
Final Report

Center for Scalable Application Development Software

Project period: January 2007–December 2012

Cooperative Agreement No. DE-FC02-07ER25800

John Mellor-Crummey

Principal Investigator at Rice University

Department of Computer Science, MS 132
Rice University
P.O. Box 1892

Houston, TX 77251-1892
Voice: 713-348-5179
FAX: 713-348-5930

Email: johnmc@rice.edu



Contents

1 Introduction 1

2 Community Outreach and Vision Building 1
2.1 Enabling Technology Workshops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Workshop on Libraries and Algorithms for Petascale Applications . . . . . . 2
2.1.2 Workshop on Automatic Tuning for Petascale Systems . . . . . . . . . . . . . 2
2.1.3 Workshop on Performance Tools for Extreme-Scale Computing . . . . . . . . 3
2.1.4 Workshop on Libraries and Autotuning for Extreme-Scale Applications . . . 4

2.2 Outreach Workshops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Leadership Computers, Petascale Applications, and Performance Strategies . 4
2.2.2 Scientific Data Analysis and Visualization for Extreme-Scale Computing . . . 5

3 Summary Description of the Research Performed 5
3.1 Performance Tools for Scalable Parallel Systems . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 HPCToolkit Key Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Key Accomplishments of Performance Tools Research . . . . . . . . . . . . . 9

3.2 Languages and Compiler Technology for High Performance Computing . . . . . . . . 10
3.2.1 Partitioned Global Address Space Languages . . . . . . . . . . . . . . . . . . 10
3.2.2 Compiler Technology for Optimizing Node Performance . . . . . . . . . . . . 12
3.2.3 Compiler Analysis and Optimization of Scripting Languages . . . . . . . . . . 13

4 Application Engagement 14
4.1 S3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 GTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Other Application Engagement Activities . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Products of the Research 18
5.1 Sampling-based Performance Monitoring on DOE Computing Platforms . . . . . . . 18
5.2 Open Source Software for Performance Tools . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Open Source Software for Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Impact on Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Technical Communications 19
6.1 Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



1 Introduction
The Center for Scalable Application Development Software (CScADS) was established as a part-
nership between Rice University, Argonne National Laboratory, University of California Berkeley,
University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an
integrated set of activities with the aim of increasing the productivity of DOE computational scien-
tists by catalyzing the development of systems software, libraries, compilers, and tools for leadership
computing platforms. Principal Center activities were workshops to engage the research community
in the challenges of leadership computing, research and development of open-source software, and
work with computational scientists to help them develop codes for leadership computing platforms.

Figure 1: Relationship between CScADS activities.

Figure 1 illustrates the relationships between the Center’s activities. The flow of ideas origi-
nated from two sources: (1) workshops for community outreach and vision-building, and (2) direct
engagement with application teams. These activities helped us identify important problems that
merited further research. The desire to tackle research challenges we identified drove the develop-
ment of software insfrastructure to support the research. The resulting infrastructure supported
not only the research, but also construction of prototype software to support application devel-
opment. Finally, experiences applying emerging system software, libraries, compilers, and tools
to leadership computing challenges spurred the next cycle of research and development. In the
following sections, we briefly summarize the CScADS activities at Rice University in these areas.

2 Community Outreach and Vision Building
To engage the community in the challenges and foster interdisciplinary collaborations, the CScADS
center organized an annual series of 3-4 day workshops focused on topics related to scalable software
for the DOEs leadership computing platforms. Goals for the workshops included:

• identification of important open problems and challenges for achieving high performance on
leadership computing systems,

• brainstorming on promising approaches to open problems,

• identification of infrastructure needs to address key challenges and assessment of available
infrastructure,

• identification of opportunities for synergy, opportunities to consolidate and harden existing
infrastructures, opportunities to reuse components developed by others, as well as opportu-
nities to refactor and extend existing components to apply them to new challenges,

• collaboration on design of sharable components,

• interaction and information interchange between computer scientists and SciDAC application
teams, and

1



• identification of targets of opportunity for further investment of resources, in particular strate-
gic investment targets for the DOE Office of Science.

To meet these goals, CScADS organized workshops of two kinds:

• Enabling technology workshops. These workshops brought together computer science re-
searchers to exchange ideas about technologies important to the DOE mission of harnessing
the power of petascale platforms for scientific computing, and collaborate on the development
of these technologies. Attendees at these workshops included representatives from leading
academic research groups, and key players in the commercial space.

• Outreach Workshops. At these workshops, members of the CScADS center and their part-
ners provided training for representatives from SciDAC and INCITE application teams about
hardware and software for scientific computing at the petascale, best practices for leader-
ship computing, as well as scientific data analysis & visualization. These workshops included
hands-on sessions in which computer scientists and application scientists collaboratively ex-
plored application challenges on leadership computing platforms and the role of enabling
technologies to address them.

Attendance at the workshops was by invitation only. Attendees included a mix of senior researchers,
post-docs, and graduate students. The workshops typically had between 20–40 attendees. Below,
provide a short description of the themes for each of the series of workshops, list the years in which
the workshop was held, and describe some outcomes of each workshop series.

2.1 Enabling Technology Workshops
2.1.1 Workshop on Libraries and Algorithms for Petascale Applications
This workshop, held in 2007, brought together computer scientists working on algorithms and li-
braries with members of the SciDAC application teams. The principal workshop goal was to identify
challenges for library and algorithm developers from the needs of the SciDAC applications and to
foster collaboration between the communities. Workshop topics included the use of multicore pro-
cessors and the use of automatic tuning in libraries. SciDAC application developers who attended
the workshop learned about the state of the art in terms of what numerical libraries are available,
how best to use them, and how to make them work well on the various systems. In turn, library
developers who attended the workshop were able to get a better understanding of what SciDAC
applications need from libraries in terms of functionality, interface design, and algorithms.

One outcome of this workshop was a substantial improvement in I/O scaling and performance of
the Omega3P simulation tool being developed at Stanford Linear Accelerator Center. Discussions
in the hands-on session at the workshop led to use of collective communication patterns to avoid
scaling bottlenecks associated with reading input data. Additionally, adjusting the application
to use parallel netCDF and MPI-IO reduced the time for writing output data by a factor of 100
when Omega3P was run on thousands of processors on the Cray XT system at Oak Ridge. These
improvements dramatically enhanced the scalability of Omega3P.

