

LA-UR- 10-01172

Approved for public release;
distribution is unlimited.

<i>Title:</i>	Accelerated Molecular Dynamics Methods
<i>Author(s):</i>	A.F. Voter
<i>Intended for:</i>	Electronic posting on Web From Conference Proceedings Multiscale Modeling and Simulations of Hard and Soft Materials (MMSM-2009) Bangalore, IN 12/17-20/09

+

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Accelerated Molecular Dynamics Methods

Arthur F. Voter

Theoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico

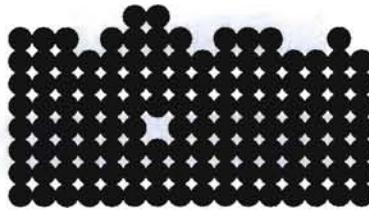
A significant problem in the atomistic simulation of materials, as well as in other areas of chemistry and physics where atomistic simulations are used, is that molecular dynamics simulations are limited to nanoseconds, while important reactions and diffusive events often occur on time scales of microseconds and longer. Although rate constants for these infrequent events can be computed directly using transition state theory (with dynamical corrections, if desired, to give exact rates), this requires first knowing the transition state. Often, however, we cannot even guess what events will occur. For example, in vapor-deposited metallic surface growth, surprisingly complicated exchange events are pervasive. In this talk, I will discuss the accelerated molecular dynamics approach, which we have been developing over the last decade, for treating these complex infrequent-event systems. The idea is to directly accelerate the dynamics to achieve longer times without prior knowledge of the available reaction paths. In some cases, we can achieve time scales with these methods that are many orders of magnitude beyond what is accessible to molecular dynamics. I will give an introduction to the three main methods in this class, hyperdynamics, parallel-replica dynamics and temperature accelerated dynamics, and discuss their relative merits. I will present some illustrative and recent applications to materials

Accelerated Molecular Dynamics Methods

Arthur F. Voter
Theoretical Division
Los Alamos National Laboratory

MMSM2009
Bangalore
December 18, 2009

Los Alamos


Acknowledgments

Danny Perez (LANL, T-1)
Blas Uberuaga (LANL, MST-8)
Sriram Swaminarayan (LANL, CCS-2)
Abhijit Chatterjee (T-1 postdoc, now IIT Kanpur)
Chun-Wei Pao (T-1 postdoc, now Academia Sinica, Taipai)

*DOE Office of Basic Energy Sciences
Los Alamos LDRD
SciDAC (DOE)*

Los Alamos

The challenge

We have some material system (e.g., adatoms on a surface).

We know that if we wait long enough, something will happen.
And then something else, and then something else,...

Using molecular dynamics, we can run about 1 microsecond --
might not even see first event.

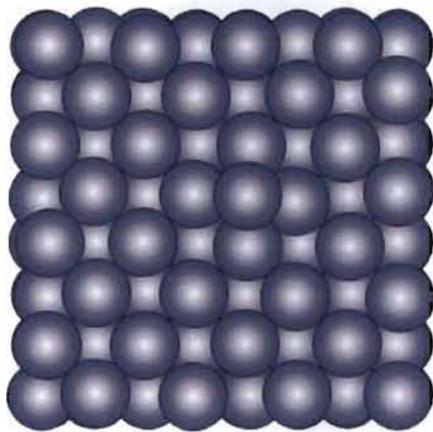
How do we accurately predict the long-time evolution?

Los Alamos

How to get to long times: Kinetic Monte Carlo approach

If we know the relevant reaction pathways, we can
use transition state theory to compute rates.

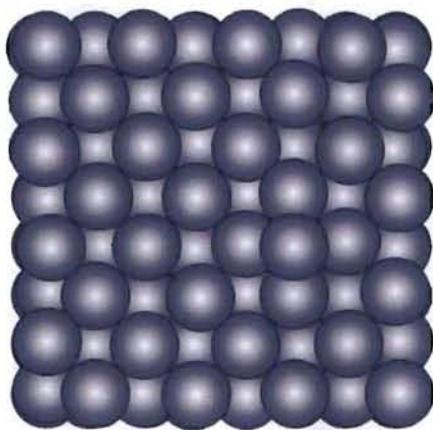
$$k_{A \rightarrow B}^{HTST} = v_0 e^{-\Delta E / k_B T}$$


These rates can be fed into a kinetic Monte Carlo
(KMC) simulation.

