. A
higher order interpolator between the level solves, Πh

H , is useful for optimal efficiency of the
FMG process. FMG has been proven, and demonstrated, to reduce the error to the order
of the truncation error and is thus an asymptotically exact direct method [BD81], §3.2.2 in
[TOS01].

One can analyze FMG with induction where the induction hypothesis is that the ratio r
of the algebraic error to the truncation error is below a factor such as 1

2
, the truncation error

is of the form O(hp), where p in the order of the discretization, and that the solver on each
level (eg, one V–cycle) reduces the error by some factor Γ, which can be proven or measured
experimentally, to derive an equation that directly relates r to Γ. This provides any desired
ratio of algebraic error to truncation error if a sufficiently powerful V–cycle is used (Γ < 0.25
is required for an asymptotically exact solver with p = 2 and a refinement ratio of two).
Adams et. al. applied these ideas to compressible resistive magnetohydrodynamics where
two V–cycle were required at each level to achieve sufficient error reduction [ASB10].

Figure 2 shows the full multigrid algorithm,

u =function FMG
u0 ← 0
u0 ← FASMGV (L0, u0, f0) – exact solve of coarsest grid
for k=1:M

uk ← Πk
k−1uk−1 – FMG prolongation

uk ← Sα(Lk, uk, fk) – α steps of non-linear smoother
uk ← FASMGV (Lk, uk, fk) – V-cycle

return u0

Figure 2. Full multigrid algorithm

with M coarse grids, where α steps of the smoother are applied before each V–cycle,
resulting in an F(α,ν1,ν2) cycle.

3. Segmental refinement

Consider a distributed memory FAS-FMG solver where the coarsest grid is solved on
one process and is generally very small (eg, one cell). This grid is refined until the grid is
large enough to utilize distributed memory parallelism (eg, 4D - 16D cells in D dimensions).
Further refinements use the same size patch and populate more processes, forming “reduced
process” levels, until all processes are populated. Then continue to refine to a new, larger,
patch size where in-process parallelism is efficient (eg, 323 cells). Finally, continue refinement
by splitting domains and populating lower level compute elements to form an octree in 3D,
albeit with cross communication.

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 5

Segmental refinement starts with this traditional distributed memory FAS-FMG multigrid
method and at some level, the transition level, buffer cells are added to each SR patch
or subdomain. These SR buffer cells are populated with genuine data from the nearest
neighbors in a standard exchange process, though with more buffer cells than required by
a traditional solver. Subsequent grids are refined from each SR patch of this transition
level – independently – without any exchange of data with other trees, only communicating
vertically with their parent and (eight) children. The process is applied recursively forming an
octree, or a forest of octrees if more that one SR patch is used on the transition level. Two SR
data models are considered herein: 1) the implementation used for experimental investigation
where an SR patch on the transition level is defined as the process subdomain in a traditional
domain decomposition multigrid solver §3.1, and 2) an asymptotically appropriate data
model with only one massive parallel SR patch on the transition level §5.3. SR removes the
“horizontal” communication of traditional parallel multigrid between SR patches; the buffer
cells “protect” the genuine cells from patch boundary errors that occur because boundary
data is not refreshed with communication as in the traditional solver.

The segmental refinement approach allows for the application of several techniques:

Segmental refinement: Domain decomposition and (deep) buffer regions to isolate
subdomains.

Loop fusion: Sweep over subdomain patch computing, for instance, FMG pro-
longation, smoothing, residual, and restriction on successive planes and hence
only bringing data into high levels of cache once per SR kernel (See Figure 3),
[WKS+12].

Evanescent data: Use a full update of fine grids; sweep a window across
the local domain, fuse operators, including collecting functionals of inter-
est, and not storing the entire fine grid patch at any one time.

Asynchronous process: Any leaf of the tree can be processed at any time, nat-
urally accommodating asynchronous programming models.

Block structured adaptive mesh refinement: BSAMR is naturally accommo-
dated by “pruning” the octree.