2.1.2 Workshop on Automatic Tuning for Petascale Systems
This workshop series, held 2007–2008, brought together researchers from different fields who share a
common interest in systems that automatically tailor scientific codes to their target machines. The
workshop included researchers and practitioners in automatic tuning, compiler code generation,
and architecture design. The aim of the workshop was to identify opportunities and challenges for
using automatic tuning on future petascale systems.

The workshop focused on exploring strategies for optimizing code to achieve high performance
on the complex node architectures found on today’s leadership computing platforms. In recent
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years, nodes have grown in complexity, including multicore processors that have larger core counts
with each generation, accelerators, and deep memory hierarchies to mask the ever-growing gap
between on-chip computation performance and off-chip memory access performance. Each of these
features requires a significant effort in tuning of applications and libraries. As a result, compiler and
library developers have turned to automating the process of software tuning, using large amounts of
computation time to explore a space of different variants of the program and running each variant
on the target architecture.

Talks presented in the workshop series covered a wide range of subjects, including program-
ming models and practices for current and anticipated architectures, numerical libraries, novel
algorithms, program generators, and compiler-based techniques that support either auto-tuning,
auto-parallelization, or both. Interspersed with the technical talks were periods set aside for dis-
cussions. Attendees broke up into small groups to discuss narrow topics of interest, such as how
to achieve high performance with important inner loops, or specific strategies for tuning MPI
parameters. Plenary discussions explored topics of broad interest, such as how to build shared
infrastructure and how to bring together the multiple autotuning communities.

2.1.3 Workshop on Performance Tools for Extreme-Scale Computing
This workshop series, held 2007–2012, brought together a collection of researchers interested in
building performance and correctness tools for leadership computing platforms.

Leadership computing platforms installed at Argonne National Laboratory and Oak Ridge Na-
tional Laboratory represent a dramatic increase in scale and complexity compared to previous
parallel systems. Making effective use of systems at this scale requires performance tools that help
application developers measure, analyze, attribute, and understand application performance bottle-
necks. Challenges include recording, analyzing, and presenting performance data from many nodes,
as well as developing new techniques that afford insight into the performance of complex node ar-
chitectures. At the node level, challenges include understanding the performance of multithreading
on multicore processors and understanding the efficiency of hybrid parallelism on compute nodes
with one or more attached accelerators. Providing tools that make it possible to address these
problems requires increasingly sophisticated methods for instrumentation, measurement, analysis
and modeling of application performance. Meeting these challenges at scale requires tools with
unprecedented capabilities.

The goal of this workshop series was to bring together tools researchers to discuss challenges
of performance analysis and debugging on emerging petascale systems, review ongoing research,
and work as a community to tackle the challenges of performance analysis on petascale systems.
Attendees at the workshop were tools developers who work on tool infrastructure, debugging,
performance instrumentation, measurement, analysis, and visualization. About a third of each
workshop was allocated for attendees to work together in small groups to tackle specific problems
of shared interest.

Specific aims of the workshop series included:

• identifying performance tool capabilities needed to analyze the spectrum of issues that arise
with emerging extreme scale systems,

• discussing emerging capabilities of research and commercial tools in this space,

• identifying common needs, functionality, and opportunities for sharing infrastructure,

• discussing design aspects of sharable components, and

• developing standardized interfaces to facilitate sharing.
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A central focus of this workshop series has been to promote development of sharable software
components to accelerate the development of performance tools for leadership computing platforms.
The motivation for this effort comes from the fact that the software infrastructure needed to address
measurement, analysis, and modeling of application performance on petascale systems is too large
for any one group to develop alone. This effort to catalyze collaboration among the tools community
led to groups carving out pieces of their tools and repackaging them as sharable components. The
resulting components are now used by multiple groups.

One particularly important product of this workshop series was a preliminary design for OMPT—
a new performance tools API for OpenMP. OpenMP 4.0 is viewed as best available programming
model for node architectures for emerging parallel systems. Today, OpenMP lacks a standard inter-
face for performance tools, which poses a significant obstacle to building high-quality, multiplatform
tools that provide insight into the performance of applications that exploit OpenMP at the node
level. OMPT has since been recognized by the OpenMP Architecture Review Board as an official
technical report. We will continue to work to see that OMPT makes it into the OpenMP language
standard.

2.1.4 Workshop on Libraries and Autotuning for Extreme-Scale Applications
This workshop series, held 2009–2012, brought together researchers and practitioners in automatic
tuning, in library design and construction, and in compiler-based code generation to identify and
discuss opportunities and challenges for tailoring code to current and future extreme-scale plat-
forms using automatic tuning. Attendees at the workshop included members of the compiler and
library autotuning communities, as well as attendees who work on runtime optimization of scientific
programs.

Over the last decade, microprocessor features such as deep pipelines, multiple cores, and complex
memory hierarchies have made it increasingly difficult to achieve good performance in scientific
applications and libraries. This fact has given rise to systems that automate the tuning process,
using large amounts of computation to configure the application or library for good performance
on the target architecture.

The workshop consisted of a series of talks and discussion sessions. Most workshop attendees
presented talks on their research, their insights, and their experiences. Discussion sessions focused
on opportunities to build shared infrastructure, along with issues raised during the workshops.

2.2 Outreach Workshops
2.2.1 Leadership Computers, Petascale Applications, and Performance Strategies
This workshop series, held from 2007–2012, had the explicit purpose of facilitating the use of large-
scale computational resources by DOE-funded projects. To that end, announcements were sent to
the principal investigators of all SciDAC projects and INCITE awards, asking them to nominate
as attendees individuals in their projects who were, or would be working directly with the project’s
code and running it on the leadership class platforms. This approach worked well and all available
slots at the workshop were filled with attendees who had the responsibility for making their codes
scale up and run well on the largest machines. The goals of the workshop were that the attendees:

• become familiar with the architecture, operation, and usability issues for each of the DOE
leadership computing facilities, understand application scaling bottlenecks on the systems,

• learn strategies for achieving good performance with message passing and I/O libraries,

• explore new programming models, languages, and techniques that can provide scalable per-
formance, and
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• learn the tools and strategies for understanding the performance of petascale applications.