KMC is now a widely used and powerful tool.

However, if we are seeking high accuracy, KMC has
the problem that there may be important reaction
pathways that we don't know about.

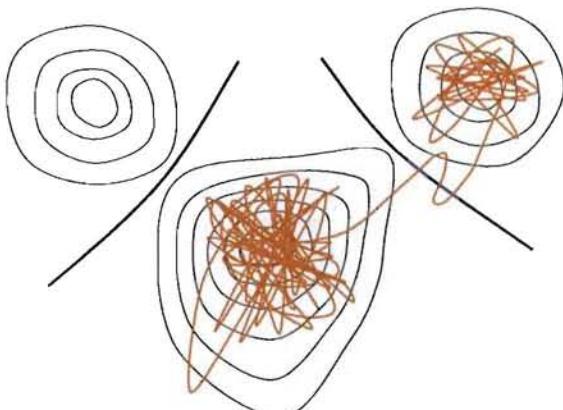
Los Alamos


Cu/Cu(100) hop event, T=300K

4 ps shown during transition event.
Rate at T=300K = once per 25 microseconds.

Los Alamos

Cu/Cu(100) exchange event, T=300K



First seen by
Feibelman,
1990.

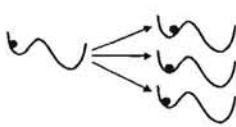
4 ps shown during transition event.
Rate at T=300K = once per 14 seconds.
For Pt/Pt(100), exchange barrier is ~0.5 eV
lower than hop barrier.

Los Alamos

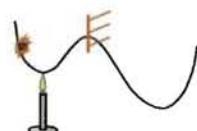
Accelerated Molecular Dynamics

An infrequent-event system vibrates in $3N$ -dimensional basin many times before finding an escape path. The trajectory finds an appropriate way out (i.e., proportional to the rate constant) without knowing about any of the escape paths except the one it first sees. *In the AMD methods, we exploit this property, letting the trajectory find an appropriate escape path, but we carefully trick it into doing this more quickly.*

Los Alamos


Accelerated Molecular Dynamics Methods

Hyperdynamics

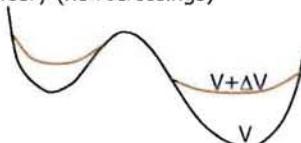

- Design bias potential that fills basins.
- MD on biased surface evolves correctly from state to state.
- Accelerated time is statistical quantity.
(AFV, J. Chem. Phys., 1997)

Parallel Replica Dynamics

- Parallelizes time.
- Very general -- any exponential process.
- Gives exact dynamics if careful.
- Boost requires multiple processors
(AFV, Phys. Rev. B, 1998)

Temperature Accelerated Dynamics

- Raise temperature of MD in this basin.
- Intercept and block every attempted escape.
- Accept event that would have occurred first at the low temperature.
- More approximate; good boost.
(M.R. Sorensen and AFV, J. Chem. Phys., 2000)


Los Alamos

Hyperdynamics

Builds on umbrella-sampling (Valleau 1970's); takes it into time domain.

Assumptions:

- infrequent events
- transition state theory (no recrossings)

Procedure:

- design bias potential ΔV (zero at dividing surfaces; causes no recrossings)
- run thermostatted trajectory on the biased surface ($V + \Delta V$)
- accumulate hypertime as

$$t_{\text{hyper}} = \sum \Delta t_{\text{MD}} \exp[\Delta V(R(t))/k_B T]$$

Result:

- state-to-state sequence correct (because *relative* rates are preserved)
- time converges on correct value in long-time limit (vanishing relative error)

AFV, J. Chem. Phys. 106, 4665 (1997)

Los Alamos

Hyperdynamics - characteristics

Designing valid and effective bias potential is the key challenge.