Figure 3 sketches one FAS-FMG-SR cycle, followed by an FAS-SR V–cycle. The algorithm

Figure 3. FMG cycle with τ corrections; dashed boxes show SR kernels, +
and - show the copy and exchange required in the transition level between SR
and traditional multigrid

starts with a standard FAS-FMG “coarse grid solve”, providing a solution on the transition

6 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

level. The FAS-FMG process continues in the SR levels, the transition level uses a standard
V–cycle as the coarse grid solver; genuine data is injected into the traditional FAS-FMG data
structure, the V–cycle is called, the updated solution is copied into the SR data structure
and a (large) data exchange populates the entire patch, compute region, with genuine data.

3.1. A segmental refinement data model: “a forest of pine trees”. A standard
parallel FAS-FMG solver is used as the SR coarse grid solver. At the transition level,
assigned index 0, the standard FMG refinement process is replaced by SR. The transition
level is the finest non-SR level, but requires an SR representation for prolongation to the
first SR level, level 1. These SR representations have SR buffer cells as defined below. Each
subdomain of the grid on the transition level is refined locally on each MPI process. This
results in no MPI communication on the SR levels.

Consider cell centered discretizations and an SR data model as follows. Define the genuine
region on level i as Ωi

V , the compute region (genuine and buffer cells) as Ωi
C where single

level operators compute. Define the part of the domain updated by the finer grid i + 1 as
Ωi
F , and stencil ghost region within the physical domain as Ωi

SRG; Ωi
V ⊆ Ωi

F ⊆ Ωi
C . Figure

4 shows a 2D example with two levels in a corner of the domain, with one layer of stencil
ghost cells. The support of the coarse grid compute region must be larger or equal to that

Ω

Fine grid compute region CΩ

Domain boundary

Corase grid SR buffer size = 2

Fine grid SR buffer size = 2

Coarse grid compute region C

Genuine region (same all levels) V

Fine grid SR ghost region SRG

Fine grid stencil (1) ghost gΩ

Coarse grid stencil (1) ghost gΩ

Ω

Ω

Figure 4. 2D simple (not quad tree) segmental refinement data structures
with two levels

of the finer grid. This results in multigrid restriction operators that only update part of the
compute region (Ωi

F); prolongations update the entire fine grid – including stencil ghosts
Ωi
SRG. These stencil ghosts within the physical domain are the means of setting the SR

boundary conditions, and are “frozen” during the rest of the multigrid process. These frozen
ghost cells are the source of the errors that must be controlled with the SR method. The
genuine region is the same physical size on all levels. Figure 8 (left) shows a sketch of a 1D
problem with two SR levels and SR patch size C = 4.

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 7

The τ correction step must be modified in FAS to accommodate the fact that there is no
update in the region Ωi

C \Ωi
F . Figures 5 and 6 shows the SR modifications to the FAS-FMG

algorithm, with K SR levels, and the transition level is assigned index 0 (the SR coarse grid).

u =function FASFMGSR
u0 ← FMG – traditional FMG solve
for k=1:K

uk ← Πk
k−1uk−1, Ωk

C ∪ Ωk
SRG

uk ← Sα(Lk, uk, fk) ΩC

uk ← FASMGV SR(Lk, uk, fk) – fk formed explicitly on each level
return uK

Figure 5. FMG-SR algorithm

CopyIn() and CopyOut() methods move data between the SR and non-SR data structures
in the transition level; SRExchange(u) refreshes the SR buffer cells with a standard exchange
of data with neighbor patches (on the transition level).

u =function FASMGV SR(L, u, r)
u← Sν1(L, u, r), ΩC

ū← ÎCF (u) ΩF – update u
if C is the transition level

SRExchange(ū), ΩC ∪ ΩSRG – coarse grid domain
t̄← ū
r̄ ← ICF (r − Lu) + Lū, ΩF – coarse grid domain
r̄ ← Lū, ΩC \ ΩF – assumes Lu = r in outer region
if C is the transition level

CopyOut(ū, r̄), ΩV

w̄ ← FASMGV (L, ū, r̄), ΩV

CopyIn(w̄), ΩV

SRExchange(w̄), ΩC ∪ ΩSRG

else
w̄ ← FASMGV SR(L, ū, r̄), ΩC

u← u+ IFC (w̄ − t̄), ΩC ∪ ΩSRG

u← Sν2(L, u, r), ΩC

return u

Figure 6. FAS-FMG-SR algorithm, ū, r̄, w̄, t̄
on the coarse grid C

Prolongation is computed to both ΩC ∪ ΩSRG cells, that is to all data on the fine grid.