We began each of these workshops by having each of the application team representatives give a
short presentation about their project with an emphasis on their code and the scaling challenges
it faces. In the afternoon, representatives of the three Office of Science computing facilities (ANL,
ORNL, LBNL) gave presentations about their leadership computing platforms. DOE center staff
were present at the workshop to facilitate getting accounts, logging in, and coping with any system
administration issues that arose for workshop attendees using the leadership computing platforms.

These workshops continued with tutorials about MPI, parallel I/O, OpenMP, and performance
tools. An important aspect of these tutorials is describing proven strategies for high-performance
programming. Workshops also included talks about CAF and UPC. Unscheduled time provided
an opportunity for participants to work directly with workshop presenters and organizers to obtain
hands-on experience applying what they have learned to their own applications. Many of the
participants chose to continue collaborative work in “late-night hacking” sessions after dinner.
Feedback from the participants about the workshops was overwhelmingly positive. Participants
were particularly enthusiastic about hands-on time working directly with library and tools experts.

After attending one of the workshops, several participants went on to submit successful proposals
for INCITE awards.

2.2.2 Scientific Data Analysis and Visualization for Extreme-Scale Computing
This workshop series, held 2008–2012, explored computer science topics at the intersection of stor-
age, analysis, and data-intensive computational science. Traditionally, computation, storage, and
analysis were viewed as three separate tasks, but as supercomputers and data increase in size and
complexity, this isolated view is no longer practical. By considering these topics together, the aim
of this workshop was to uncover potential efficiency and scalability, and see the connections between
these areas.

Within this broad scope, topics discussed at the workshops included data models, run-time
and post-processing analysis and visualization techniques, I/O systems and optimizations, data
mining and machine learning, and the application of all of the above in science codes. Talks at the
workshop discussed solutions that are ready to use today, such as Paraview, VisIt, and VisTrails.,
as well as research expected to yield results 1-5 years out. In addition to talks by the participants,
the workshop series included unstructured time for attendees to discuss possible collaborations and
to apply visualization tools to their datasets. This approach was appreciated by the attendees,
who used the time to get tools installed and try them out, build readers that could import their
datasets into the production tools, and discuss expected challenges in upcoming simulation runs.

3 Summary Description of the Research Performed
Research in CScADS explored a range of software technologies to improve the productivity of
application developers building high-performance codes for leadership computing platforms. These
technologies included languages, compilers, runtime systems, and tools. The principal foci of our
research were (1) performance tools for scalable parallel systems, and (2) language and compiler
technology for high performance computing. In the following sections, we briefly summarize our
principal work in these areas.

3.1 Performance Tools for Scalable Parallel Systems
With principal support from CScADS and supplemental support from the Performance Engineering
Research Institute, as part of the DOE SciDAC-2 program, we developed HPCToolkit, an inte-
grated suite of tools for sampling-based performance analysis of parallel codes on systems ranging
from laptops to leadership computing platforms.
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HPCToolkit provides accurate measurement of a program’s use of resources and waste, at-
tributes the usage to source lines in a program, works with multilingual, fully optimized binaries,
has very low overhead and scales to thousands of processors. We have deployed HPCToolkit on
systems ranging from clusters to supercomputers at DOE leadership computing facilities. In the
sections below, we describe the key capabilities for application performance analysis developed as
part of the HPCToolkit project under SciDAC-2 funding, and and highlight the accomplishments
of our research and development.

3.1.1 HPCToolkit Key Capabilities
HPCToolkit works by sampling each thread in a parallel program using an interval timer or
hardware performance counter as a trigger, unwinding the call stack and attributing the perfor-
mance metric associated with the sample event to the program’s calling context where the sample
occurs. Below we list some of the key strengths of HPCToolkit’s approach.

Scalable measurement and analysis. For performance tools to be useful on extreme-scale paral-
lel systems, measurement and analysis techniques must be scalable. HPCToolkit’s asynchronous
sampling of thread activity is scalable, does not require inter-process communication, and the sam-
pling rate can be tuned to keep overhead arbitrarily low. Profile data for threads is compact. For
computations involving enormous numbers of cores, HPCToolkit supports sampling a subset of
the cores to help keep executions from producing an excess of data.

Binary analysis for attributing costs to optimized code. HPCToolkit combines both
static and dynamic (runtime) analysis of program binaries to measure the performance of fully
optimized, multilingual programs, including binary-only libraries, and attribute these measurements
to source code (where available) [Tallent et al. PLDI09]. A strength of HPCToolkit is its ability
to unwind the call stack of an application executing optimized code. To do this, HPCToolkit
uses on-the-fly binary analysis to determine how to unwind the call stack so that we can attribute
costs to the full calling context in which they are incurred. In addition, HPCToolkit introduces
new techniques for analyzing program binaries to recover information about loops, and inlined code
correlate them with the original source.

Blame shifting for root cause analysis. HPCToolkit introduces a new kind of technique
for identifying the root causes of performance loss and inefficiency in parallel codes; we call this
approach blame shifting. To date, we have employed this strategy to two problems: understanding
lock contention [Tallent et al. PPoPP10] and pinpointing performance losses caused by insuffi-
cient parallelism and parallelization overhead [Tallent and Mellor-Crummey PPoPP09; Tallent and
Mellor-Crummey Computer09] for the multithreaded Cilk parallel language. The blame shifting
approaches are supported by problem-focused measurement that is specifically designed to quantify
and attribute a particular kind of losses. To provide a feeling for how this class of techniques works,
consider the problem of lock contention. When a thread is spin waiting for a lock, time it spends
waiting is a symptom of lock contention. Knowing that there is spin waiting without knowing who
is causing it is of only limited help. We shift the blame for idleness due to lock contention from
the waiting thread to the lock holder by (a) charging the cost of samples incurred by the waiting
thread to the lock, and (b) having a thread assume the blame for idleness associated with a lock as
it thread releases it. We accomplish this blame shifting for unmodified optimized codes by injecting
a wrapped version of locking primitives that perform the accounting we need. For multithreading,
we shift the blame of spin waiting for work to threads that have work but aren’t sharing it [Tallent
and Mellor-Crummey PPoPP09; Tallent and Mellor-Crummey Computer09].

Managing complexity with top-down analysis. To make analysis of large programs and par-
allel executions tractable, HPCToolkit presents performance analysis in a top-down fashion, that
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helps users immediately identify what is important and help them drill down to quickly locate the
cause of abottlenecks. HPCToolkit’s call path profiling enables it to attribute costs to the full
calling contexts in which they are incurred. HPCToolkit’s user interfaces support hierarchical
presentations of performance data in both profiles and traces.

