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The Conforming Virtual Element Method for the
convection-diffusion-reaction equation with variable coefficients.
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Abstract

This document describes the conforming formulations for virtual element approximation of the convection-reaction-
diffusion equation with variable coefficients. Emphasis is given to construction of the projection operators onto
polynomial spaces of appropriate order. These projections make it possible the virtual formulation to achieve any
order of accuracy. We present the construction of the internal and the external formulation. The difference between
the two is in the way the projection operators act on the derivatives (laplacian, gradient) of the partial differential
equation. For the diffusive regime we prove the well-posedness of the external formulation and we derive an estimate
of the approximation error in the H'-norm. For the convection-dominated case, the streamline diffusion stabilization
(aka SUPG) is also discussed.

Key words: High-order method, unstructured polygonal mesh, virtual element method, diffusion, convection-dominated,
reaction problem

1. The convection-diffusion-reaction equation

We consider the problem
—V - (K(x)Vu) + B(x) - Vu + c(z)u = f(x) in Qc R? (1a)
u=0 on 01, (1b)
where d = 2, 3 is the spatial dimension, K € (C1(Q2))?*4 is the diffusion tensor, 3 € (C(£2))? is the convection
field, ¢ € C(Q) is the reaction field, and f € C(Q) is the right-hand side forcing function. The diffusion

tensor K is a full symmetric d x d-sized matrix and is strongly elliptic, i.e., there exist two strictly positive
real constants £ and 7 such that

Eol* < v-K(@)v < nlol* (2)

for almost every & € Q and for any sufficiently smooth vector field v defined on €2, where |- | denotes the
standard Euclidean norm on IR?. We also suppose that there exists a real constant mg > 0 such that

clx) — %V -B(x) > mo >0 (3)

for almost every x € (.



The variational form of (1) is

A(u, v) ::/ KVU~VUdV+/
Q

Q

(,6~Vu)vdV+/

cuvdV:/fvdV.
Q Q

We define the following names for the components of the bilinear form A(-,-):

a(u,v) = /Q KVu - Vo dV, b(u,v) = /Q(ﬂ -Vu)vdV, c(u,v) = /chvdV.

Each term is a bilinear form and can be decomposed in the sum of local contributions that for each element
FE read as

a®(u,v) ::/ KVu - VodV, bE (u,v) := / (B-Vu)vdV, cF (u,v) ::/ cuvdV.
E E E

Hence, it holds that a(u,v) = > a?(u,v), etc. The coercivity of the bilinear form A with respect to the
energy norm may be shown in the usual way, bounding

A(v,v):/KVU~VvdV+/(,3~VU)vdV+/cvvdV
Q Q Q

1 .
> €|Vell+ [ (c= 5V -8)0? = Vel + mallols > min{e. mo} ol (4)

Combining inequality (4) with the continuity of A and the linearity of (f,v), it follows that there exists a
unique solution to the variational form of problem (1). In practice, the approximate bilinear form is evaluated
by using a quadrature rule and the evaluation is not exact when the coefficients are non-polynomial. Instead,
by approximating the coefficients with polynomials and using a quadrature rule of sufficient degree, we can
quantify and control the error produced. In light of this, the coefficients K, B and c are approximated by
the polynomials K, 8 and ¢ respectively.

It is required that K is elliptic on the polynomial space Pj_1(F) for each mesh element E, so that there
exist two positive constants §A and 7] such that

glpk_l\Q <Ppr-1- R(x)pk—l < ﬁ|pk—1|2 (5)

for almost every & € Q and for any pi_1 € (Pj_1(F))¢ (recall that | -| denotes the standard Euclidean norm
on IR?). Similarly, we assume that there exists a constant g > 0 such that

e(x) > mo >0 (6)

for almost every « € 2. We also suppose that R, ,@ and ¢ are such that

IR =Kl () < O "MK e ) (7a)
18— Bl sy < 5 1Bl (7b)
18 = el ey < ChE " lellwee ), (7e)

for some pair of integer numbers s and r with r < s. Requirements (5) and (6) ensure the coercivity of the
method, while (7a)-(7c) is necessary to maintain the accuracy. Conditions for choosing suitable polynomial
degrees and quadrature rules to ensure these properties can be found in [4].

2. Virtual Element Method: the external formulation

Throughout the paper we will make use of the acronyms VE(s) for Virtual Element(s) and VEM for
Virtual Element Method. For the description of the VEM, the choice of the degrees of freedom and the proof
of there uni-solvency we mainly refer to [1, 2].



2.1. The Virtual Element space

Let E be a closed polygon with a finite number of vertices (and edges).
Definition 1 For every k > 1, we define the finite dimensional space th (E) as
VEE) = {ve H(E) : Av € Py_5(E), v € C°(9E),v). € Py(e) Ve € OE }

From this definition, it immediately follows that Py(E) C V}(E). The conforming VEM is formulated
through the following projection operators, whose precise definition and properties will be the subject of the
next section:

Elliptic Projection:

- Iy VHE) - Pr(E);
~ XV VE(E) — Py(E);
- 10 2 V(E) = Py(B);

L? Projection:

- 1) VH(E) — Py(E);

S I(V) 5 V(VEE) = (Pu(B))
- I - VEE) = Pr(E):;

2.2. Approximation of the bilinear form A(-,-)

The bilinear form A(u,v) is approximated on the VE space V}, by the bilinear form

Ah(uh,vh) = ah(uh,vh) + bh(U}“Uh) + ch(uh,vh), (8)

where each term in the right-hand side approximates the corresponding term of A. We assume that such
terms can be decomposed into the sum of elemental terms, thus definining the approximate bilinear form

AR (un,vn) = ay (un, va) + by (un, va) + ¢y (un, vp), 9)

for each element E. We define the elemental contributions to A by

af (up,vp) = /Q K 0 (Vauy) -T2 (Vop) dV + SE((T— T)uyp, (1 —T12)wy), (10a)

bE (up, vp) = /Qﬁng,l(vuh) 9 (vp,) AV, (10b)

cF (unon) i= [ ST Can)R(0n) dV -+ SE( = 1)un, (1~ T, (100)
Q

where SE and S are the stabilising terms. These terms are symmetric and positive definite on the quotient
space V;F /Py(E) and satisfy the stability property:

a.af (v,v) <SF(v,v) < a*a(v,v), (11a)
7xP(v,0) <S(v,0) < %P (v, v), (11b)

for all v, € V;F with I19(vs) = 0. The first term of each bilinear form is responsible for ensuring the
polynomial consistency property. The second term in af and ¢ ensures that stability holds. We formally
define the properties of polynomial consistency and stability on each element E of the mesh as follows.

Definition 2



(i) Polynomial consistency: Whenever either up or v, or both are elements of the polynomial space
Pr(E), the components of the approzimate bilinear forms satisfy

o (un, vn) = / RII | (Vup) -1, (Voy) dV,
E

b (un, v) = / (B-T19_, (Vup)) I (vr) dV.
E

cf(uh,vh)z/ang(uh)ng(vh)dv.
E

1) Stability: There exist two pairs of positive constants o, & and v, ¥v* that are independent of h and
Yy Y

such that
a.a® (v, vp) <af (vp,vn) < a*a® (vy, vp) (12a)
e (v, v1) < (v, o) < v P (vp, o) (12b)
for all vy, € VhE and mesh elements E.
O

Remark 1 The polynomial consistency is an ezactness property. For example, if K is a polynomial tensor,
i.e., K = K, whenever one of the two functions w;, and v is a polynomial, it holds that af(umvh) =
a®(up,vy). Moreover, the degrees of freedom that due to the unisolvence property determine uniquely the
other (possibly non-polynomial) functions are the minimum knowledge required to compute the value of the
bilinear forms af(-,-) and a”(-,). The same is true for b¥ and cZ. O

Remark 2 In the asymptotic diffusive regime, the stability of Ay, is provided by the stabilising terms SZ
and S¥. In facts, note here that we may take

bf(uh,vh) = / ﬁ H%,l(Vuh)Hg(vh) dv Vuh,vh € VhE,
E

to satisfy the above conditions. The precise form of the stabilising terms is left until Section 3. O

Method 1 (Virtual Element Approximation) Let Ay be the bilinear form defined in (8), whose con-
struction is detailed above. Suppose that the right-hand side of the variational formulation is given by

mg(f)  ifk=1
The Virtual Element Approzimation of problem (1) reads as: Find uy, € V3, such that
Ap(un,vn) = (fn,vn) Vop € V. (13)

(fhvvh):/ﬂfhvhdv where  fp ;{

The well-posedness of the method is discussed in Section 8. The convergence behavior is analyzed in
Section 9.

