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Reactive Thermal Waves in Energetic Materials 

Larry Hill, Group DE-9 Shock and Detonation Physics 
Los Alamos National Laboratory 

The propagation of reactive thermal waves is important for the problems of 1) 
energetic material cookoff, 2) detonation in heterogeneous explosives, and 3) self­
propagating high temperature synthesis (SHS). In this paper I compute reactive 
thermal waves in 10,20, and 3D, assuming an Arrhenius reaction rate in 
conjunction with various depletion laws. The usual intuition, that conductive 
processes are relatively slow, is invalid for high energy, state-sensitive reactive 
systems. Instead, theory predicts that this class of wave can propagate 
exceedingly fast. This result helps to explain estimates for detonating 
heterogeneous explosives, which indicate that thermal waves must spread from hot 
spots at detonation-like speeds in order to achieve experimentally observed 
reaction zone thicknesses. I also compute the interaction of thermal waves 
emanating from multiple hot spots in close proximity. Finally, I discuss the 
applicability of the ideal theory to the real problems in which reactive thermal 
waves arise. 
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ProbleR1 

• Examine reactive thermal waves 
(RTWs) admitted by heat equation 
with Arrhenius heat addition. Seek 
structure, propagation speed. 

• Generally, assume an arbitrary mass-fraction-based reaction pro­
gress function (RPF). Here, assume that reaction is first order. 

• Assume constant density, constant specific heat. 

• Nominally, idea is to extend classical pre-ignition cookoff modeling 
methods to post-ignition cookoff response. 

• Actually, convective burning generates a rather different response. 
Tangential interest to cookoff, but other apps are more relevant. 

• Question: Are there applicable cookoff scenarios or related 
problems that we haven't thought of yet? (Help) 
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Selected Applications 

I. Self-Propagating High-Temperature Synthesis (SHS) 
Behavior is complex, involving heat and mass diffusion between constituent 
materials. Wave speeds depend on the size distributions and morphologies of 
constituents, plus their thermal properties. Contamination may also playa role. 

2. Cookoff of High Explosives 
In this regime, HE product gases are IOOOX less dense than solid reactants. Thus, 
reactive waves in these systems are convective in nature. Because of the volume 
increase they are also pressure-building, and far from purely thermal entities. 

3. Strand Burning 
Nominally get a laminar burn wave, although convective burning (also called 
erratic burning) may occur. Substantial reaction product motion occurs because 
of the low product density. Again, the wave is not purely thermal in nature. 

4. Detonation of Heterogeneous Explosives 
Shocked reactants are a supercritical fluid. Reactant and product densities are of 
the same order, such that little material motion is introduced. Waves are almost 
ideally thermal, although they propagate within an expanding flow. 
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EstiR1ate of RTW Speed in a Detonation 

• Residence time of a fluid element in the reaction zone is 11/a, 
where 11 = reaction zone thickness, a = sound speed. 

• Argue that time to complete reaction is also rlV, where r is 
the size of large particles, and V is the RTW speed. 

• Further argue that for a heterogeneous reaction zone, 11 = 
O[r]. Equating the two times, find that V = O[a]. 

• Moreover in the detonation reaction zone, a = O[D], where 
D is the detonation speed. Thus, V = O[D]. 

• Menikoff & Sewell: Estimated RTW speeds are too fast for 
inert diffusion. Hot spots must propagate by another mech. 

• I note that if a quasi-steady RTW is very thin, like a shock 

wave, then the RTW could travel as fast as the sound speed 

in the products. Then it would be fast enough. A 
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Heat Equation \Yith Heat Addition 

• Heat equation with heat addition: 

aT == ~ (a2T + j aT) + q ax 
at ax2 x ax c at 

}== 0: slab,} == 1: cylinder,} == 2: sphere 

• Arrhenius heat addition with arbitrary RPF, denoted by g: 

aX = g[x]Ze-T * IT at 
• Consider a first-order reaction, g[x] = 1 - x. 
• Goal: Study universal structure, determine wave speed. 