Associating performance measurements with source code. HPCToolkit’s hpcviewer [Ad-
hianto et al PSTI10] user interface relates performance metrics to program source code. hpcviewer
offers three main views. The Calling Context view is a top-down view showing dynamic calling
contexts and their costs. The Callers view is a bottom-up view for looking upward along call paths.
This view is especially useful for understanding how costs in a function are incurred from multi-
ple contexts. The Flat view presents costs associated with a program’s static structure with costs
summed over all contexts. All views present both inclusive and exclusive metrics. Exclusive metrics
only reflect costs for a scope itself; inclusive metrics reflect costs for the entire subtree rooted at
that scope.

Figure 2 shows an example of hpcviewer’s display of the PFLOTRAN code run on 8184 cores
on a Cray XT5. In this example, the Calling Context view in the bottom pane shows the hot path
from the pflotran main function to PETSc’s PCApplyBAorAB along with metrics for load imbalance
and total cycles. The top pane (two lines in this example) shows the source call to PCApplyBAorAB.
In between are two scatter plots of the time spent (by MPI rank) in PCApplyBAorAB and a sibling
function in the call tree, VecDotNorm2. The figure explains load imbalance here in the program.
Low times in PCApplyBAorAB by some processes are offset by their high times in VecDotNorm2.
Investigation of child contexts reveals that the processes that finish early in PCApplyBAorAB end
up waiting in VecDotNorm2.

Pinpointing and quantifying scaling losses. As the number of cores increases, inefficiencies
due to scaling losses become more of a problem. Programs that run efficiently at a few thousand
cores may not run well at a million cores. HPCToolkit pinpoints scaling losses within and across
nodes in parallel systems. Furthermore, it quantifies losses and attributes them to program contexts
using only node-level profile data. For example, in a weak scaling performance study, one might
run a program on 4K cores and again on 32K cores. If the program scaled perfectly, we would
expect the node level costs to be constant with weak scaling. By differencing the call path profiles
of two executions (see [Coarfa et al ICS07; Tallent et al. SC09]) any value above zero represents a
loss beyond perfect scaling. HPCToolkit associates scaling losses with the full calling context in
which they occur. Losses can be identified with a few clicks in HPCToolkit’s hpcviewer interface
to precisely pinpoint the cause of the scaling inefficiency.

Supporting analysis using derived metrics. Although raw metrics can identify program hot
spots, effective tuning requires an understanding of how and where resources are used inefficiently.
Derived metrics such as the difference between peak and actual performance are far more useful
than raw metrics. For instance, computing the difference between peak FLOPs possible (total
cycles * maximum FLOPs per cycle) and measured FLOPs in every program context quantifies
and pinpoints missed opportunities for higher performance. Such derived metrics can be computed
by entering a spreadsheet-like formula in HPCToolkit’s hpcviewer user interface and the results
can be explored interactively.

Providing scalable views of activity over time. HPCToolkit’s hpctraceviewer [Tallent
et al. ICS11] visualization tool shows how a parallel execution unfolds over time. During exe-
cution, HPCToolkit collects a sequence of call stacks via asynchronous sampling for each pro-
cess or thread and hpctraceviewer displays these call stacks across the lifetime of the process.
hpctraceviewer allows rapid top-down performance analysis by displaying traces at multiple levels
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Figure 2: A Calling Context view of PFLOTRAN’s load imbalance.

of abstraction. Regardless of execution scale, the cost for rendering an hpctraceviewer visualiza-
tion is proportional to the product of the number of pixels on the display and the log of the number
of trace records per thread.

Figure 3 shows an example hpctraceviewer display of a PFLOTRAN execution taking 982
seconds on 8184 cores on a Cray XT5. The three main panes are the Trace view (top left), the Call
Path view (top right) and the Depth view (bottom left). The Trace view shows a user-controllable
slice in the process/time/call-path space, where process rank in on the vertical axis and time moves
left to right on the horizontal axis. In this example, we see that at depth 3, PFLOTRAN alternates
between two phases (purple and black). Depth 6 shows that these two phases use the solver (tan)
and depths 7 and 14 show that they use the solver in different ways.

The Call Path view shows the full call path at the current point in the Trace view, and the
Depth view shows one process’s call depth over time. The user can zoom in on the Trace view in
both the process and time dimensions and can see the overall process execution at any call depth.
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Figure 3: An 8184-core execution of PFLOTRAN on a Cray XT5. The inset exposes call path
hierarchy by showing the selected region (top left) at different call path depths.

3.1.2 Key Accomplishments of Performance Tools Research
With support from both CScADS and the Performance Engineering Research Institute to build
tools to analyze application performance on parallel systems, we accomplished a lot over the course
of the SciDAC2 program. Here, we list the key accomplishments in the HPCToolkit project.

• We engaged IBM and Cray to pinpoint and address kernel problems that prevented perfor-
mance monitoring using asynchronous sampling on Blue Gene/P and Cray XT/XE6 leader-
ship computing platforms. As a result of our efforts, sampling-based performance analysis is
now possible on DOE leadership computing platforms.

• We engaged the broader community (Linux kernel developers, hardware performance monitor
device driver authors, UTK developers of the PAPI library) to address problems with sample-
based performance monitoring using hardware counters.

• We developed libmonitor—a process control layer that supports measurement of multiple
multithreaded processes in a programming model independent fashion. libmonitor works
with MPI, OpenMP, Pthreads, Coarray Fortran, Unified Parallel C, Global Arrays and com-
positions thereof.

• We developed a wide spectrum of novel techniques to support measurement, analysis, and
attribution of costs measured using asynchronous sampling, including

– on-the-fly binary analysis to attribute costs measured using asynchronous sampling to
full calling contexts in optimized applications [Tallent et al. PLDI09]; and
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– an interactive tool for presenting calling-context-sensitive performance metrics in ways
that rapidly focus an analyst’s attention on performance bottlenecks [Adhianto et al.
PSTI10]; and

– a differential profiling technique for quantifying scalability losses within and across nodes
on leadership computing systems [Coarfa et al. ICS07; Tallent et al. SC09]; and

– new problem-focused techniques for measurement and attribution of performance prob-
lems in parallel applications, including techniques for

∗ quantifying performance losses in multithreaded computations due to insufficient
parallelism & parallel overhead and attributing them to source code responsible [Tal-
lent and Mellor-Crummey PPoPP09; Tallent and Mellor-Crummey Computer10];
and

∗ quantifying performance losses due to idling that results from lock contention in mul-
tithreaded programs; attributing them to calling contexts holding the locks [Tallent
et al. PPoPP10];

– a strategy for quantifying and pinpointing performance losses in scalable parallel codes
resulting from load imbalance [Tallent et al. SC10]; and

– an approach measuring memory latency with hardware performance counters and at-
tributing it to both code regions and data objects [Liu and Mellor-Crummey CGO11];
and

– a technique for producing insight into transient behavior of parallel programs at mul-
tiple levels of abstraction by collecting and analyzing traces of asynchronous call path
samples [Tallent et al. ICS11].