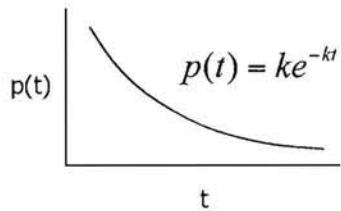
Bias potential can be a function of

- the shape of the energy surface (AFV, 1997)
- the energy (Steiner, Genilloud and Wilkins, 1998)
- the geometry (e.g., bond lengths, Miron and Fichthorn, 2003, 2005)

Must be careful that bias is zero on all dividing surfaces or dynamics will be wrong.

When barriers are high relative to T , boost can be orders of magnitude.

See Michael Falk's talk, next.


Los Alamos

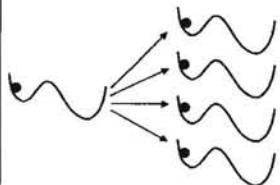
Parallel Replica Dynamics

Parallelizes time evolution

Assumptions:

- infrequent events
- exponential distribution of first-escape times

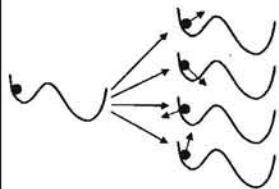
Must know:


- how to detect transitions
- correlation time

AFV, Phys. Rev. B, 57, R13985 (1998)

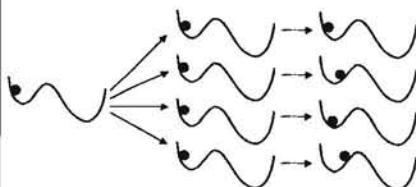
Los Alamos

Parallel Replica Dynamics Procedure


Replicate entire system on each of M processors.

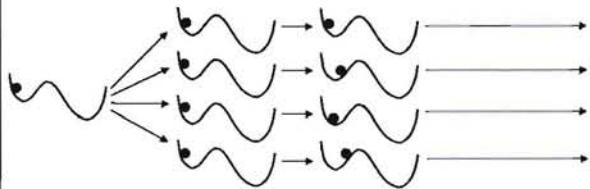
Los Alamos

Parallel Replica Dynamics Procedure


Randomize momenta independently on each processor.

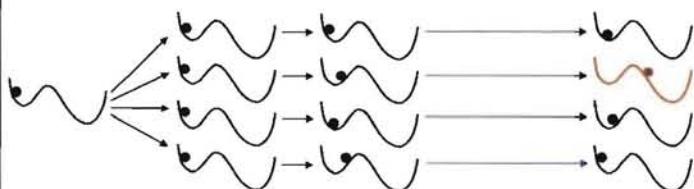
Los Alamos

Parallel Replica Dynamics Procedure


Run MD for short time (τ_{dephase}) to dephase the replicas.

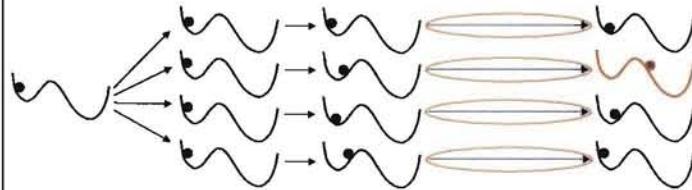
Los Alamos

Parallel Replica Dynamics Procedure


Start clock and run thermostatted MD on each processor.
Watch for transition...

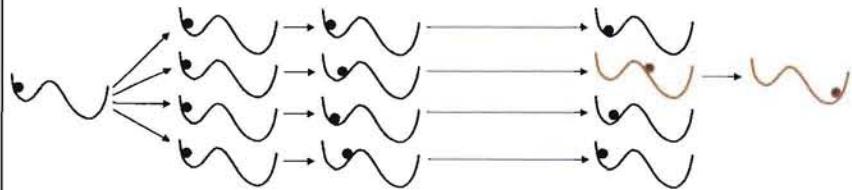
Los Alamos

Parallel Replica Dynamics Procedure


Stop all trajectories when first transition occurs on *any* processor.

