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Perspectives on measurements of prompt
fission neutron spectra

e Spontaneous fission (2°°Cf)

e Neutron-induced fission
 Thermal neutron-induced fission
e Fast neutron-induced fission

A
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Predictions for PFNS measurements

o 239py(n,f) — for incident neutron energies > 0.5 MeV and to

requested accuracy

— Resolve discrepancies for PFNS > 0.5 MeV - probable in 2-3
years

— Produce new data for PFNS in range 0.05 to 0.50 MeV -- maybe in
3-4 years

e 235(n,f) — for incident neutron energies > 0.5 MeV
— Data for PFNS > 0.5 MeV - probable in 3-4 years

— Produce new data for PFNS in range 0.05 to 0.50 MeV -- maybe in
4-5 years
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Predictions for PFNS measurement technologies

* Experiments
— Neutron source — intense, low background needed

— Detectors — good neutron identification (psd or ?), good
efficiency, “modelable” in MCNP

— Data acquisition — implementation of new hardware, firmware,
software — good resolution, good timing, programmable,
capable of handling high counting rates

* Modeling neutron transport as corrections to literature
data, and design and analysis of new experiments

» Los Alamos

NATIONAL LABORATORY

EST.1943
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Predictions for PFNS measurement technologies

* Experiments

— Neutron source — intense, low background needed --no new
facilities for this type of measurement (?)

— Detectors — good neutron identification (psd or ?), good
efficiency, “modelable” in MCNP -- nothing for greatly
advanced capabilities

— Data acquisition — implementation of new hardware, firmware,
software — good resolution, good timing, programmable,
capable of handling high counting rates -- In progress @

* Modeling neutron transport as corrections to literature
data, and design and analysis of new experiments--

~NOW and continuing * % K %k

J
» Los Alamos

NATIONAL LABORATORY
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Discrepancy in monoenergetic data
for high-energy end of PFNS

Knitter (1972) vs. Maxwellian T=1.42
2

—
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Ratio (arb. norm.)

0.5 s |
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Staples (1995) vs. Maxwellian T=1.42
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Measurements made with “white” neutron source at
LANSCE for 23°Pu(n,f): CEA-LANL collaboration

S. Noda et al., Phys. Rev. C A. Chatillon et al., Phys. Rev. C
83, 034604 (2011) 89, 014611 (2014) .

= 04¢ :
20,35 L] 239Pu(nf) PENS En=1.5 MaV,
s

25%u FIGARO Data —— | gos/%
Pu ENDF/B-VII.0 — - 20.25¢
Present Calculation 2 o2t
50.15
o1
0.05;

his work

+ QR
apies-tosy

D o
Lk

NDF B-ViI

uuuuu

—
<

......
‘‘‘‘‘
-

Yield (1/MeV)

(a) Ein =1-2 MeV

—_
<
[\

Neutron Energy (MeV)
; I
poll B TR0
e e
EE []

4 6 8 10 f/f . LI 1 et
E,ui (MeV) @ 0.8] ? ? -
0.7;

0.6;

g R L S

- T T A B AT
Neutron Energy (MeV)

el
M W

T
4

R z'/:/ ;/ .";-.
o

—_
<
(o]

dq,
=
N

o

N
o
©

-t
=
(0]
atio to Maxwellian

R —
—-o—H
H—o-

Data > ENDF for Eout > 7 MeV

Data < ENDF for Eout > 7 MeV

~
» Los Alamos Note: Data for both also for Einc = 1.0 to > 20 MeV 7

NATIONAL LABORATORY

EST.1943

Operated by Los Alamos National Security, LLC for NNSA [ l.‘b




Chatillon data will also be reduced due to time resolution.
Detector calibration difference needs to be included also.

* Correction will reduce A. Chatillon et al.,Phys. Rev. C89, 014611 (2014)
data points above 7 MeV -
but not so much as Noda |

239Rui(n Bl PENS En=1.5 MeaV

data because of better S e o0s
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Literature data, discrepancies and target accuracies

~ 1.4
N o !
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e 0.2 — —: - Talou Monte Carlo, 2011 5.
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Example: PFNS for 23°Pu(n,,,f) —is it a good
guide for PFNS in fast-neutron-induced fission?

« Prompt fission neutron spectra have been measured at thermal
for 23°U and 23°Pu. Reactions at thermal can be dominated by one
or only a few resonances

Do the data at thermal have any relevance to
PFNS for fission induced by higher energy
neutrons?