• We have been active in transferring our technology. Both Bull and SciCortex deployed HPC-
Toolkit on their systems for their customers.

3.2 Languages and Compiler Technology for High Performance Computing
Within CScADS, research on compiler technology for high performance computing focused on
compiler and runtime systems for partitioned global address languages, compiler optimization to
improve node performance of scientific codes, in addition to analysis and optimization of scripting
languages. We briefly summarize research and development activities in each of these three areas.

3.2.1 Partitioned Global Address Space Languages
The Partitioned Global Address Space (PGAS) model, exemplified by the UPC, Coarray Fortran,
and Titanium Languages enables programmers to easily express parallelism on complex shared
data structures. Work in CScADS and the Center for Programming Models for Scalable Parallel
Computing worked to make implementations of PGAS languages efficient and available.

Coarray Fortran Language and Implementation. In a partnership with the Center for Pro-
gramming Models for Scalable Parallel Computing, we worked to develop a second-generation
compiler for Coarray Fortran. To enable CScADS to deliver a more robust source-to-source Coar-
ray Fortran compiler that could be used by application scientists, we worked with LLNL’s Rose
compiler team to develop software infrastructure to support a source-to-source Coarray Fortran
compiler based on Rose. The focus of CScADS efforts in this area was to work with LLNL to
complete Rose’s language support for Fortran. As part of this work, we added support for Fortran
modules to support separate compilation of Fortran programs. This work included synthesis of
module interface specifications, adding support to import interfaces from external modules, and
creating regression tests for Rose’s Fortran support. As part of this work, we added support for

10



Coarray to LANL’s OpenFortran parser, which is used as the Fortran front-end by Rose, along
with support for source-to-code generation in Fortran 90.

The Coarray Fortran 2.0 (CAF 2.0) programming model developed as a product of our research
is a partitioned global address space programming model based on one-sided communication. The
design for CAF 2.0 goes well beyond the 1998 design of Coarray Fortran (CAF) by Numrich and
Reid. CAF 2.0 is a coherent synthesis of concepts from MPI, Unified Parallel C, and IBM’s X10
programming language. CAF 2.0 includes a broad array of features including process subsets known
as teams, team-based asynchronous collective communication, communication topologies, dynamic
allocation of shared data, and global pointers, along with synchronization constructs including
finish, a communication fence, and events.

We used CAF 2.0 to implement the High Performance Computing Challenge (HPCC) bench-
marks, including High Performance Linpack (HPL), RandomAccess, Fast Fourier Transform (FFT),
and STREAM triad. On 4096 CPU cores of a Cray XT with 2.3 GHz single socket quad-core
Opteron processors, we achieved 18.3 TFLOP/s with HPL, 2.01 GUP/s with RandomAccess, 125
GFLOP/s with FFT, and a bandwidth of 8.73 TByte/s with STREAM triad [Jin et al. IPDPS11].
In 2010, CAF 2.0 was recognized with the Class II Award: Most Productive Language. at the HPC
Challenge Awards Competition held at SC10. In 2011, it was recognized with Class II Honoable
Mention: Performance and Productivity at the HPC Challenge Awards Competition held at SC11.

Because of our experience with Coarray Fortran, we were approached to critique a proposal
by the Fortran J3 Standards Committee to incorporate support for coarrays and synchronization
into Fortran 2008. We carefully reviewed the details of the proposal and provided detailed white
paper (Fortran J3 paper 08-126) to the Standards Committee. Our white paper led the standards
committee to remove several ill-considered features from the Fortran 2008. specification. The
influence of CAF 2.0 continues today: the Fortran standards committee is considering new features
based on CAF 2.0 primitives.

Synchronization for PGAS Languages As part of an effort to make PGAS languages more
expressive and simplify programming, Rice explored using software transactional memory (STM)
as a mechanism for supporting synchronization using atomic operations. For software transactional
memory to be practical for use with a programming model such as Coarray Fortran, it must be
very efficient. One drawback of using STM is the cost of validating transactional reads.

Timestamp-based validation techniques for STM significantly reduce the cost of validations by
reducing the number of unnecessary validations. These techniques can be optimistic (allowing a
transaction to proceed even though a conflict is possible, with the hope that the transaction will
still be able to commit), or pessimistic (aborting the transaction as soon as a possible conflict is
detected). For any given static workload and contention scenario the choice between a pessimistic
and optimistic strategy can result in significant performance differences, while in an application
where the workload and contention vary throughout the execution neither of these techniques will
result in optimal performance.

We developed a runtime tuning strategy that uses on-the-fly monitoring to determine the most
effective validation technique for a given state of the STM system. Our hybrid validation strategy
adaptively chooses between optimistic and pessimistic validation depending on the state of the STM
system. We evaluated our technique on a set of standard STM benchmarks and demonstrated that
our strategy performs within a couple of percent of the best validation strategy for a given static
workload scenario, and that it outperforms both optimistic and the pessimistic validation techniques
by up to 18% in long-running, dynamically-changing scenarios [Zhang et al. SPAA 2008; Zhang et
al. EPHAM 2008].
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Extensions to C for Parallel Programming. We extended the ROSE optimizing compiler
infrastructure from LLNL to add lightweight task parallelism constructs to an extension to the
C language developed at Rice University called Habanero-C. In addition to adding new language
constructs to ROSE’s handling of the C language, we have also modified the build process for
the ROSE infrastructure to support pre-compilation of all non-essential (from a standpoint of a
compiler writer) libraries that come with ROSE, allowing for much faster incremental builds in an
optimizing compiler infrastructure such as Habanero-C.