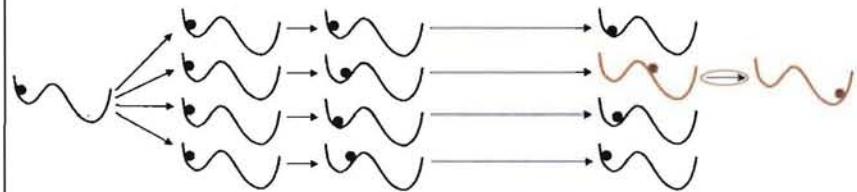
Los Alamos

Parallel Replica Dynamics Procedure


Sum the trajectory times over all M processors. Advance simulation clock by this t_{sum}

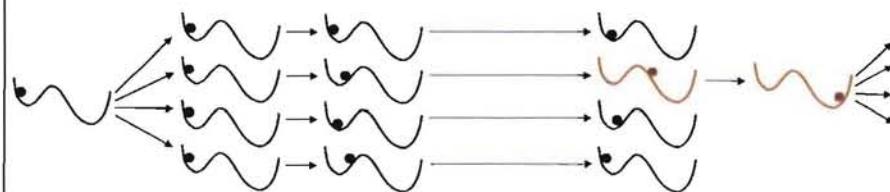
Los Alamos

Parallel Replica Dynamics Procedure

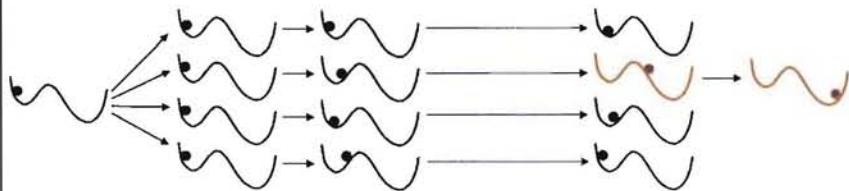

On the processor where a transition occurred, continue trajectory for a time τ_{corr} to allow correlated dynamical events.

Los Alamos

Parallel Replica Dynamics Procedure


Advance simulation clock by τ_{corr} .

Los Alamos


Parallel Replica Dynamics Procedure

Replicate the new state and begin procedure again.

Los Alamos

Parallel Replica Dynamics

The summed time (t_{sum}) obeys the correct exponential distribution, and the system escapes to an appropriate state.

State-to-state dynamics are thus correct; τ_{corr} stage even releases the TST assumption [AFV, Phys. Rev. B, 57, R13985 (1998)].

Good parallel efficiency if $\tau_{\text{rxn}} / M \gg \tau_{\text{dephase}} + \tau_{\text{corr}}$.

Good match to increasing emphasis on multicore and massively parallel architectures.

Applicable to any system with exponential first-event statistics.

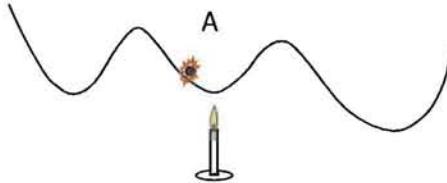
Los Alamos

Temperature Accelerated Dynamics (TAD)

Assumptions:

- infrequent-event system
- transition state theory (no correlated events)
- *harmonic* transition state theory (gives Arrhenius behavior)

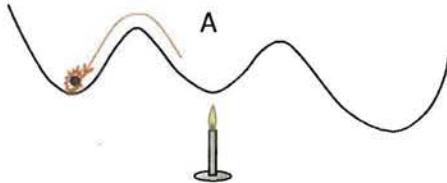
$$k^{\text{HTST}} = v_0 \exp[-\Delta E / k_B T]$$


- all preexponentials (v_0) are greater than v_{min} (e.g., 10^{11} s^{-1})

[Sørensen and Voter, J. Chem. Phys. 112, 9599 (2000)]

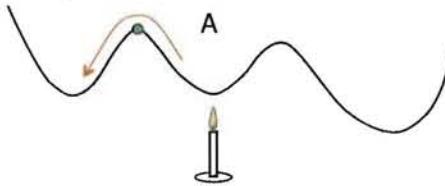
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

