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Abstract

This document describes the conforming formulations for virtual element approximation of the convection-reaction-
diffusion equation with variable coefficients. Emphasis is given to construction of the projection operators onto
polynomial spaces of appropriate order. These projections make it possible the virtual formulation to achieve any
order of accuracy. We present the construction of the internal and the external formulation. The difference between
the two is in the way the projection operators act on the derivatives (laplacian, gradient) of the partial differential
equation. For the diffusive regime we prove the well-posedness of the external formulation and we derive an estimate
of the approximation error in the H1-norm. For the convection-dominated case, the streamline diffusion stabilization
(aka SUPG) is also discussed.

Key words: High-order method, unstructured polygonal mesh, virtual element method, diffusion, convection-dominated,

reaction problem

1. The convection-diffusion-reaction equation

We consider the problem

−∇ · (K(x)∇u) + β(x) · ∇u+ c(x)u = f(x) in Ω ⊂ IRd (1a)

u = 0 on ∂Ω, (1b)

where d = 2, 3 is the spatial dimension, K ∈ (C1(Ω))d×d is the diffusion tensor, β ∈ (C(Ω))d is the convection
field, c ∈ C(Ω) is the reaction field, and f ∈ C(Ω) is the right-hand side forcing function. The diffusion
tensor K is a full symmetric d× d-sized matrix and is strongly elliptic, i.e., there exist two strictly positive
real constants ξ and η such that

ξ|v|2 ≤ v · K(x)v ≤ η|v|2 (2)

for almost every x ∈ Ω and for any sufficiently smooth vector field v defined on Ω, where | · | denotes the
standard Euclidean norm on IRd. We also suppose that there exists a real constant m0 > 0 such that

c(x)− 1

2
∇ · β(x) ≥ m0 > 0 (3)

for almost every x ∈ Ω.



The variational form of (1) is

A(u, v) :=

∫
Ω

K∇u · ∇v dV +

∫
Ω

(β · ∇u) v dV +

∫
Ω

cu v dV =

∫
Ω

f v dV.

We define the following names for the components of the bilinear form A(·, ·):

a(u, v) :=

∫
Ω

K∇u · ∇v dV, b(u, v) :=

∫
Ω

(β · ∇u) v dV, c(u, v) :=

∫
Ω

cu v dV.

Each term is a bilinear form and can be decomposed in the sum of local contributions that for each element
E read as

aE(u, v) :=

∫
E

K∇u · ∇v dV, bE(u, v) :=

∫
E

(β · ∇u) v dV, cE(u, v) :=

∫
E

cu v dV.

Hence, it holds that a(u, v) =
∑
E a

E(u, v), etc. The coercivity of the bilinear form A with respect to the
energy norm may be shown in the usual way, bounding

A(v, v) =

∫
Ω

K∇v · ∇v dV +

∫
Ω

(β · ∇v)v dV +

∫
Ω

cv v dV

≥ ξ‖∇v‖20 +

∫
Ω

(
c− 1

2
∇ · β

)
v2 ≥ ξ‖∇v‖20 +m0‖v‖20 ≥ min{ξ,m0}‖v‖21. (4)

Combining inequality (4) with the continuity of A and the linearity of (f, v), it follows that there exists a
unique solution to the variational form of problem (1). In practice, the approximate bilinear form is evaluated
by using a quadrature rule and the evaluation is not exact when the coefficients are non-polynomial. Instead,
by approximating the coefficients with polynomials and using a quadrature rule of sufficient degree, we can
quantify and control the error produced. In light of this, the coefficients K, β and c are approximated by
the polynomials K̂, β̂ and ĉ respectively.

It is required that K̂ is elliptic on the polynomial space Pk−1(E) for each mesh element E, so that there

exist two positive constants ξ̂ and η̂ such that

ξ̂|pk−1|2 ≤ pk−1 · K̂(x)pk−1 ≤ η̂|pk−1|2 (5)

for almost every x ∈ Ω and for any pk−1 ∈ (Pk−1(E))d (recall that | · | denotes the standard Euclidean norm
on IRd). Similarly, we assume that there exists a constant m̂0 > 0 such that

ĉ(x) ≥ m̂0 > 0 (6)

for almost every x ∈ Ω. We also suppose that K̂, β̂ and ĉ are such that∣∣∣∣K̂− K
∣∣∣∣
W r,∞(E)

≤ Chs−rE ‖K‖W s,∞(E), (7a)∣∣∣∣β̂ − β∣∣∣∣
W r,∞(E)

≤ Chs−rE ‖β‖W s,∞(E), (7b)∣∣∣∣ĉ− c∣∣∣∣
W r,∞(E)

≤ Chs−rE ‖c‖W s,∞(E), (7c)

for some pair of integer numbers s and r with r < s. Requirements (5) and (6) ensure the coercivity of the
method, while (7a)-(7c) is necessary to maintain the accuracy. Conditions for choosing suitable polynomial
degrees and quadrature rules to ensure these properties can be found in [4].

2. Virtual Element Method: the external formulation

Throughout the paper we will make use of the acronyms VE(s) for Virtual Element(s) and VEM for
Virtual Element Method. For the description of the VEM, the choice of the degrees of freedom and the proof
of there uni-solvency we mainly refer to [1, 2].
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2.1. The Virtual Element space

Let E be a closed polygon with a finite number of vertices (and edges).

Definition 1 For every k ≥ 1, we define the finite dimensional space V kh (E) as

V kh (E) :=
{
v ∈ H1(E) : ∆v ∈ Pk−2(E), v ∈ C0(∂E), v|e ∈ Pk(e) ∀e ∈ ∂E

}
From this definition, it immediately follows that Pk(E) ⊂ V kh (E). The conforming VEM is formulated
through the following projection operators, whose precise definition and properties will be the subject of the
next section:

Elliptic Projection:
– Π∇k : V kh (E)→ Pk(E);

– Π̃K∇
k : V kh (E)→ Pk(E);

– Πβ
k : V kh (E)→ Pk(E);

L2 Projection:
– Π0

k : V kh (E)→ Pk(E);

– Π0
k−1(∇·) : ∇(V kh (E))→

(
Pk(E)

)d
;

– Π∇k : V kh (E)→ Pk(E);

2.2. Approximation of the bilinear form A(·, ·)

The bilinear form A(u, v) is approximated on the VE space Vh by the bilinear form

Ah(uh, vh) := ah(uh, vh) + bh(uh, vh) + ch(uh, vh), (8)

where each term in the right-hand side approximates the corresponding term of A. We assume that such
terms can be decomposed into the sum of elemental terms, thus definining the approximate bilinear form

AEh (uh, vh) := aEh (uh, vh) + bEh (uh, vh) + cEh (uh, vh), (9)

for each element E. We define the elemental contributions to AEh by

aEh (uh, vh) :=

∫
Ω

K̂Π0
k−1(∇uh) ·Π0

k−1(∇vh) dV + SEa ((I−Π0
k)uh, (I−Π0

k)vh), (10a)

bEh (uh, vh) :=

∫
Ω

β̂Π0
k−1(∇uh) ·Π0

k(vh) dV, (10b)

cEh (uh, vh) :=

∫
Ω

ĉΠ0
k(uh)Π0

k(vh) dV + SEc ((I−Π0
k)uh, (I−Π0

k)vh), (10c)

where SEa and SEc are the stabilising terms. These terms are symmetric and positive definite on the quotient
space V Eh /Pk(E) and satisfy the stability property:

α∗a
E(v, v) ≤SEa (v, v) ≤ α∗aE(v, v), (11a)

γ∗c
E(v, v) ≤SEc (v, v) ≤ γ∗cE(v, v), (11b)

for all vh ∈ V Eh with Π0
k(vh) = 0. The first term of each bilinear form is responsible for ensuring the

polynomial consistency property. The second term in aEh and cEh ensures that stability holds. We formally
define the properties of polynomial consistency and stability on each element E of the mesh as follows.

Definition 2
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(i) Polynomial consistency: Whenever either uh or vh or both are elements of the polynomial space
Pk(E), the components of the approximate bilinear forms satisfy

aEh (uh, vh) =

∫
E

K̂Π0
k−1(∇uh) ·Π0

k−1(∇vh) dV,

bEh (uh, vh) =

∫
E

(
β̂ ·Π0

k−1(∇uh)
)
Π0
k(vh) dV,

cEh (uh, vh) =

∫
E

ĉΠ0
k(uh)Π0

k(vh) dV.

