
Final Report

Reporting Period 9/15/09-4/14/2013

Correctness Tools for Petascale Computing∗

Rice University Subproject

Cooperative Agreement No. DE-SC0001776

John Mellor-Crummey

Principal Investigator at Rice University

Department of Computer Science, MS 132
Rice University
P.O. Box 1892

Houston, TX 77251-1892
Voice: 713-348-5179
FAX: 713-348-5930

Email: johnmc@rice.edu

∗Multi-institutional center Project Director: Jeffrey Hollingsworth, University of Maryland,
hollings@cs.umd.edu



Contents

1 Introduction 1

2 Summary of Research Performed 1
2.1 Memory Leak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Data Race Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 A Protocol for Detecting Races in OpenMP Programs . . . . . . . . . 6
2.2.2 A Tool for Detecting Data Races in OpenMP Programs . . . . . . . . 7

3 Findings and Results 8



1 Introduction

Grand challenge parallel science codes are enormously complex. Mapping them to petascale
platforms is hard because of the multi-level parallelism needed to make efficient use of mul-
ticore nodes. In the course of code development, subtle programming errors often arise that
are extremely difficult to diagnose without tools.

To meet this challenge, University of Maryland, the University of Wisconsin—Madison,
and Rice University worked to develop lightweight tools to help code developers pinpoint a
variety of program correctness errors that plague parallel scientific codes. The aim of this
project was to develop software tools that help diagnose program errors including memory
leaks, memory access errors, round-off errors, and data races.

The tools research involved using binary rewriting and function interface wrapping to aug-
ment applications to monitor memory allocation/deallocation, memory accesses, and floating
point operations. Monitoring code used call stack unwinding of mixed-language programs to
associate phenomena (data races, bytes allocated/deallocated, words read/written, floating-
point roundoff error) with the calling contexts.

2 Summary of Research Performed

Research at Rice University focused on developing algorithms and data structures to support
efficient monitoring of multithreaded programs for memory access errors and data races. In
the following sections, we describe the work on each of these topics.

2.1 Memory Leak Detector

As part of this project, we implemented a Memory Leak Detector as an extension to HPC-
Toolkit [8, 2]. The Memory Leak Detector counts the number of bytes for every call to malloc
and free and reports the full call path and number of bytes for every malloc. By computing
the number of bytes malloc’ed minus the number of bytes freed, we can identify the amount
of memory that is leaked. The Memory Leak Detector is fully integrated with HPCToolkit
and hpcviewer and the counts for malloc and free are displayed with the full call path from
main to where the malloc occurred.

The Memory Leak Detector works by overriding the seven malloc functions (malloc,
calloc, realloc, free, memalign, posix memalign and valloc). For dynamically linked binaries,
we use the LD_PRELOAD feature to override these functions. And for statically linked binaries,
we use the loader’s --wrap feature to define wrapped versions of the malloc functions. In
both cases, we replace the original library call with a function that unwinds and records the
current call path adds a small number of bytes for header information about the call and
then calls the real malloc function. By storing a header with the malloc’ed data, when the
program frees the same data, we are able to match the free to the original malloc. This
allows reporting the free at the same context where the malloc occurred and thus allows us
to identify which mallocs were never freed.

At the outset of this project, the HPCToolkit performance tools were able to unwind
call stacks in response to asynchronous interrupts. We enhanced the unwinding capability
in HPCToolkit to also support unwinding from within instrumented functions that syn-
chronously trigger an unwind with a procedure call. A strength of HPCToolkit unwinder
has been its ability to unwind call stacks for fully optimized code. This capability carries
over from asynchronous unwinding to synchronous unwinding.

1



We used the new synchronous unwinding capability to write instrumented versions of the
seven malloc functions: malloc, calloc, realloc, free, memalign, posix memalign and
valloc. Each of these functions (a) triggers a synchronous unwind to capture the full calling
context of an allocation, (b) increments a count of the total number of bytes allocated in
its allocation context, and (c) prepends a header to each allocated block that indicates the
number of bytes allocated and the full calling context in which the allocation occurred. This
makes it possible to identify exactly which malloc calls were never freed.

We implemented a a version of free that uses information recorded in a memory block’s
header to determine the number of bytes that are being freed and the context in which the
bytes were previously allocated. When a block is freed, the free operation then attributes
the count of bytes freed to the context in which they were allocated rather than the calling
context of the free itself.