8 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

4. Segmental Refinement Parameters

The primary purpose of this work is to investigate the accuracy of the algorithm with
respect to parameters of the method. Several parameters define the SR data model and
effect its cost and accuracy. First, size the SR buffer on each level with the equation, buffer
schedule,

(3) NBi = 2 · bA+B · (K − i)
2

c

where i = 0 on the transition grid and i = K on the finest grid, and A and B are two
independent parameters. NBi is an even integer to simplify restriction. A third parameter
is the size C of the genuine data on the transition grid. In Figure 4, A = 2 and B = 0 (ie,
both levels have two layers of buffer cells), and C = 4 if the coarse grid is the transition grid.

4.1. Experimental Determination of Segmental Refinement Parameters. We use a
multigrid refinement ratio of two, piecewise constant restriction, and linear prolongation for
both the FMG and V–cycle prolongation, a 2nd order Chebyshev polynomial for both pre-
smoother and post-smoothing, one pre V–cycle smoothing step (an F(1,2,2) cycle). We test

with a solution u =
D∏
i=1

(x4i − L2
ix

2
i), of the Laplacian Lu = f , on the rectangular domain with

lower corner at the origin and upper corner at (2, 1, 1), and homogenous Dirichlet boundary
conditions. We use a 27-point finite volume stencil that is 2nd order accurate. Consider the
model problem with 16 processes (4 x 2 x 2 process grid), with cube subdomains; N is the
number of cells on each subdomain in each direction.

To investigate the relationship of A, B, C, and K on accuracy, we desire that the solver
maintain 2nd order convergence rates in the error as the FMG algorithm progresses. Define
a bound on an acceptable level of error as an error of less that about 10% more than the tra-
ditional solver (the underlined entries in Tables 1), which has perfect 2nd order convergence.

We sample this high dimensional parameter design space along a constant log2C−K line
(columns in Tables 1), because decreased C reduced the number of usable SR levels K, and
show the ratio of the infinity norm of the SR error to the error in the traditional solver
(er = eSR/etraditional) with A = 2, 4, 6, 8 (tables) and B = 0, 1, 2, 3 (rows) in the Tables 1.

2 log2C / K

B 4/6 3/5 2/4
0 17 7.2 2.7
1 2.9 2.1 1.2
2 1.5 1.2 NA
3 1.2 1.1 NA

4 log2C / K

B 4/6 3/5 2/4
0 5.7 2.6 1.2
1 2.0 1.4 1.0
2 1.3 1.1 NA
3 1.1 1.0 NA

6 log2C / K

B 4/6 3/5 2/4
0 2.8 1.4 1.0
1 1.5 1.1 NA
2 1.3 1.0 NA
3 1.1 NA NA

8 log2C / K

B 4/6 3/5 2/4
0 1.5 1.1 1.0
1 1.3 1.0 NA
2 1.1 1.0 NA
3 1.0 NA NA

Table 1. Ratio norm (∞) of error to non-SR error, A = 2, 4, 6, 8 (left to right)

This shows that A and B are both useful and A ≈ 2B for larger A and A ≈ B for small
A. A second observation is that each table has an approximate diagonal isosurface with a
positive slope of one. These observations indicate that, in this parameter regime at least,
K ≤ log2C + 2 and K ≤ B + A

2
is required. These expressions can also be expressed as a

required number of buffer cells on the transition grid NB0(K) (Figure 7).

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 9

We observe an increase in error with decrease in C. The source of this error is from an
increase in the ratio of buffer or boundary cells to the total number of cells with decreasing
C. Each boundary cell is a source of error, with a decaying Green’s function, for every cell;
these errors add to the error at each cell thereby increasing error. To further investigate this
phenomenon fix A = 8, B = 0 (NB0 = 4), and K = 5; the relative error as a function of C
is shown in Table 2 with N genuine cells per process, in each dimension, on the fine grid.

log2C 5 4 3 2
N 1024 512 256 128
er 1.02 1.05 1.13 1.28

Table 2. Error ratio on finest grid to non-SR error for A = 8, B = 0, K = 5

This data shows degradation of the solution at smaller C, with increase in SR relative
error, erSR ≡ er − 1.0 ∝∼

1
C

.