3. The stabilising terms for the diffusive regime

In this section we discuss the construction of the VE stabilizing terms S and S¥. As mentioned above, the
present framework is only applicable to the diffusion-dominated case when the Péclet number is sufficiently
small, as described in Theorem 1. The convection-dominated case requires extra work to stabilize the method.
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The structures of the bilinear forms aj; and ¢, are designed to mimic those of

A(u,v) == /Q KD, (Vu) -9, (Vo) dV + /Q K(I-M)_,)Vu- (I-1I}_,)VvadV,

C(u,v) ::/Qﬁﬂg(u)ﬂg(v)dv—k/gc(l—ﬂg)u (I-11))vav,

which we will show to satisfy the stability requirements. This result can then be used as a guide to con-
structing appropriate stabilizing terms. Consider

AL (u,u) = / KIY_ (Vu) -9, (Vu)dV +/ K(I-T)_,)Vu- (I-II}_;) VudV,
E Q
CP(u,u) = / CIIY (u) T (u) AV + / e(I—TI0)u (I — 1Y) udV.
E Q
For AP (u,u), the strong ellipticity of the diffusion tensors K and K and the definition of the L2 projector
imply that
2 2
AP (u,u) > Iy (Voo s + €[ (1= T12) Vullg
P 2
> min{¢, £} <2HH21(VU)HO,E + ||Vu||gE - Q/EVu 9 (V) dV)

= min{¢, &} (gung_l(vu)HjE + IVl 5~ z/E m9_ (V)| dv>

= min{¢, }{|Vu

0,5
Similarly, for C¥(u,u) the lower bounds on ¢(x) and ¢(z) mean that

C* (uyu) > o[ |5+ o[ (1= TI9) w|;
> win(io, mo} (AN 5 + ol 2 [ wmiav)
E

= min{g, mo} (2|}H2(u)||(2)7E+|u||(2)7E—2/E|H2(u)|2dV>

o 2
= mm{mo,mo}HU“o,E’

Hence, AF is coercive in the H!(E) semi-norm and C¥ is coercive in the L?(E) norm. Since a”(v,v) and

cP(v,v) are also continuous in these norms, the bilinear forms A® and C¥ must satisfy the lower part of
the stability requirement:
E *), |2 E R 2 min{, &} 5
a (uvu) < Ca'“‘l,E = A (uvu) 2 mln{f,g}w‘(LE 2 Ta (u>u)’
min{fﬁo,mo} E

Fluu) < Gllullgy = C¥(u,u) = min{io, mo}|ullg 5 > c”(u, u).

&4

To see that A (u,u) and C¥(u,u) also satisfy the upper part of the stability requirement, we proceed
similarly. Focussing again on A% (u,u), the ellipticity of the diffusion tensor and the definition of IIY_, imply
that

AP (1) < Iy (Va)[|g o+ nf| (1= 1) V||
< max{7,n} (2HH%—1(V“)H0,E + HVUH(Q)E -2 (Vu,Hg_l(Vu)))

~ 2
= maX{m T]}”vu’”QEa



while treating C¥ (u, u) similarly provides
C (uy ) < ([0l o |0l o + el || (1= TIR) ]
< max{[ell o, lelloo} (208l s + Il = 2 (. 13u))

2
= max{[e]| oo, el oo Hlwllo £

Since a” (v, v) and ¢ (v,v) are coercive in these norms, the bilinear forms A¥ and C¥ must satisfy the upper
part of the stability requirement:

max Eg ~
ool 5 < 0P(1,0) L8 o) < max(E < AP0,
max{mg, m N
Clult g < Pl = {C,.?’O}cE(u,u) < max{io, mo}[ul2 5 < C¥(u, ).
C

Consequently, we may conclude that the bilinear form AZ with stabilising terms given by

TE (u,v) := / K(I-T)_,)Vu- (I-1I_,)Vvay,
Q

TF (u,v) = / oI =) u (I—17)udV.
Q

instead of SZ and SF satisfies the stability property.

For the VE form, however, TF and T'¥ must be approximated by computable stabilising terms S and SE.
The next problem, then, is to construct such stabilising terms that maintain the coercivity of the method.
First, note that both TF and T¥ are seminorms on the VE space VhE , zero on the polynomial space Py (E)
and norms on the (finite dimensional) quotient space V;¥ /Py (E). Now, let SE and S be any other bilinear
forms which are also seminorms on V¥, zero on Px(E) and norms on V,¥/Py(E). By the equivalence of
norms on finite dimensional spaces, there must exist two pairs of constants (¢1,c2) and (dy, ds) such that

ATyl (v,v) <57 (v,v) < eTF (v,v),
lecE(v,v) SSf(v,v) < dchE(v,v)

for all v € V,LE ; S0, the bilinear form

Ap(u,v) = /Q KT (Vu) - T (Vo) dV + Sa(u,v) + /Q B0 (V) T(v) dV

+ /Qﬁﬂg () I (v) dV + S, (u,v)

is coercive and continuous in the H' norm.
However, these constants are required to be independent of the mesh parameter h. This can be satisfied
by ensuring that the bilinear form S¥ scales like T, (i.e. like h%~2) and that SZ scales like T.. (i.e. like h?).
An example of bilinear forms satisfying these requirements is given by

SE(u,v) = Kgh$ > " dof, (I TI})u) dof,. (I —117)v),

r=1

SE(u,v) :=eph; XE: dof,. ((I—TIIY)u) dof, ((I —II})v),

r=1

where Kg and ¢z are some constant approximations of Kz and cg, respectively, and dof.(vp) is the r-th
degrees of freedom of vy,.



4. Projection operators

In this section, we review the construction and implementation of the projection operators used in the
external and internal VEM. For exposition’s sake, we use a compact matrix notation for the shape functions
and the polynomials. Indexed notation can be easily recovered by substituting the symbol ¢ with ¢;, (bT with
¢j, m with mq, m? with mg (and the same for m and @T) and converting consistently all matrix-vector
products into indexed summations. For example, the relation between the monomial basis and the shape
functions involves the matrix D and is given by

nd
m” = QTD which is equivalent to My = Z $i(D)ia fora=1,...,np.
i=1

The notation of matrices B, C, D, G, 6, H is consistent with the notation already used in [3]. Instead, we
denote the matrix representation of the ”V”-projection and the L?-projection of the shape functions with
respect of the monomials by Hkv and II9, respectively, and with respect to the shape functions by Hkv’q5

and H2’¢, respectively (we do not use the ”starred” notation of [3]). All these quantities are presented and
discussed in the next subsections.

4.1. Shape functions and polynomials

Shape functions. We denote the shape functions of the local virtual element space th (E) by ¢; for
i =1,...,nq, where ng is the cardinality of the basis set. The indices of the shape functions are in roman
fonts, i.e., 4,7, k,.... We use the compact notation:

?T: [¢1)¢27-~-’¢nd].

Polynomial basis. We denote the scaled monomials forming a basis of the local polynomials space Py (E)

by mq for o = 1,...,np, where n, is the cardinality of the basis set. The indices of the monomials are in
greek fonts, i.e., a, 8,7 .... We use the compact notation:
mT = [m1;m27 s 7mnp]'

Reduced polynomial basis. When we consider the linear space of the polynomials of degree up to k — 1
(instead of k), we denote the cardinality of the basis by 7, and use the compact notation:

T

m = [m1;m27"'7mﬁp]-

Obviously, the monomials in m coincide with the first 72, monomials in m.

Matrix D. We collect the degrees of freedom of the monomials m, with respect to the shape functions ¢;
in the a-th column of matrix D:

D;o = dof;(my), ie., m? = ¢’D.