3.2.2 Compiler Technology for Optimizing Node Performance
Source-to-source optimization for improving memory hierarchy performance. Moti-
vated by node performance problems with S3D—a Fortran code that performs direct numerical
simulation of turbulent combustion being developed at Sandia National Laboratory, CScADS re-
searchers at Rice University extended LoopTool—a compiler-based tool that helps expert human
programmers improve the performance of Fortran loop nests by applying complex patterns of
transformations to tailor the loop nests for a target microprocessor. LoopTool automates the ap-
plication of well-known source-to-source transformations that improve data reuse at various levels
of the memory hierarchy, adjust instruction mix, and generate code that can be scheduled more
efficiently by a conventional Fortran compiler.

To use LoopTool, one takes a Fortran procedure and annotates the code with directives that
specify a transformation recipe. LoopTool then applies the recipe to perform both the explictly-
specified transformations along with other supporting transformations that need not be specified
explicitly. To support optimization of key loops in Sandia National Laboratorys S3D code, we
extended LoopTool with support for the transformations described below.

• Scalarization of Fortran 90 Array Syntax. Scalarization transforms a computation specified
using Fortran 90 array notation into a loop nest that iterates over each element in the index
space and performs the computation elementwise.

• Loop unswitching. Unswitching a loop means hoisting a conditional within a loop nest out of
one or more levels of enclosing loops and creating a custom version of the loop nest for the
true and false branches of the conditional. By creating condition-free loop bodies, unswitching
enables instructions to be scheduled more effectively. Unswitching was added to LoopTool
specifically to support optimization of S3Ds diffusive flux computation. This transformation
enables a loop nest to be written in a natural fashion a single copy of code with embedded
loop-invariant conditionals and have LoopTool generate custom copies of the loop nest tuned
for each setting of flag variables that may arise during execution.

In addition, LoopTool’s support for multi-level loop fusion and unroll-and-jam transformations
was enhanced to support application to loops generated by scalarizing Fortran 90 array syntax. In
FY08, Rice issued a subcontract to Texas State to create a hardened Linux version of Looptool that
could be distributed as open source software that can be used by application teams to help address
performance problems identified in their codes. That effort produced an open source version of
LoopTool for Linux. LoopTool was used to improve the performance of memory intensive loop
nests in S3D and LoopTool-generated code was incorporated into the production version of S3D.

Dynamic optimization of complex applications. Sophisticated scientific applications are often
assembled out of a diverse set of components constructed by different software teams. The Common
Component Architecture (CCA) was devised to aid in assembling such applications. A problem
with component-based approaches to software is that abstraction boundaries between components
can be costly. Today, avoiding excessive costs at component boundaries forces developers to write
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coarser-grain components than they might like. CScADS has been exploring the use of dynamic
program optimization for CCA applications, namely analyzing and optimizing software at run time
when all component interfaces are bound and full information about the bindings is available.
To explore the potential for optimizations at this level, we experimented with interprocedural
optimization of SIDL and Babel code, which serves as the interface between components in CCA
applications, using the LLVM compiler infrastructure. Tests using the TTSTT mesh benchmarks
from the Center for Component Technologies in Terascale Simulation Software showed the promise
of this approach. With interprocedural optimization, we were able to reduce the overhead of fine-
grain operations from 5.5x to 3.5x. Much of the remaining overhead is due to the cost of allocating
temporary objects. Experiments with a fast allocator dropped the overhead to 2.5x. Further work
would have be needed to extend this preliminary work and turn out a tool capable of performing
such optimizations on production applications.

New techniques for redundancy elimination. CScADS researchers at Rice developed a novel
technique for detecting redundant computations where the redundancy occurs on different iterations
of a loop under different names. These redundancies arise routinely in array address calculations
and computations on array-element values (such as stencil or wave front techniques). To increase
the transformations effectiveness, he also developed a new approach to algebraic re-associationusing
commutativity and associativity to rearrange expressions in ways that expose additional opportu-
nities for optimization [Cooper et al. PACT08].

3.2.3 Compiler Analysis and Optimization of Scripting Languages
The difficulty of developing sophisticated high performance parallel applications is well known.
This DOE Office of Science, the NNSA, and the NSA have been struggling with aspects of this
problem for years. Better software technologies to accelerate development of high performance
applications for leadership computing platforms would be welcomed by the application teams. At
the FY07 CScADS Summer Workshop on Libraries and Algorithms for Petascale Applications,
application teams indicated that they would prefer to program in high-level scripting languages.
The popularity of scripting languages among developers of scientific application has been growing
year after year. To support this goal, CScADS began to explore compiler and run-time technology
to make it practical to use scripting languages for high performance computing. Rice began to
explore a range of compiler technologies to accelerate each of the major scripting languages used
for scientific computing, namely, Matlab, R, and Python.

Matlab. Work on Matlab compilation focused on exploring interprocedural type inference to en-
able application developers to write general library routines and have these routines be automati-
cally specialized for the contexts in which they are used. Work primarily concentrated on hardening
existing implementations of type analysis and specialization to support experimental evaluation us-
ing non-trivial codes. After the untimely death of Ken Kennedy and the departure of his graduate
students working in this area, work on this topic ceased.

R. Unlike Matlab, in R bindings for procedures and variables are lexically scoped and one can-
not determine which procedure will be called at a call site without flow-sensitive interprocedural
analysis. Also, R procedure calls use call-by-need binding, which means that expressions passed as
actual arguments are passed as unevaluated expressions. As a result, R code is typically interpreted.
Significant sources of run-time overhead are function and variable name resolution.

To compile R into efficient code, Rice worked to generalize the OpenAnalysis compiler in-
frastructure to support analysis of R programs. This work included generalizing the call graph
representation in OpenAnalysis to facilitate analysis of programs with late binding of function
variables, to support control flow graph construction for lexically-scoped programs, and to support
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for data-flow analysis of lexically-scoped programs. This infrastructure was developed to support
compilation of scripting languages such as R into native code, have functions resolved at compile
time rather than run-time, and transform Rs interpreted call-by-need procedure arguments into
call-by-value arguments evaluated by compiled code.