4.1.1. Maximum segmental refinement buffer schedule. The buffer cells in the data structure
for the transition grid, NB0 = NB1

2
, is an important parameter because these cells are the

source of all horizontal communication for SR. Consider a maximum buffer schedule, where
NB0 is a parameter and the SR buffers completely support the transition grid, ΩC = ΩF .
This removes one source of error in SR: no update of the solution and τ correction on the
compute region not supported by its fine grid. Table 3 shows the error ratio as a function
of C with fixed K = 4 and NB0 = 2 and the maximum buffer schedule.

log2C 6 5 4 3 2 1
N 1024 512 256 128 64 32
er 1.02 1.05 1.11 1.25 1.4 1.9

Table 3. Effect of C on error ratio with NB0 = 2, K = 4, and maximum
buffer schedule

This data shows slightly less degradation of the solution with C that Table 2, but a similar
relationship erSR ∝∼

1
C

.
Table 4 uses a linearly increasing log2C, NB0, and K, with two C schedules. There is

log2C 1 2 3
NB0 1 2 3

N 16 64 256
K 3 4 5
er 1.19 1.47 1.53

log2C 2 3 4
NB0 1 2 3

N 32 128 512
K 3 4 5
er 1.16 1.25 1.26

Table 4. Maximum buffer schedule, linear increasing log2C, NB0, and K

only a modest increase in error as the number of SR levels increases if the first experiment
with NB0 = 1 is ignored. This indicates a regime that is close to an asymptoticly accurate
buffer and C schedule.

10 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

4.1.2. The significance of NB0. The size of the buffer data communicated on the transition
level, NB0, is critical – this is the source of the buffer information on SR levels. Table 5 (left)
shows the error at the highest acceptable SR level as a function of NB0 using the maximal
buffer schedule; Table 5 (right) shows the relative errors with a linearly increasing K and
NB0; both use a constant C = 8.

NB0 1 2 3 4 5
N 64 64 128 256 512
K 3 3 4 5 6
er 1.08 1.01 1.03 1.06 1.10

NB0 1 2 3 4
N 64 128 256 512
K 3 4 5 6
er 1.08 1.26 1.53 1.97

Table 5. Fixed C = 8; error ratio with on largest finest acceptable SR level
K (left), linear increase in NB0 and K (right)

This data shows that with NB0 = K − 2 the error approximately doubles with every new
SR level, erSR ∝∼ 2K . That is, we see significant deterioration in the solution with a linear
(like B = 1 with the finite buffer schedual), increase in NB0 with K.

We can investigate a lower bound on the required B by searching for an acceptable value
experimentally. Approximate a fractional B ≈ 4

3
with NB0 ≈ 4

3
K with the data in Table 6,

which shows the error ratio as a function of K with fixed C = 8 and NB0 = 4
3
K−1 with the

maximal buffer schedule. The first and fourth values (underlined values in Table 6) are of

NB0 1 3 4 5
N 64 128 256 512
K 3 4 5 6
er 1.08 1.03 1.06 1.09

Table 6. Error ratio with fixed C = 8, linear B ≈ 11
3

maximal buffer schedule

interest; these two data points approximate NB0 ≈ 4
3
K. This data implies that the B ≈ 4

3
could provide an asymptotically exact solver with the maximal buffer schedule, independent
of C. Future work entails verifying that this linear NB0 schedule is sufficient asymptotically
and attaining these bounds with the finite buffer schedule.

Figure 7 shows a plot of NB0 and the K at which the error is less than about 10% from
the data in Table 1 (boxed values) and Table 5 (left). This data, albeit limited in range,
shows a strong correlation of NB0 to the maximum allowable SR levels.

5. Segmental Refinement Communication Complexity

Segmental refinement inherits the computational depth of traditional multigrid; a more
refined complexity model is required to distinguish SR. To this end, this section defines a
new SR data model and a two level memory model.