(ii) Stability: There exist two pairs of positive constants α∗, α
∗ and γ∗, γ

∗ that are independent of h and
such that

α∗a
E(vh, vh) ≤aEh (vh, vh) ≤ α∗aE(vh, vh) (12a)

γ∗c
E(vh, vh) ≤cEh (vh, vh) ≤ γ∗cE(vh, vh) (12b)

for all vh ∈ V Eh and mesh elements E.

Remark 1 The polynomial consistency is an exactness property. For example, if K is a polynomial tensor,
i.e., K = K̂, whenever one of the two functions uh and vh is a polynomial, it holds that aEh (uh, vh) =
aE(uh, vh). Moreover, the degrees of freedom that due to the unisolvence property determine uniquely the
other (possibly non-polynomial) functions are the minimum knowledge required to compute the value of the
bilinear forms aEh (·, ·) and aE(·, ·). The same is true for bEh and cEh .

Remark 2 In the asymptotic diffusive regime, the stability of Ah is provided by the stabilising terms SEa
and SEc . In facts, note here that we may take

bEh (uh, vh) :=

∫
E

β̂ ·Π0
k−1(∇uh)Π0

k(vh) dV ∀uh, vh ∈ V Eh ,

to satisfy the above conditions. The precise form of the stabilising terms is left until Section 3.

Method 1 (Virtual Element Approximation) Let Ah be the bilinear form defined in (8), whose con-
struction is detailed above. Suppose that the right-hand side of the variational formulation is given by

(fh, vh) =

∫
Ω

fhvh dV where fh :=

{
Π0
k−2(f) if k ≥ 2,

Π0
0(f) if k = 1.

The Virtual Element Approximation of problem (1) reads as: Find uh ∈ Vh such that

Ah(uh, vh) = (fh, vh) ∀vh ∈ Vh. (13)

The well-posedness of the method is discussed in Section 8. The convergence behavior is analyzed in
Section 9.

3. The stabilising terms for the diffusive regime

In this section we discuss the construction of the VE stabilizing terms SEa and SEc . As mentioned above, the
present framework is only applicable to the diffusion-dominated case when the Péclet number is sufficiently
small, as described in Theorem 1. The convection-dominated case requires extra work to stabilize the method.
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The structures of the bilinear forms ah and ch are designed to mimic those of

A(u, v) :=

∫
Ω

K̂Π0
k−1(∇u) ·Π0

k−1(∇v) dV +

∫
Ω

K
(
I−Π0

k−1

)
∇u ·

(
I−Π0

k−1

)
∇v dV,

C(u, v) :=

∫
Ω

ĉΠ0
k(u) Π0

k(v) dV +

∫
Ω

c
(
I−Π0

k

)
u
(
I−Π0

k

)
v dV,

which we will show to satisfy the stability requirements. This result can then be used as a guide to con-
structing appropriate stabilizing terms. Consider

AE(u, u) =

∫
E

K̂Π0
k−1(∇u) ·Π0

k−1(∇u) dV +

∫
Ω

K
(
I−Π0

k−1

)
∇u ·

(
I−Π0

k−1

)
∇u dV,

CE(u, u) =

∫
E

ĉΠ0
k(u) Π0

k(u) dV +

∫
Ω

c
(
I−Π0

k

)
u
(
I−Π0

k

)
u dV.

For AE(u, u), the strong ellipticity of the diffusion tensors K and K̂ and the definition of the L2 projector
imply that

AE(u, u) ≥ ξ̂
∥∥Π0

k−1(∇u)
∥∥2

0,E
+ ξ
∥∥(I−Π0

k−1

)
∇u
∥∥2

0,E

≥ min{ξ̂, ξ}
(

2
∥∥Π0

k−1(∇u)
∥∥2

0,E
+ ‖∇u‖20,E − 2

∫
E

∇u ·Π0
k−1(∇u) dV

)
= min{ξ̂, ξ}

(
2
∥∥Π0

k−1(∇u)
∥∥2

0,E
+ ‖∇u‖20,E − 2

∫
E

∣∣Π0
k−1(∇u)

∣∣2 dV )
= min{ξ̂, ξ}‖∇u‖20,E .

Similarly, for CE(u, u) the lower bounds on c(x) and ĉ(x) mean that

CE(u, u) ≥ m̂0

∥∥Π0
k(u)

∥∥2

0,E
+m0

∥∥(I−Π0
k

)
u
∥∥2

0,E

≥ min{m̂0,m0}
(

2
∥∥Π0

k(u)
∥∥2

0,E
+ ‖u‖20,E − 2

∫
E

uΠ0
k(u) dV

)
= min{m̂0,m0}

(
2
∥∥Π0

k(u)
∥∥2

0,E
+ ‖u‖20,E − 2

∫
E

∣∣Π0
k(u)

∣∣2 dV )
= min{m̂0,m0}‖u‖20,E ,

Hence, AE is coercive in the H1(E) semi-norm and CE is coercive in the L2(E) norm. Since aE(v, v) and
cE(v, v) are also continuous in these norms, the bilinear forms AE and CE must satisfy the lower part of
the stability requirement:

aE(u, u) ≤ ζ∗a |u|
2
1,E ⇒ AE(u, u) ≥ min{ξ̂, ξ}|u|20,E ≥

min{ξ̂, ξ}
ζ∗

aE(u, u),

cE(u, u) ≤ ζ∗c ‖u‖
2
0,E ⇒ CE(u, u) ≥ min{m̂0,m0}‖u‖20,E ≥

min{m̂0,m0}
ζ∗c

cE(u, u).

To see that AE(u, u) and CE(u, u) also satisfy the upper part of the stability requirement, we proceed
similarly. Focussing again on AE(u, u), the ellipticity of the diffusion tensor and the definition of Π0

k−1 imply
that

AE(u, u) ≤ η̂
∥∥Π0

k−1(∇u)
∥∥2

0,E
+ η
∥∥(I−Π0

k−1

)
∇u
∥∥2

≤ max{η̂, η}
(

2
∥∥Π0

k−1(∇u)
∥∥

0,E
+ ‖∇u‖20,E − 2

(
∇u,Π0

k−1(∇u)
))

= max{η̂, η}‖∇u‖20,E ,
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while treating CE(u, u) similarly provides

CE(u, u) ≤ ‖ĉ‖∞
∥∥Π0

ku
∥∥2

0,E
+ ‖c‖∞

∥∥(I−Π0
k

)
u
∥∥2

≤ max{‖ĉ‖∞, ‖c‖∞}
(

2
∥∥Π0

ku
∥∥

0,E
+ ‖u‖20,E − 2

(
u,Π0

ku
))

= max{‖ĉ‖∞, ‖c‖∞}‖u‖
2
0,E .

Since aE(v, v) and cE(v, v) are coercive in these norms, the bilinear forms AE and CE must satisfy the upper
part of the stability requirement:

ζa,∗|u|21,E ≤ a
E(u, u) ⇒ max{ξ̂, ξ}

ζ∗
aE(u, u) ≤ max{ξ̂, ξ}|u|20,E ≤ A

E(u, u),

ζ∗c ‖u‖
2
0,E ≤ c

E(u, u) ⇒ max{m̂0,m0}
ζ∗c

cE(u, u) ≤ max{m̂0,m0}‖u‖20,E ≤ C
E(u, u).

Consequently, we may conclude that the bilinear form AEh with stabilising terms given by

TEa (u, v) :=

∫
Ω

K
(
I−Π0

k−1

)
∇u ·

(
I−Π0

k−1

)
∇v dV,

TEc (u, v) :=

∫
Ω

c
(
I−Π0

k

)
u
(
I−Π0

k

)
u dV.

instead of SEa and SEc satisfies the stability property.
For the VE form, however, TEa and TEc must be approximated by computable stabilising terms SEa and SEc .

