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An Information Theoretic Approach to Use
High-Fidelity Codes to Calibrate Low-Fidelity Codes

Allison Lewis* Ralph Smith* and Brian Williams'

Introduction

Information theory in a Bayesian framework can be used for experimental design or optimal
evaluation strategies for codes.

Within the context of nuclear plant design, there are a number of regimes for which
it is prohibitively expensive or physically infeasible to obtain comprehensive data. For
example, measuring CRUD data, in the ideal scenario, requires the complete shutdown of
the plant and removal of the fuel rods. After data acquisition, engineers are left with only
a low-resolution image of the deposit from which the data must be digitized and used in a
least-squares inference setting. The process is further complicated by the fact that thermal
contraction of cladding during cooling can cause CRUD to break off rods, thus distorting
measurements. Furthermore, cold CRUD does not accurately reflect boron levels during
operation where hot CRUD serves as a boron absorber. Due to the expense and limitations
associated with collecting these data, optimal experimental design is critical.

High-fidelity models can, in some cases, be used to predict physical behavior in regimes
where physical data are unavailable. To utilize these models, parameters such as those
in closure relations must be inferred using either data or other validated high resolution
codes. Due to their complexity, these codes are computationally expensive and may take
on the order of hours to days to run. This motivates the use of surrogate or low-resolution
models, which are less comprehensive but provide the numerical efficiency required for
design optimization or control implementation. These models also have parameters or
inputs that must be calibrated using experimental data or simulations from validated
high-fidelity codes.

A number of methods have recently been proposed to address the integration of high-
and low-fidelity codes to predict future observations in an efficient manner. As described
fully in [11] and introduced earlier in [14], multi-scale frameworks have been proposed
for use in many nuclear transport models. In these models, the full domain is split into
multiple sub-domains on which a micro-scale approach is applied. A fine-scale transport
equation is solved over each sub-domain characterized by appropriate boundary conditions,
and cross-sections over angular direction, energy, and space are determined in a manner

*Department of Mathematics, North Carolina State University, Raleigh, NC 27695
tLos Alamos National Laboratory, Los Alamos, NM 87545



that preserves neutron reaction rates. A coarse model is then applied to the domain as a
whole; a low-order approximation of the transport equation is solved over the entire spatial
domain, but without the dependence on the angular direction that was removed via the fine-
scale method. This allows for a more efficient evaluation of the model. However, there are
weaknesses to this approach, the most significant of which is that the boundary conditions
used in the micro-scale model to preserve neutron reaction rates are not necessarily refined
based on the coarse-scale solution. Schaefer et al. [11] discusses an approach that addresses
the updating of the fine-scale boundary conditions to meet the requirements of the coarse-
scale model.

A second method for integrating high and low-fidelity models is that of the Method
of Manufactured Universes (MMU) proposed in [16]. This framework defines a manufac-
tured reality from which “experimental data” is collected, a proposed model with uncertain
inputs which may contain model discrepancy, a process under which uncertainty quantifi-
cation on the uncertain parameters is to be performed, and a follow-up assessment that
can determine the accuracy of those uncertainties. The researcher defines the laws of
their manufactured “universe” and creates experimental data—coinciding with the high-
fidelity measurements from this investigation—that follows these laws and may contain
measurement error. These “experiments” are then simulated via the proposed model—the
low-fidelity model—and the differences between simulation and reality are measured us-
ing a proposed method. Once the input and parameter uncertainties are quantified, the
simulated model may be used to predict future observations with a corresponding level of
uncertainty.

We employ an information-theoretic approach to calibrate the parameters in the low-
fidelity model, achieving an accurate approximation to the computationally expensive high-
fidelity model while minimizing the number of required high-fidelity code evaluations. Our
goal is similar to that in the method of manufactured universes (MMU) detailed in [16]:
predict the behavior of a complex system using simulations or experimental data and be
able to assess the accuracy of those predictions. We first define a high-fidelity model
that accounts for the physical characteristics of the “manufactured reality” in which the
problem exists—this model may be a set of governing equations that abide by the laws we
have defined for our problem’s “universe”. From this model, we can simulate the behavior
of a quantity of interest (QOI)—optionally, measurements here may be perturbed by a
prescribed error model for a more realistic setting. In the MMU framework, an approximate
model is then constructed to test a particular uncertainty quantification method and to
assess its predictive capabilities [16]. Similarly, we construct a low-fidelity model for use
in prediction. Using high-fidelity model evaluations chosen according to our information-
theoretic methods, we calibrate this low-fidelity model to be a low-cost alternative to the
original code. This approximation is then used in place of the high-fidelity model to make
future predictions when the evaluation of the high-fidelity code is prohibitively expensive.

During the calibration stage, we address the issue of optimal high-fidelity code eval-
uation using a Bayesian framework. As previously mentioned, the goal is to accurately
calibrate low-fidelity model parameters using as few high-fidelity model evaluations as pos-
sible. By measuring the amount of information between potential designs and parameter
distributions, we can select the design that will most significantly reduce the amount of
uncertainty in the parameters. We utilize a sequential design setting, where each specific



design is selected based on its optimal ability to reduce uncertainties in the parameters.
Once selected, the corresponding high-fidelity simulation is run and the newly acquired
data is used to recalibrate the model parameters. The posterior distribution resulting
from this calibration becomes the prior distribution for the next cycle. Mutual informa-
tion between parameters and designs is computed again, and the next most profitable
experiment or high-fidelity simulation is chosen. Once a point is reached where infor-
mation gain is no longer significant, the process is terminated and the cost of additional
high-fidelity model evaluations or expensive experimental data acquisition is avoided. We
consider two methods for estimating the mutual information between random variables or
distributions. The first is based on Monte Carlo evaluation whereas the second utilizes a
kt'-nearest neighbor (kNN) algorithm to approximate the mutual information.

After defining these two methods of mutual information estimation and demonstrating
each with a simple example, we include several applications to illustrate these concepts. In
the first, we fit a quadratic model to the analytic solution of the steady state model of the
heat equation. For the second, we fit a solution derived via a finite difference construction
to the analytic solution of the diffusion equation. In our third example, we compare a
low-fidelity point kinetics model to a one-dimensional neutron diffusion model. In each of
these first three examples, Monte Carlo and kNN methods are used to accurately calibrate
the low-fidelity model parameters for use in later system predictions with as few high-
fidelity code evaluations as possible. Our final example delves further into the method of
manufactured universes, illustrating the calibration of a low-fidelity diffusion model in a
particle transport “universe” that behaves according to the Sy discrete ordinates method.