5.1. A Multigrid V–cycle Communication Model. Assume each process computes on
one “word” of data: a small subdomain with O(1) cells, (eg, 43 − 323 cells), or a patch.
Assume a Cartesian grid with Ni words in each of three dimensions D on grid i; i = 0 on
the transition grid and i = K for the finest grid. There are N = Nfine = NK global words in

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 11

0.00#

1.00#

2.00#

3.00#

4.00#

5.00#

6.00#

7.00#

8.00#

9.00#

10.00#

11.00#

2# 3# 4# 5# 6# 7#

N
B 0

$

K$with$rela.ve$error$<$10%$

AcceptableKvs.$NB0$

NB#=#A#*#B#*(K#4#i)#

Maximal#buffer#schedule#

Figure 7. NB0 of minimum B in finite buffer schedule data, and of maximal
buffer schedule, vs. maximum achievable K

each direction on the fine grid. Both traditional multigrid and SR generate an (approximate)
octree of processes or words.

Define two types of multigrid communication: vertical inter-grid (cV) and horizontal intra-
grid (cH) communication. These two types of communication have different character in
both traditional and SR multigrid. Vertical communication is volumetric data and horizontal
communication is surface data. Horizontal communication presents the opportunity to buffer
and aggregate messages in, for instance, the smoother and residual computation. Message
aggregation also allows for loop fusion to increase the arithmetic intensity of traditional
multigrid components [WKS+12]. Message aggregation is not currently prevalent but will
likely become more relevant in the future and is ignored it in this study. SR can be viewed as
applying message aggregation ideas at a more algorithmic level, or message aggregation can
be viewed as a narrower, lower level, technique than SR that does not alter the semantics of
multigrid.

A traditional parallel multigrid V–cycle uses 26 (cH) messages, per process, in each resid-
ual, smoother, and operator application when using a 27-point stencil in 3D in a standard
nearest neighbor exchange process, per level. With a V (2, 2) cycle this results in 156 mes-
sages per level, including coarse grid τ correction term, plus restriction and prolongation
messages, in eight message phases, or bulk synchronous steps: six horizontal and two ver-
tical communication phases. Vertical message phases can have about the same number of
messages although the SR method discussed thus far has no messages whatsoever in the SR
grids.

5.2. A Memory Model. Consider a two level memory model with Q words of global
memory, partitioned into

√
Q partitions, each of size

√
Q. N is the number of words in each

dimension of the global grid and Q = N3 = N3
fine. C is now measured in words, not cells,

and so the observations in §4.1 are shifted but not qualitatively effected – log8 of the number

12 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

of cells in a word is a small integer. Define near communication (cN) within a memory
partition and far communication (cF) between memory partitions.

5.3. A New Segmental Refinement Data Model. The experimental data in §4.1 sug-
gests that NB0 and C should rise with SR levels K. In practice, fixing K = 5 and C = 32
would result in a reduction of the size of the traditional solver (the SR coarse grid solver)
by a factor or 32K, which would be substantial at least in a non-BSAMR context and be
very practical. SR with K = 2 might also be very useful with accelerator hardware where
interprocess communication is very expensive and coarser grids run on the host. Our obser-
vations suggests an SR data model for an asymptotic application and analysis that amortizes
the cost of the buffer cells and exploits the benefits of increasing C.

To this end consider one massively parallel SR patch on the transition level, which is
refined to create eight (2D) “child” SR patches of the same logical size, with this process
continuing to create an octree. This results in 2K+1 multigrid levels, K SR levels and K+1
traditional levels, C = N0 = 2K , N = Nfine = NK = 22K . The coarsest grid is refined until
one partition with

√
Q words is filled with a grid. This is the SR transition level i = 0 and is

the root of the SR octree. Each of the K subsequent refinement levels refines the grid by two
and forms 2D child SR subdomains with the same logical size, that is, they each fill one

√
Q

memory partition, until all partitions are filled by a grid. There are
√
Q memory partitions

on the fine grid by the definition of our machine and the same number of SR patches, thus√
Q = 2D·K , Q = 22·D·K .
Figure 8 (right) shows an example in 1D with two SR levels, K = 2, SR patch size C = 4,

and Q = 16. Segmental refinement “severs” the far horizontal communication, §5.4.2, on

Level%i"

2%

1%

0%

)1%

)2%

Transi(on"level%

1st%SR%level%

Severed%horizontal%far%cf"communica:ons%of%SR%

SR%patches%

MG%Grid%refinement%

Tradi:onal%MG%levels%

Figure 8. 1D examples with two SR levels, C = 4, Q = 16: old SR data
model (left), new SR data model (right)

the fine grids.