The next problem, then, is to construct such stabilising terms that maintain the coercivity of the method.
First, note that both TEa and TEc are seminorms on the VE space V Eh , zero on the polynomial space Pk(E)
and norms on the (finite dimensional) quotient space V Eh /Pk(E). Now, let SEa and SEc be any other bilinear
forms which are also seminorms on V Eh , zero on Pk(E) and norms on V Eh /Pk(E). By the equivalence of
norms on finite dimensional spaces, there must exist two pairs of constants (c1, c2) and (d1, d2) such that

c1T
E
a (v, v) ≤SEa (v, v) ≤ c2TEa (v, v),

d1T
E
c (v, v) ≤SEc (v, v) ≤ d2T

E
c (v, v)

for all v ∈ V Eh ; so, the bilinear form

Ah(u, v) =

∫
Ω

K̂Π0
k−1(∇u) ·Π0

k−1(∇v) dV + Sa(u, v) +

∫
Ω

β̂ ·Π0
k−1(∇u) Π0

k(v) dV

+

∫
Ω

ĉΠ0
k(u) Π0

k(v) dV + Sc(u, v)

is coercive and continuous in the H1 norm.
However, these constants are required to be independent of the mesh parameter h. This can be satisfied

by ensuring that the bilinear form SEa scales like Ta (i.e. like hd−2) and that SEc scales like Tc (i.e. like hd).
An example of bilinear forms satisfying these requirements is given by

SEa (u, v) := KEh
d−2
E

nE∑
r=1

dofr
(
(I−Π0

k)u
)

dofr
(
(I−Π0

k)v
)
,

SEc (u, v) := cEh
d
E

nE∑
r=1

dofr
(
(I−Π0

k)u
)

dofr
(
(I−Π0

k)v
)
,

where KE and cE are some constant approximations of KE and cE , respectively, and dofr(vh) is the r-th
degrees of freedom of vh.
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4. Projection operators

In this section, we review the construction and implementation of the projection operators used in the
external and internal VEM. For exposition’s sake, we use a compact matrix notation for the shape functions
and the polynomials. Indexed notation can be easily recovered by substituting the symbol φ with φi, φ

T with

φj , m with mα, mT with mβ (and the same for m̂ and m̂T ) and converting consistently all matrix-vector
products into indexed summations. For example, the relation between the monomial basis and the shape
functions involves the matrix D and is given by

mT = φTD which is equivalent to mα =

nd∑
i=1

φi(D)iα for α = 1, . . . , np.

The notation of matrices B, C, D, G, G̃, H is consistent with the notation already used in [3]. Instead, we
denote the matrix representation of the ”∇”-projection and the L2-projection of the shape functions with
respect of the monomials by Π∇k and Π0

k, respectively, and with respect to the shape functions by Π∇,φk

and Π0,φ
k , respectively (we do not use the ”starred” notation of [3]). All these quantities are presented and

discussed in the next subsections.

4.1. Shape functions and polynomials

Shape functions. We denote the shape functions of the local virtual element space V kh (E) by φi for
i = 1, . . . , nd, where nd is the cardinality of the basis set. The indices of the shape functions are in roman
fonts, i.e., i, j, k, . . .. We use the compact notation:

φT =
[
φ1, φ2, . . . , φnd

]
.

Polynomial basis. We denote the scaled monomials forming a basis of the local polynomials space Pk(E)
by mα for α = 1, . . . , np, where np is the cardinality of the basis set. The indices of the monomials are in
greek fonts, i.e., α, β, γ . . .. We use the compact notation:

mT =
[
m1,m2, . . . ,mnp

]
.

Reduced polynomial basis. When we consider the linear space of the polynomials of degree up to k − 1
(instead of k), we denote the cardinality of the basis by n̂p and use the compact notation:

m̂T =
[
m1,m2, . . . ,mn̂p

]
.

Obviously, the monomials in m̂ coincide with the first n̂p monomials in m.

Matrix D. We collect the degrees of freedom of the monomials mα with respect to the shape functions φi
in the α-th column of matrix D:

Diα = dofi(mα), i.e., mT = φTD.

4.2. Projector Π∇k : V kh (E)→ Pk(E)

The projection operator Π∇k is defined through its action on the shape functions φ. We use the compact
notation:

Π∇k (φT ) =
[
Π∇k (φ1),Π∇k (φ2), . . . ,Π∇k (φnd

)
]

Formal definition. The projection operator Π∇k is the solution of the elliptic projection problem:

P0

(
Π∇k (φT )

)
= P0

(
φT
)
, (14a)∫

E

∇m · ∇Π∇k (φT ) dV =

∫
E

∇m · ∇φT dV, (14b)

7



where P0 is a suitable projector onto the constant functions defined on E (note, indeed, that second relation
only involves the gradient of the shape functions). In matrix form, since Π∇k (φT ) are polynomials and

functions in the virtual element space V kh (E) we consider these expansions:

Π∇k (φT ) = mTΠ∇k = φTDΠ∇k = φTΠ∇,φk .

By comparison, it follows that:

Π∇,φk = DΠ∇k .

Matrices B, B̃. The right-hand side of the elliptic projection problem (14a)-(14b) is written as:

B̃ =

[∫
E

∇m · ∇φT dV
]
, B = B̃ +

 P0(φT )

0

 .
Matrices G, G̃. The left-hand side of the elliptic projection problem (14a)-(14b) is written as

G̃ =

[∫
E

∇m∇mT dV

]
, G = G̃ +

 P0(mT )

0

 .
By construction, matrix G is non-singular.

Elliptic projection problem in matrix form. The elliptic projection problem (14a)-(14b) takes the form
of the matrix equation

GΠ∇k = B which implies that Π∇k = G−1B.

Computability issue. To prove that the elliptic projection problem is solvable, we need to prove that the
integrals of the right-hand side matrix B̃ are computable using only the degrees of freedom of the shape
functions. To this end, we integrate by parts:

B̃ =

∫
E

∇m · ∇φT dV = −
∫
E

∆mφT dV +
∑
e∈∂E

∫
e

(ne · ∇m) φT dS,

and we note that∫
E

∆mφT dV is computable using the polynomial moments of degree ≤ k − 2 of φT ;∫
e

(ne · ∇m) φT dS is computable since the trace of φT on e is a polynomial.

Lemma 1 (Consistency relation)

BD = G.

Proof: We use mT = φTD and the definition of G̃ and G:

BD =

[∫
E

∇m · ∇φT dV
]
D +

 P0(φT )

0

D =

[∫
E

∇m · ∇
(
φTD

)
dV

]
+

 P0

(
φTD

)
0


=

[∫
E

∇m · ∇mT dV

]
+

 P0(mT )

0

 = G̃ +

 P0(mT )

0

 = G
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4.3. Projector Π̃K∇
k : V kh (E)→ Pk(E)

The modified projection operator Π̃K∇ is defined through its action on the shape functions φ. We use the
compact notation:

Π̃K∇(φT ) =
[
Π̃K∇(φ1), Π̃K∇(φ2), . . . , Π̃K∇(φnd

)
]
.

Formal definition. The modified projection of the shape functions Π̃K∇(φT ) is the solution of the elliptic
projection problem defined by (14a) and∫

E

∇m · ∇Π̃K∇(φT ) dV =

∫
E

Π0
k−1(K∇m) · ∇φdV. (15)

The diffusion tensor K is incorporated in the definition of Π̃K∇(uh). The matrix reformulation of (14a)
and (15) is straightforward and not presented here.

Computability issue. To prove that the elliptic projection problem (14a) and (15) is solvable, we need to
prove that the integrals of the right-hand side of (15) are computable using only the degrees of freedom of
the shape functions. To this end, we integrate by part:∫

E

Π0
k−1(K∇m) · ∇φT dV = −

∫
E

div
(
Π0
k−1(K∇m)

)
φT dV +

∑
e∈∂E

∫
e

ne · ∇
(
Π0
k−1(K∇m)

)
φT dS.

and we note that∫
E

div
(
Π0
k−1(K∇m)

)
φT dV is computable using the polynomial moments of degree ≤ k − 2 of φT

because div
(
Π0
k−1(K∇m)

)
is a polynomial of degree k − 2;∫

e

(ne · ∇m) φT dS is computable since the trace of φT on e is a polynomial.

4.4. Projector Πβ
k : V kh (E)→ Pk(E)

The projection operator Πβ
k is defined through its action on the shape functions φ. We use the compact

notation:

Πβ
k (φT ) =

[
Πβ
k (φ1),Πβ

k (φ2), . . . ,Πβ
k (φnd

)
]

The operator Πβ
k is used as internal projector for the advection term β · ∇(·).

Formal definition. The projection operator Πβ
k is the solution of the elliptic projection problem:

P0

(
Πβ
k (φT )

)
= P0

(
φT
)
, (16)∫

E

[
β · ∇Πβ

km
] [
β · ∇φT

]
dV =

∫
E

[
β · ∇m

] [
β · ∇φT

]
dV (17)

The matrix reformulation of (16)-(17) is straightforward and not presented here.