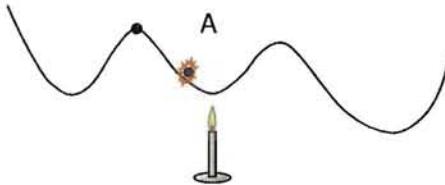
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

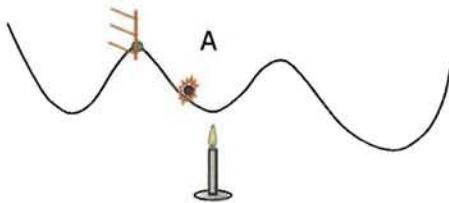
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

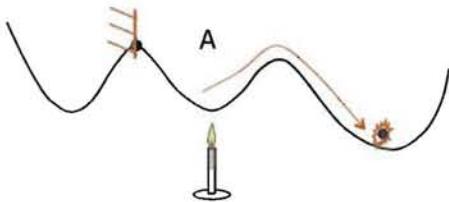
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

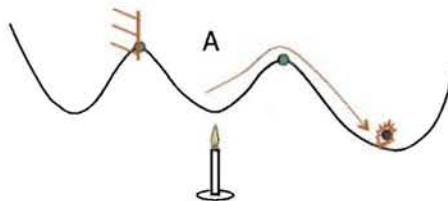
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

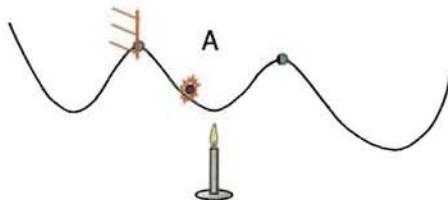
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

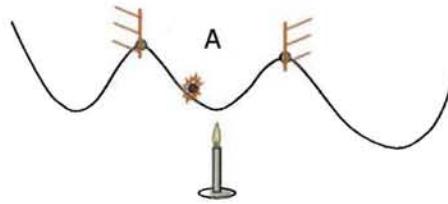
Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

Los Alamos

TAD Procedure


- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

Los Alamos

TAD Procedure

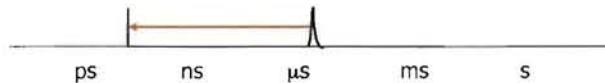
- Run MD at elevated temperature (T_{high}) in state A.
- Intercept each attempted escape from basin A
 - find saddle point (and hence barrier height)
(e.g., using nudged elastic band method of Jonsson et al).
 - extrapolate to predict event time at T_{low} .
- Reflect system back into basin A and continue.
- When safe, accept transition with shortest time at T_{low} .
- Go to new state and repeat.

Los Alamos

TAD - Characteristics

Most approximate of the three methods, but requires only one processor and no bias potential.

As for hyperdynamics, TAD gives large boost for large barriers.


Required saddle search can sometimes cause problems.

Los Alamos

AMD characteristics/challenges

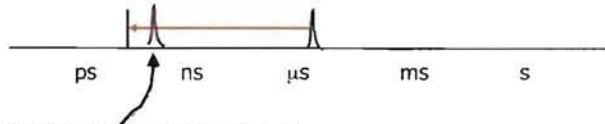
All three methods can give very large boost factors when events are very infrequent.

Basically, the MD time to next event (+overhead) is collapsed to \sim ps time scale.

Similarly, low barriers mean low boost.

Systems with persistent low barriers are our biggest ongoing challenge (e.g., soft-matter systems!).

In principle, electronic structure forces can be used, but they are still pretty expensive (e.g., if we cannot reach \sim 10 ps, we cannot see any events).


Larger systems are also harder, although we are making progress [ParTAD (Shim, et. al. 2007), TAD-KMC (Chatterjee and Voter, 2010), local hyperdynamics (Kim, Perez, AFV, 2010)].

Los Alamos

AMD characteristics/challenges

All three methods can give very large boost factors when events are very infrequent.

Basically, the MD time to next event (+overhead) is collapsed to \sim ps time scale.

Similarly, low barriers mean low boost.

Systems with persistent low barriers are our biggest ongoing challenge (e.g., soft-matter systems!).

