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The Project

e Evaluating Distributed Runtimes in the Context of Adaptive
Mesh Refinement

e Setup:

o Summer co-design school
m Mentors: Allen McPherson, Ben Bergen, Christoph Junghans
m 3 Computer Science students + 3 Applied Maths Students

o Work:

m Science part: Sod Shock problem
m CS part: Investigate Runtimes
m  Common: Evaluate how to best represent the AMR time varying data



Sod Shock problem

2D Euler Equation AMR Scheme

High Pressure Low Pressure

: e Tile-based AMR
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e Refinement Strategy
o Gradient criteria

MUSCL-Hancock SCheme o Léhner error estimator

Reconstruct values on each side of
interface via linear extrapolation

Evolve values at interface by
half timestep

Find fluxes by solving Riemann
problem using HLL (approximate)

\
Use flux at interface to
update cell values




e Why?
o Simplify programming on distributed systems
m Abstraction of MPI, threads and memory

o Has useful features like:
m Load balancing
m Fault Tolerance
m  Management of distributed memory

o Runtimes considered:
m Charm++ (Urbana Champaign)

m HPX (Louisiana State University)
m  CnC (Intel)



HPX

e (C++ runtime for parallel and distributed systems

e Features:
o Message driven
o Asynchronous execution
o Work stealing task schedulers
o Global Address Space
e Limitations:
o HPXis new and rapidly changing (version 0.98)
o It does not have many features of more established runtimes
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Introduction

Hydrodynamics simulations with shock discontinuities represent a variety of applications. Due to
the large size of many application problems, it is infeasible o solve the entire problem on a
uniform grid as they are both computationally expensive and memory intensive. To combat this
issue, adaptive mesh refinement (AMR) is often used in order to limit both computational cost
and memory use while achieving the desired accuracy. This project implements hydrodynamics
simulations based on the physical model of the Euler equations using a second order Finite
Volume Method with AMR.

Additionally, a growing trend in the field of scientific computing is the utilization of system-level
runtimes to simultaneously provide a more intuitive means of exploiting the inherent parallelism
of algorithms while also simplifying the challenges of load balancing. To this end, we have
performed a survey of contemporary runtime systems with a focus on the inherent challenges of
adaptive mesh refinement and have implemented our application in Charm-t-+, HPX, and Intel's
Concurrent Collections.

Physical Model

~ 2D Euler Equations:
- Given
pu o
u? + puv
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the Euler equations may be expressed in conservative form as

ac+ fQ)x + gla)y = 0.
» Ideal Gas:
+ The conserved quantities are coupled with pressure and velocity via the equation of state

E=B ;p(f )

Numerical Solution
» Dimensional Splitting:
+ Solution is computed by splitting into two coupled one-dimensional problems:
qe + f(a)x =0,
ac+g(a)y =
» Two one-dimensional problems are solved using a finite volume formulation.

» Finite Volume Method:

- Domain decomposed into discrete cells.

- Average value stored in each cel
1
H oo  tn)dx.
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» Averages are iterated in time
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» The fluxes, F are determined using a Riemann solver.

T Flaye
» MUSCL-Hancock Scheme:

 Predictor-corrector scheme
» Second-order accurate in space and time

Recansinit values on cach side of
inteface via lincar extrapolation

Evolve values at nerface by
half timestep

Find fluxes by solving Riemann
problem using HLL (approximate)

Use lux at iverace to
pdatecell values.

We acknguiee the support and guidance of aur mentors. Alen McPherson and Ben Bergen. We aso thank Cirisioph Junghans for aditonal sdsement, We ertend our grastce to
illiam Dai for providing insight into adaptive mesh techniques. Finally, we thank Phil Miller for assistance in properly utilizing the Charm-t+ runtime.
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Introduction to Adaptive Mesh Refinement

> What is AMR?
» Refine only a small portion of the grid
» Refine where needed (often near discontinuities) in order to achieve desired accuracy

> Why AMR? (E—,
» Memory usage & s
» Execution time

» Considerations with AMR:
» Frequently changing work load

» Flux correction at interfaces

wiith varying refinement level

Memory Usage (48)

whdi iR =

Comparison of memory usage with uniform and adptive refinement.

AMR Implementation

» Tile-based AMR:
 Distinctly different from “Cell-based AMR" and Berger's “Patch-based AMR"
- Grid represented as combination of non-overlapping, fixed-size (number of cells) tiles
» Tiles refined into 4 new tiles
» Each tile stores “ghost cells”
~ Only lowest level tiles stored

» Variety of Refinement Strategies:
» Gradient criterion
» Loehner error estimator

» Simulation of Sod Shock Tube Problem with AMR:

Density after 160 iterations. Density after 990 iterations.

Introduction to Runtimes

»What are Runtimes?
» Provide high level abstraction for parallel programming on distributed systems
- Offer portability between platforms to enhance productivity
» Mask explicit communication with high level primitives

» Conventional Scientific Computing Approach: MPI+X Model

> Why Runtimes?
- Load balancers to handle changing workloads
- Fault tolerance to increase resiliency
- Homogeneous interface for application developers
» Management of distributed memory

D

Charm++

» What is Charm-+-+?
~ A parallel object-oriented programming languaged based on C+-+-
 Focuses on enhancing programmer produtivity through abstraction of parallel programming
 Original developed at the University of llinois in 1993

» Key Features:
» Tasks are fine grain, over-decomposed, asynchronous units of work
» Communication is message-driven, where messages trigger compute events
» Designed to be asynchronous, including syntax for structured control flow.
» Automatic load balancing
» Automatic work distribution
+ Automatic checkpointing.
» Shown to scale successfully to over 300,000 cores

> Limitations:
» Non-trivial learning curve, including the use of new syntax

High Performance ParalleX (HPX)

> What is HPX?
» C4++ runtime system for parallel and distributed applications
» Aims to overcome common ssues in parallel programming such as work starvation, latency,
overhead, waiting for contention resolution

> Key Features:
+ Global address space provides communication transparency
- Lightweight control objects instead of barriers
> Message driven
 Fully asynchronous execution
» Work stealing task schedulers

> Limitations:
~ HPX s quite new (currently at version 0.98) and rapidly changing.
» Does not yet provide load balancing or fault tolerance

Intel’s Concurrent Collections (CnC)

> What is CnC?
» Task-based C:++ runtime built on Intel Thread Building Blocks (TBB)
+ Focus on productivity of domain experts

> Key Features:
» Programming model built around specifying data dependencies of tasks
» Specify parallelism of application in the form of dependencies and constraints
+ A task consumes and produces Items during a Step
» Scheduler handles load balancing and exploits parallelism based on availability of /tems
~ High portability due to separation of algorithm and tuning
~ Designed with composability in mind

> Limitations:
» Write-once memory simplifies memory consistency model but adds additional complexities
» No integrated fault tolerance

Closing Thoughts and Ongoing Work

» Runtimes:
- Simplify and accelerate the implementation
- Still working on performance comparison

» Ongoing Work:
- Sequential performance analysis
» Comparing tile and cell refinement
- Thermal diffusion
 Integrating EOSPAC

This work was approved for unlimited public release as per LA-UR-14-25562.
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It was also fun outs

Thank you