1 Design

We employ the following experimental design protocol to optimally evaluate high-fidelity
codes to calibrate low-fidelity codes. Given a set of observations D,,_; = {czl, a~l2, I~ Jn_l}
of the high-fidelity code, we seek an evaluation strategy &, € = so that uncertainty in
low-fidelity model parameters 6 € R? is reduced when the model is re-calibrated using the
new high-fidelity data point d,. To specify &,, we employ the mutual information strategy
reported in [1, 19] and more generally in [9].

We employ the statistical model

dn = de(0, &) + 0(n) + €n(6n) (1)

where dy(6,&,) denotes the low-fidelity model, which depends on parameters 6 € RP that
we seek to optimally calibrate using synthetic data constructed using a high-fidelity model.
Here &, € = denotes the n'® design or evaluation strategy where = designates the set of
possible evaluation strategies or experimental conditions. For the examples considered
here, = is taken to be a discrete set of independent variable values. We denote potential
discrepancy in the low-fidelity model by §(¢,) and random measurement or discretization
errors by £,(&,).

When using mutual information measures to determine the next design point &,,, we
employ independent and identically distributed (iid) Gaussian errors, €,(&,) ~ N(0, 0?),
where o is a user-specified parameter. Throughout this work, we take 20 to be 10% of



max;—1 ... n—1 dp(&;), where dj(&;) is the high-fidelity solution evaluated using the ; design
strategy. An alternative option is to infer ¢ during the calibration process. We note that
this error assumption is commonly valid for measurement errors but will likely need to be
modified for biases common to numerical errors.

For this investigation, we neglect model discrepancies and take §(§,) = 0. Discussion
regarding the use of Gaussian processes, § ~ GP(0; \s, ps), to quantify § is provided in
5, 6].

For a given design &,, the n'" observation d,,, generated by the high-fidelity model
dn (&), is given by )

dn = dh(gn) + gn(&ﬂ) (2)

where potential numerical or measurement errors £,(&, ) are assumed to be iid and normally
distributed, £,(&,) ~ N(0,52). Here 7 is also a user-specified parameter. We take 25 to
be 10% of max;_; ... ,—1 dn(§;) but note that, in general, & can differ from . We employ
the high-fidelity model (2) to generate the synthetic data used to calibrate the low-fidelity
model.

The change in knowledge about the model parameters due to the addition of new
synthetic or experimental data d,, is given by Bayes’ rule

p(D,|0)p(0)  p(dn, D—1|0)p(6)

p(0|Dy) = p(Dn)  p(dn, Dpy)

for the new data set D, = {d,, Dn,_1}. The goal in experimental design is to optimize
the information provided by an experiment or high-fidelity observation d,, based on the
design &,. Because our objective is to determine the distribution of the model parameters
6 from the calibration of our model with data d,, using as few experiments as possible,
the strategy upon which we base our design decision should be chosen according to the
amount of information provided by the proposed data as a result of measuring under design
conditions &,. Since d,, has not yet been observed when we make a decision regarding the
choice of &,, we employ predictions d,, provided by the statistical model (1) to determine
&n.

We employ Shannon entropy estimates to quantify the mutual information between
the proposed observation d, and parameter values 6. For a random variable © having a
corresponding density p(#), the Shannon entropy is defined as

H(©) = - Lme) log(p(6))d6
for the prior and
H(O)r) = - pr\x) log(p(6]))d6

for the posterior distribution given data x. We define the utility of observing the high-
fidelity code at condition &,, perturbed by error, as

Uldnste) = |

p(G\dn,Dn_l)logp(eldn,Dn_l)dG—f p(0|Dy—1)log p(0|Dy—1)db,  (3)
Q Q
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which is a random function of unobserved data d,,. By marginalizing over the domain D,
the set of all unknown future observations, we obtain the average amount of information
contributed by the proposed experiment &,. The result is the mutual information

10Dyt 60) = E[U (s 60)1Doet] = | Ul &)l D116, (@)
D
between the model parameters # and the proposed observation d,, at design condition &,.
This gives a measure of the parameter uncertainty reduction provided by knowing the new
data. We choose the optimal set of design conditions ¥ to be the design that maximizes
this quantity, namely

§n = argmax [ (05 dn| Doy, &n)-

The high-fidelity code is then evaluated using the design condition £ and the resulting
data d, is used to recalibrate the model parameters #. This design is then eliminated from
the design set, as design replication is not considered in this study. We note, however,
that by allowing replication in design selections, one can formally quantify uncertainty in
high-fidelity code calculations due to parameter variation; e.g., turbulence models in CFD
codes. A basic implementation of our method is outlined in Algorithm 1.

Algorithm 1 Design Implementation

(1) Define N, the number of samples to be used in either the Monte Carlo or kNN
algorithms.

(2) Initialize a list of pre-existing high-fidelity data, [(&1,dy), (&2, ds), ..., &, d,)].
(3) Define list of possible design conditions, [&11,& 12, ..., &s]-

(4) If r = 1, run the DRAM algorithm (see Appendix A) to construct a chain {#?} | of
size px N from the prior distribution p(6|D,,—1) where p is the number of parameters.
If » = 0; that is, there is no pre-existing data, construct a chain of size p x N by
sampling an informative prior p(€) of choice.

(5) Send the chain {6’} to the Monte Carlo or kNN algorithms detailed in Sections 1.1
and 1.2.

(6) The Monte Carlo and kNN algorithms return a single design condition &,. Append
this value and the corresponding high-fidelity prediction d,, = dp(&,) + £,(&,) to the
previous data list to obtain

[(517 Jl)v (527 CZ2)7 ) (gm CZT)? (fnv Jn)]

(7) Repeat steps 4-6 until all designs are used or a user-specified error tolerance is met.