4.2. Projector IIY : VF(E) — Py(E)

The projection operator HkV is defined through its action on the shape functions ¢. We use the compact
notation:

Y (¢") = [TV (¢1), T (82), - - -, IIY ()]

Formal definition. The projection operator HkV is the solution of the elliptic projection problem:

Py(IIY (¢7)) = Po(o"), (14a)

/ Vm - VIIY (¢7) dV = / Vm - V¢ av, (14b)
E FE

7



where P is a suitable projector onto the constant functions defined on F (note, indeed, that second relation
only involves the gradient of the shape functions). In matrix form, since Hkv(¢T) are polynomials and

functions in the virtual element space V;*(E) we consider these expansions:

Iy (¢) = m"TY = ¢"DITY = ¢TI .

By comparison, it follows that:

,? = DITy .

Matrices B, B. The right-hand side of the elliptic projection problem (14a)-(14b) is written as:

P T
'é_Uvm.wTdv}, B=B+ g’)
i ¢

Matrices G, G. The left-hand side of the elliptic projection problem (14a)-(14b) is written as
Po(m™)

G= [/ vmvadV], G=G+
E 0

By construction, matrix G is non-singular.
Elliptic projection problem in matrix form. The elliptic projection problem (14a)-(14b) takes the form
of the matrix equation

GIIY =B  which implies that ~ ITY = G™'B.

Computability issue. To prove that the elliptic projection problem is solvable, we need to prove that the
integrals of the right-hand side matrix B are computable using only the degrees of freedom of the shape
functions. To this end, we integrate by parts:

'é:/Evm.vQTdV:_/EAmQTdV—i— Z /E(ne-Vm)?TdS,

e€cOFE

and we note that

/ Am ¢* dV is computable using the polynomial moments of degree < k — 2 of ¢”;
- @ @

/(ne -Vm) QT dS is computable since the trace of ?T on ¢ is a polynomial.

€

Lemma 1 (Consistency relation)
BD = G.
Proof: We use m” = ¢* D and the definition of G and G:

Py(pT Py(¢TD
BD = [/ vm.v¢TdV}D+ g’) D= U Vm -V (¢"'D)dV| + (&)
E B 0 B B 0
. Po(m") - Py(m™)
z[/vm-vm dV]Jr =G+ =G
E 0 0



4.3. Projector ﬁgv : VE(E) - Pr(E)

The modified projection operator KV is defined through its action on the shape functions ¢. We use the
compact notation:

KV (¢7) = [TV (1), TV (2), ..., TV ()]

Formal definition. The modified projection of the shape functions ﬁKV(QT) is the solution of the elliptic
projection problem defined by (14a) and

/ Vm - VIIKY (¢7) dV :/ I, (KVm) - Vg dV. (15)
E E
The diffusion tensor K is incorporated in the definition of IIXV (u),). The matrix reformulation of (14a)

and (15) is straightforward and not presented here.

Computability issue. To prove that the elliptic projection problem (14a) and (15) is solvable, we need to
prove that the integrals of the right-hand side of (15) are computable using only the degrees of freedom of
the shape functions. To this end, we integrate by part:

/Hg_l(Kvm) Vel av = —/ div(TT)_,(KVm)) ¢" dV + /ne.v(Hg_l(Kvm))@TdS.
E E

ecOE "Y€

and we note that

/ div(Hg_l(KVm)) @T dV is computable using the polynomial moments of degree < k — 2 of QT
E because div(II)_;(KVm)) is a polynomial of degree k — 2;

/ (ne - Vm) QT dS is computable since the trace of QT on e is a polynomial.

(&

4.4. Projector T1? : VF(E) — Py(E)

The projection operator Hf is defined through its action on the shape functions ¢. We use the compact
notation:

HQ(QT) = [Hg(d)l)’ H€(¢2)7 S 7Hf(¢nd)}
The operator Hf is used as internal projector for the advection term 3 - V(+).

Formal definition. The projection operator Hf is the solution of the elliptic projection problem:
Py (@1)) = Po(@"), (16)
[ 18-Vt [8-5¢"av = [ [8-Vm] [ "] dv (1)
E E

The matrix reformulation of (16)-(17) is straightforward and not presented here.

Computability issue. To prove that the elliptic projection problem is solvable, we need to prove that
the integrals of the right-hand side of (17) are computable using only the degrees of freedom of the shape
functions. As above, we integrate by parts

[ 185l [8-v6" v =~ [ [8-9][8-Var] o™V + ¥ [ [8-Vm] 6" as.

E eCOE "Y€

and we note that



/ [,6' . V] [,6 . Vm] QT dV  is computable using the polynomial moments of degree < k — 2 of QT
E because (B-V)(8-Vm) is a polynomial of degree k — 2;

/ [,8 . Vm] 8- ne?T dS is computable since the trace of QT on e is a polynomial.

For the implementation, we consider the expansion:

om
B-V(B-Vm)=B"H(m)B+ (8- Vﬁz)er (8- Vﬁy)f

where we introduced the Hessian of the polynomial basis H(m) = [H(m1), H(ms), ... ,’H,(m"p)}T
0?m, 0?myg

0x?2 Ox0y 9’m ?m

a) — h T 2 - — 27 —

H(m ) 82ma 62ma so that B H( )ﬁ /Ba: 8.’172 /6 6@;6 +ﬁy ayz )
Oydx  Oy?

. . ?m _ [8%my 9°ma Pmn,, 0°m Pm
(again the compact notation is such that 5= = [ i N B Baoy — 1 By = o).

4.5. Projector 119 : V}F(E) — Py(E)

The projection operator II9 is defined through its action on the shape functions ¢. We use the compact
notation:

HQ(QT) = [Hg((bl)’ H2(¢2>7 L 7H2(¢nd)]

Formal definition. The projection operator II is the solution of the L? orthogonal projection problem:

/EmHQ(QT)dV:/EmQTdV. (18)

In matrix form, since I19 (QT) are polynomials and functions in the virtual element space V,¥(E) we consider
these expansions:

HQ(QT) _ mT]_—-[O _ ?TDHO _ ?Tl—[%(z’
By comparison, it follows that:

0,
;* = DITY.

Matrix C. The right-hand side of the L2-orthogonal projection problem (18) is written as:

e[ nra]

Matrix H. The left-hand side of the L?-orthogonal projection problem (18) is written as:

H= [/EmdeV]

L2-orthogonal projection problem in matrix form. The L?-orthogonal projection problem (18) takes
the form of the matrix equation

HII = C  which implies that  II9 = H'C.

Computability issue. In the conforming formulation, matrix C is only partially computable using the
degrees of freedom of QT. The full computability is ensured by the enhancement [1].

10



Matrix C (enhancement). We define the last rows of C using I1V:

Mad’ dV if degree(my) <k —2
= E
row,(C) =

where degree(m,,) returns the degree of m,.

Matrix C (alternative enhancement). We define the last rows of C using H(DTD)DT
~ / my - T dV if degree(m,) <k —2
row,(C) = ¢ JE -

row, (H(DTD)DT)  if degree(mq) =k — 1, k,
where degree(m,,) returns the degree of m,.
Lemma 2 (Consistency relation)
CD=H

Proof: We use mT = QSTD and the definition of matrix H:

gD: [/Em¢TdV]D: Mm@TD)dV} = [/EmdeV} =H

Remark 3 Since D”D is non-singular:
(D"D)"'D'D=1 = [H(D'D)"'D']D=H
By comparison with CD = H it follows that
C = [H(D"D)'D”] + Co

where CI' € ker(D7), i.e., CyD = 0. Matrix Cq is normally unknown, and we can take Cy = 0 to compute
the algebraic enhancement, but we cannot use this position for an alternative definition of the projections
e (¢"). 0

Remark 4 For k = 1,2 the projector operators Hkv and Hg coincide. |

4.6. Projector TI)_,(V-) : V(V*(E)) — (Px(E))"

This projector operator is defined through its action on the gradients of the shape functions. For d = 2, we

have
067 971"
Vol = i7£
= dr ' Oy

and we use the compact notation

99" o (01 o (99 o (O%n,
m_, <> 4 () Al g (> PP B Vit ( >
Hg_l(VQT) _ or _ ox ox ox

T ¢ Opa Opn
) 1
H2—1 <ay> Hg—l (81/) 7H2-—1 (8y> 7---7H2~—1 ( 8yd>

The extension to d = 3 is straightforward.