5.4. Communication Complexity. To apply the multigrid V–cycle communication model
in §5.1, ignore FMG prolongation. There are log2N FMG prolongations as opposed to
log2

2N V–cycle restriction and prolongations. Full multigrid processes a V–cycle once on
the finest grid, twice on the first coarse grid with 1/8th as many active processes, and so

on for L levels, resulting in L·(L+1)
2
≈ L2

2
grid V–cycle level visits. This is the source of the

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 13

computation depth, log22N , of FMG. This results in six cH communication phases and two
cV phases, times the grid’s “fine grid rank” (one, for the finest grid, then two, and L for
the coarsest grid), total communication phases, with L2/8 visits on the fine half of the grid
hierarchy and 3 ·L2/8 on the coarse half. The number of SR buffer cells is of low order with
the large SR patches of the new data model, and are ignored. Ignore vertical data locality
and assume all vertical communication to be far communication in the finest K levels, and
all communication is near on the coarsest K+1 levels. All horizontal communication is near
communication in the SR solver; the traditional solver requires far communication on the
finest K levels.

5.4.1. Bisection Bandwidth. Briefly consider a third level of memory where Q is partitioned
into two parts; the communication complexity between these two parts is traditional bisection
bandwidth. With a 3D cube domain the bisection bandwidth of traditional parallel multigrid
in the ghost cell exchange is O(N2) area times O(1) depth on the fine grid. In the new SR
data model the finest grid N that communicates between to halves of the machine is on the
transition level, N0, and this is between two sets of four

√
Q partitions each. Assume the

number ofNB0 buffer cells required with the new SR data model is linear inK, which is a safe
assumption given the size of C in the new SR model and the data in §4.1. The area of data

sent in this buffer cell exchange is N2
0 =
√
N

2
= N and has a depth NB0, which results in the

bisection bandwidth complexity of SR beingO(
√
NK

2·K) = O(NK ·log2NK) = O(N ·log2N).
Segmental refinement thus reduces the bisection bandwidth requirements from O(N2) to
O(N log2N).

5.4.2. Message complexity. With six cH communication phases and two cV phases per grid
visit and L2/8 visits on the fine half of the grid hierarchy and 3 · L2/8 on the coarse half,
Table 7 tabulates the communication complexity of traditional and SR multigrid with L
levels, L = 2K + 1, N = 2L, L = log2N , the coarsest (L+ 1)/2 = K + 1 levels use the same
(traditional) FMG solver on one memory partition with only near communication.

Communication type Near Far
Coarse grids 3 · (6cH + 2cV) 0

Traditional fine grids 6cH 6cH + 2cV
SR fine grids 6cH 2cV

Table 7. Communication phases (× log2
2N/8) of traditional vs. segmental

refinement multigrid

SR does not require any far horizontal communication on the fine grids which are the
most demanding communication costs of parallel multigrid in terms of message size. The
coarser grids use smaller messages and run on a reduced set of processors so contention in
the network is very low.

6. Scaling Studies

The scalability of our SR method is tested with a FORTRAN90 + MPI code that is fully
parallel and has the option to be incrementally compute the coarse grids redundantly, where
all processors are active on all levels doing redundant work, as well as the option for the

14 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

traditional tree bases approach without redundant computation. The redundant coarse grid
solve approach results in a “butterfly” communication pattern instead of a classic tree. This
approach has the advantage of requiring no communication in the prolongation phase, hence
reducing the number of bulk synchronous communication steps, at the expense of sending
more data with more messages overall.