Computability issue. To prove that the elliptic projection problem is solvable, we need to prove that
the integrals of the right-hand side of (17) are computable using only the degrees of freedom of the shape
functions. As above, we integrate by parts∫

E

[
β · ∇m

] [
β · ∇φT

]
dV = −

∫
E

[
β · ∇

] [
β · ∇m

]
φT dV +

∑
e∈∂E

∫
e

[
β · ∇m

]
β · neφT dS,

and we note that
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∫
E

[
β · ∇

] [
β · ∇m

]
φT dV is computable using the polynomial moments of degree ≤ k − 2 of φT

because (β · ∇)(β · ∇m) is a polynomial of degree k − 2;∫
e

[
β · ∇m

]
β · neφT dS is computable since the trace of φT on e is a polynomial.

For the implementation, we consider the expansion:

β · ∇(β · ∇m) = βTH(m)β +
(
β · ∇βx

)∂m
∂x

+
(
β · ∇βy

)∂m
∂y

where we introduced the Hessian of the polynomial basis H(m) =
[
H(m1),H(m2), . . . ,H(mnp)

]T
:

H(mα) =


∂2mα

∂x2

∂2mα

∂x∂y

∂2mα

∂y∂x

∂2mα

∂y2

 so that βTH(m)β = β2
x

∂2m

∂x2
+ βxβy

∂2m

∂x∂y
+ β2

y

∂2m

∂y2
,

(again the compact notation is such that
∂2m
∂x2 =

[
∂2m1

∂x2 ,
∂2m2

∂x2 , . . . ,
∂2mnp

∂x2 ],
∂2m
∂x∂y = . . .,

∂2m
∂y2 = . . .).

4.5. Projector Π0
k : V kh (E)→ Pk(E)

The projection operator Π0
k is defined through its action on the shape functions φ. We use the compact

notation:

Π0
k(φT ) =

[
Π0
k(φ1),Π0

k(φ2), . . . ,Π0
k(φnd

)
]

Formal definition. The projection operator Π0
k is the solution of the L2 orthogonal projection problem:∫

E

mΠ0
k(φT ) dV =

∫
E

mφT dV. (18)

In matrix form, since Π0
k(φT ) are polynomials and functions in the virtual element space V kh (E) we consider

these expansions:

Π0
k(φT ) = mTΠ0

k = φTDΠ0
k = φTΠ0,φ

k .

By comparison, it follows that:

Π0,φ
k = DΠ0

k.

Matrix C. The right-hand side of the L2-orthogonal projection problem (18) is written as:

C =

[∫
E

mφT dV

]
.

Matrix H. The left-hand side of the L2-orthogonal projection problem (18) is written as:

H =

[∫
E

mmT dV

]
.

L2-orthogonal projection problem in matrix form. The L2-orthogonal projection problem (18) takes
the form of the matrix equation

HΠ0
k = C̃ which implies that Π0

k = H−1C̃.

Computability issue. In the conforming formulation, matrix C is only partially computable using the
degrees of freedom of φT . The full computability is ensured by the enhancement [1].
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Matrix C̃ (enhancement). We define the last rows of C using Π∇:

rowα(C̃) =


∫
E

mαφ
T dV if degree(mα) ≤ k − 2∫

E

mαΠ∇k (φT ) dV if degree(mα) = k − 1, k,

where degree(mα) returns the degree of mα.

Matrix C̃ (alternative enhancement). We define the last rows of C using H(DTD)DT

rowα(C̃) =


∫
E

mr · φT dV if degree(mα) ≤ k − 2

rowr
(
H(DTD)DT

)
if degree(mα) = k − 1, k,

where degree(mα) returns the degree of mα.

Lemma 2 (Consistency relation)

CD = H

Proof: We use mT = φTD and the definition of matrix H:

CD =

[∫
E

mφT dV

]
D =

[∫
E

m
(
φTD

)
dV

]
=

[∫
E

mmT dV

]
= H

Remark 3 Since DTD is non-singular:

(DTD)−1DT D = I =⇒
[
H(DTD)−1DT

]
D = H

By comparison with CD = H it follows that

C =
[
H(DTD)−1DT

]
+ C0

where CT0 ∈ ker(DT ), i.e., C0D = 0. Matrix C0 is normally unknown, and we can take C0 = 0 to compute
the algebraic enhancement, but we cannot use this position for an alternative definition of the projections
Π0
k(φT ).

Remark 4 For k = 1, 2 the projector operators Π∇k and Π0
k coincide.

4.6. Projector Π0
k−1(∇·) : ∇(V kh (E))→

(
Pk(E)

)d
This projector operator is defined through its action on the gradients of the shape functions. For d = 2, we
have

∇φT =

[
∂φT

∂x
,
∂φT

∂y

]T
and we use the compact notation

Π0
k−1(∇φT ) =


Π0
k−1

(
∂φT

∂x

)

Π0
k−1

(
∂φT

∂y

)
 =


Π0
k−1

(
∂φ1

∂x

)
,Π0

k−1

(
∂φ2

∂x

)
, . . . ,Π0

k−1

(
∂φnd

∂x

)
Π0
k−1

(
∂φ1

∂y

)
,Π0

k−1

(
∂φ2

∂y

)
, . . . ,Π0

k−1

(
∂φnd

∂y

)
 .

The extension to d = 3 is straightforward.
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Formal definition. The L2-orthogonal projection of ∇φ is defined onto the polynomial space (Pk−1(E))
d

by

∫
E

m̂Π0
k−1(∇φT ) dV =

∫
E

m̂∇φT dV

We use the reduced polynomial basis m̂ because Π0
k−1 is projecting the components of ∇φT onto the

polynomials of degree at most k − 1.

Computability issue. The right-hand side is computable (without enhancement) after the integration by
parts: ∫

E

m̂∇φT dV = −
∫
E

∇m̂ φT dV +
∑
e∈∂E

∫
e

ne · ∇m̂ φT dV.

Now, ∫
E

∇m̂ φT dV is computable using the polynomial moments of degree ≤ k − 2 of φT ;∫
e

(ne · ∇m̂) φT dS is computable since the trace of φT on e is a polynomial.

5. Discretization of bilinear forms

5.1. Virtual element decomposition of local bilinear forms

Let u = [u1, u2, . . . , und
] and v = [v1, v2, . . . , vnd

] be the degrees of freedom of the fields uh and vh; hence,
uh = φTu and vh = φTv. Then,∫

E

∇uh · ∇vh dV +

∫
E

(
β · ∇uh

)
vh dV +

∫
E

cuhvh dV =

uT
[∫

E

∇φ · ∇φT dV +

∫
E

(
β · ∇φ

)
φT dV +

∫
E

cφφT dV

]
v

We decompose the shape functions, their gradients and directional derivatives along β by applying the
projection operators of the previous section. Gradients and directional derivatives can have an internal or
an external decomposition. In the former case, we take the derivatives of the projected shape functions; in
the latter case, we apply the projection operator to the derivatives of the shape functions.

– Shape functions:

φ = Π0
k(φ) + (I −Π0

k)(φ)

– Gradient of the shape functions:

∇φ = Π0
k−1(∇φ) + (I −Π0

k−1)∇φ (external)

∇φ = ∇Π∇k (φ) +∇(I −Π∇k )φ (internal).

– Directional derivative of the shape functions:

β · ∇φ = β ·Π0
k−1(∇φ) + β · (I −Π0

k−1)∇φ (external)

β · ∇Πβ
k (φ) = β · ∇Πβ

k (φ) + β · ∇(I −Πβ
k )φ (internal).

In the last identity, we can consider the projectors Π0
k and Π∇k instead of Πβ

k .
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The projection onto the polynomials is always computable, while the remaining part is not. We substitute
these decompositions into the local bilinear forms and for each case we underline the computable and the
non computable part of the decomposition. The ”mixed” terms, e.g., Π0

k(φ) (I − Π0
k)φT , are normally zero

by definition of the projection operators if the coefficients are constant.

• Diffusion bilinear form (using internal projections)
We distinguish between the case with constant coefficient, where for simplicity’s sake we take K = I, and
the case with variable coefficients, which uses the modified ∇-projector Π̃K∇

k defined in Section 4.3.