Performance analysis of generated code for R showed that lack of data reuse in the memory
hierarchy seriously impaired runtime performance. Garbage collected languages generally have poor
locality as they churn through the heap allocating fresh data. To address this problem, researchers
at Rice explored interprocedural analysis techniques to understanding variable lifetimes so that
heap-based storage allocation could be converted into more efficient stack-based allocation. The
aim of this approach was to improve memory hierarchy performance by increasing locality. Based
on our analyses, we explored analysis to enable a our compiler to stack-allocate data, which would
improve locality and lead to data reuse in cache. The approach pursued was to compile R programs
into calls to library functions that were the equivalent of actions by the R interpreter and then
attempt to reason about the resulting code to optimize its memory performance. This approach
was inspired by Ken Kennedy’s vision to build compilers to optimize library-based programming
models. Ultimately, we found that analysis of the library-based code was too difficult because of
information loss and this effort was abandoned.

Python. For Python, we explored a different approach. Our thesis was that we could build an
effective compiler for Python by translating it into a statically typed functional language that
has a good compiler and automatic memory management. In particular, modern statically-typed
languages provide precise control over data representations, and come with runtime systems that
have competitive performance. To investigate the viability of this approach, we built a compiler
for Python by translating it into OCaml. An interesting practical advantage of using modern
statically-typed functional languages is that they use Hindley-Milner type systems, which means
that there is no need for the translation to construct type terms. We compared the performance
of our implementation, Monty, with that of CPython, the reference Python implementation, and
with Jython, a Java implementation of Python, using a suite of 370 benchmarks. Our experiments
show that some programs compiled using our approach run up to 4.6 times faster than CPython.
However, for engineering reasons, some programs also run significantly slower than CPython. We
pinpointed causes of performance degradation and assessed the potential for removing these causes
in future work. Our implementation is significantly faster than Jython, up to a factor of 100 in some
cases. A by product of this research was a proposal for an improved array copying implementation
in OCaml. These results are reported in a Ph.D. dissertation [Bandyopadhyay 2009].

After investing the efforts of several graduate students and obtaining few results that looked like
they would have near-term practical impact, we made the decision to refocus our efforts on other
topic areas.

4 Application Engagement
As part of CScADSs engagement efforts, Rice University worked closely with several of the SciDAC
application teams to diagnose application performance bottlenecks on leadership-class platforms
using a combination of measurement, analysis, and modeling. In particular, Rice worked closely
with the SciDAC S3D and GTC application teams. These collaborations began with participation
in engagement activities associated with Tiger Teams of the Performance Engineering Research
Institute. This involvement has been useful in (1) identifying interesting computer science problems
that are important for application teams and (2) using preliminary analysis of applications to guide
tool development so that tools directly address the problems of critical importance. Below, we
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Figure 4: Applying LoopTool to S3Ds diffusive flux computation.

briefly describe some of our work with S3D and GTC application summarize interactions with
other SciDAC and INCITE enabling technology and application efforts.

4.1 S3D
Analysis of S3D using Rice University’s HPCToolkit performance tools uncovered opportunities for
using source-to-source tools to tailor code to improve memory hierarchy utilization. This led to
refinement of Rice’s LoopTool program transformation tool. Applying LoopTool to S3D yielded
improved performance of S3D’s diffusive flux calculation(most memory intensive loop) by nearly a
factor of three [Mellor-Crummey SciDAC07]. Figure 4 shows a cartoon that depicts the transfor-
mation of S3D’s diffusive flux calculation.

Additionally, analysis of experiments with S3D on the hybrid Cray XT3/XT4 system showed
that the lower memory bandwidth on the XT3 nodes hurt the weak scaling performance of S3D
on the hybrid system. Further analysis showed that performance on the hybrid system could be
improved by proportionally adjusting the partitioning of computation to account for the higher
efficiency of the XT4 nodes. A paper describing S3D along with the aforementioned work to
tailor it to ORNL’s Jaguar appeared in Computational Science & Discovery in 2009 [Chen et al.
CS&D09].

4.2 GTC
One of the most significant application engagement activities undertaken by CScADS reserachers
at Rice was analysis and tuning of the Gyrokinetic Toroidal Code (GTC)—a SciDAC-funded code
being developed to study the impact of fine-scale plasma turbulence on energy and particle con-
nement in the core of tokamak fusion reactors. The GTC code is a centerpiece of the International
Thermonuclear Experimental Reactor project and as part of the DOEs INCITE program, it was
awarded millions of processor hours on the Cray XT4 at ORNL.

Work with GTC included exploration of opportunities for improving memory hierarchy utiliza-
tion. One component of this effort has been studying the impact of data structure layout and
code organization on the spatial and temporal locality present in data access patterns. In FY07,
a detailed study of GTC using a performance modeling toolkit developed at Rice identified several
opportunities for improving application performance. These included reorganizing the particle data
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Figure 5: Particle positions become disordered as execution progresses in GTC.

Figure 6: Performance of GTC with different code optimizations.

structures to improve spatial reuse in the charge deposition and particle pushing phases of the ap-
plication, using loop fusion to increase temporal reuse of particle data, and transforming the code
to increase instruction-level parallelism and reduce translation look-aside buffer misses. Overall,
these code transformations improved performance by 33%. Code modifications were provided back
to the application team. In FY08, CScADS researchers at Rice determined that as a GTC simu-
lation progresses, the particles become increasingly disordered with respect to the underlying grid
cells representing the volume within the tokamak. Charge deposition and particle position updates
involve interactions between particles and cells. As particles become disordered with respect to the
cells, these phases get slower due to increasingly inefficient use of the memory hierarchy in each
compute node.

In Figure 5, we show the particle positions along the radial and θ directions at the time steps
0 and 20. To address this problem, we augmented GTC to periodically sort particles by their
cell number during the simulation. Each sorting step restores locality and performance. However,
sorting is not free. Maximizing performance requires determining the appropriate number of time
steps between sorting operations. We were able to formulate this as a minimization problem and
adaptively compute the proper interval between sorting operations. A paper describing this work
was presented at SciDAC 2008 [Marin et al. SciDAC 2008].

We compared up to eight versions of the GTC codes on the three parallel systems (including a
Cray XT4 at LBL), with three types of optimizations turned on and off. In naming the versions,
Orig represents the original version of the code, Opt includes loop and data restructuring opti-
mizations by Rice in FY07, M includes an improved implementation of particle migration between
processes that preserves locality that was developed at Rice in FY08, and S represents the adaptive
sorting approach developed by Rice in FY08.
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Figure 6(a) presents the single node performance results of three optimized versions of the GTC
codes on a Cray XD1 and an Intel Itanium 2. All timing results are normalized to the execution
time of the original version. Overall, the version with all optimizations applied achieves the best
performance with a 27% reduction of execution time on the Itanium2 cluster.