1.1 Monte Carlo Method

In general, the integral in (3) cannot be directly evaluated and requires numerical approx-
imation. Substituting (3) into (4), we obtain

p(& dn‘Dn—la §n>
p(dn’anla €n>

:
|| #6.4.1Dss. ) 1085061, )0, )
D JQ

-
1(0;d,| D1, &) = fp(@,annl,ﬁn) log dfdd,,
p Jo

p(ea dn|Dn—17 gn)
(0|Dn—1)p<dn|Dn—lu gn)

The integral (5) is approximated via Monte Carlo quadrature. First, N samples {#°}Y ,
are drawn from the prior p(6|D,,_1), which describes the state of knowledge about param-
eters 0 existing before the new observation d,, is obtained. Given " and &,, d', is drawn
from the conditional predictive distribution p(d,,(£,)|0%, Dy—1,&,) derived from the statis-
tical model (1). We note that the joint probability distribution p(0,d,|D,_1,&,) may be
written

-
= J p<97 dn‘anla €n> log d‘gddn
D JQ b

J

p(ea dn|Dn717 gn) = p(dn|9> anlu gn) p<9|Dn71) 5
leading to the following expression

pldalDcr ) = |

p(6, o Dyt €2) 6 — f p(d]0, D1, €0) p(0] D) dB
Q

Q

for the evidence p(d,|Dy—1,&,). Our samples of € can thus be used to estimate the evidence
for design condition &,

X 1< -
p(dn|Dn—1a gn) = N Zp(dnw(])a Dn—lagn)‘
j=1

With these expressions in hand, the logarithm in the integrand of (5) can be written

p(gydn’Dn—lagn) _ lOg p(dn|‘97 Dn—l;én)
p(0|Dn71>p(dn|Dn717£n) p(dn’anlagn) ’

resulting in an estimate of the mutual information (5) for design condition &,,

log

p(dmel7 anlv 5”)
ﬁ(denflafn)

For §(&,) = 0 and £,(&,) ~ N(0,02), (1) results in the conditional predictive distribution
p(d,(€)]0, D1, &) being Gaussian with mean dy(6, €,) and variance o?.

After computing these quantities and estimating the mutual information, the design
&, that yields the largest mutual information [(6;d,|D,_1,&,) in (5) is chosen as the
next design in the sequence. We evaluate dj,(&,), sample &,(&,) ~ N(0,6%), augment the
available data D,,_; by d,, = dn (&) + €,(&), and continue the sequence.

. 1 X
[(e;dn‘Dn—bgn) = NZlog (6)
i=1
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Each of our examples utilizes a parameter space of dim(f) < 3 so tensored quadrature
techniques are feasible. For moderate dimensionality—e.g., p = 4 to approximately 30—
one can employ sparse grid quadrature techniques or employ the more efficient kth nearest
neighbor (kNN) algorithm detailed in Section 1.2. In this work, our Monte Carlo estimates
are used primarily to verify the kNN algorithm.

1.2 kNN Method

The second method of mutual information estimation considered in this paper uses the
kNN (k*'-Nearest Neighbor) method proposed by Kraskov et al. [8] and summarized in
Algorithm 2. We draw N samples from the prior distribution p(|D,,_1) computed via the
Delayed Rejection Adaptive Metropolis algorithm [3, 15], detailed in Appendix A, creating
a chain X = (0,d,(&,)) with which we have appended the outputs for each sample of
parameters predicted according to the statistical model (1). For each chain element X,
we compute the distance €(i)/2 = ||X; — Xj@)||eo Where X} ;) represents the kth nearest
neighbor to X; in the chain {X;}" ,, and determine the number of points in each marginal
subspace ng and n, that lie within €(4) /2 of the projected point; see Figure 1 for an example
of this computation. As detailed in [8], the mutual information can approximated by

I(0; dn| Dy, 6n) ~ (k) = E[¢(ng + 1) + (g + 1)] + ¥ (N), (7)

where 9(-) is the digamma function. For a derivation of (7), see Appendix B.
We note that the value of k£ does not need to be fixed. For each design tested, the
mutual information may be calculated for a vector of possible k values, and the k that

dM

o | E

' ([ ] '
o o °
____________________ .
: ° T
° |
° X; . e :
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o) °

el

) N

e___EO J o

v

Figure 1: Calculation of €(7), ng(i), and ny(i) for the case k = 1. Here we have ng(i) = 3
and ny(i) = 4. Note that the kth nearest neighbor is not included in the determination of
ng and ng.



Algorithm 2 kNN Method

(1) Fix value of k (e.g., k& = 6) and define number of kNN vector elements N (e.g.,
N = 2000).

(2) For each potential design &,

(a) Create a vector with dim(#) + dim(d) rows and N columns

(i) In the first dim(@) rows, draw N samples, {#°} . from the prior distribution
p(0]Dy—1).
(ii) In the next dim(d) rows, place d,(&,), i =1,...,N.
(iii) Normalize the data vector,

X = {(diag(s ) (X — )},

where p = [0,d]T is a (dim(#) + dim(d)) x 1 vector of sample means and
s = [sg, 4|7 is the sample standard deviation.
(b) For each sample X; in the vector, compute €(i)/2 = ||X; — Xy ||oo-

(¢) For each sample X;, compute ngy(i) = # points in § marginal space with at least
one coordinate within distance €(i)/2 and ny4(i) = # points in d marginal space
with at least one coordinate within distance €(7)/2.

(d) Estimate the mutual information:

I(0; dn| Dy, 6n) ~ (k) = E[¢(ng + 1) + (g + 1)] + ¥ (N),
where 9(+) is the digamma function.

(3) Let & be the design such that maxg, 1(0;d,|Dn-1,&,) = 1(6;dn|Dp—1, ).

yields the maximum mutual information value that we employ. In this paper, we fix k = 6
based on previous work done by Terejanu et. al [19], and save the analysis of a varying k
for future work.

2 Demonstration of Mutual Information Algorithms

To demonstrate the estimation of mutual information using both the Monte Carlo and kNN
methods, we consider a simple example of two Gaussian random variables, X ~ N (pi,, 02%)
and Y ~ N(py,02). This example is chosen to illustrate the convergence of the Monte
Carlo estimation to that of the kNN method when enough samples are taken. For our later
examples, computing the Monte Carlo estimate with the number of samples required for
convergence is often too cost-prohibitive so we demonstrate here that both methods do in

fact yield the same results if the number of samples is taken to be sufficiently large. Here



we compute the Monte Carlo estimate via direct integration of (5)—future work will focus
on implementation of the mutual information estimate (6).