The performance of our current implementation is measured on a Cray XC30, Edison at
NERSC, where up to 64K cores are used (only using 8 of the 12 cores on each socket and
thus utilizing up to 96K cores), and the same test problem as §4 is used. Consider weak
scaling with 1283 and 323 cells per core, with the SR solver, with four and three SR levels
respectively (C = 8 and C = 4 respectively), and compare this with a traditional FAS-FMG
solver, which is also used as the SR coarse grid solver. The 1283 subdomain is indicative of
a more realistic size of 323 cells per core on a socket with 64 cores as is expected in the near
future. The solve times for a V–cycle solve with a relative tolerance of the residual of 10−4

are reported. The solver is preloaded with one solve, which verifies accuracy, followed by 8
measured solves for the 1283 cells per core case and 512 solves for the 323 cells per core case,
to normalize times. Figure 9 (left) plots the infinity norm of the error and residual in an
FMG solve. This verifies that our solvers are asymptotically exact and 2nd order accuracy is

2 4 8 16 32 64 128 256 512 1024 2048 4096

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N cells in X direction

|.
| in

fi
n
it
y

1 F−cycle w/ V(2,2) cycles, Laplacian, u=(x
4
 − L

2
 x

2
), L=(2,1,1), 128

3
 cells/core

Residual

SR − Error

SR − Residual

Quadradic

Linear

16 128 1024 8192 65536
0

5

10

15

20

25

30

35

cores (Edison)

T
im

e

Solve times: Laplacian, u=(x
4
 − L

2
 x

2
), L=(2,1,1) (8 solves)

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − non−redundant CGS

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − SR, non−redundant CGS

V(2,2) cycles, 128
3
 cells, rtol=10.

−4
, 8 solves, non−redundant CGS

1 F−cycle w/ V(2,2), N=32/core, 512 solves − redundant CGS

1 F−cycle w/ V(2,2), N=32/core, 512 solves − non−redundant CGS

1 F−cycle w/ V(2,2), N=32/core, 512 solves − SR, non−redundant CGS

Figure 9. Convergence of FMG and SR-FMG (left); Weak scaling (right)

achieved in the error of the SR solver but only 1st order reduction is observed in the residual.
The residuals for SR are larger but still 1st order.

Figure 9 (right) shows the solve times for the SR solve and the standard multigrid solvers.
There is some indication that the communication savings of the SR solver is compensating for
the extra computational costs and there is little difference with redundant and non-redundant
coarse grid solves. Loop fusion has not been implemented in SR; we anticipate that loop
fusion would make SR significantly faster. FMG is much faster than the iterative V–cycle
solver and Figure 10 shows the expected degradation in error at scale because a V–cycles
solver converged to a constant relative error, or residual, reduction is not an asymptotically
exact solver. V–cycles can be an asymptotically exact solver if the convergence tolerance is
adjusted appropriately.

SEGMENTAL REFINEMENT: A MULTIGRID TECHNIQUE FOR DATA LOCALITY 15

2 4 8 16 32 64 128 256 512 1024 2048 4096

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

N cells in X direction

|e
rr

o
r|

in
fi
n
it
y

Error: 8 solves, Laplacian, u=(x
4
 − L

2
 x

2
), L=(2,1,1), 128

3
 cells/core (8 solves)

1 F−cycle w/ V(2,2)

1 F−cycle w/ V(2,2) − SR

V(2,2) cycles, rtol=10.
−4

Figure 10. Errors of FMG, SR-FMG and standard V-cycle

7. Conclusions

We have presented a segmental refinement method for cell centered discretizations of the
Laplacian , and demonstrated that SR can maintain the semantics of textbook efficient
multigrid with processing that is more attractive on modern memory centric architectures
than traditional parallel multigrid in that it removes “far” communication from finer grids
and naturally facilitates message aggregation and loop fusion. We experimentally verify that
our SR method is an asymptotically exact solver on 64K cores of a Cray XC30, with a fixed
number of SR levels. We have only observed modest gains in communication from SR at scale
but have established the feasibility of the approach. We have performed extensive testing
to understand the mathematical asymptotic behavior of SR with a simple SR method and
proposed and analyzed a new SR data model.

Future work entails, for one, exploiting the data locality provided by SR to fuse loops and
increase arithmetic intensity and hence flop rates (without any additional work). Future work
also includes a more flexible implementation that allows for more SR levels, to investigate the
basic algorithm more thoroughly. We also intend to use vertex centered methods, which have
different multigrid characteristics than cell centered discretizations, so as to understand the
fundamental nature of the SR technique more thoroughly. Future work involves developing
an asymptotical exact solver with a finite buffer schedule and data model, perhaps with the
massive parallel SR patches model proposed in §5.3.