11



Formal definition. The L2-orthogonal projection of V¢ is defined onto the polynomial space (]Pk,l(E))d
by

/@Hg_l(VQT)dVZ/@VQTdV

E E

We use the reduced polynomial basis m because H2—1 is projecting the components of VQT onto the
polynomials of degree at most k& — 1.

Computability issue. The right-hand side is computable (without enhancement) after the integration by
parts:

/@V¢Tdvz_/V@¢Tdv+ > /ne-V@¢Tdv.
E - E - e o

ecOFE

Now,

/ Vin¢' dV s computable using the polynomial moments of degree < k — 2 of ¢”;
E - @

/(ne -Vm) T dS  is computable since the trace of QT on e is a polynomial.
€

5. Discretization of bilinear forms
5.1. Virtual element decomposition of local bilinear forms

Let u = [ug, ua, ..., uy,] and v = [v1,vs, ..., v,,] be the degrees of freedom of the fields uy, and vp; hence,
up = QTu and vy, = QTV. Then,

/Vuh-Vvth—i—/ (,@-Vuh)vth—i—/cuhvth:
E E E

T Vo Vol dv Vo) T dV TdV}
ot | [o-vstav s [ (590 6" av + [ cod” av]v

We decompose the shape functions, their gradients and directional derivatives along B by applying the
projection operators of the previous section. Gradients and directional derivatives can have an internal or
an external decomposition. In the former case, we take the derivatives of the projected shape functions; in
the latter case, we apply the projection operator to the derivatives of the shape functions.

— Shape functions:
& =10(0) + (I ~ II})(¢)
— Gradient of the shape functions:
Vo =1I)_ (Vo) + (I —11_,)Ve (external)
Vo = VILY (¢) + V(I — 1Y )¢ (internal).
— Directional derivative of the shape functions:
B-Vo=8-T)_(Vo)+B-(I—-TI}_)V¢ (external)
B-VIZ(¢) = B-VIIL(¢)+B- V(I -TIY)¢ (internal).

In the last identity, we can consider the projectors II9 and IIY instead of Hf .

12



The projection onto the polynomials is always computable, while the remaining part is not. We substitute
these decompositions into the local bilinear forms and for each case we underline the computable and the
non computable part of the decomposition. The “mixed” terms, e.g., I19(¢) (I — I19)$”, are normally zero
by definition of the projection operators if the coefficients are constant. B

e Diffusion bilinear form (using internal projections)
We distinguish between the case with constant coefficient, where for simplicity’s sake we take K = I, and
the case with variable coefficients, which uses the modified V-projector H,'jv defined in Section 4.3.

- constant coefficients (K = 1):

/vg-ngdV:/ VHZQ-VH,YQTW+/ V(I -1Y)p- V(I -1 )" dV .
E E E

computable non computable

- variable coefficients:

/Kw-wTdV:/ vﬁgv¢.vn§¢Tdv+/ VIV ¢ - V(I — 11 )" dV
E - - E - - E - -

computable non computable

+/V(Ifﬁ,fv)g~VH,Y@T)dV+/ V(I -1 - V(I - TIY )¢  dv .
JE JE

non computable non computable

Remark 5 The "mized” terms are always zero if K is constant; in such a case, the two definitions above
coincide. |

e Diffusion bilinear form (using external projections)

/Kvg-ngdvz/ Kng_l(v@.ng_l(vf)dwr/ KIT)_,(Vg) - (I -II}_,)Ve" aV
E E E

computable non computable

+/ K(I—Hg,l)vgHg,l(ng)dVJr/ K(I-T)_)V¢- (I -1I}_)Ve" dVv.
E E

non computable non computable

Remark 6 The two "mized” terms are zero if K is constants or if we redefine the orthogonal projections
with respect to an inner product that is weighted by K. |

e Convection bilinear form (using internal projections)

/QﬂV@TdV:/ Hg@ﬁ-V(nf(@T)dVJr/ 0 (¢) B V(I —117)¢" dV
E E E

computable non computable

+ [a-nop vl + [ (1 -m)es- V-1 av.
E E

non computable non computable

Remark 7 The second "mized” term is zero if B is a constant vector field. |
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Remark 8 Alternatively, in the directional derivative 3-V we can consider one of the two projectors Hkv
and 119 instead of Hf. O

e Convection bilinear form (using external projections)

[ oB-ve"av = [ me)s-my(ve)av + [ M) B (1 -1 e av
E E E

computable non computable

+ /E (I T)pB T, (VET)dV + /E (- TpB- (I -1 )Vl dv.

non computable non computable

Remark 9 The second "mized” term is zero if B is a constant vector field. |

e Reaction bilinear form

/cmdeV:/ cH%(m)Hg(mT)dV+/cH2(m) (I =T (m")dv
E E E

computable non computable

+/ (1 — T19) (m) T (") dv+/ e (I = T19)(m) (I — T19) (mT) dV’.
E FE

non computable non computable

Remark 10 The two "mized” terms are zero if ¢ is constant or if we redefine the orthogonal projections
with respect to an inner product that is weighted by c. |

5.2. Virtual element discretization of local bilinear forms

We defined the local bilinear forms as follows:

ACR
cr (9, QT) := [Consistency]
ACR

s
[-©-
~

:= [Consistency] + [Stabilization]

(fn,¢") & = [Consistency],

where [Consistency] is the computable part of the virtual element decompositions of the previous section, and
[Stabilization] is a suitable ”modeling” of the non computable part. To define the stabilization term, we do
not consider the mixed terms. Both will be discussed in the next subsections. Note that only the diffusive
term and the SUPG term include a stabilization term in their respective definition.

5.2.1. Implementation of the diffusion term

- The internal VEM discretization
We distinguish between the case with constant coefficients, where for simplicity we take K = I, and the
case with variable coefficients, which uses the modified V-projector H;f,v defined in Section 4.3.
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- constant K:

[ Vo vt av - aay ey [ / Vm-VmT} 1Y av = (Y )T GIy ¢
E E

- variable K:

/Kvﬁwgvfdvz/ I (KVg) - Vo' dV = [/ 9_, (KV¢) - V™ dV | I} ¢
E E E

= (I %)" U Vm - V" dV] I, ”.
B
where I19_, (KV¢") = m” (I, *%) includes the diffusion tensor k.

- The external VEM discretization

/E KT\ (Ve) -TIY_,(VoT)dV =

¢ d¢" ¢ d¢"
_ 0 sl 0 el 0 sl 0 sl
_/EKMH,H (m) ., (81‘ ) dV—i—/EnyHk,l (m) ., ¥ dv
¢ Gl ¢ d¢"
0 el 0 s 0 s 0 R
+/Eny I, (8y> I, ((% ) dV/EKyy I, (ay) I, By dv.

Since the projections are polynomials of degree < k, it holds that
8¢ ~T z a¢ ~T
IRy <8x> =m H%—l’ I, (&y) =m Hzfr (19)

Therefore,

P | 0.2 2T «
Koo i dV Hgll = (Hgél) foﬂng

s~

0 .
(%) v ey

(5:)
/Esz m._, (015) ., (zj) av = ()"
()

0
ng (8) dv = (Hg’ijl)T

0y _ 0,2 \T 4K 170,y
Im.=, = (Hk—l) Hmynk—l

5
-~
5
<
=2
I3
~
Q
<

=2

~T ] 0,z 0,y \T' 0,z
m- dV Hk—lz(kal) HngszA

=

Kyz

6¢ 8¢ T ~ ~ T
[t (52) ms (52) av = )" | [y, mat av] e, - @) "wgme,
E Y Y E

The last equalities in each formula below imply the obvious definitions:

E E

E E
5.2.2. Implementation of the convection term
- The external VEM discretization
Note that:
0¢" 09"
B-1)_ (Vo) = B.117_, <ax> + 8,115, (ay : (20)
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Therefore, using (19) yields:

8T 9¢"
[ e mg (vt av = [ ) (a) W+ J AT -y (ay> v

= (Hg)T |:/E Bmm@T dV:| Hg’fl + (H%)T |:/E Bym@T dV:| Hgfl

T 0,z T 0,
= (TI}) " HYTL", + (TI3) Hgnkiﬁ
with the obvious definitions:

HY = /E Bom@” AV,  HE = /E 8,mmT dv.