« Zero order analysis —look at average number of neutrons emitted
in fission. If they vary with incident neutron energy, then there
could well be a change in the spectra of emitted neutrons

A
> L/ojs Alamos
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Are PFNS measured at thermal relevant for
higher incident neutrons?

e Nu-bar for 23>U(n,f) * Nu-bar for >3°Pu has a
has no structure lot of structure
2.46 3.1
239py Nu-bar ENDF/B-VII.1
235 Nu-bar ENDF/B-VII.1 10 u Nu-bar
2.44
29 '\A‘ P PP OPoN
RN R e
E2.42 — i iy 238 W
{ 5 A1 Ol
=] [ ¢ *
< 2.40 3 27 It
2.6 ‘
2.38 i
2.5
2.36 2.4
1802 1.E01  1.E+00 1.E:01  4.E+02  1.E+03  1.E+04 1.E02  1.E01 1.E+00 1.E+01 1.E+02 1.E+03  1.E+04
En (eV) En (eV)

Note also the scale: <<1% for 235U; up to 12 % for 23°Pu
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Correlate structure in nu-bar for 23Pu(n,f) with fission
Cross section

* Fission cross section from Weston [NSE 115,164 (1993)]
* Subtract a constant (2.82) from nu-bar for clarity of display
* Add spins and parities (all positive) from Mughabghab

— 0+ resonance shows no effect in nu-bar
— 1+ resonances show varying effects
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Now the good news (maybe)

* Nu-bar at thermal for 23°Pu(n,f) is almost the same as for 1-10 keV.
Maybe the thermal neutron PENS is relevant to higher energies

* Q:Is nu-bar at thermal dominated by the 1* resonance at 0.3 eV ?

3.1
239py Nu-bar ENDF/B-VII.1
3.0
2.9
D —- ..M‘UM“"'NW )
2.8
2l
4
2 27 s
,o | 0.025 eV !
(thermal) i
2.5
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1.E02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03  1.E+04
En (eV)
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Predictions for PFNS measurements with
fission induced by epithermal neutrons

e 239Py(n,f) — for incident neutron energies in resonance

region — not planned but would be interesting physics!

— Note: gamma production from fission in resonance region has been
studied. Yes, spectra do depend on incident neutron energy and
correlate with variations in nu-bar!

Ref. S. Mosby et al., DANCE collaborations
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Fission total y-ray energy vs. incident neutron energy

for 23%Pu(n,f)
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* Fluctuations in prompt fission gamma energy anti-correlated

with neutron emission

* More detailed information on 23°Pu(n,yf) process (Lynn, 1965)
* Qualitative behavior reported by Shackleton in 1972
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Advanced PFNS measurements

e Correlate PFNS with fission products (Z,A) — difficult —
could improve models of fission physics
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WNR/LANSCE provides neutrons from 100 keV to
200 MeV for PFENS Studies

Neutron spectrum
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Fission sample and fission counter (LLNL) to
contain ~ 100 mg of 3°Pu
o Parallel-Plate Avalanche Counter (PPAC)

In Beam Cover Off One Foil Stack (of 10)

10cm diam. x 17cm Foil: 5cm diam. t = 400 pg/cm?
Sample: 4cm diam.  Timing res.: 1—1.5ns

. Los Alamos Source — PPAC - Time of flight (1)

NATIGNAL LABORATORY - Energy of incident neutron

Operated by Los Alamos National Security, LLC for NNSA 7.\ I.YD



Chi-Nu array of fast neutron detectors measures
prompt neutron spectra emitted in fission

6Li-glass « 22°Li-glass scintillation
) detector array detectors - - or
3 « 54 liquid scintillation
neutron detectors

Fission
chamber
(PPAC)

» Los Alamos

NATIONAL LABORATORY
3

EST.194
Operated by Los Alamos National Security, LLC for NNSA



Challenges for experiments

e Low energy part of the PFNS (below ~ 500 keV)
« Small yields

e Scattering of PEN

» Detector efficiency -- 6Li-glass
* Neutron scattering

* Clean experimental beam
e Data acquisition (DAQ) rate

* Challenges of systematic uncertainties - TBMIND*
 Dream experiment — TBMIND* - (maybe)

ST.19
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Reminder — Shape of PFNS is approximately Maxwellian

Semi-log Linear
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Chi-Matrix relates incident neutron energy to fission
neutron output

Chi-Matrix
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Fission neutron spectra are predicted by models
to vary with incident neutron energy

—0.5MeV
—2.5MeV
16 —5.0 MeV
Ratio to thermal fission :smﬂ\?v
141 Incident neutron energies from 0.5 to 10 MeV 9 MeV
ENDF/B-VII

1.0 1
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All elements of Chi-Matrix are correlated, at least to
some degree, both experimentally and theoretically

Chi-Matrix
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Neutron detectors — two types

54 Liquid
scintillators —
1.0 m flight path

» Los Alamos
NATIONAL LABORATORY
EST.1943

22 6Li-glss
scintillators —
0.4 m flight path

PPAC — neutron detector - Time of flight (2)
- Energy of outgoing neutron 27

Operated by Los Alamos National Security, LLC for NNSA



Data in the literature: PENS for 23°Pu(n,f)
— Incident monoenergetic sources
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Data in the literature: PENS for 23°Pu(n,f)

— Incident continuous sources
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Chi-Nu measurements will be for incident neutrons
0.5to > 20 MeV and PFN’s from 0.1 to > 12 MeV
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Time-of-flight spectra from PPAC to neutron detector

Prompt fission gammas

\
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Two paths of analysis

we Ay
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1. Unfold: Convert TOF point by point to energy, correct for backgrounds, detector response,
include uncertainties in efficiency, timing, and path length, effects of neutron scattering, rebin
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2. Forward analysis: Vary parameters, find best fit to TOF spectra using detector response,
backgrounds and neutron scattering to get uncertainties in parameters
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Model-constrained data

 How much reliance should we put on the model to
correlate model parameters for fission induced by
neutrons of different energies?