Besides the technical implementation problems, we also encountered a few problems
that are not yet fully resolved. One problem is the Linux Out-of-Memory Killer (OOM).
By default, Linux overcommits the amount of available memory. That is, requests to add
more regions to a process’s virtual address space will normally succeed, even if there is not
sufficient backing store for the extra memory. Normally, HPCToolkit works by running a
program, storing the collected data in memory and then writing out the data at the end of
the program. However, if physical memory runs out, then programs can fail catastrophically
with no opportunity to catch the failure and write out its data. This is especially a problem
for a memory leak tool because programs that leak memory also tend to run out of memory.
To cope with sudden death at the heads of the OOM killer, it would be possible for a tool to
stream information about all allocates and frees to stable storage (e.g., disk); however, the
cost of doing so would be prohibitive. The right solution is for the kernel to handle OOM
situations differently, e.g., by signaling an out-of-memory application with a SIGSEGV and
giving an embedded leak detection tool a chance to write out its state.

Another problem we encountered is that some programs bypass the normal malloc func-
tions (malloc, calloc, realloc and free). Some programs use alternative malloc libraries, some
programs write their own functions for malloc and free, and some programs use libraries that
use non-standard, internal aliases for the libc malloc functions (eg, __libc_malloc). This
makes it more difficult to track the memory behavior of these programs. At present, we have
not extended the leak detector to track these other functions.

We used HPCToolkit’s Memory Leak Detector to analyze the behavior of several pro-
grams and present a summary of the results for three applications here. Figure 1 shows a
screenshot of hpcviewer’s interface showing bytes allocated, bytes freed, and bytes leaked
attributed to each calling context in one MPI process from an 8-core MPI run of Sandia’s
S3D code on an Opteron-based Linux system. These results were collected on a conventional
Linux system at Rice University for an execution of a dynamically-linked version of S3D.

Figure 2 shows a screenshot of hpcviewer’s interface displaying leak detection results
for one of 256 processes in an execution of a statically-linked version of the University of
Chicago’s FLASH code on Jaguar, a DOE leadership-Cray XT system running Compute
Node Linux.

During the summer of 2011, we collaborated with Kenny Roche on the “DOE SC ASCR
Software Metric” project. As part of this effort, we applied HPCtoolkit’s performance tools,
including the memory leak detector, to the codes of this project. We used the leak detector

2



Figure 1: hpcviewer presenting memory leak detector data for the S3D application. Leak
data gathered for a dynamically-linked executable running on a conventional Linux system.
Data shown represents leaks identified in 1 of 8 MPI processes.

3



Figure 2: hpcviewer presenting memory leak detector data for the FLASH application. Leak
data gathered for a statically-linked executable running on 256 processors of ORNL’s Cray
XT (Jaguar). Data shown represents leaks identified in 1 of 256 MPI processes.

4



Figure 3: HPCToolkit’s hpcviewer showing no leaks in a 9-core run of OMEN.

5



to verify that OMEN does not leak memory. Figure 3 shows a screenshot of a small 9-core
run of OMEN used to verify the absence of leaks.

The Memory Leak Detector is part of the main trunk of the HPCToolkit project hosted at
Google Code at http://code.google.com/p/hpctoolkit/ and is available via anonymous
subversion checkout.

2.2 Data Race Detector

Data races may arise between computation threads or through asynchronous communication.
For scientific parallel programs, which typically use domain decomposition for parallelization,
the key challenge is efficiently monitoring happens-before relationships between synchroniz-
ing threads and analyzing apparent races to weed out harmless conflicting accesses, such as
when atomic operations provide sufficient atomicity guarantees.

In this project, we implemented a prototype of an on-the-fly data race detection tool for
OpenMP programs with ordered sections and locks. There were two parts to this work: devel-
oping an on-the-fly protocol for reasoning about data races in an execution of an OpenMP
program, and developing a tool that instruments a program to monitor accesses for data
races. We describe these two aspects of our race detector in the sections below.

2.2.1 A Protocol for Detecting Races in OpenMP Programs

Our protocol for detecting data races in OpenMP programs is an extension of the offset-
span labeling algorithm for detecting data races in nested fork-join programs by Mellor-
Crummey [6] to handle ordered sections. In fork-join programs, a single thread may split
(fork) into multiple threads which then run in parallel and later rejoin to a single thread.
There is no synchronization between threads, so two references in different threads to the
same memory location, one of which is a write, will always be a data race. Although some
data races can be benign (eg, a permutation of the node numbers in a graph algorithm),
most data races represent unexpected behavior and thus are a sign of an incorrect program.

The fork-join model focuses on logical parallelism instead of physical parallelism. That
is, all branches of a fork are run concurrently in different threads, regardless of how many
threads there are. For example, an OpenMP program might use an omp parallel region
to compute the values of 100 million elements in an array, but the program could be run on
a machine with 16 physical (hardware) threads. In this case, the program has 100 million
logical threads, but only 16 physical threads. In the fork-join model, two writes to the same
location in different logical threads is always a data race and this is what the offset-span
labeling algorithm [6] computes. Any logical data race can become a physical data race if
the two logical threads happen to run on different hardware threads. By contrast, a tool like
Helgrind [7] reports physical data races and could miss a logical data race if the two racing
threads happen to run on the same physical thread.