For this demonstration, the values of y, and p, are randomly selected from (0, 1).
We randomly select a covariance matrix of the form

2

cov(X,Y) = ( Ta 0’32‘1/ )

Ozy O,

such that o, > 0. This last requirement is due to the fact that mutual information is
equal to zero if and only if the random variables are independent. As this is easy to test,
we choose the covariance value o,, such that the variables X and Y are at least weakly
correlated. The results included here are for mean and covariance matrices

pe | [ 0.3005
wy | | 0.1482

0.5434 0.3971 ]

and

0.3971 0.3500

We estimate the mutual information via both the Monte Carlo and kNN algorithms,
for increasing values of N, and report the results in Table 1. We observe that the Monte
Carlo estimate of the mutual information converges to that provided by the kNN algorithm
as the number of samples NNV is increased, thus verifying the accuracy of the two methods.
However, the convergence of the two estimates comes at a cost. Whereas the computation
time for the NN method is nearly instantaneous in all four trials, the time required to
estimate the mutual information via Monte Carlo quadrature grows exponentially as NV is
increased. This is due to the direct integration of (5) and future work will focus on the
implementation of the estimate (6).

cov(X,Y) = l

# Samples | kNN | MC | MC Time (s)
Trial 1 250 0.8281 | 1.0410 7.25
Trial 2 500 0.9027 | 0.9462 28.9
Trial 3 1000 0.9168 | 0.9338 116
Trial 4 2000 0.8987 | 0.9044 462

Table 1: Mutual information values with varying numbers of samples to verify the con-
vergence of the Monte Carlo estimate to the kNN estimate. Computation times for the
Monte Carlo method illustrate the exponential increase in time as the number of samples
increases.

3 Examples

We provide four examples illustrating the high-to-low calibration framework detailed in
Section 1. The first is a steady-state heat model for which we have experimental temper-
ature data. In the second example, we illustrate the calibration framework for a general
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time-dependent diffusion model whereas in Example 3.3, we employ a 1-D kinetic diffusion
equation for the high-fidelity model and a point kinetic equation for the low-fidelity model.
In the final example, we illustrate the framework for a particle transport model quantifying
angular flux in a 1-D slab.

3.1 Steady State Heat Model

To illustrate our methods for estimating mutual information between two random variables,
we consider a steady state heat equation quantifying heat conduction in an aluminum rod
of dimensions a x b x L, subjected to an ambient room temperature of 7,,,,. The thermal
conductivity coefficient is denoted by K (W /cm-°C'), the convective heat transfer coefficient
by h (W /ecm? -° C), and the source heat flux by ® (W /cm?). The model is

d*T, 2(a+Db)h
dz? ab K

with boundary conditions

dT, 0]
dT, h
dx (L) - ? [Tamb - TS(L)] :

The analytic solution to the steady state heat equation for parameter set ¢ = [®, h] is

Ti(z;9) = cr(@)e ™ + c2(d)e”” + T, (8)
where
old) = _g[_ e (h + K~) 7
Ky | et (h — K7v) + eYE(h + K~)
a6) = = +al)
and y = 4/ 2%k,

Our physical system consists of an aluminum rod, heated at the secured end x = 0 and
free at the other, of height and width a = b = 0.95 cm and length L = 70 cm. We use
the thermal conductivity coefficient value of K = 2.37 W/cm-°C reported for aluminum at
300°C. The independent spatial variable z¢ is discretized into fifteen uniformly distributed
points on the range [10,66] cm. Choosing a spatial location for evaluation is considered
a design condition and Table 2 specifies the possible design choices. For the experimental

Design # 11231456 | 7|89 10111213 |14
Location (cm) || 14 [ 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 | 62 | 66

Table 2: Possible design choices for the steady state heat equation example.
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data set reported in [15], we calibrate the high-fidelity model parameters ¢ = [®, h| for use
in simulating our own experimental or synthetic data set. Specifically, we employ delayed
rejection adaptive Metropolis (DRAM), as detailed in Appendix A and [15], to construct
the marginal densities for ® and A shown in Figure 2. From these densities, we draw a
parameter pair ¢ = [®, h] that is used for all high-fidelity model simulations. ¢

We consider a low-fidelity quadratic surrogate model

y = Az> + Bz + C 9)

with parameters § = [A, B,C] and use parameter calibration to fit it to our analytic
solution with as few high-fidelity model evaluations as possible. Upon selection of a de-
sign &, the high-fidelity model is evaluated at z¢, and the resulting observation d, =
Ts(xe,; @) +€n(&,) is added to the data set for use in re-calibrating the low-fidelity model.
Here we take €,(&,) ~ N(0,52%) where 26 is 10% of max;_; ... ,—1 Ts(z¢,; 9).

We estimate the mutual information via the kNN method and compile the sequence
of chosen designs in Table 3. If one has a proper prior parameter distribution, one can
estimate the mutual information even in the case when the prior is “diffuse.” In this
example, however, we employ an noninformative and improper prior — as is very often the
case when one simply has parameter bounds or conditions such as positivity — so we need
enough data to ensure that the posterior p(f|D,) is proper. This requires that we have
at least three data points to do an initial DRAM calibration, but results may be more
consistent with a number of data points exceeding the dimensionality of the parameter
space. Here we assume that high-fidelity data is already available at location = = 10.
The remaining fourteen design conditions are then selected in order of decreasing mutual
information yielding the results tabulated in Table 3.

Since the posterior p(0|D,) is not proper until we have at least three data points, we
do not begin regularly updating ¢ in the DRAM algorithm, which controls the variability
of the parameter chains, until » = 4. Figure 3 shows the parameter chains after several
iterations of the algorithm, illustrating that they are well-mixed in the sense that they
appear as white noise with no discernible patterns. Figure 4 shows the final joint posterior

3 54X 10"
25 , o5
2 , ol
1.5 | 15l
1 , 1
05 | 0.5l
S 185 -8 -17s 08 1.9 2
Parameter @ Parameter h X 1 0—3

Figure 2: High-fidelity parameter distributions used to construct “experimental data”.
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Method | Sequence
kNN 1471526384913101211

Table 3: Design choice sequence for the kNN algorithm for 5000 iterations in the steady
state heat equation example.

distributions after all fifteen points have been selected. Each pairwise combination of
the parameters § = [A, B, C] is highly correlated, but not to the point where parameter
identifiability becomes an issue.

Figure 5 displays the evolution of the parameter distributions over the course of the
14-cycle process. In the early stages, there is a uncertainty in the parameter behavior due
to the fact that at Stage 3, we have the minimal number of observations required to have a
proper posterior density. As the algorithm progresses and the amount of data is increased,
the posterior distributions exhibit the expected Gaussian behavior.