- constant coefficients (K = I):∫
E

∇φ · ∇φT dV =

∫
E

∇Π∇k φ · ∇Π∇k φ
T dV︸ ︷︷ ︸

computable

+

∫
E

∇(I −Π∇k )φ · ∇(I −Π∇k )φT dV︸ ︷︷ ︸
non computable

.

- variable coefficients:∫
E

K∇φ · ∇φT dV =

∫
E

∇Π̃K∇
k φ · ∇Π∇k φ

T dV︸ ︷︷ ︸
computable

+

∫
E

∇Π̃K∇
k φ · ∇(I −Π∇k )φT dV︸ ︷︷ ︸
non computable

+

∫
E

∇(I − Π̃K∇
k )φ · ∇Π∇k (φT ) dV︸ ︷︷ ︸

non computable

+

∫
E

∇(I − Π̃K∇
k )φ · ∇(I −Π∇k )φT dV︸ ︷︷ ︸

non computable

.

Remark 5 The ”mixed” terms are always zero if K is constant; in such a case, the two definitions above
coincide.

• Diffusion bilinear form (using external projections)∫
E

K∇φ · ∇φT dV =

∫
E

KΠ0
k−1(∇φ) ·Π0

k−1(∇φT ) dV︸ ︷︷ ︸
computable

+

∫
E

KΠ0
k−1(∇φ) · (I −Π0

k−1)∇φT dV︸ ︷︷ ︸
non computable

+

∫
E

K(I −Π0
k−1)∇φ ·Π0

k−1(∇φT ) dV︸ ︷︷ ︸
non computable

+

∫
E

K(I −Π0
k−1)∇φ · (I −Π0

k−1)∇φT dV︸ ︷︷ ︸
non computable

.

Remark 6 The two ”mixed” terms are zero if K is constants or if we redefine the orthogonal projections
with respect to an inner product that is weighted by K.

• Convection bilinear form (using internal projections)∫
E

φβ · ∇φT dV =

∫
E

Π0
k(φ)β · ∇(Πβ

k (φ)T ) dV︸ ︷︷ ︸
computable

+

∫
E

Π0
k(φ)β · ∇(I −Πβ

k )φT dV︸ ︷︷ ︸
non computable

+

∫
E

(I −Π0
k)φβ · ∇Πβ

k (φT ) dV︸ ︷︷ ︸
non computable

+

∫
E

(I −Π0
k)φβ · ∇(I −Πβ

k )φT dV︸ ︷︷ ︸
non computable

.

Remark 7 The second ”mixed” term is zero if β is a constant vector field.
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Remark 8 Alternatively, in the directional derivative β ·∇ we can consider one of the two projectors Π∇k
and Π0

k instead of Πβ
k .

• Convection bilinear form (using external projections)∫
E

φβ · ∇φT dV =

∫
E

Π0
k(φ)β ·Π0

k−1(∇φT ) dV︸ ︷︷ ︸
computable

+

∫
E

Π0
k(φ)β · (I −Π0

k−1)∇φT dV︸ ︷︷ ︸
non computable

+

∫
E

(I −Π0
k)φβ ·Π0

k−1(∇φT ) dV︸ ︷︷ ︸
non computable

+

∫
E

(I −Π0
k)φβ · (I −Π0

k−1)∇φT dV︸ ︷︷ ︸
non computable

.

Remark 9 The second ”mixed” term is zero if β is a constant vector field.

• Reaction bilinear form∫
E

cmmT dV =

∫
E

cΠ0
k(m) Π0

k(mT ) dV︸ ︷︷ ︸
computable

+

∫
E

cΠ0
k(m) (I −Π0

k)(mT ) dV︸ ︷︷ ︸
non computable

+

∫
E

c (I −Π0
k)(m) Π0

k(mT ) dV︸ ︷︷ ︸
non computable

+

∫
E

c (I −Π0
k)(m) (I −Π0

k)(mT ) dV︸ ︷︷ ︸
non computable

.

Remark 10 The two ”mixed” terms are zero if c is constant or if we redefine the orthogonal projections
with respect to an inner product that is weighted by c.

5.2. Virtual element discretization of local bilinear forms

We defined the local bilinear forms as follows:

aEh (φ, φT ) := [Consistency] + [Stabilization]

bEh (φ, φT ) := [Consistency]

cEh (φ, φT ) := [Consistency]

sEh (φ, φT ) := [Consistency] + [Stabilization]

(fh, φ
T )E := [Consistency],

where [Consistency] is the computable part of the virtual element decompositions of the previous section, and
[Stabilization] is a suitable ”modeling” of the non computable part. To define the stabilization term, we do
not consider the mixed terms. Both will be discussed in the next subsections. Note that only the diffusive
term and the SUPG term include a stabilization term in their respective definition.

5.2.1. Implementation of the diffusion term

- The internal VEM discretization
We distinguish between the case with constant coefficients, where for simplicity we take K = I, and the
case with variable coefficients, which uses the modified ∇-projector Π̃K∇

k defined in Section 4.3.
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- constant K: ∫
E

∇Π∇φ · ∇Π∇φT dV = (Π∇,φk )T
[∫

E

∇m · ∇mT

]
Π∇,φk dV = (Π∇,φk )T G̃Π∇,φk

- variable K:∫
E

K∇Π̃K∇φ · ∇φT dV =

∫
E

Π0
k−1(K∇φ) · ∇φT dV =

[∫
E

Π0
k−1(K∇φ) · ∇mT dV

]
Π∇,φk

= (Π̃∇,φk−1)T
[∫

E

∇m · ∇mT dV

]
Π∇,φk .

where Π0
k−1(K∇φT ) = mT (Π̃∇,φk−1) includes the diffusion tensor k.

- The external VEM discretization∫
E

KΠ0
k−1(∇φ) ·Π0

k−1(∇φT ) dV =

=

∫
E

Kxx Π0
k−1

(
∂φ

∂x

)
Π0
k−1

(
∂φT

∂x

)
dV +

∫
E

Kxy Π0
k−1

(
∂φ

∂x

)
Π0
k−1

(
∂φT

∂y

)
dV

+

∫
E

Kyx Π0
k−1

(
∂φ

∂y

)
Π0
k−1

(
∂φT

∂x

)
dV

∫
E

Kyy Π0
k−1

(
∂φ

∂y

)
Π0
k−1

(
∂φT

∂y

)
dV.

Since the projections are polynomials of degree ≤ k, it holds that

Π0
k−1

(
∂φ

∂x

)
= m̂TΠ0,x

k−1, Π0
k−1

(
∂φ

∂y

)
= m̂TΠ0,y

k−1. (19)

Therefore,∫
E

Kxx Π0
k−1

(
∂φ

∂x

)
Π0
k−1

(
∂φ

∂x

)
dV =

(
Π0,x
k−1

)T [∫
E

Kxx m̂ m̂T dV

]
Π0,x
k−1 =

(
Π0,x
k−1

)T
HKxxΠ

0,x
k−1

∫
E

Kxy Π0
k−1

(
∂φ

∂x

)
Π0
k−1

(
∂φ

∂y

)
dV =

(
Π0,x
k−1

)T [∫
E

Kxy m̂ m̂T dV

]
Π0,y
k−1 =

(
Π0,x
k−1

)T
HKxyΠ

0,y
k−1

∫
E

Kyx Π0
k−1

(
∂φ

∂y

)
Π0
k−1

(
∂φ

∂x

)
dV =

(
Π0,y
k−1

)T [∫
E

Kyx m̂ m̂T dV

]
Π0,x
k−1 =

(
Π0,y
k−1

)T
HKyxΠ

0,x
k−1

∫
E

Kyy Π0
k−1

(
∂φ

∂y

)
Π0
k−1

(
∂φ

∂y

)
dV =

(
Π0,y
k−1

)T [∫
E

Kyy m̂ m̂T dV

]
Π0,y
k−1 =

(
Π0,y
k−1

)T
HKyyΠ

0,y
k−1.

