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Lattice strain information as reflected in
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The Scherrer formula (Scherrer. 1918) describes grain size in diffraction:

L=k-2/A(26),.. cos®

MIC

where & is the Scherrer constant and A(20)_,. is the FWHM in (20) at a
constant wavelength 7. in angular dispersive mode. By differentiating
Bragg's diffraction equation, A=2¢-sinf, with respect to  and 20,
respectively. it becomes:

A(20) = -2(Ad / d) tan @
We substitute into the Gaussian expression for the de-convoluted peak
width and normalize the formula to a general definition of overall strain
Ad/d. thus have: L= b /Adsi-e(FWHM)
which is independent of detecting mode. We substitute into the Gaussian
expression for the de-convoluted peak width and normalize the formula
to a gencral definition of overall strain Ad/d. thus have:

a2 d* = (& +Ad>, [d) + (/LY -d*(P,T)

mns.

High P-T diffraction study of nano-/micron- nickel samples (comparative!)

= ® Peak broadening —
contact stresses at
Recovered lo

mabi il “A il L high pressures

e A C = Peak sharpening —
a : = stress relaxation &
g Pat3 GPa grain growth
- TR K ¥ ”‘L " o

'g : 3 =Hi-T grain growth of
ﬁ A z nano Niat T > 873K
E |-7.u;_:-. sFWHM (high-T) <
Z s N . S FMHM (ambient)

=Peak shift in nano Ni:
grain size reduction

g
/ ﬁk ambtent P-T ; & impurity effect of Fe
il " ]_./ 1 (A}

M

22 20 18 16 14 i.2 10

d-spacing. A



Significant data scattering observed for the nano-Ni compared with
the micron-Ni in the strain derivation via Ad*/d? plot fit
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The diffraction elastic compliances S, and S, of the individual
(hkl) planes for the nickel metal are derived using single
crystal elastic constants. We further derive Young’s modulus

Ey =1 / [SI + % S:) Diffraction Elastic Modulus
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By multiplying DER? = (E,, /E,,)? to the observed raw data,
we correct the strain differences on individual lattice planes.
By choosing the most compliant planes, the (200) peaks, as
reference we derive the upper bound for the apparent strain.

The data scattering of nano-Ni become even more sever at high-P
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High P-T Constitutive Property of Nano-/Micron- Nickel Polycrystallines ; High-T Annealing and Grain Growth of Nano-Ni
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Intial enhancement of bulk modulus observed for the nano-ceramics may result from
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Diamond-SiC composites
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Stability and Mechanical Stability
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Gas Adsorption

Correlation of uptake with surface area
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The metal-organic framework (MOF)
Y(BTC)YH20)-4.3H20 (BTC = 1.3,5-benzenetricarhoxylate) for the present case.

MOFs show striking pressurizing cffect by the cages. Owing to the enormous variety and
flexibility of the frameworks. MOFs may offer superior properties for hydrogen storage.
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