Having confirmed that all parameter chains are well-mixed and each parameter is iden-
tifiable with a marginal distribution that is Gaussian, we compare the final quadratic
model, obtained using all fifteen calibration points, with the analytic solution in Figure 6,
for the ordering of points selected via the kNN algorithm. A listing of L? errors is included
in Table 4 to illustrate the convergence of the low-fidelity model to the high-fidelity model.
Errors are large in the selection of the first few points, when there is not enough informa-
tion for the low-fidelity model to “know” the correct shape. With the addition of a few
extra points, there is enough data for the low-fidelity model to mimic the shape of the
high-fidelity model. We note that around Step 8, the errors no are longer decreasing by
any appreciable amount—our low-fidelity model is about as well-calibrated as it can be.
At this point, we could choose to terminate the process and save the computation time of
evaluating the high-fidelity model at the final six points.

0.055 -2.5 145
0.05 1 140
-3 4
0.045 1 135
0.04 { =85 | 130
i I
0.035 ‘ _a ‘ 125”w
0.03 : 120
-4.5 1
0.025 1 115
0.02 ‘ -5 : 110 ‘
0 1000 2000 0 1000 2000 0 1000 2000
Parameter A Parameter B Parameter C

Figure 3: Well-mixed parameter chains after the selection of the first five points.
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Joint posterior distributions for pairwise combinations of § = [A, B, C].
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Figure 5: Evolution of parameter distributions for the steady state heat equation over 14

cycles of the kNN algorithm.
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Figure 6: Fit of quadratic model to the steady state heat equation analytic solution for 15

calibration points, with ordering selected by the kNN algorithm.

Step 1 2 3 4 ) 6 7
L? Error | 6.31e-4 436.35 25.28 17.11 11.56 10.29 9.47
Step 8 9 10 11 12 13 14
L? Error | 9.10 914 916 882 893 9.19 9.61

Table 4: L? errors for the steady state heat equation at each of the 14 calibration steps.

3.2 Time-Dependent Diffusion Model

We now consider the time-dependent diffusion model

ou *u
= o 1
ot~ Yox2 (10)
subject to defined initial and boundary conditions
u(t,0) = u(t,2) =0,
u(0,z) = sin(mz/2).
The analytic solution of (10) is
u(t,z) = e ™ " gin (%) : (11)

obtained using separation of variables. To maintain generality, we consider non-dimensional
variables and employ the prior distribution A/(0.7,0.1) for the diffusivity a in the high-
fidelity model (11). Output from this solution is used to calibrate a lower-fidelity model
constructed via a finite difference approximation of (10) obtained using backward differ-
ences in time and centered differences in space. As in previous examples, we add noise

14



Design 1 213|456 | 7|89 |10/11 12|13 |14 |15
Time 101010101010 ]20|20]20]20(20]20|3.0]30]3.0
Location | 000408 12|16 |20(00|04]08|12|16|20]0.0|04]0.8
Design 16 |17 |18 |19 | 20 |21 | 22 | 23 |24 | 25|26 | 27 | 28|29 | 30
Time 3.0130[30[{40]40]40(40|40(4.0|5.0|5.0|5.0|5.0]5.0]15.0
Location | 1.2 16200004 08|12 |16|20|00|04/08]12|16]2.0

Table 5: Possible design choices for the time-dependent heat equation example.

En(&n) ~ N(0,6%), where 26 is 10% of max;_1 ... 1 u(te,, T¢,), to the simulated data pro-
duced with the high-fidelity model at each design &,.

The model is analyzed on a time domain of [0, 5] and a spatial domain of length [0, 2].
Stepsizes are 5 x 1072 in the ¢ direction and 1 x 1072 in the x direction. Using a grid of 30
possible design conditions—see Table 5—the points used for model calibration are chosen
one-by-one based on the maximum mutual information between the parameter o and the
model predictions given design inputs (Zg,,z¢,). The design sequence is given in Table 6
for the time dependent model, and the final fit of the model after parameter calibration
with a parameter value of a = 0.7117 is shown in Figure 7. Since this example has only a
1-dimensional parameter space, we include results from the direct quadrature of the Monte
Carlo estimate (5) to further verify the kNN algorithm.

The design sequence chosen by both mutual information algorithms follows the behavior
that we would expect; the points are chosen in order of increasing ¢ values, corresponding
to the exponential temporal decay of the solution. Within each time classification, the
points are generally chosen from the ends of the spatial interval in towards the center,
again following the leveling off of the slope in the spatial domain. Points occurring in a
region with a larger slope value in magnitude are more likely to be chosen because of the
larger discrepancy in their output values which contributes a more significant information
gain relative to other points. This concurs with the engineering practice of sampling in
regions having large gradients to observe increased sensitivity.

Method | Sequence

MC 1625347128119 1013 1814 17 15 16 19 24 20 23 21 22 30 25 26 29 27 28

ENN 16253471281191013 1814 17 1516 19 24 20 23 21 22 30 25 26 29 27 28

Table 6: Comparison of design sequences provided by the Monte Carlo and NN methods
for the time-dependent heat equation example.
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Figure 7: High-fidelity solution versus calibrated low-fidelity time-dependent heat models
in (a) time domain [0, 5] for eleven uniformly spaced values of z on the interval [0, 2],
(b) spatial domain [0, 2] for eleven uniformly spaced values of ¢ on the interval [0, 5], and
(c) 3-dimensional domain. (d) Difference between the low- and high-fidelity solutions.

3.3 Neutron Diffusion Model

In this example, we employ the 1-D kinetic neutron diffusion equation

100 1 0%
Eg*ﬁ@—gwnf*&qbna ,0<az<L,it>0
O(t,0) = ¢(t,L) =0 , t>0 (12)

00,z)=1 ,0<z<L

as the high-fidelity model. Here ¢ (neutrons/s'm?) is the flux and X, X, and ¥, respec-
tively represent the scattering, fission, and absorption cross sections with units of (1/m),
(fission/m), and (absorption/m). The constants vy, ng, and n, have units of (m/s), (neu-
trons/fission), and (neutrons/absorption). We employ the values

Vth=2><103,nf=2.2, Ng =1
Yee =8x 102, %, =42, Y =23

16



from [10].