The last equalities in each formula below imply the obvious definitions:

HKxx =

∫
E

Kxx m̂ m̂T dV, HKxy =

∫
E

Kxy m̂ m̂T dV,

HKyx =

∫
E

Kyx m̂ m̂T dV, HKyy =

∫
E

Kyy m̂ m̂T dV,

5.2.2. Implementation of the convection term

- The external VEM discretization
Note that:

β ·Π0
k−1(∇φT ) = βxΠ0

k−1

(
∂φT

∂x

)
+ βyΠ0

k−1

(
∂φT

∂y

)
. (20)
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Therefore, using (19) yields:∫
E

βΠ0
k(φ) ·Π0

k−1

(
∇φT

)
dV =

∫
E

βxΠ0
k(φ) ·Π0

k−1

(
∂φT

∂x

)
dV +

∫
E

βyΠ0
k(φ) ·Π0

k−1

(
∂φT

∂y

)
dV

=
(
Π0
k

)T [∫
E

βxmm̂T dV

]
Π0,x
k−1 +

(
Π0
k

)T [∫
E

βymm̂T dV

]
Π0,y
k−1

=
(
Π0
k

)T
HβxΠ0,x

k−1 +
(
Π0
k

)T
HβyΠ0,y

k−1

with the obvious definitions:

Hβx =

∫
E

βxmm̂T dV, Hβy =

∫
E

βymm̂T dV.

- The internal VEM discretization
Let Πβ

k be the matrix representation of Πβ
k on the polynomial basis mT , i.e., Πβ

k (φT ) = mTΠβ
k . Then,∫

E

Π0
k(φ)β · ∇Π(φT ) dV =

(
Π0
k

)T [∫
E

mβ · ∇mT dV

]
Π =

(
Π0
k

)T
H
βΠ

with the obvious definition:

H
β =

∫
E

mβ · ∇mT dV.

Alternatively, in the directional derivative we can consider one of the two projector operators Π∇k or Π0
k

instead of Πβ
k .

5.3. Implementation of the reaction term

We use Π0
k(φT ) = mTΠ0

k:∫
E

cΠ0
k(φ)Π0

k(φT ) dV =
(
Π0
k

)T [∫
E

cmmT dV

]
Π0
k =

(
Π0
k

)T
H
cΠ0

k where H
c =

∫
E

cmmT dV.

6. Stabilization of bilinear forms

A stabilizing term is easily built by substituting φ ' 1 and ∇φ ' h−1
E , by substituting each coefficient with

a constant estimate, and computing the integral of the remaining terms.

6.1. Diffusion matrix

Let K = I. We consider the virtual decomposition:∫
E

∇φ · ∇φT dV =

∫
E

∇Π∇k φ · ∇Π∇k φ
T dV︸ ︷︷ ︸

computable

+

∫
E

∇(I −Π∇k )φ · ∇(I −Π∇k )φT dV︸ ︷︷ ︸
non computable

.

Since Π∇k (φ) is a polynomial, we have

∇(I −Π∇k )φT = φT −Π∇k (φT ) = φT − φTΠ∇,φk = φT (I−Π∇,φk ).

We substitute this expression in the ”non-computable” term and we find:∫
E

∇(I −Π∇k )φ · ∇(I −Π∇k )φT dV = (I−Π∇,φk )T
[∫

E

∇φ · ∇φdV
]

(I−Π∇,φk )
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The stabilization term is provided by substituting∫
E

∇φ · ∇φdV ≈ |E|h−2
E I

into the integral above, which gives

stab
[
aEh
]

:= |E|h−2
E (I−Π∇,φk )T (I−Π∇,φk )

If K 6= I and variable, we first approximate the diffusion tensor K ≈ KE , where KE is constant on E, and
then we consider

stab
[
aEh
]

:= κE |E|h−2
E (I−Π∇,φk )T (I−Π∇,φk )

where κE is the trace of KE divided by d.

6.2. Convection term

We consider the virtual decomposition:∫
E

φβ · ∇φT dV ≈
∫
E

Π0
k(φ)β · ∇Π∇k (φT ) dV︸ ︷︷ ︸

computable

+

∫
E

(I −Π0
k)φβ · ∇(I −Π∇k )φT dV︸ ︷︷ ︸
non computable

,

where the mixed terms are neglected. Since Π0
k(φ) and Π0

k−1(∇φ) are polynomials or vectors of polynomials,
we have

Π0
k(φT ) = mTΠ0

k = φTΠ0,φ
k

(I −Π∇k )φT = φT −Π∇k (φT ) = φT − φTΠ∇,φk = φT (I−Π∇,φk )

We substitute these expressions in the ”non-computable” term and we find:∫
E

(I −Π0
k)φβ · ∇(I −Π∇k )φT dV = Π0,φ

k

T
[∫

E

φβ · ∇φT dV
]

(I−Π∇,φk ).

A stabilization term can be derived by substituting∫
E

φβ · ∇φT dV ≈ |β||E|h−1
E I

into the integral above, which gives

stab
[
bEh
]

:= |β||E|h−1
E Π0,φ

k

T
(I−Π∇,φk ).

6.3. Reaction term

We consider the virtual decomposition:∫
E

cmmT dV ≈
∫
E

cΠ0
k(m) Π0

k(mT ) dV︸ ︷︷ ︸
computable

+

∫
E

c (I −Π0
k)(m) (I −Π0

k)(mT ) dV︸ ︷︷ ︸
non computable

,

where the mixed terms are neglected. Since Π0
k(φ) are polynomials, we have

(I −Π0
k)φT = φT −mTΠ0

k = φT (I−Π0,φ
k ).

We substitute this expression in the ”non-computable” term and we find:∫
E

c (I −Π0
k)(m) (I −Π0

k)(mT ) dV = (I−Π0
k)T

[∫
E

c φφT dV

]
(I−Π0,φ

k ).
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We approximate c ≈ cE , this latter being a constant, as, for example, the cell-average or the value at the
barycenter of E, and then we have the stabilization term by substituting∫

E

c φφT dV ≈ |cE ||E|I

in the integral above and we obtain the stabilization term:

stab
[
cEh
]

:= |cE ||E| (I−Π0
k)T (I−Π0,φ

k ).

6.4. Streamline diffusion upwind stabilization (SUPG)

We recall that np = #(m), n̂p = #(m̂), nd = #(φ), where #(ξ) denotes the cardinality of set ξ.

6.4.1. Implementation of the convection term
- External projection; using (20):∫

E

β ·Π0
k−1(∇φ)β ·Π0

k−1(∇φT ) dV =

=
(
Π0,x
k−1

)T (∫
E

β2
xm̂ m̂T dV

)
Π0,x
k−1 +

(
Π0,x
k−1

)T (∫
E

βxβym̂ m̂T dV

)
Π0,y
k−1

+
(
Π0,y
k−1

)T (∫
E

βyβxm̂ m̂T dV

)
Π0,x
k−1 +

(
Π0,y
k−1

)T (∫
E

β2
ym̂ m̂T dV

)
Π0,y
k−1

=
(
Π0,x
k−1

)T
HβxxΠ

0,x
k−1 +

(
Π0,x
k−1

)T
HβxyΠ

0,y
k−1 +

(
Π0,y
k−1

)T
HβyxΠ

0,x
k−1 +

(
Π0,y
k−1

)T
HβyyΠ

0,y
k−1

where

Hβxx =

∫
E

β2
xm̂ m̂T dV Hβxy =

∫
E

βxβym̂ m̂T dV

Hβyx =

∫
E

βyβxm̂ m̂T dV Hβyy =

∫
E

β2
ym̂ m̂T dV

The sizes of the previous matrix operators are

n̂p × nd = size(Π0,x
k−1) = size(Π0,y

k−1)

n̂p × n̂p = size(Hβxx) = size(Hβxy) = size(Hβyx) = size(Hβyy).

- Internal projection; since Πβ
k (φT ) is a polynomial, we have Πβ

k (φT ) = mTΠβ
k , where the matrix Πβ

k

collects the coefficients of the polynomial expansion. Then, we have:∫
E

[
β · ∇Πβ

k (φ)
] [
β · ∇Πβ

k (φT )
]
dV = (Πβ

k)T
[∫

E

[
β · ∇m

] [
β · ∇mT

]
dV

]
Πβ
k = (Πβ

k)THββΠβ
k

with the obvious definition

Hββ =

∫
E

[
β · ∇m

] [
β · ∇mT

]
dV =

∫
E

∇m ββT ∇mT dV.

6.4.2. Stabilization of the SUPG convection term (”stabilization of the stabilization”)

- Internal projection. We start from the decomposition
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∫
E

[
β · ∇φ

] [
β · ∇φT

]
dV =

∫
E

[
β · ∇Π∇k (φ)

] [
β · ∇Π∇k (φT )

]
dV︸ ︷︷ ︸

computable

+

∫
E

[
β · ∇(I −Π∇k (φ))

] [
β · ∇(I −Π∇k (φT ))

]
dV︸ ︷︷ ︸

non computable

.