A
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Summary

e Some data in literature for PENS for 23°Pu(n,f)
— Discrepancies

— Uncertainties not well documented

* New experiments are underway at LANSCE

— Many components of uncertainties; most are correlated
— Forward analysis

* Question — how closely should analysis and evaluation be
tied to fission model?

A
° L;Z; Alamos

NATIONAL LABORATORY
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Some perspectives on NDND for PFENS

* Mining of past data with new analyses (not just PFNS)
— MODELING!
— Covariances

* Need new experimental approaches
— Low background facilities

— Neutron detectors for fission neutrons below 0.5 MeV
— Good n-gamma discrimination
— Good efficiency
— Good timing
— Measure direction of fission product in coincidence (reduce
systematic error)

— Identify fission product Z,A after neutron emission (reduce
possible systematic errors, improve understanding of fission

* Any experiment to search for pre-acceleration neutron emission

/) — Induced by neutron or proton or photon or ...
» Los Alamos

NATIONAL LABORATORY
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PPAC alphas from 23°Pu decay are not cleanly
separated from fissions

» Los Alamos
NATIONAL LABORATORY
EST.1943
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Signal is within the red polygon; background is
everything else

Pulse Integral vs. Time Difference, ppac to 'ligl2' / Digi. 22265, Ch. 2 pi_vs_tdiff_022

Entries 3743845

Mean x 4.157 = 0.2939
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Go to next energy range of resonances, 20-40 eV

* Fission cross section from Weston [NSE 115,164 (1993)]
e Subtract a constant (2.70) from nu-bar for clarity of display
* Add spins and parities (all positive) from Mughabghab

— 0+ resonance shows no effect in nu-bar
— 1+ resonances show varying effects
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Uncertainties and correlations

12 — Due to unknown sample
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Timeline for ChiNu Measurements
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Uncertainties (1) — incident neutrons

e Timing — accuracy and time resolution (AT,..)
*  Flight path length and spread (ALpgam)

* Quality of beam
— X-Y distribution of beam — position and uniformity
— Beam current — stability
— Beam energy — contaminants from down-scattered neutrons?
— Dark current
— Wrap around of micropulses
— Protons in beam?

e Background from other beam lines
— Shutter status
— Material in beam

e Polarization of neutron beam ? Maybe, although probably small
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Determining the centroid of the fission events
requires care

e Alignment of beam and 2%°Pu sample
* Uniformity of beam and sample

Target

/

Beam

Fissions = product of beam x target
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Uncertainties (2) — fissionable sample in PPAC

* Position relative to beam
e Uniformity of distribution
— Actual distribution in x and y
* Efficiency
— Fission fragment angle
— Loss due to short distance in gas (normal to foil)
— Loss due to oblique angle ( ~90 degrees)
e Biases with respect to fission fragments
— Energy Loss ( function of KE, Z, A) and its distribution
e Pulse height cuts
— at high energies, both fragments can come off foil in the forward hemisphere
e Construction materials and as-built design — needed for modeling
e Timing resolution and stability of timing (determined by photofission from
gamma flash from neutron source)
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Uncertainties (3) — neutron detectors

* Distance to center of fission chamber
— Effective distance — function of neutron energy
— Distribution of events in thickness of scintillator

* Detector response (more than just “efficiency”)
— Timing resolution and stability of timing
— Efficiency - calculated
— Light curve
— N-gamma discrimination

e Gain stabilization
— Short time -- Within macropulse
— Long time — drifts due to temperature, line voltage, etc.

e Verification of calculated efficiency with 2°2Cf PPAC
— How well is the “standard” known
— Same scattering issues as with 23°Pu PPAC

e Room background
— Time independent

5—7 — Time dependent
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Correlations and uncertainties due to statist

foreground spectra for 1 week of data
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Systematic effect of flight path uncertainty
analytic estimate versus MCNP
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Correlations and uncertainties due to uncertainty
In path length

Correlation matrix with uncertainties
for DL=0.2 cm
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Correlations due to uncertainties: time-of-flight, path
length and binning come from shape of PFNS
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Denise Neudecker puts all these uncertainties
together — correlation of uncertainties

Cor. of ©°Pu PFNS of Staples (1995)
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