Because we cannot easily obtain an analytic solution for (12), we approximate the
solution using a finite-element discretization of the weak model formulation. To construct
a weak formulation, we multiply (12) by test functions n(x) € H}(0, L), the Sobolev space
of functions that are at least once differentiable on in the interval [0, L], and integrate in
space to obtain

1 (fog 1 fLa%zs

L
v ). En(x)dx ESH ﬁn(x)dx = (Xgns - Ea”a)L ¢n(z)de, (13)

0

which must hold for all n(x) € H}(0, L).
We approximate the solution ¢(t,x) using the representation

N-1
o (t,x) = D wi(t)n;(x) (14)
j=1
where we employ the piecewise splines
1 r—Tj-1 , Tj-1 <zr< Z;j
ni(z) = 7 Tjy1 =T 5, Tj ST <Tjp
0 , else

as spatial basis functions. For L = 2, we obtained converged solutions with N = 25 which
yields the stepsize h = 2/25. Substitution of (14) into (13), use of the basis functions as
test functions, and integration by parts yields the system

i [ (- 2t - ) |0 (15)

of ordinary differential equations where G(t) = [p1(t), -+, on_1(t)]. The (N —1)x (N —1)
matrices Vj, and V) are given by

4 1
L Al 1 4 1
V()anmjdng .
0 c. t. c .
1 4 1
and
2 -1
Lo -1 o2 -1
%:anjdx:E .
-1 2 -1

We numerically integrate the system (15) to obtain J(¢) and evaluate (14) at z = 1 to
obtain our high-fidelity solution. Observations are given by d,, = ¢ (¢, , ) +£,(&,), where
En(&n) ~ N(0,5%) with 26 taken to be 10% of max;_;... n_1 ¢" (t¢,, T).
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Design # 1 2 3 4 ) 6 7 8 9 10
Time (s) | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 4.50 | 5.00

Table 7: Possible design conditions for the neutronics example.

We employ the point kinetic equation

dn  (r—1)
& - o, (16)

as a low-fidelity model where r represents the reactivity, § is a function of shape, and n
has units of (neutrons/m?). Model (16) is compared to the high-fidelity model (15) to
calibrate the parameters 6 = [r, 5]. The prior distributions for r and § were taken to be
r ~U(0,2) and B ~ U(0,250).

As before, we identify a set of design conditions from which our calibration points will
be selected. The remaining independent variable, time, is discretized into a set of ten
values listed in Table 7.

Choosing these calibration points one at a time in order of decreasing mutual informa-
tion, we obtain the parameter values r = 1.63 and g = 172.65 that most accurately fit
the low-fidelity model to the high-fidelity model. The resulting fit is shown in Figure 8.
Table 8 contains the estimated mutual information values for the kNN method.

We show the evolution of the parameter distributions as additional calibration points
are selected in Figure 9. As the number of calibration points increases, the parameter
distributions become more stable and increasingly more Gaussian in shape. It is observed
that the visual fit in Figure 8 is highly accurate. We are currently investigating the use of
energy statistics to quantitatively test the null hypothesis that two independent samples
of parameters are derived from the same probability distribution [17].

1.8 : ‘
17 — High-Fidelity
l - - - Low—Fidelity 10’
16 o Selected Points 0 ]
2] 2
€
£ 1.5 7 8 1
c Z
S14 o " .
=} e
E 1.3} . o 1
bz 2 3 '
o
110 1 8
1 o
0 1 2 3 4 5
Time (s)

Figure 8: High-fidelity versus low-fidelity models for the neutronics example.
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Time 1 2 3 4 5 6 7 8 9 10
0.5 2.899 | — — — — — — — — —
1.0 2.881 | 1.606 — — — — — — — —
1.5 2.852 | 1.5398 | 2.743 | — — — — — — —
2.0 2.809 | 1.589 | 2.741 | 1.374 | — — — — — —
2.5 2.755 | 1.583 | 2.737 | 1.372 | 0.890 — — — — —
3.0 2,692 | 1.576 | 2.739 | 1.371 | 0.889 | 0.665 — — — —
3.5 2.621 | 1.569 | 2.736 | 1.369 | 0.889 | 0.664 | 0.468 | — — —
4.0 2.545 | 1.563 | 2.736 | 1.367 | 0.888 | 0.664 | 0.467 | 0.368 — —
4.5 2463 | 1.554 | 2.734 | 1.365 | 0.887 | 0.664 | 0.467 | 0.367 | 0.253 —
5.0 2375 | 1.543 | 2.733 | 1.363 | 0.886 | 0.663 | 0.467 | 0.367 | 0.252 | 0.359

Table 8: Estimated mutual information values and sequential design sequence for the
neutronics example from the kNN method.

2.5

Stage 4
Stage 7
Stage 10

Parameter r

x 10

— Stage 4
---Stage 7 |
----- Stage 10

500

Parameter 3

1000

Figure 9: Evolution of parameter distributions for the neutronics example over 10 cycles.

3.4 Particle Transport Model

Finally, we consider an example investigated in the context of the method of manufac-
tured universes with examination of a particle transport “universe”. These types of par-
ticle transport calculations are important in many applications, including nuclear reac-
tors or high energy-density laboratory experiments [16]. In these applications, it is often
prohibitively expensive to obtain experimental measurements. We employ a high-fidelity
model to represent the “reality” of our universe—from which “experimental measurements”
are obtained—and use this to calibrate the parameters in a low-fidelity model for produc-
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tion of simulated results, which serves as an approximation to the high-fidelity model in
situations where evaluation of the high-fidelity model is too expensive.

For our high-fidelity model, we assume that the particle transport universe behaves ac-
cording to the Sy discrete ordinates method—we choose N = 8—whose governing equation
in 1D slab geometry with no volumetric source is [2]

dv,, ()
dx

. + 5,0, CZt}:qy (17)
where U, (z) represents the angular flux in the mth quadrature point at slab length z, and
the cosines p and weights w are given by the Gauss-Legendre quadrature set of N points
on the interval (—1,1). The total cross-section and scattering ratio are respectively taken
to be 3y = 1.00 ecm™! and ¢ = 3,/3; = 0.99.

The analytic solution of model (17) is

-
Z Ap——— exp ( tx) (18)
= Uk Uk

where each v}, satisfies the condition

N
= 2 Um
m=1 V—/,Lm

The constant coefficients Ay, k = 1,..., N, are obtained via satisfaction of the boundary
and interface conditions

U, (0) = 1.0, fi > 0
U, (Ly) = 0.0, fim < 0

where L, is the thickness of the slab.