The second integral in the right-hand side is non-computable but it cannot be completely neglected
because it stabilizes the full virtual bilinear form when the diffusive term is negligible. It is also called the
stabilization of the stabilization. Note that

(I −Π∇k )φT = φT −Π∇k (φT ) = φT −mTΠ∇k = φT − φTDΠ∇k = φT (I− DΠ∇k ). (21)

Using this development, the stabilization of the stabilization becomes:∫
E

[
β · ∇(I −Π∇k (φ))

] [
β · ∇(I −Π∇k (φT ))

]
dV =

(
I− DΠ∇k

)T [∫
E

∇φββT ∇φT dV
] (

I− DΠ∇k
)
.

The integral in parenthesis is not computable unless we know ∇φ. A possibility is to evaluate this term by

a set of barycentric coordinates, e.g., the Weichspress shape functions
{
φ

W

}
. Alternatively, we consider

the approximation ∫
E

∇φββT ∇φT dV ≈ |β|2 hd−2
E I,

(I being the identity matrix). Since Π∇,φk = DΠ∇k , the resulting formula is∫
E

β · ∇(I −Π∇k (φ))β · ∇(I −Π∇k (φT )) dV ≈ |β|2 hd−2
E

(
I− DΠ∇k

)T (
I− DΠ∇k

)
= |β|2 hd−2

E

(
I−Π∇,φk

)T (
I−Π∇,φk

)
=: stab

[
sEh
]

which holds for d = 2, 3.

- External projection. We start from the decomposition∫
E

[
β · ∇φ

] [
β · ∇φT

]
dV =

∫
E

[
β ·Π0

k−1(∇φ)
] [
β ·Π0

k−1(∇φT )
]
dV︸ ︷︷ ︸

computable

+

∫
E

[
β · (I −Π0

k−1)(∇φ)
] [
β · (I −Π0

k−1)(∇φT )
]
dV︸ ︷︷ ︸

non computable

.

Again,the second integral in the right-hand side is the so-called stabilization of the stabilization. This term
is not computable, and we simply substitute is with the previous internal approximation.

6.4.3. Implementation of the reaction term

The reaction term is approximated through the following development:
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∫
E

cΠ0
k(φ)β ·Π0

k−1(∇φT ) dV =

∫
E

cΠ0
k(φ)βxΠ0

k−1

(
∂φT

∂x

)
dV +

∫
E

cΠ0
k(φ)βyΠ0

k−1

(
∂φT

∂y

)
dV

=
(
Π0
k

)T (∫
E

cβxmm̂T dV

)
Π0,x
k−1 +

(
Π0
k

)T (∫
E

cβymm̂T dV

)
Π0,y
k−1

=
(
Π0
k

)T
Hcβx Π0,x

k−1 +
(
Π0
k

)T
Hcβy Π0,y

k−1

with the obvious definitions:

Hcβx =

∫
E

cβxmm̂T dV, Hcβy =

∫
E

cβymm̂T dV.

The size of the previous matrix operator is

np × nd = size(Π0
k)

n̂p × nd = size(Π0,x
k−1) = size(Π0,y

k−1)

np × n̂p = size(Hcβx ) = size(Hcβy ).

6.4.4. Implementation of the forcing term

The forcing term is approximated through the following development:

∫
E

f β ·Π0
k−1(∇φT ) dV =

∫
E

f βxΠ0
k−1

(
∂φT

∂x

)
dV +

∫
E

f βyΠ0
k−1

(
∂φT

∂y

)
dV

=

(∫
E

fβx m̂
T dV

)
Π0,x
k−1 +

(∫
E

fβy m̂
T dV

)
Π0,y
k−1

= fβxΠ0,x
k−1 + fβy Π0,y

k−1.

with the obvious definitions:

fβx =

∫
E

fβx m̂
T dV, fβy =

∫
E

fβy m̂
T dV

7. Virtual formulations for variable coefficients

The stabilization term sEh (φ, φT ) is present only when the scheme is working in the convection-dominated
regime. We consider the following four possible formulations. Variants can be designed by combining differ-
ently the projection operators.

(i) The external formulation; the local bilinear forms and the right-hand side functional are given by:

AEh (φ, φT ) := aEh (φ, φT ) + bEh (φ, φT ) + cEh (φ, φT ) + sEh (φ, φT ),

with
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aEh (φ, φT ) :=

∫
E

KΠ0
k−1(∇φ) ·Π0

k−1(∇φT ) dV + stab
[
aEh
]
,

stab
[
aEh
]

:= Trace(K)hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

bEh (φ, φT ) :=

∫
E

β ·Π0
k−1(∇φ) Π0

k(φT ) dV,

cEh (φ, φT ) :=

∫
E

Π0
k(φ) Π0

k(φT ) dV,

sEh (φ, φT ) := τE

∫
E

[
β ·Π0

k−1(∇φ)
] [
β ·Π0

k−1(∇φT )
]
dV + τEstab

[
sEh
]
,

stab
[
sEh
]

:= |β|2 hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

and

(fh, φ
T )E :=

∫
E

fh
(
φT + β ·Π0

k(φT )
)
dV

Remark 11 A possible choice for the stabilization parameter is given by τE = cEhE/|β|2, where cE ∈
[0.1, 1].

Remark 12 This formulation is suitable to both constant and variable coefficients.

(ii) The internal formulation using Π∇k ; local bilinear forms and right-hand side functional are given by:

AEh (φ, φT ) := aEh (φ, φT ) + bEh (φ, φT ) + cEh (φ, φT ) + sEh (φ, φT ),

with

aEh (φ, φT ) := aE,0h (φ, φT ) + stab
[
aEh
]

aE,0h (φ, φT ) :=


∫
E

K∇Π∇k (φ) · ∇Π∇k (φT ) dV
[
constant K

]
∫
E

∇Π̃K∇(φ) · ∇Π∇k (φT ) dV
[
variable K

]
stab

[
aEh
]

:= Trace(K)hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

bEh (φ, φT ) :=

∫
E

[
β · ∇Π∇k (φ)

]
Π0
k(φT ) dV,

cEh (φ, φT ) :=

∫
E

Π0
k(φ) Π0

k(φT ) dV,

sEh (φ, φT ) := τE

∫
E

[
β · ∇Π∇k (φ)

] [
β · ∇Π∇k (φT )

]
dV + τEstab

[
sEh
]
,

stab
[
sEh
]

:= |β|2 hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

and

(fh, φ
T )E :=

∫
E

fh
(
φT + β ·Π0

k(φT )
)
dV.
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Remark 13 For a variable K the bilinear form aEh must use the modified projector Π̃K∇(φ), which

incorporate the diffusion tensor. Furthermore, note that Π∇k = Π0
k when k = 1, 2; so, for the lowest-order

cases there is no difference between the internal formulation using Π∇k and Π0
k.

(iii) The internal formulation using Πβ
k ; local bilinear forms and right-hand side functional are given

by:

AEh (φ, φT ) := aEh (φ, φT ) + bEh (φ, φT ) + cEh (φ, φT ) + sEh (φ, φT )

with

aEh (φ, φT ) := aE,0h (φ, φT ) + stab
[
aEh
]

aE,0h (φ, φT ) :=


∫
E

K∇Π∇k (φ) · ∇Π∇k (φT ) dV
[
constant K

]
∫
E

∇Π̃K∇(φ) · ∇Π∇k (φT ) dV
[
variable K

]
stab

[
aEh
]

:= Trace(K)hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

bEh (φ, φT ) :=

∫
E

[
β · ∇Πβ

k (φ)
]

Π0
k(φT ) dV,

cEh (φ, φT ) :=

∫
E

Π0
k(φ) Π0

k(φT ) dV,

sEh (φ, φT ) := τE

∫
E

[
β · ∇Πβ

k (φ)
] [
β · ∇Πβ

k (φT )
]
dV + τEstab

[
sEh
]
,

stab
[
sEh
]

:= |β|2 hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

and

(fh, φ
T )E :=

∫
E

fh
(
φT + β ·Π0

k(φT )
)
dV

Remark 14 This formulation differs from the previous one because we use Πβ
k instead of Π∇k as internal

projector. Again, the bilinear form aEh has a different definition for constant and variable diffusion tensors
K.