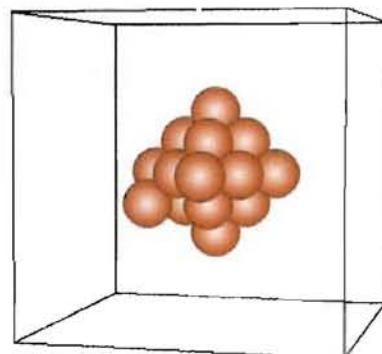
In principle, electronic structure forces can be used, but they are still pretty expensive (e.g., if we cannot reach \sim 10 ps, we cannot see any events).

Larger systems are also harder, although we are making progress [ParTAD (Shim, et. al. 2007), TAD-KMC (Chatterjee and Voter, 2010), local hyperdynamics (Kim, Perez, AFV, 2010)].

Los Alamos

Uses for AMD

- Learn about behavior of system to build higher-level model(s)
- Run benchmark for testing higher-level model(s)
- Directly study long-time behavior



Often, when we run a system out to long time, it behaves in a way that surprises us.

Los Alamos

Long time annealing of 20 vacancy void in Cu

- EAM Copper
- Parallel-replica simulation of 20-vacancy void annealing at T=400 K
 - 20 vacancies is one too many for "perfect" void
- 79% efficiency on 39 processors
- At 1.69 μ s, void transforms to SFT

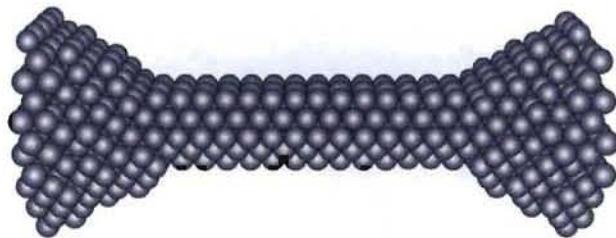
Red atoms=vacancies
Blue atoms=interstitials
Bulk atoms not shown

Completely new transformation pathway for the formation of stacking fault tetrahedra (SFT)

Uberuaga, Hoagland, Voter, Valone, PRL 99, 135501 (2007)

Los Alamos

ParRep of stretching Ag nanowire

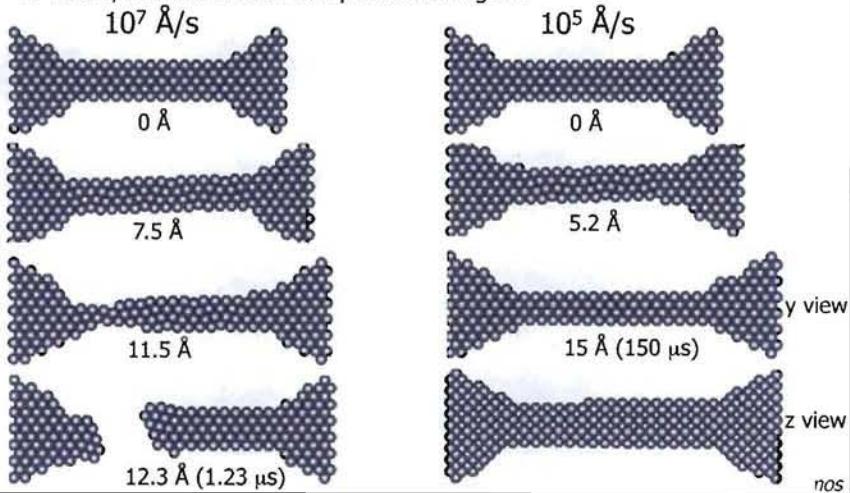

Run on LANL Roadrunner (1 PFLOPS if using all 12,240 cell processors)

Boost good at first; drops as events become more frequent.