Although OpenMP mostly follows the fork-join model, it has some significant extensions
that go beyond the fork-join model. One of the most important extensions is that of ordered
critical sections. An ordered section within an OpenMP parallel loop requires that the
section in thread 1 must finish before the section in thread 2 begins which must finish before
the section in thread 3 begins, and so on. With ordered sections, it is possible to have two
writes in different threads that are never a data race because one must always occur before
the other from the rules of ordered sections. This cannot happen within a pure fork-join
program, and the original fork-join algorithm would report many false positives in this case.

6



Our contribution is to extend the offset-span labeling algorithm to the case of ordered
sections in OpenMP programs. We extended offset-span labeling to add a phase number
that is incremented on entry and exit to an ordered section. The offset-span-phase triple
for a memory reference is sufficient to determine the “happens before” relation in ordered
sections in the same way that offset-span is used in pure fork-join programs. We then proved
that an arbitrary set of reads from a specific location can be condensed to two representative
reads (technically, the right most and most deep reads) such that if there is a race with the
full set, then there must be a race with one of the two representatives. This gives a practical
on-the-fly algorithm for detecting data races by maintaining three values (two reads and one
write) for each memory location. Both this and the original fork-join algorithm are exact in
the sense that they have no false positives and no false negatives for the models that they
represent.

2.2.2 A Tool for Detecting Data Races in OpenMP Programs

Using the protocol described in the previous section, we constructed a prototype Data Race
Detector for the x86-64 architecture using Intel’s Pin tool [1, 5]— a leading tool for dynamic
instrumentation of a program binary on x86 and x86-64 platforms. Pin supports instrument-
ing a running program by replacing arbitrary machine instructions with a call to a wrapped
(instrumented) version of that instruction; this enables very fine-grained monitoring of the
program’s execution. Pin is the basis for many tools for both correctness and performance.

For pinpointing races, a key feature missing from Pin is the ability to associate call
paths with instructions as they execute. That is, instead of reporting what happened with a
machine instruction at hexadecimal address 0x402fa8, we prefer to report this as line number
142 inside the for loop on the path main calls foo calls bar calls baz. Specifically, we want
to know not only where in the source code some action took place, but we also want to know
how the program got there. Programs are built with subroutines calling other subroutines,
and it is far more useful to know how some function was called instead of just the single
location in the code.

To enable data races detected with Pin to be attributed to call paths, we developed
CCTLib [3]—a library for recording call paths in Pin programs. CCTLib collects accurate
call paths through dynamically loaded libraries, stripped libraries and handles binary code
for which the compiler provided incorrect or incomplete information about function bounds.
CCTLib provides an API for recording a call path at an arbitrary point in a program
execution and can be used by any Pin tool. CCTLib works by maintaining a shadow stack
of the program’s call stack. A shadow stack involves instrumenting function entry and exit
points, either at compile time or by using binary rewriting. The advantage of a shadow
stack is that a full call path is known at every point in the program’s execution. The main
disadvantage is that it adds overhead to every function call.

Our prototype data race detection tool for OpenMP works with the GNU OpenMP
(GOMP) runtime, but it is straightforward to extend it to another OpenMP runtime. With
Pin, we intercept each load and store instruction as well as calls to key OpenMP runtime
APIs. Our approach works at the binary level and needs no modifications to the application
source code.

To maintain access history, we employ shadow memory techniques described in [4]. Pro-
viding source-level mapping along with the call paths leading to the two conflicting accesses

7



1 #define N 2

2

3 char a[N];

4 int main() {

5 int i = 0;

6 #pragma omp parallel for schedule(dynamic ,1) ordered

7 for (i = 0; i < N; i++) {

8 #pragma omp ordered

9 {

10 a[0] = i;

11 }

12 #pragma omp ordered

13 {

14 a[0] = i;

15 }

16 }

17 return 0;

18 }

Listing 1: OpenMP Ordered Section with data race.

W->W race

-----------------------------------------------------------------------------

LABEL: [0,1,0][0,2,3]

movb %al, 0x200471(%rip):main._omp_fn.0:Ordered_Race.c:14

callq 0x4006e0:main._omp_fn.0:Ordered_Race.c:10

callq 0x4006f0:main._omp_fn.0:Ordered_Race.c:10

callq 0x4006e0:main._omp_fn.0:Ordered_Race.c:6

callq 0x7f0ffe7686e0:GOMP_loop_ordered_dynamic_start:libgomp/loop.c:105

callq 0x4006a0:main._omp_fn.0:Ordered_Race.c:6

callq 0x400855:main:Ordered_Race.c:6

callq 0x18(%rsp):__libc_start_main::0

callq 0x4006d0:_start::0

THREAD[0]