- The internal VEM discretization
Let Hf be the matrix representation of Hf on the polynomial basis m7, i.e., Hg (QT) = mTHZ. Then,

/ Y (¢) 8- VII(¢T)dv = ()" [/ mpB-Vm” dV] M = (1)) " W11
E E
with the obvious definition:

Hﬁz/m,@-VdeV.
E

Alternatively, in the directional derivative we can consider one of the two projector operators IIY or IT9
instead of Hf .

5.3. Implementation of the reaction term
We use H%(?T) = mTIIY:
/ T (H)TIY(¢7) av = ()" U cmm? dV] M) = (T19) "H°IY  where H = / cmm? dV.
E E E
6. Stabilization of bilinear forms

A stabilizing term is easily built by substituting ¢ ~ 1 and V¢ ~ hgl, by substituting each coefficient with
a constant estimate, and computing the integral of the remaining terms.

6.1. Diffusion matriz

Let K = 1. We consider the virtual decomposition:

/V@-V@TdV:/ VHZQ-VHZQTW+/ V(I =1Y)¢ - V(I ~TI)¢" dv.
E E E

computable non computable
Since IIY (¢) is a polynomial, we have
V(I -TY)¢" = ¢" —1Y (¢7) = 9" — o™ 1% = 9T (1 — T ?).

We substitute this expression in the "non-computable” term and we find:

[ V=109 -nH)g av - x| [ vo-veav|o-mp)
E E
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The stabilization term is provided by substituting
/ V¢ -VodV ~ |E|hz’l
E
into the integral above, which gives
stab[af] := |E|h52(1 — IL)*)T (1 - 1))

If K # | and variable, we first approximate the diffusion tensor K ~ Kg, where Kg is constant on F, and
then we consider

stab[af] := kp|Elh5 (1 — I )T (1 — 1))

where kg is the trace of Kg divided by d.
6.2. Conwvection term

We consider the virtual decomposition:

/QB-VQTde/ Hg(@ﬁ-VHkV(QT)dV+/(I—H%)QQ-V(I—HZ)QTdV,
E E E

computable non computable

where the mixed terms are neglected. Since Hg (¢) and H%_l(V@ are polynomials or vectors of polynomials,
we have

(") = ) = "I

(I-1Y)g" = ¢" — I (¢") = ¢" — "I = 9" (1 - I?)

We substitute these expressions in the "non-computable” term and we find:
T
/ (I-TNpB- V(I —1Y)¢" dV = II)? [/ 6B Vo' dV} (I -1y %).
E E
A stabilization term can be derived by substituting
/ ¢B- Vo' dV ~|B||E|hy|
E
into the integral above, which gives

_ T
stab[bF] := |B||E|h; L)Y (1 - II) ).
6.3. Reaction term

We consider the virtual decomposition:

/cmdeV%/ cng(m)ng(mT)dVJr/ c(I =1 (m) (I -1 (mT)dV,
E E E

computable non computable

where the mixed terms are neglected. Since I19 (¢) are polynomials, we have
(I =T)¢" = ¢" —m" M} = o7 (1 - ).

We substitute this expression in the "non-computable” term and we find:

[ et =) (1 - 1)ty av = 0 - m” [ / c¢¢TdV} (- 109,
E E
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We approximate ¢ = cg, this latter being a constant, as, for example, the cell-average or the value at the
barycenter of F, and then we have the stabilization term by substituting

/ cg o’ dV = |cp||E|l
E
in the integral above and we obtain the stabilization term:

stab[cy] := |eg||E| (1 — TI)7 (1 - II)?).
6.4. Streamline diffusion upwind stabilization (SUPG)

We recall that n, = #(m), n, = #(m), na = #(¢), where # () denotes the cardinality of set &.

6.4.1. Implementation of the convection term
- External projection; using (20):

/ﬁ 9 _(V¢)B-1I)_1(Ve")dV =
= ()" ([ antwv)me « (me)” ([ sona o) oy,
0,y T ~ ~T 0,z 0,y T 2~ ~T 0,y
+(m,) | Bupemm” v myr, + (mY,) [ gmaTav ) my,

0,z 0,z 0,z 0, 0, 0,z 0, 0,
_ (Hk—l) HETI? + (T 1) HE 1%, + (Hkyl) HE I, + (T yl) HE T,
where

HY, = /E grmm’ dvV HE, = /E BuBymim’ dV

wh = [ spma’av W, - [ gasta

The sizes of the previous matrix operators are
fip X ng = size(TI)" ) = size(TI}Y))
i, x 0, = size(H?,) = size(Hgy) = size(HSI) = size(Hgy).

- Internal projection; since Hf (QT) is a polynomial, we have Hf (QT) = mTl'If, where the matrix Hg
collects the coefficients of the polynomial expansion. Then, we have:

[ 18-vii) [8- viiZe"] av = )" [ [ 18-Vu] (8- Var") dv} I — (1) TH T
E E
with the obvious definition

HAP = / (B-Vm] [B- V"] dV = / Vm BB8" V' dV.
E E

6.4.2. Stabilization of the SUPG convection term (”stabilization of the stabilization”)

- Internal projection. We start from the decomposition

18



[ 18-v6) (8- av = [ [5-vnF(e)] [5- vuF (6] av

computable

+ /E 8- V(I - TY ()] [B- V(I - Y (67)] dV .

non computable

The second integral in the right-hand side is non-computable but it cannot be completely neglected
because it stabilizes the full virtual bilinear form when the diffusive term is negligible. It is also called the
stabilization of the stabilization. Note that

(I -T)¢" =o' 1Y (¢7) = ¢" —m" T = ¢" — ¢"DIY = ¢* (I - DITY). (21)

Using this development, the stabilization of the stabilization becomes:

/E [8- V(I —TIY ()] [B- V(I - ¥ (¢"))] aV = (1 - DY) UE Ve Ba" Vo' dv | (- DIIy).

The integral in parenthesis is not computable unless we know V¢. A possibility is to evaluate this term by
a set of barycentric coordinates, e.g., the Weichspress shape functions {Qw} Alternatively, we consider
the approximation

/EvgﬁﬁT Vo' dv = |87 21,
(I being the identity matrix). Since Hkv’¢ = DHX, the resulting formula is
[ 8- =1F()8- V(- (¢") v ~ |8 (1 - DIy
_ T
= 181" h (1= IG0) " (1= 1177)
=: stab|[s; |

which holds for d = 2, 3.

- External projection. We start from the decomposition

/ 18-V4] [B-VeT] av = / (818, (Vo)] [B-T19_,(VeT)] dV
E E

computable

4 [E B (I -10_)(Ve)] [B- (I —T1O_,)(VeT)] dV .

non computable

Again,the second integral in the right-hand side is the so-called stabilization of the stabilization. This term
is not computable, and we simply substitute is with the previous internal approximation.

6.4.3. Implementation of the reaction term

The reaction term is approximated through the following development:
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d¢" 9¢"
[ emie s veav = [ em@s, (;;) v [ enps,m, (ai

= ()" ( /E cBomm” dv> o, + (m)” ( /E o6, maT dV) m

T | eByr0, T | 1eB1y0,
= (1'[2) Hmﬁﬂkfl + (Hg) Hyﬁnki
with the obvious definitions:

H.iﬁ:/ By mm” dv, Hzﬁz/ cﬁym@TdV.
E E

The size of the previous matrix operator is

n, x ng = size(I1})
fip X ng = size(TI)" ) = size(T1}Y))

n, x n, = size(H) = size(Hgﬁ).