Outer edge atoms clamped, advanced 0.01 Å at regular intervals

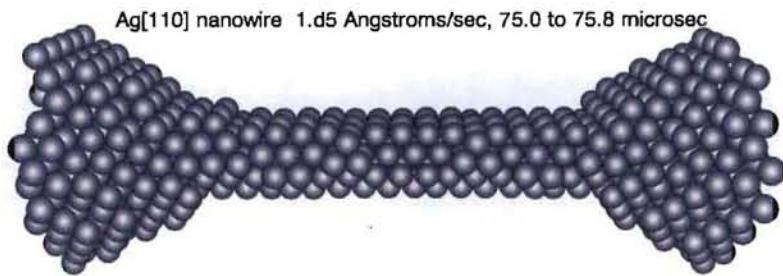
Preliminary results...

Ag[110] nanowire, 1.65 Å/s, 1 us per frame



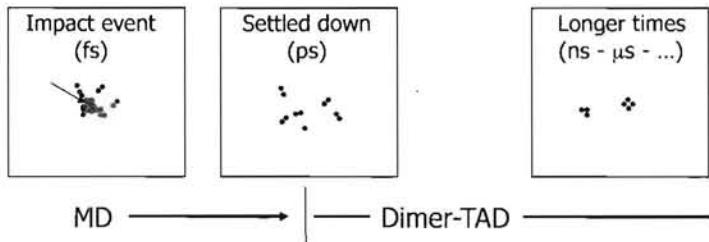
Danny Perez, Chun-Wei Pao, Sriram Swaminarayan, AFV

Los Alamos


Pulling slower changes behavior

At stretching speeds below $\sim 10^6$ Å/s, the system can thin down to four layers, coming back to perfect fcc. At higher speeds, it disorders or necks, but never recovers perfect fcc again.

Active surfaces


Surface diffusion is sometimes highly active – both adatoms and clusters.

Danny Perez, Chun-Wei Pao, Sriram Swaminarayan, AFV

Los Alamos

MgO Radiation Damage Annealing T=300K

Coulombic Buckingham potential

Interesting picture emerges for annealing after 400 eV cascade.

Uberuaga, Smith, Cleave, Montalenti, Henkelman, Grimes, Voter, and Sickafus, Phys. Rev. Lett., **92**, 115505 (2004); Phys. Rev. B **71**, 104102 (2005).

Los Alamos

Growth of interstitial clusters in MgO, T=300K

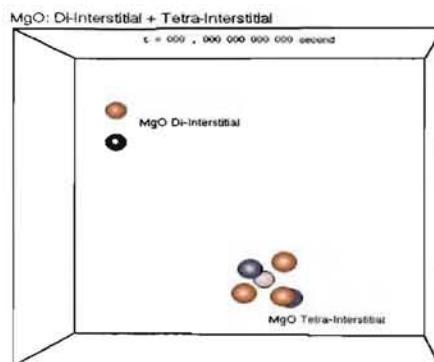
Typical 400 eV collision event forms a few vacancies and interstitials

Diffusing interstitials coalesce into clusters (vacancies are immobile)

Mono-interstitial - diffuses on ns- μ s time scale

Di-interstitial - diffuses on s time scale

Tetra-interstitial - immobile (years)


Is the tetramer a sink
for all larger clusters? **No!**

Los Alamos

TAD Simulation: dimer + tetramer interstitial clusters

- In this case, dimer + tetramer forms hexamer in metastable state
- Metastable hexamer exhibits fast one-dimensional diffusion!
 - ns timescale
 - diffusion is 1D along <110>
 - decay to ground state takes years

(perfect bulk atoms not shown,
red=O--, blue=Mg++)

Los Alamos

Summary

- Accelerated molecular dynamics concept:
 - Let the trajectory find an appropriate way out or state, but coax it into doing so sooner
- Significant speedup over standard MD when barriers are high relative to temperature
- All three methods can give very large boosts when events are very infrequent
- Often encounter unexpected behavior
- Recent advances
 - Self-learning bond boost hyperdynamics
 - Par-Rep on cell architecture
 - Spatial parallelization (TAD, but could do all three)
 - Solid-liquid interface (parallel-replica dynamics, hyperdynamics)
 - P-TAD and TAD-KMC (attaches TAD confidence to KMC)
- Ongoing challenges
 - Low barriers (but see Miron and Fichthorn bond bridging)
 - Detecting and exploiting Markovian state groupings on the fly
 - First-principles forces

Los Alamos