• Strategy: Make equations as universal as possible through nonclim-

ensionaliztion. Find the universal function for dimensionless 

speed with the aid of numerical calculations. 
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Dimensionless Temperature 

• Define the dimensionless temperature ¢: 

T-To 
¢~--

Tm -To 

• Max temperature Tm can be eliminated by the energy balance: 

c (Tm - To) ~ q 

• Dimensionless temperature can then be expressed as: 

c/J=c(T-To) 
q 

• Next define the dimensionless parameters: 

- To 
To~-

T* 
Dimensionless 
Temperature 

- q 
q ~ cT* 

Dimensionless 
Heat Release 
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High Activation Energy Approximation 

• Because r IT = O[ 1 0], we can make Frank-Kamenetskii (F-K) high 
activation energy approximation. Do this is to eliminate one 
para-meter. (Simplifies the problem and aids in finding the wave 
weed \ ' 

• r-nen exponent TIT can be expressed as: 

T* 1 
- ~ -;:::;- - () 
T To 

where the () is the F-K temperature given by 

T* ij¢ 
() = T,2 (T - To) == q,2 a¢ 

o 10 

• a is the only parameter in the problem. As we shall see, it is the 
heterogeneity parameter for a single hot spot. For values of a < 
10, behavior is homogeneous. For values of a > 10, behavior is 
heterogeneous (i.e., it is dominated by RTWs). 
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Nondimensionalization 

• Define reference time tr and a reference length xro The dimension­
less time and distance and are then 

x ~ t x == - and t == -
Xr tr 

• The model equations then become 

1 oX -
- ~ == Zg[x]e-1/Toe(X ¢ and 
tr ot 

1 o¢ ~ (02 ¢ j o¢) 1 oX 
tr at = x; ax2 + x ax + tr at 

• Can eliminate all parameters except for a by choosing 

and 
o -

Xr = V Z e1/(2 To) 
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Final Equations 

• The dimensionless equations to be solved are 

and 

subject to the initial and boundary conditions 

8¢ 8¢ _ ( -/ ) 2 _ ax [0, t] = 0, ax [00, t] = 0, </>[x,O] = </>00 e- x a , X[x,O] = 0 

• Assume a Gaussian profile for the initiating hot spot. The form is 
noncritical. The only hard criterion is that the hot spot is super­
critical. Heat release soon swamps the energy in the initial spot. 

• Can test for steady-travelling wave solutions by substituting the - - -
variable ~ == x - V t, where V is the dimensionless wave speed. 

• . Substitution only works if j = O. Thus, only plane waves are steady. 
Cylindrical, spherical waves become steady for large x. A 
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Numerical Results for 10 Waves 

a=3 

Homogeneous 

a=6 

Homogeneous 

Transitional 

a = 12 

Hetrogeneous 

Transitional 

a= 24 

Heterogeneous 

• We estimated that RTWs must be shock-like to propagate at exp­
erimentally-deduced speeds. This is in fact the case. A 
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ID Steady Wave Speed (1) 

• The reference time and length 

e1/ To 

tr ==--
Z 

and 

x -
define a reference speed Vr == ~ == J ~ Z e- 1/(2 To) 

tr 

• The actual wave speed is V == V[a] Vr == V[a] J ~ Z e -1/(2 To) 

• The dimensionless wave speed V[a] can depend only on a, be­
cause a is the only parameter in the problem. 

• Because the problem evidently cannot be solved analy_tically, we 
must perform a series of numerical calculations to find V[a]. 