6.4.4. Implementation of the forcing term

The forcing term is approximated through the following development:

0 T _ 0 8?T 0 a?T
/Efﬁ'nkq(vé )dV*/Efﬂa:Hkq <8m dV+/Efﬂka—1 Ty dv

= < /E fB.m" dv) )", + < /E fB,m" dv> oY,

0, 0,
= 0T, + £0T0)Y,
with the obvious definitions:

ffZ/EfBI@TdV, ffz/Efﬁy@Tdv

7. Virtual formulations for variable coefficients

The stabilization term sf (¢, QT) is present only when the scheme is working in the convection-dominated
regime. We consider the following four possible formulations. Variants can be designed by combining differ-

ently the projection operators.

(i) The external formulation; the local bilinear forms and the right-hand side functional are given by:

AE(Q? ?T) = aﬁ(?’ ?T) + bf(?’ ?T) + 05(@’ ?T) + sf(év QT)’

with
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ar (¢, ") = /E KII,_ (V) -1, (V") dV + stab[af’],
stab[af’ | == Trace(K)h% 2 (1 — Hkv’d’)T(l - Hkv’¢),

by (¢,07) = | B-T}_1(Ve)IR(¢")aV,

sP(p, ") = TE/E (B-19_1(Ve)] [B-110_, (Ve )] dV + rgstab[sr],

stab[s)7] := |BI” hi? (1 =TI *)T (1 - II),

and

(fr 0" / fn (0" +B-1(e")) dV
Remark 11 A possible choice for the stabilization parameter is given by 7T = thE/|,B\2, where cp €
[0.1,1]. O
Remark 12 This formulation is suitable to both constant and variable coefficients. |

(ii) The internal formulation using Hkv; local bilinear forms and right-hand side functional are given by:

AP (¢, ") == af (¢,0") + b (0. 8") + ch (¢, 07) + s/ (8,07 ),

with
ay (¢, ¢") == a;, (¢, ¢7) + stab[ay; ]
/ KVILY (¢) - VI (¢") dV [constant K]
af,O(?79T) E N
/E VIV (¢) - VIIY (¢7) dV [variable K]
stablay | == Trace(K)h% 2 (I Hkv T —11)%),
(0.0 = [ 8- VI (@] 0TV,
E
Flod") = [ MM v
E
sP(p,9") == TE/E [B-VILY ()] [B- VILY (¢7)] dV + Tgstab[sr ],
stab[sy’] == 8] Ay * (1 = T 9)T (1 - TI)9),
and

(e = [ fu (0" +B-T(") aV
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Remark 13 For a variable K the bilinear form aE must use the modified projector ﬁKv(@, which

incorporate the diffusion tensor. Furthermore, note that IIY = 119 when k = 1,2; so, for the lowest-order
cases there is no difference between the internal formulation using IIY and II9. O

(iii) The internal formulation using Hf ; local bilinear forms and right-hand side functional are given
by:

with
ay (¢, ¢") = a3, (¢, ¢7) + stab|a;]
/KVHV( ) - VHV(QS )dV [constant K]
1 (807 =
/ VIIKY (¢) - VITY (¢7) dV [variable K]
stab[af] := Trace(K)h§ 2 (1 — L") T (1 — I} %),
(.0 = [ [B- VI (") av.
60" = [ MO TR av
E
sP(p,0") == 1p /E [B-VIIZ(9)] [B- VIIF(¢7)] dV + rgstab[sF],
stab[s)7] := |BI” hi? (1 = TI7*)T (1 - II),
and

Unod"e = [ 5 (@ +B-T(") aV

Remark 14 This formulation diﬁers from the previous one because we use Hf instead of Hv as internal
projector. Again, the bilinear form a¥ has a different definition for constant and variable dlffusmn tensors
K. O

(iv) The internal-external formulation; local bilinear forms and right-hand side functional are given by:

Af(6,0") == af (¢,0") + b (0,0") +c (¢, 8") + 55 (8, 0")

with
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af (9,07 == ay (¢, ¢") + stablaf ]
/ KVIIY (¢) - VIIY (¢7) dV [constant K]
an*0,0") =7
VIV (¢) - VIIY (¢") dV [variable K]
E

stab[af’] := Trace(K)hy 2 (I — I *)T (1 — I %),
(.07 = [ 810 (V0] (6" v
(6, 87) = /E 9(6) T (67) V.

6,¢") =1p /E [B-VIZ(9)] [B- VIIY (¢7)] dV + pstab[sF],

wn
—+
1Yy
=2
—
®
S|
Pl

B K52 (1= I ") (1 = I %),
and
(e 6T) 5 = / fu (67 + B-T(67)) dV
E

Remark 15 This formulation differs from the previous ones because we use the internal (elliptic) projec-
tion in af and the external projection for the convection term. Again, the bilinear form ahE has a different
definition for constant and variable diffusion tensors K. O

(v) Stabilization based on Weichspress shape functions. In convection-dominated problems, a variant
of the internal and external formulations presented above is obtained by considering the stabilization:

sabw £ = (1~ 117)" [ [ 93, 087 v av] (- 1079)
E
where direct evaluation of the integral is done by using the Weichspress barycentric coordinates {QW}

8. Well-posedness of the external VEM

In this section, we discuss the well-posedness of the external VEM presented in Section 2, i.e., the existence
and uniqueness of the virtual element approximation. This result is a consequence of the coercivity of the
VEM bilinear form.

Definition 3 (Péclet number) For each element E we define the local mesh Péclet number as

15 (18l + 18l i)

ep .

€ ’
where «,. and & are the stability constant of (11a) and the ellipticity constant of (2). Considering all the
local Péclet numbers, we define the global mesh Péclet number as Pe := maxg(Peg). O

Lemma 3 (Coercivity of A;) Under the assumptions of polynomial consistency and stability along with
those on the coefficients K, B and ¢ and their approzimations, the bilinear form Ay, is coercive with respect
to the energy norm if the mesh Péclet number Pe is sufficiently small. Thus, there exists a (conveniently
defined) positive constant « independent of h such that

Ap(vn,on) > allopll} Yon € Vi
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Proof. From (9), the stability requirements (11a)-(11b) and the ellipticity of the diffusion tensor it can be
seen that

AE (v, vn) > ana® (vn, vn) + bF (vn, v1) 4 vecP (v, v1)
> a*f\vhﬁ,E + b7 (vp, vn) 4+ Y (vn, vn) + [bg(vhavh) - bE(Uh,Uh)}
> a*ﬂvh\iE + min(l,’y*)(bE(vmvh) + cE(vh,vh)) + [bf(vhmh) —vP (v, vh)}
> a*f\vh\iE + min(l,’y*)moﬂvhH(Q)E — ‘bf(uh,vh) — bE(vh,vh)‘. Yoy, € VhE. (22)
The convection term b¥ (vp,, v) — b¥ (vh, vs) can be expanded as
b (un, 0n) — b (0, 01) = /E(B-Hg_l(vuh))n‘,g(vh) av - /E(ﬁ Vup) v dV

= [(B-9-Vuymav+ [ (BOG-Du) - Tunav

+ / B (0,) - (10_, — 1)(Vwn) dV,
E
from which

|68 (v, vn) — b (vn, o) | < ‘/E ((B—B)- Vo) v dV‘ +

/E (B9 — T)vy,) - Voy dV

+

/E A (0y) - (T, — T)(Von) dv).

To bound the first term, use must be made of the requirement (7b) and the Cauchy-Schwarz inequality, so

/E ((5 -B): Vvh) Uh dV’ <[B - Bl ||Vvh||o,E ||”hHo,E < OhEH/@”WLoo(E) |Uh|1,E th”o,E-

The penultimate term is bounded by

[ B =1, - v, dv\ < 1Bloc.s (T2 = Dl s 901105 < ChglBlocor lonl?
< ChplBloc.k lonl} .
since the triangular inequality and approximation property (7b) imply that
1Bloc.5 < 18loc.5 + 18 = Bloe. < 1Bloo. + ChialBlws () ~ |Blo.5 (23)

for sufficiently small hg. Since ﬁ = (,/B\g;, ﬁy)T, we can split the third integral as

~ ~ 0 ~ 0
[ At gy -nveav = [ Bmem, -0 (52) + [ Bmeoa -0 (52).