******************************** RACES WITH *********************************

LABEL: [0,1,0][1,2,1]

movb %al, 0x200484(%rip):main._omp_fn.0:Ordered_Race.c:10

callq 0x4006e0:main._omp_fn.0:Ordered_Race.c:6

callq 0x4006a0:main._omp_fn.0:Ordered_Race.c:6

callq %rbp:gomp_thread_start:libgomp/team.c:124

callq %fs:0x408:start_thread::0

callq %rax:__clone::0

THREAD[1]

popq %rbx:pthread_create::0

callq 0x7f0ffe7664d0:gomp_team_start:ibgomp/team.c:460

callq 0x400690:main:Ordered_Race.c:6

callq 0x18(%rsp):__libc_start_main::0

callq 0x4006d0:_start::0

THREAD[0]

-----------------------------------------------------------------------------

Figure 4: Output of the Data Race Detector showing the stack traces for two conflicting
accesses in the above program.

8



requires maintaining the call paths of all previous accesses; we accomplish this efficiently
both in space and time by constructing a calling context tree as described in [3].

Listing 1 is a sample OpenMP code that uses an OpenMP parallel for loop construct
in conjunction with OpenMP ordered sections. The code exhibits a data race between two
accesses to the array element a[0] on line numbers 10 and 14 and our tool identifies the
conflicting accesses as a write-write data race along with the source mapping and call paths
leading to the data race as shown in Figure 4.

The Data Race Detector is currently hosted on a subversion repository at Rice University
and is available on request.

3 Findings and Results

In brief, significant findings and results of the project were the following:

• Implemented a Memory Leak Detector that reports the number of bytes a program
mallocs and where they are malloc’ed but never freed. The tool is fully integrated with
HPCToolkit and hpcviewer and reports the full call paths where the mallocs occured.

• The Memory Leak Detector can sometimes have a high overhead (as high as 10-20x)
for programs that continually malloc and free many small regions. This overhead is
due to overriding the library malloc functions (malloc, calloc, realloc, free, etc.). To
address this problem, we also implemented a probabilistic mode for leak detection that
finds frequent leaks with reasonable probability but with substantially less overhead.

• Some programs bypass the normal malloc functions (malloc, calloc, realloc and free)
and either use a different separate malloc library or write their own custom library or
use internal libc functions that bypass the normal interface. This makes tracking these
programs much more difficult.

• The Linux Out-of-Memory Killer (OOM) remains a problem for the Memory Leak De-
tector and for tools in general. By default, Linux overcommits the amount of available
memory. If physical memory runs out, then programs can fail catastrophically with no
opportunity to catch the failure and write out its data. This is especially a problem
for a memory leak tool because programs that leak memory also tend to run out of
memory.

• We extended the Mellor-Crummey’s offset-span labeling strategy for detecting data
races in fork-join programs to handle ordered critical sections. We proved that a set
of only three access per location (two reads and one write) are sufficient to verify data
races for an entire sequence of reads and writes. This model is exact for logical data
races in the sense that it has no false positives and no false negatives.

• We implemented a prototype Data Race Detector for OpenMP programs with ordered
sections based on the extended fork-join model and using the Intel Pin tool.

• We showed how to extend the ordered fork-join model to the case of lock sets, but we
did not implement the extension for locks.

9



• We identified that the model breaks down for programs that use and depend on physical
(hardware) threads to avoid data races.

References

[1] Pin 2.10 user guide, http://www.pintool.org/docs/41150/Pin/html/.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent, HPCToolkit: Tools for performance analysis of optimized parallel programs,
Concurrency and Computation: Practice and Experience 22 (2010), no. 6, 685–701.

[3] Milind Chabbi, Xu Liu, and John Mellor-Crummey, Call paths for pin tools, Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and Optimization
(New York, NY, USA), CGO ’14, ACM, 2014, pp. 76:76–76:86.

[4] Milind Chabbi and John Mellor-Crummey, Deadspy: A tool to pinpoint program inef-
ficiencies, Proceedings of the Tenth International Symposium on Code Generation and
Optimization (New York, NY, USA), CGO ’12, ACM, 2012, pp. 124–134.

[5] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood, Pin: Building customized
program analysis tools with dynamic instrumentation, Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (New York,
NY, USA), PLDI ’05, ACM, 2005, pp. 190–200.

[6] John Mellor-Crummey, On-the-fly detection of data races for programs with nested fork-
join parallelism, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing
(New York, NY, USA), Supercomputing ’91, ACM, 1991, pp. 24–33.

[7] Nicholas Nethercote and Julian Seward, Valgrind: A framework for heavyweight dy-
namic binary instrumentation, Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA), PLDI ’07,
ACM, 2007, pp. 89–100.

[8] Rice University, HPCToolkit performance tools, http://hpctoolkit.org/.

10