Using the analytic solution (18), we produce “experimental data,” with measurement
noise £, at a set of six different slab lengths, = = [1,2,4,8,16,32] cm. Our quantity of
interest is the reflected particle flow rate,

Yeup = 57 (2 =0) = X |ptm| ¥y (0)w,. (19)
Mr:n<0
For our low-fidelity model, we utilize the diffusion equation in a finite 1D slab. The
governing equation
d?®(z) 1
dz? L?

O(z)=0,0<z <L, (20)

where L =/ D/, is the diffusion length for diffusion coefficient D and absorption cross-
section ., has analytic solution

®(z) = Cysinh <%> + C5 cosh (%) . (21)
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The C coefficients are chosen to satisfy the known incident particle flow rates on each slab
boundary from the high-fidelity model,

0 = P X O
) = 2 ) S g e,

where J(z) = —Dd®/dzx.
Again, we measure the reflected particle flow rate at each of the six slab lengths as our
quantity of interest, given by the low-fidelity model as
_ ®(0)  J(0)
Yoim = J ($—0)—T 5 (22)
The high-fidelity experimental measurements obtained from (19) are used to calibrate
the parameter set # = [D,3,] in the low-fidelity model (21). For calibration, we use
the DRAM algorithm with an initial parameter guess of § = [0.333,0.010] and 10,000
iterations. We throw out the first 7,000 iterations during which the parameter chains
are “burned in” and use the final 3,000 iterations as a sample from the joint posterior
distribution of our parameters. Figure 10 illustrates the fit between the high and low-
fidelity models, comparing experimental and simulated reflected particle flow rates (19) and
(22), respectively, for each of the six slab widths. The 95% prediction and credible intervals

0.5
0.4 v,
ST
€
o 0.3f 1
5
(@)
3
© 02 J
o
©
m . . .
0.1 O High-Fidelity (88) |
° Low-Fidelity (Diffusion)
0 L L L
0 10 20 30 40

Slab width, x

Figure 10: High-fidelity simulated experimental data versus low-fidelity measurements for
the particle transport model. Note the widening of the 95% credible interval (indicated
in dark gray) and the 95% prediction interval (indicated in light gray) as the distance
between measurements increases.
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Figure 11: Well-mixed parameter chains for the particle transport example.

are plotted with the data to illustrate the likely locations of future model observations taken
at slab widths other than those used for “training” the low-fidelity model. Measurement
noise ¢, is added to the statistical model, causing a widening of the prediction interval as
the slab width increases and information becomes more scarce. In Figures 11 and 12, we
show the well-mixed DRAM chains and marginal posterior densities, respectively, for the
parameters D and X,,.

Having calibrated our parameter set 6 = [D,>,] so that the low-fidelity model is able
to accurately quantify the behavior of the high-fidelity model at our “training” set of slab
widths, z = [1, 2,4, 8,16, 32] cm, we can now use (21) in place of (18) to predict experimen-
tal data at slab widths outside of our calibration set, cutting down on our computational
expenses for future predictions. For this same example, [16] discusses the construction of
an emulator for the reflected particle flow rate that can be used to construct 95% prediction
intervals for future observations taken at a slab width x outside of our training set.

4 Conclusion

The focus of this investigation has been to study an information-theoretic approach to
calibrate low-fidelity models using a limited number of high-fidelity code evaluations. As
a problem becomes more complex in nature, it proves more likely that the measurement
of experimental data or the evaluation of the model that represents the physicality of the
system will prove to be computationally expensive or infeasible. Therefore, we emphasize
the importance of developing lower-fidelity, cost-efficient models that accurately depict the
characteristics of the original system. To that end, we also explore more efficient methods of
experimental design in the Bayesian framework, using a measure of statistical dependence
between a set of model parameters and the corresponding prediction outputs to select
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Figure 12: (a) Marginal parameter densities for the particle transport model, calculated
from the final 3,000 iterations in a 10,000 iteration DRAM run, and (b) joint posterior
distribution for the parameter set § = [D, %,].

designs in an order that will maximize the information gain while minimizing the number
of evaluations required for calibration purposes. Whereas in this investigation we chose to
specify a fixed number of design conditions to be used for calibration of the low-fidelity
model, one could choose to terminate the iteration procedure when the information gain
decreases below a specified tolerance. While one can begin the process with no high-fidelity
“data” available, the mutual information estimates are much more accurate towards the
beginning of the process if several data points are already present—a number exceeding
the dimensionality of the parameter space is preferred.

The result of this process is the construction of a low-fidelity model that exhibits the
primary characteristics of the high-fidelity model necessary to fit the provided data. The
evaluation of this low-fidelity model is much more efficient in both time and computational
costs. The uncertainties present in the new model may be quantified so that future obser-
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vations may be predicted with known levels of uncertainty as illustrated by the prediction
intervals in Figure 10.

We note that the kNN analysis requires repeated evaluation of the low-fidelity model
to determine optimal evaluation conditions &,. For computationally intense models, this
direct evaluation may be infeasible. In such cases, surrogate models may be required to
determine the optimal evaluation designs at which one subsequently evaluates the high-
fidelity model.

We note that by using a validated high-fidelity code to calibrate parameters in the low-
fidelity model, one can cover the state space that is relevant to the quantities of interest
that we ultimately want to predict. Whereas experimental data is preferable, we often do
not have the option of collecting it throughout the state space.

Appendix A: DRAM Algorithm

The Delayed Rejection Adaptive Metropolis algorithm (DRAM) [3, 15] was developed in
response to a need for a more efficient means of sampling a posterior density. In a basic
Metropolis algorithm, a Markov chain is constructed such that its stationary distribution
is the posterior distribution of a parameter by proposing certain parameter values that
explore the geometry of the distribution. Haario et al. [3] furthered this approach by
including both an adaptive step that updates the proposal covariance matrix as further
information is gained about the parameter space and a “delayed rejection” step that con-
structs an alternative parameter candidate which will induce greater mixing if the first
candidate is rejected rather than retaining the initial estimate; this is the foundation of
the DRAM algorithm. The basic algorithm for DRAM is given in Algorithms 3 and 4; for
more details on the implementation of DRAM see [3, 15].

Note: The choice of 7, = % in Algorithm 4 is common, but other values are reasonable.
The choice of 75 < 1 ensures that the second-stage proposal function is narrower than the
first, increasing the mixing of the chain.