The final term is bounded by *

1 We use the fact that H271 is the orthogonal projection onto the polynomials of degree k — 1:

0 0 vy — 0 0 0 2] — 0 0 9
fE I (on) - 10y (%) av = fE Mgy (Hk(”h))nkq (%) av = fE M (Hk(”h)> Fa-dv.
A similar relation holds for the integral containing dvy /dy.
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/E BIIY (vy) - (119, — )T dv]

o ~
[ -0 (52 + 18] .

[ o)

<18el

/Eﬂg(vh)(ng—l -D (27)’

8vh
0 T\
/E () = Do) 2

= 1Bsl 0.
Hﬁlloo sl My = )Hg(vh)”o,EHVUhHO,E
< Chp| B 5w, 5 I Vonlly 5
< Chi B, plonl &

< O8] plonl -

where we used again (23) in the last step. Thus,

+18y] .5

_|bh ’Uh,'Uh)_b (Uh,Uh

/,@ 09 (Vo) 19 (vg,) dV — / (8- Vvh)vth‘

= _ChE(”IBHoo , ) |Uh|1,E- (24)
Using (24) into (22) and noting that ||vnllg & < [[vnlly g» [vsl; g < vl g it follows that

An(nsvn) 2 Y |aeé = Chi (18l i + 1Bllws (i) ) | 10wl o + min L, 2 )mo D llenl§
E E

> min {a.€ = Chp (I8l + IBllws () } lenl} + min(L, 3 )mo o

2
> afvnlly, (25)
where

o :=min {min {@.& = Chi (18,5 + 18llw1e () f o min{re, 1mo

From a > 0 and the fact that 7., mg > 0, it may be seen that the VE bilinear form is coercive when

he (18s.e + 1Blwreqey) 1
€ <c

for all mesh elements E. This can be interpreted as showing that the method is coercive when the mesh
Péclet number is sufficiently small. |

Lemma 4 (Continuity of A,) Under the assumptions of polynomial consistency and stability along with
those on the coefficients K, B and ¢ and their approximations, the bilinear form Ay is continuous.

Proof. From the stability property for the diffusion and reaction terms, and using their coercivity and
linearity, both af and cE can be viewed as an inner product on the VE space VhE over each element F.
Consequently,

al (up,vn) < (af (un,up)) 2 (af (vn, vn)) 2 < @ (a® (up, un)) % (@ (v, vp)) 2
< a*||Kl|

and, similarly, c¢Z(up,v;) < Yllellollunllo gllvnllg g- For the convection term, simply using the stability of
the L? projector and the boundedness of the coefficient provides

bi (un vn) < 8]
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Thus,
Ay (uns o) < C([Vunllo gl Vorllo, 5 + [IVun

< C”uhHl,EH'UhHl,E

lo.zllvrllo s + llunllo sllvall )

B\Hm, v*|l¢|l } and so the bilinear form is continuous. O

where we take C' = max {o*||K|| .,

Theorem 1 (Existence and Uniqueness of Solutions) Under the assumptions of polynomial consis-
tency and stability along with those on the coefficients K, B and ¢ and their approzimations, the problem:
find up, € Vi, such that

Ap(un,vn) = an(un, vn) + by (un, vn) + cn(un, vn) = (fr,vn) Yop € Vi,

where
(fh,vh)Z/fh’Uth (26)
Q

possesses a unique solution provided that the mesh Péclet number is sufficiently small.
Proof. The previous lemmas and an appeal to the Lax-Milgram Lemma show that there exists a unique
solution to the problem. |

9. Convergence theory in H! norm

Let ur and u,, denote approximations of u with u; € th and u, piecewise in P; on the mesh partitioning
of . Assuming that the element F has a convex shape, standard approximation estimates yield immediately
that

k
= wrlly g+l = sy < Rl e 27)

Since u, € Px(FE), the polynomial consistency property implies that

A}f(uﬂ,a):/ RVuﬂ~H2_1(V5)dV+/ B-Vang(é)dv+/ Cu, T1)(8) dV. (28)
E E E

Theorem 2 (H!'-norm error estimate) Let u be the evact solution of problem (1), with coefficients
K,B,c € Wk>(Q) satisfying conditions (2) and (3). Let uy be the solution to the virtual element approz-

imation (13), with polynomial coefficients R, B and ¢ satisfying (6) and (7a)-(7c). Then, if f € H*"1(Q)
and u € H*1(Q), the approzimation error can be bounded as

lu = unllt < Ch*|ulsr.

Proof. Define § := up — ur. The coercivity of the VE bilinear form, c.f. (25), implies that
alld))? < An(6,8) = An(un, 8) — Ap(ur,8) = /thg AV = " AP (ur, 9). (29)
E
We manipulate the summation’s argument as follows; add and subtract AE(UW, 0):
AE(u1,6) = AE (u1 — un, 6) + AP (uy, 0) [add and subtract A% (ur,d)]
= (TF) + AP (ur,8) — AP(ur,8) + A¥(ur,6) [add and subtract AP (u, ) |
= (TF) + (T%) + AP (ur — u,0) + AP (u,0) [substitute AF(u,0) = /Efvh av }
= (TE)+ (1) + (1) + [ funav.
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Substituting the last expression into (29) gives

aldlly <TH =3 (TP +T5 +TF), (30)
E
where the error has been split up into four parts:

T = / frodv f/ fodv, TV = AF (w1 — un, 6),
Q Q
T == AP (ur,6) — AP (uy, ), TE = AF (up — u,9).
Since f;, = I19_,(f), the term T/ can be bounded as
|Tf| < C’hk\u|k+1|\6||1. (31)
From the continuity of the bilinear form, the terms T¥ and T¥ may be bounded as
|TJ1E‘ = ’Af(ul - uﬂ,6)| < Cllur — uﬂ”l,EH(SHl,E’
T2 ] = | A (= 1,6)] < Clun — ully 6] -
From these inequalities and bounds (27) it follows that
ITE|+178] < C (llur = unlly g+ lux = ully ) 18]l < CA*fulgy 101 - (32)
Now, we are left to estimate term TZ, which can be bounded as
T2 | < la; (ur, 8) — a® (ur, 6)| + |bf; (ur, §) = bF (ur, 8)| + |} (ur, 8) —  (ux, 0)]
= |TH|+ TS|+ |T% (33)

We will estimate the terms TZ, TE,) T separately. To estimate TZ;, we add and substract KVu, 113, (V4)
inside the integral arguments and we use the definition of the projection operator II9_; to obtain:

af(umé)—aE(uﬂ,(S):/ RVuW~H2_1(V6)dV—/ KV, - VodV
E E

:/(R—K)vuw.ng,l(w) dV+/ KV - (I19_, —1)VsdV
E E

:/ (R - K)Vuy) .v5dv+/(ng_l C)(KVu) - VoAV, (34)
E E
Now,

|lay (ur,0) — a” (ur, o ‘/H (K = K)Vuy) - V&dV‘ ’/ (Im_, — )(KVu,r)-VédV‘

< C|8ll, (HR - KHOO Vullo g +[|(m, - 1) (KVUW)HO’E> . (35)

We easily bound the first norm in (35) by using (7a). To bound the second norm, we first manipulate its
argument by adding and subtracting 19 (KVu) and KVu and rearranging the summation we obtain:

(II}_; —I)(KVuy) = I)_; (KVuz) — KVur = ) (KV(ur —u)) + I _; (KVu) — KV(ur — u) — KVu
=101 (KV(ur —u)) — KV(ur —u) + (II)_; — I)(KVu). (36)

Using the last expression of (36) as the norm’s argument, applying the triangle inequality twice and using
the stability of the projection operator II9_, yield:

1051 =) (KVu)ly < T3 (KV (un = u))lg p + IKV (i = @)l + [| (s = 1) (K

< € (IKV (ur =l + || (L = 1) (KVW), )
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The last two terms above can be bounded using (27) and the fact that the coefficients are in L>:

1KV (ur = w)llg g < 1Kl = uly p < CIK||hF[ulyy

(9, — 1) (KVu < C||KHoohk|u‘k)+1'

Mo,
Combining all such inequalities for all the mesh elements E yields the global bound:

T3] < CUIKI A [l 101l - (37)

To estimate TE,, we add and substract 3 - Vu, H%(é) inside the integral argument and we use the definition
of the projection operator Hg to obtain:

bf(umé)—bE(uﬂﬁ):/EB\~VUWH2(§)dV—/E,8~Vuﬂ5dV
~ [(B-B) - Vu ) dv + [ BV (0~ )5) v
E E

:/ H%((ﬁ—,@)-Vuﬂ)édV+/(H2—I)(B-Vuﬂ)édv. (38)
E E

Now,

bF (1, 6) — b7 (1, 0)| < '/Eni(@—m V) Mv‘ ;

/E(Hg —I)(,G~Vuw)5dv‘

< Ol (18- Bl g Vusllo o+ |01 =1 (B Vur)lly ). (39)
Since for hg — 0
IVunllo,s < IV = w)llo.5 + [ Vullo 5 < Clhe + 1) Vully 5 ~ C|[Vully 5,
estimate (39) becomes
68 (e, 8) = b 11z, )| < ClIally s (18 = Bll o I Vullo.s + |08y = 1) (8- Vur)[|, ) (40)

We easily bound the first norm in (40) by using (7b), and we manipulate the second norm as we have done
for the estimate of T%| to obtain

H(Hgfl - I) (8- VUW)HO,E = HH%?I(,B ) V(uﬂ - u>)HOE + ||[3 V(ur — “)HO,E + H(Hgfl - I) (ﬂ ’ v“)HO,E

< (I8 Vur = wllos + |- = 1) 8- V)|, )
The last two terms above can be bounded using (27) and the fact that the coefficients are in L>:
18- V(ur = w)llo 5 < 18l £V (ur = w)llg g < CllBlo,ph*[ulysr, 5
[(I_, = 1) (8- V)l < ClBlloe ph "l p-

Combining all such inequalities for all the mesh elements E yields the global bound:
| T22| < ClBI A Tul iy l181],- (41)

To estimate TE;, we add and substract cu, I19(J) inside the integral arguments and we use the definition of
the projection operator 11 to obtain:

o2 (r, 8) — b7 (1, 0) :/

Eu,ng((S)dV—/ cur 0dV
E

E

= / (@ — c)uy O(8) dV + / cuy (I — 1)(8) dV
E E

:/ Hg((’c\—c)uﬂ)édV—l—/(Hg—I)(cuﬂ)édV. (42)
E E
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Now,

1CF (1 8) — BF (1 8)| < ‘/Eﬂg((E—c)uﬂ)édV) +

/E(Hg —I)(cur) 6dV‘

< Ol (16 = el gllully, e+ 111 = 1) ()l ) - (43)

We easily bound the first norm in (43) by using (7c), and we manipulate the second norm as we have done
for the estimate of T4 and T%, to obtain

1A% = 1) Cun)lg < [T (e(ur = w)lly g + lletun = wllo g + [Ty =) (cw)lly o
< € (lletus =Wl g + | (M1 = 1) ()] ) -
The last two terms above can be bounded using (27) and the fact that the coefficients are in L>°:
le(ur = w)llo g < llelloo, £ lun = ullo g < Cllel o, £h*ulys, k-
||(H2—1 - I) (CU)HOE < C||CHO<>,Ehk|U|k+1,E'
Combining all such inequalities for all the mesh elements E yields the global bound:
T3] < Cllelloh® lul 1 181];- (44)
Inequalities (37), (41), and (44) gives the bound for T&:
T < Ch*luly iy 16

1B (45)
where constant C' absorbs the coefficients [|K|| . [[K| g, ll¢]| .-
Finally, we combine inequalities (31), (32), and (45) to form an O(h*) bound for the approximation error:
2
||5||1 < C(hk + hk+1)‘“|k+1H5H1'

The result then follows upon dividing through by ||6H? and applying the triangle inequality and bounds (27)
to

lu —wunlly < llu—wlly + flur — unl;-

10. Conclusions

In this work, we summarize some advances in the development of the Conforming Virtual Element method-
ology for the convection-diffusion-reaction problems with constant and variable coefficients. The Conforming
VEM is based on a suitable virtual space definitions as well as some consistency property on a subset of
polynomial functions that allows us to approximate all the bilinear form of the weak formulation without
the explicit construction of the shape functions. In this work, we present several possible combinations of
differential operators and projections. For one of them, we also prove the well-posedness and give an estimate
of the approximation error in the H! norm.
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Appendix A. Relation between the modified projection operator and the mimetic method

The mimetic method is based on the integration by parts:

/KVu-quV:—/ div(KVg) udV + > / -KVq) uds
E

ecOFE

where we assume that ¢ belongs to IPx(FE). Note that the coefficient K(z,y) is always with Vgq.
Now we have two special cases:

— k=1, ¢ is a linear polynomial, Vq is a constant vector. We can approximate K(z,y) by a constant

Kg and note that

- the integral on F in the right-hand side is zero because div(KgVq) is zero;

- n, - Vq is constant, we can take it out of the integral, and we are left with feudS which can be
approximated by using the trapezoidal rule if we know the values of u at the vertices of e. In the VEM,
this is not even an approximation because the trace of u on e is a linear function and is determined by
its values at the vertices.

— K is constant. Then, KVgq is a vector of polynomials of degree up to k — 1 if ¢ is in IPx(F). In this case,
the integral of [, KVu - VqdV is still computable if we know the cell moments of u against polynomials
of degree up to k — 2 and we approximate the trace of u on each edge e by the polynomial interpolant
of degree k. To compute such interpolant, we need to define suitable degrees of freedom of v on e. In the
conforming VEM this not an approximation because the trace of w is a polynomial of degree k on each
edge.

In the general case for k£ > 1 and K(z,y) not constant on F it happens that KVgq is not anymore a vector
of polynomials when ¢ is a polynomial. So, the idea is to project KVq onto the polynomials of degree k — 1
and absorb the non-constant K inside this projection:

/Kvu-quv /Vu~KquV:z/ Vu 119, (KVq) dV
E

= /de (KVq))udV + Z/ n, - 119 _ 1(KVq))udS

e€cOE
Now, the two terms on the right are computable:

— div(IIY_, (KVq)) is a polynomial of degree k —2 and [, div(II)_,(KVq))udV is computable through the
moments of degree up to k — 2 of u;

- n.-I)_,(KVq) is a polynomial of degree k — 1 and [, (ne . Hgfl(KVq)> udS by interpolating u on
polynomials of degree k.

In VEM we do the same using the modified projection oprrator, but the interpretation is different. Let
the VEM diffusive bilinear form be given by:

ar (up,vp) = / VIIRY (uy) - VIIY (vy) dV + stab[ay; ],
E
where the modified projector is defined by:

/VﬁKv(uh)~quV:/ Vuy, -1 (KVq)dV Vg € Pr(E),
E E

(plus the projection on constants as in the usual case of Hkv). Using such definition, the diffusion tensor
K is incorporated in the definition of TV (uy,).

kY (up,) is computed explicitly by running ¢ on the basis of monomials m:
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/ VIIKY (up,) - Vimg dV = / Vuy, - TIY_(KVm,)dV Vo such that Py (E) = span({ms})
E E

Note that the second integral is computable knowing only the degrees of freedom of w; after integration by
parts

/Vuh~H2_1(KVma)dV:—/ up - div(I)_y (KVma)) dV + > [ upn, -1, (KVmy) dS,
E E ecOE Y€

since again div(Hg_l(KVma)) is a polynomial of degree k — 2 and the trace of up on e is a polynomial of
degree k (use the same arguments as above).

So, the VEM with the modified projector works exactly like the normal VEM (without K), where instead
of

M;; = /EVH,Y@» - VIIY ¢; + stab[M]
we use the (modified) stiffness matrix
M;; = /Evﬁw@ - VIIY ¢; dV + stab[M]
The stabilization term remains the same for both (at least this is what we do in MFD).

The approach using the modified projector requires two "nabla” projectors: IIY (which is the usual one
J k

and IIKY (defined as above), and the action of these operators on the shape functions must be computed
explicitly.
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