• The function V [a] depends on the reaction progress function, g. 
Here, we shall assume a first order reaction, for which g = 1 - x. 
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ID Steady Wave Speed (2) 
-

• There is a complication in finding V[a]. The material ahead of the 
wave starts to cook off, which causes the wave to accelerate: 

5 10 

x 

• We could get around this problem by assuming that the wave is 
quasi-steady. The main problem is that there is a calculated a, and 

a contradictory time-changing upstream value of a. A 
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ID Steady Wave Speed (3) 

• The best way to address this problem is by extrapolation. Start 
by plotting speed curves for a series of computations: 

300 

250 

200 

;;- 150 

100 

50 
----- ----

0 
0.00 0.Q2 0.04 0.06 0.08 0.10 0.12 

• Choose the minimum of each curve because that is the point of 
zero acceleration. Non-steady effects will be minimal there. 

• Pick off these points for further use. 
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10 Steady Wave Speed (4) 

• Each speed point from the above plot is associated with an 
upstream value of ¢ == ¢oo' which the model assumes to be zero. 

• In reality ¢oo is finite, but it decreases as a increases and reaction 
becomes more homogeneous: 

10 15 20 25 30 35 40 

Q' 

• Calculations become more difficult as a is increased. a == 27 was 

as high as I could compute. At this value. ¢oo is 1 %. A 
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ID Steady Wave Speed (5) 
-

• Plotting V versus a, find that behavior seems to approach a stra-
ight line through the origin as ¢oo ~ o. 

• A depends linearly on q, and q is required to produce a finite V. 
Thus, argue that V[O] == 0; i.e., line must pass through the origin. 

a 

• Argue that this formula is applicable 
to all well-defined quasi-steady RTWs. 

• Fit the speed data to 

Vfit[a] == aa - beClX
• 

Find that V[a] is 

V[a] == 7.48 a, 

such that the complete 
formula is given by 

V = 7~48 q vi/),_ Z 
TJ e1/(2 To) 
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PBX 9502 Arrhenius ParaR1eters 

• For PBX 9502, published Arrhenius parameters give speeds bet­
ween 0[10] m/s and 0[105] m/s (+2 orders of magnitude!). 

• Can turn this around to constrain Arrhenius parameters. Use the 
fact that proposed sets tend follow a line in logZ-T* space: 

• Constrain parameter values to the best-fit line. Find values that 
match the estimated sound speed in the 9502 reaction zone. 

12 14 

logZ 

16 18 20 

• A good "round num­
ber" set is logZ == 17, 
T* == 27,000 K. These 
parameters cannot be 
unreasonable, because 

. they lie within the ran­
ge of published values. 
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3 Classes of Heterogeneous Detonation 

PETN 

Incidental 
throughout 

stick 

Incidental Cj 

HMX 

Incidental center 
Essential edge 

Incidental Cj 

• Evidence that HMX is a transitional form: 

TATB 

Essential 
throughout 

stick 

Essential Cj 

I) HMX has not been initiated in single crystal form (suggests essential 
heterogeneity, or nearly. 

2) PBX 950 I detonation follows Arrhenius kinetics according to Menikoff 
(suggests incidental heterogeneity). 

3) PBX 950 I reaction zone is shorter than the grain scale (suggests 
incidental heterogeneity). 

4) PBX 9404/950 I edge anomaly: suggests mixed behavior in a stick? 
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Conclusions 

• Computed RTWs have a shock-like structure, and can be fast enough to 
agree with estimated RTW speeds in detonation reaction zones. 

• Curved RTWs are unsteady, but approach steadiness as they grow. 

• Deduced a parameter a that characterizes the reaction heterogeneity of 
a single hot spot. 

• Found the speed formula for a plane steady RTW. It is propoartional to 
a, and depends exponentially on the upstream temperature. 

• Computed wave speeds depend sensitively on Arrhenius parameters. 
Demonstrated that this quality can be used to constrain parameter sets. 

• Find that, as expected, PBX 950 I CJ detonations are relatively homogen­
ious; whereas, PBX 9502 CJ detonations are fully heterogeneous. 

• Proposed three classes of heterogeneity in detonation waves: fully 
incidental, incidental/essential mix, and fully essential. 

• Proposed that TATB anomalies, which have tacitly been attributed to 
chemistry, may be generic properties of fully essential behav~ 
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