Figures 6(b) and (c) compare the parallel execution time of all eight versions of the code. In
Figure 6(b), the optimized version OptMS with all three optimizations applied achieved the best
performance with about 37% reduction of overall execution time on the Itanium2 cluster. The
loop and data restructuring optimization contributed significantly to the overall improvement on
the Itanium 2 cluster. In Figure 6(c), the best version of the code with all three optimizations
applied achieves approximately a 21% execution time reduction from the original version on two
Opteron-based Cray machines.

4.3 Other Application Engagement Activities
Helping application and enabling technology teams with performance analysis of their software has
been the principal mode of interaction between CScADS and application teams. Below we mention
a few significant interactions that inspired new tools research in CScADS and publications about
that work.

• MFDn. The “Many Fermion Dynamics nuclear” code being developed by the UNEDF
SciDAC project evaluates the many-body Hamiltonian and obtains the low-lying eigenvalues
and eigenvectors using the Lanczos algorithm. While the code shows good scaling and load
balance on 15,000 cores, it is lacking in per-process efficiency. A study of the code on Opteron
processors using HPCToolkit indicated that roughly 20% of the lost opportunity for efficiency
arose from use of a compressed-sparse column format within a sparse-matrix vector multiply
[Tallent et al. SciDAC 2008].

• Chroma. Chroma is a C++ code from the US Lattice QCD project. The codes exten-
sive use of C++ expression templates motivated development of new capabilities for binary
analysis in the HPCToolkit performance tools. The difficulty of understanding performance
measurements for Chromas expression templates motivated integration of static and dynamic
information in the presentation of call path profiles in HPCToolkits hpcviewer interface. The
aforementioned work on HPCToolkit received the distinguished paper award at the ACM
Symposium on Programming Language Design and Implementation [Tallent et al. PLDI09].

• Madness. In FY09, the HPCToolkit team at Rice partnered with PERI-supported re-
searchers Robert Fowler and Allan Porterfield at UNC and began to work directly with
Robert Harrison on MADNESS, which was selected as an early science code for ORNL’s
Cray XT5. Motivated by understanding the performance issues in MADNESS, the HPC-
Toolkit team developed new measurement and analysis techniques to pinpoint performance
bottlenecks in multithreaded codes and implemented them in the HPCToolkit performance
tools. This research not only resulted in feedback to the MADNESS team about issues caus-
ing performance losses in their multithreaded code, but also development of a new technique
for attributing resource contention [Tallent et al. PPoPP10].

• Chombo. Analysis of Chombo with a tool developed to detect dead writes identified op-
portunities for optimization based on redundant initialization [Chabbi and Mellor-Crummey
2012].
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5 Products of the Research
5.1 Sampling-based Performance Monitoring on DOE Computing Platforms
Delivering sampling-based performance tools for all DOE computing platforms, especially the lead-
ership computing platforms, had been a principal goal of Rice’s HPCToolkit project work as part
of CScADS. Our extensive testing of operating system support for interrupt-driven profiling on the
full range of DOE platforms (including Cray, Blue Gene, and Linux clusters) uncovered critical
bugs on all systems that rendered profiling unusable. Rice researchers engaged the community
(including developers of hardware performance counter device drivers, the community of Linux
kernel developers, kernel developers at Cray and IBM, and the PAPI team at Tennessee) to fix
these problems and provided regression tests. This work had several positive outcomes.

• Linux clusters. Support for sampling-based performance monitoring is now a standard part
of the Linux kernel.

• Cray supercomputers. Support for sampling-based performance monitoring has been become
a standard feature on Cray supercomputers since Compute Node Linux 2.1 in December 2008.

• Blue Gene supercomputers. Support for sampling-based performance monitoring became
available on Blue Gene/P platforms with the V1R3M0 compute kernel release installed at
ANL in January 2009. CScADS researchers at Rice contributed to the Argonne SOW, in-
cluding requirements for hardware and software support for sampling-based performance and
an extended set of regression tests used to evaluate the performance monitoring support as
part of the Blue Gene/Q acceptance test. Deep engagement with IBM as part of the procure-
ment process helped shape the design of the Blue Gene Performance Monitoring (BGPM)
interface and led to the IBM delivering appropriate support for sampling-based performance
monitoring on Blue Gene/Q platforms.

5.2 Open Source Software for Performance Tools
• Released an open source implementation of the HPCToolkit performance tools. HPCToolkit

includes libmonitor - a tool harness for application control, an infrastructure for measurement
and analysis of application performance data, hpcviewer - a user interface that supports
interactive exploration of profiles of parallel applications, and hpctraceviewer - a user interface
that supports interactive analysis of execution traces of parallel applications collected using
sampling. HPCToolkit has been installed on leadership-class systems at ORNL, ANL, and
NERSC, NSF supercomputers at TACC, as well as supercomputers in Australia, China,
Norway, Switzerland, and the UK, to name just a few.

5.3 Open Source Software for Compilers
• Contributed open source code for Fortran semantic analysis to the ROSE compiler infrastruc-

ture. Our work included adding support for modules and separate compliation. ROSE won
an R&D 100 award in 2009.

• Released an open source implementation of Coarray Fortran 2.0 based on the ROSE compiler
infrastructure.

• Released an open source implementation of LoopTool - a source to source transformation
tool that performs sophisticated dependence-based transformations for memory hierarchy
optimization, including loop alignment, fusion, unroll-and-jam, tiling, and iteration space
splitting.
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5.4 Impact on Standards
• Fortran 2008. Research on Coarray Fortran 2.0 influenced the Fortran 2008 standard.1 Ex-

tensions currently being considered for Fortran 2008 were inspired by primitives developed as
part of the Coarray Fortran 2.0 project.

• OMPT performance tools API for OpenMP. One tangible product of research on performance
tools for multithreaded node programs is an emerging performance tool API for OpenMP
known as OMPT. The design for OMPT began at the 2012 CScADS Workshop on Perfor-
mance Tools for Extreme-scale Computing. Today, the OMPT interface has been approved
by the OpenMP Architecture Review Board as an OpenMP technical report. The aim is to
incorporate the design for OMPT as part of the OpenMP language standard.
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