Appendix B: Derivation of the kNN Algorithm

Here we present the derivation of the kNN approximation to mutual information (7) as
developed in [8] by Kraskov et al. We generalize to any two random variables X and
Y —this can easily be adapted to measure the information between a random variable and
a set of model parameters, as done in the above investigation.

We begin with the Shannon entropy [13] of a random variable X with density u(x),

H(X) = - f () log(u(x))dz (23)

where the log function is taken to be the natural log for the remainder of this appendix.
We can view (23), up to the minus sign, as the average of log(u(z)) over the domain of

24



Algorithm 3 Delayed Rejection Adaptive Metropolis [3, 15]

(1) Set design parameters ng,s,, 02, ko and number of chain iterates M

(2)

(3) Set SSpo = 334 [vi — fi(6°)]
)

(4) Compute initial variance estimate s =
the number of parameters

Determine 0% =arg ming >, ,[v; — fi(6)]?

5590

for n the number of data points and p

(5) Construct covariance estimate V = sZ [x7(6°)x (80)]_1 and R = chol(V') where the

afi(6°)

sensitivity matrix has components x;(6°) = 2

(6) For k=1,...M

(a) Sample 2z, ~ N(0,1)
(b) Construct candidate 0* = 0¥~ + RTz,
(¢) Sample u, ~ U(0,1)
(d) Compute SSypx = > [vi — fi(0%)]?
)

(e) Compute a(f*|6*~1) = min (17 e [550x —ssek,l]/2s§_1>

(f) If ug < «,
Set OF = 0%, SSgr = SSpx
else
Enter Delayed Rejection Algorithm 4
endif

(g) Update si ~ Inv-gamma(a,az, byar), Where
Ayar = 0.5(ns + 1) , byar = 0.5(ns0? + SSyr)
(h) If mod (k, ko) =1
Update Vi = s,cov(6°, 0, ..., 6%)
else
Vi = Vi
endif
(i) Update Ry = chol(V})

the z variable. For a set of unbiased estimators log(u(z;)), we create the estimator

1(X) = 1 3 logu(r,)
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Algorithm 4 Delayed Rejection Component of DRAM [3, 15]

(1) Set the design parameter ~y, = %
Sample z, ~ N (0, I)

Construct second-stage candidate 0*2 = 081 + v, RY 2,

(2)

(3)

(4) Sample uq ~ U(0,1)
(5) Compute SSpse = Y1 [v; — fi(6*2)]?
(6)

Compute

_ . w(0%2|v)J1 (0% |0%2)[1—a (0% |6*2
a2<9*2’6k 17 9*> = Imin (17 ﬂ-(gg—l|,|U))L]11((9*||0k—1))[[17a((9*“0k—)1)]> )

where J1(6,|0.) is the first stage proposal distribution from (6a-b) of Algorithm 3 for
the move from 6, to 6,

(7) If uy < a,
Set 0% = 0*2 | SSpx = SSps2
else
Set 6% = 0F1 | SSpr = SSgr
endif

which estimates H(X) from a random sample {xy, zs,...,zx} of N realizations of X. To

obtain the log(u(z;)) estimators, consider a probability distribution Pg(e) for the distance
between the point z; and it’s kth-nearest neighbor. The probability Py (€)de is the chance
that one point falls within a distance r € [€¢/2,€/2 + de/2] from z;, kK — 1 points are at
distances smaller than €/2 from x;, and N — k — 1 points are at distances larger than
€/2 + de/2 from z;. We denote the mass of the e-ball centered at x; by p;(¢); that is,

i\€) = dg.
pa=| e

Then the probability density of the distance € between z; and its kth nearest neighbor can
be expressed as

A = k() B 0t ), (24)

Note that



that is, Py(€) is correctly normalized. Using (24), we compute the expectation of the mass
of an e-ball centered at x; with respect to the distribution of the distance to its kth nearest
neighbor

Mmm@»=yf&@mm@m

= k(Nk_ 1) L log(p)p* (1 —p)¥ " dp
= (k) = ¢(N), (25)

where ¢ (z) is the digamma function, ¥ (z) = ﬁdz(f). To obtain the estimator for
log(p(z;)), we assume that u(x;) is constant on the entire e-ball. The mass of the e-ball

can then be estimated by

pi(e) ~ cded,u(:pi)

where d is the dimensionality of x and ¢, is the volume of the d-dimensional unit ball. By
taking the expectation of log(p;(€)), and isolating log(u(x;)), we obtain

log(u(x:)) ~ E[log(pi(e))] — log(ca) — dE(log(e))
U(k) = (N) —log(ca) — dE(log(e)).

We note that the expectation of log(e) can be estimated by the mean of the N sampled
values log(e(7)),

1 _
Ellog(e)] ~ - D) los(e(i)).
i=1
Therefore,

~

H(X) = =(k) + ¢(N) + log(cq) + %Z log(e(2))- (26)

i=1

Equation (26) is known as the Kozachenko-Leonenko estimator for the Shannon entropy
of a random variable X [7]. We can adapt this for multiple random variables as follows.
Let Z = (X,Y) be a joint random variable with maximum norm,

Iz = 2| = maxlle — /Il lly — /Il

Equations (24) and (25) still hold. We change only the dimensionality d to d, = d, +d,, and
the volume of the d.-dimensional 1-ball to cs, = ¢4,¢4,, a result of Z having the maximum
norm. It then follows that

(X, Y) = —p(k) +$(N) + log(cq,cu) + 2D

2 log(e(i)): (27)

i=1
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Suppose the kth nearest neighbor of z; is furthest in one of the = directions. Then, €(i)/2
is the distance to the (n,(i) + 1)-st neighbor of x; and

N
=——Z¢nw +1) + ¢(N) + log(ca,) ﬁZ : (28)
Similarly, we take
. 1< dy &
F(Y) = = D1(ny(0) + 1) + (V) +loglea,) + 52 3 logle(0)). (29)

We note that (29) is biased since the kNN of z; was assumed to be furthest in one of the
x directions, the distance €(i)/2 is actually larger than the distance to the (n, (i) + 1)-st
neighbor. However, (29) is still considered a good approximation for H(Y") since it becomes
exact as N — oo [8]. Combining (27), (28), and (29), we obtain our estimate for the mutual
information between random variables X and Y

I(X;Y) ~ HX)+H(Y)-H(X,Y)

= 00 = | D 0nli) + 1)+ D) + )| + v,

i=1
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