We see the first algorithmic improvement to the current work as increasing the order of
prolongation because SR depends on boundary conditions, from coarse grids, that are not
smoothed nor refreshed with genuine data as in a traditional method. SR may be particularly
sensitive to the order of prolongation because it is used to set the frozen ghost cells in the
SR buffer region, and is not smoothed with the α smoothing steps nor post smoothing.

We have investigated the model problem; further work involves extending the application
of SR to more application domains, such as variable coefficient, mapped grids, and nonlinear
problems. Complex domains can be naturally accommodated with block structured adaptive
mesh refinement (BSAMR) [SCGK11]; the octree need only be pruned, which is facilitated
by not possessing horizontal data dependancies.

16 MARK F. ADAMS, JED BROWN, MATT KNEPLEY, AND RAVI SAMTANEY

Acknowledgments. We would like to thank Achi Brandt for his generous guidance in
developing these algorithms. This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced Scientific Computing Research.
This research used resources of the National Energy Research Scientific Computing Center,
which is a DOE Office of Science User Facility.

References

[ASB10] Mark F. Adams, Ravi Samtaney, and Achi Brandt, Toward textbook multigrid efficiency for fully
implicit resistive magnetohydrodynamics, Journal of Computational Physics 229 (2010), no. 18,
6208 – 6219.

[BD81] R.E. Bank and T. Dupont, An optimal order process for solving finite element equations, Math.
Comp. 36 (1981), 35–51.

[BD94] A. Brandt and B. Diskin, Multigrid solvers on decomposed domains, Domain Decomposition
Methods in Science and Engineering: The Sixth International Conference on Domain Decompo-
sition (Providence, Rhode Island), Contemporary Mathematics, vol. 157, American Mathematical
Society, 1994, pp. 135–155.

[BL11] A. Brandt and O. E. Livne, Multigrid techniques, Society for Industrial and Applied Mathematics,
2011.

[Bra73] A. Brandt, Multi–level adaptive technique (MLAT) for fast numerical solution to boundary value
problems, Proceedings of the Third International Conference on Numerical Methods in Fluid Me-
chanics (Berlin) (H. Cabannes and R. Teman, eds.), Lecture Notes in Physics, vol. 18, Springer–
Verlag, 1973, pp. 82–89.

[Bra77] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput. 31 (1977),
333–390.

[Din79] N. Dinar, Fast methods for the numerical solution of boundary value problems, Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Isreal, 1979.

[Fed61] R. P. Fedorenko, A relaxation method for solving elliptic difference equations, Z. Vycisl. Mat. i.
Mat. Fiz. 1 (1961), 922–927, Also in U.S.S.R. Comput. Math. and Math. Phys., 1 (1962), pp.
1092–1096.

[SCGK11] B. Van Straalen, P. Colella, D. T. Graves, and N. Keen, Petascale block-structured amr appli-
cations without distributed meta-data, Proceedings, Part II. Lecture Notes in Computer Science
6853 Springer 2011, Springer, 2011.

[Sou40] R. V. Southwell, Relaxation methods in engineering science, Oxford University Press, Oxford,
1940.

[TDB01] James L. Thomas, Boris Diskin, and Achi Brandt, Textbook multigrid efficiency for the incom-
pressible Navier–Stokes equations: high Reynolds number wakes and boundary layers, Computers
& Fluids 30 (2001), no. 78, 853 – 874.

[TOS01] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.
[WKS+12] Samuel Williams, Dhiraj D. Kalamkar, Amik Singh, Anand M. Deshpande, Brian Van Straalen,

Mikhail Smelyanskiy, Ann Almgren, Pradeep Dubey, John Shalf, and Leonid Oliker, Optimiza-
tion of geometric multigrid for emerging multi- and manycore processors, Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis
(Los Alamitos, CA, USA), SC ’12, IEEE Computer Society Press, 2012, pp. 96:1–96:11.

Mathematics and Computer Science Division, Argonne National Laboratory, Department
of Computer Science University of Colorado Boulder

Computation Institute, University of Chicago

King Abdullah University of Science and Technology