(iv) The internal-external formulation; local bilinear forms and right-hand side functional are given by:

AEh (φ, φT ) := aEh (φ, φT ) + bEh (φ, φT ) + cEh (φ, φT ) + sEh (φ, φT )

with
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aEh (φ, φT ) := aE,0h (φ, φT ) + stab
[
aEh
]

aE,0h (φ, φT ) :=


∫
E

K∇Π∇k (φ) · ∇Π∇k (φT ) dV
[
constant K

]
∫
E

∇Π̃K∇(φ) · ∇Π∇k (φT ) dV
[
variable K

]
stab

[
aEh
]

:= Trace(K)hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

bEh (φ, φT ) :=

∫
E

[
β ·Π0

k−1(∇φ)
]

Π0
k(φT ) dV,

cEh (φ, φT ) :=

∫
E

Π0
k(φ) Π0

k(φT ) dV,

sEh (φ, φT ) := τE

∫
E

[
β · ∇Πβ

k (φ)
] [
β · ∇Πβ

k (φT )
]
dV + τEstab

[
sEh
]
,

stab
[
sEh
]

:= |β|2 hd−2
E (I−Π∇,φk )T (I−Π∇,φk ),

and

(fh, φ
T )E :=

∫
E

fh
(
φT + β ·Π0

k(φT )
)
dV

Remark 15 This formulation differs from the previous ones because we use the internal (elliptic) projec-
tion in aEh and the external projection for the convection term. Again, the bilinear form aEh has a different
definition for constant and variable diffusion tensors K.

(v) Stabilization based on Weichspress shape functions. In convection-dominated problems, a variant
of the internal and external formulations presented above is obtained by considering the stabilization:

stabW
[
sEh
]

:=
(
I−Π∇,φk

)T [∫
E

∇φ
W
ββT ∇φT

W
dV

] (
I−Π∇,φk

)
,

where direct evaluation of the integral is done by using the Weichspress barycentric coordinates
{
φ
W

}
.

8. Well-posedness of the external VEM

In this section, we discuss the well-posedness of the external VEM presented in Section 2, i.e., the existence
and uniqueness of the virtual element approximation. This result is a consequence of the coercivity of the
VEM bilinear form.

Definition 3 (Péclet number) For each element E we define the local mesh Péclet number as

PeE :=
hE

(
‖β‖∞,E + ‖β‖W 1,∞(E)

)
α∗ξ

,

where α∗ and ξ are the stability constant of (11a) and the ellipticity constant of (2). Considering all the
local Péclet numbers, we define the global mesh Péclet number as Pe := maxE(PeE).

Lemma 3 (Coercivity of Ah) Under the assumptions of polynomial consistency and stability along with
those on the coefficients K, β and c and their approximations, the bilinear form Ah is coercive with respect
to the energy norm if the mesh Péclet number Pe is sufficiently small. Thus, there exists a (conveniently
defined) positive constant α independent of h such that

Ah(vh, vh) ≥ α‖vh‖21 ∀vh ∈ Vh.
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Proof. From (9), the stability requirements (11a)-(11b) and the ellipticity of the diffusion tensor it can be
seen that

AEh (vh, vh) ≥ α∗aE(vh, vh) + bEh (vh, vh) + γ∗c
E(vh, vh)

≥ α∗ξ|vh|21,E + bE(vh, vh) + γ∗c
E(vh, vh) +

[
bEh (vh, vh)− bE(vh, vh)

]
≥ α∗ξ|vh|21,E + min(1, γ∗)

(
bE(vh, vh) + cE(vh, vh)

)
+
[
bEh (vh, vh)− bE(vh, vh)

]
≥ α∗ξ|vh|21,E + min(1, γ∗)m0‖vh‖20,E −

∣∣bEh (vh, vh)− bE(vh, vh)
∣∣. ∀vh ∈ V Eh . (22)

The convection term bEh (vh, vh)− bE(vh, vh) can be expanded as

bEh (vh, vh)− bE(vh, vh) =

∫
E

(β̂ ·Π0
k−1(∇vh)) Π0

k(vh) dV −
∫
E

(β · ∇vh) vh dV

=

∫
E

(
(β̂ − β) · ∇vh

)
vh dV +

∫
E

(
β̂(Π0

k − I)vh
)
· ∇vh dV

+

∫
E

β̂Π0
k(vh) · (Π0

k−1 − I)(∇vh) dV,

from which∣∣bEh (vh, vh)− bE(vh, vh)
∣∣ ≤ ∣∣∣∣∫

E

(
(β̂ − β) · ∇vh

)
vh dV

∣∣∣∣+

∣∣∣∣∫
E

(
β̂(Π0

k − I)vh
)
· ∇vh dV

∣∣∣∣
+

∣∣∣∣∫
E

β̂Π0
k(vh) · (Π0

k−1 − I)(∇vh) dV

∣∣∣∣.
To bound the first term, use must be made of the requirement (7b) and the Cauchy-Schwarz inequality, so∣∣∣∣∫

E

(
(β̂ − β) · ∇vh

)
vh dV

∣∣∣∣ ≤ ||β̂ − β||∞ ‖∇vh‖0,E ‖vh‖0,E ≤ ChE‖β‖W 1,∞(E) |vh|1,E ‖vh‖0,E .

The penultimate term is bounded by∣∣∣∣∫
E

(β̂(Π0
k − I)vh) · ∇vh dV

∣∣∣∣ ≤ ||β̂||∞,E ∥∥(Π0
k − I)vh

∥∥
0,E
‖∇vh‖0,E ≤ ChE ||β̂||∞,E |vh|

2
1,E

≤ ChE ||β||∞,E |vh|21,E ,

since the triangular inequality and approximation property (7b) imply that

||β̂||∞,E ≤ ||β||∞,E + ||β̂ − β||∞,E ≤ ||β||∞,E + ChE ||β||W 1,∞(E) ≈ ||β||∞,E (23)

for sufficiently small hE . Since β̂ = (β̂x, β̂y)T , we can split the third integral as∫
E

β̂Π0
k(vh) · (Π0

k−1 − I)∇vh dV =

∫
E

β̂xΠ0
k(vh)(Π0

k−1 − I)

(
∂vh
∂x

)
+

∫
E

β̂yΠ0
k(vh)(Π0

k−1 − I)

(
∂vh
∂y

)
.

The final term is bounded by 1

1 We use the fact that Π0
k−1 is the orthogonal projection onto the polynomials of degree k − 1:∫

E
Π0

k(vh) · Π0
k−1

(
∂vh
∂x

)
dV =

∫
E

Π0
k−1

(
Π0

k(vh)
)
Π0

k−1

(
∂vh
∂x

)
dV =

∫
E

Π0
k−1

(
Π0

k(vh)
)
∂vh
∂x

dV.

A similar relation holds for the integral containing ∂vh/∂y.
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∣∣∣∣∫
E

β̂Π0
k(vh) · (Π0

k−1 − I)∇vh dV
∣∣∣∣

≤
∣∣∣∣β̂x∣∣∣∣∞,E∣∣∣∣∫

E

Π0
k(vh)(Π0

k−1 − I)

(
∂vh
∂x

)∣∣∣∣+
∣∣∣∣β̂y∣∣∣∣∞,E∣∣∣∣∫

E

Π0
k(vh)(Π0

k−1 − I)

(
∂vh
∂y

)∣∣∣∣
=
∣∣∣∣β̂x∣∣∣∣∞,E∣∣∣∣∫

E

(Π0
k−1 − I)Π0

k(vh)
∂vh
∂x

∣∣∣∣+
∣∣∣∣β̂y∣∣∣∣∞,E∣∣∣∣∫

E

(Π0
k−1 − I)Π0

k(vh)
∂vh
∂y

∣∣∣∣
≤
∣∣∣∣β̂∣∣∣∣∞,E∣∣∣∣(Π0

k−1 − I) Π0
k(vh)

∣∣∣∣
0,E
‖∇vh‖0,E

≤ ChE
∣∣∣∣β̂∣∣∣∣∞,E∣∣Π0

k(vh)
∣∣
1,E
‖∇vh‖0,E

≤ ChE
∣∣∣∣β̂∣∣∣∣∞,E |vh|21,E

≤ ChE
∣∣∣∣β∣∣∣∣∞,E |vh|21,E .

where we used again (23) in the last step. Thus,

−
∣∣bEh (vh, vh)− bE(vh, vh)

∣∣ = −
∣∣∣∣∫
E

β̂ ·Π0
k−1(∇vh) Π0

k(vh) dV −
∫
E

(β · ∇vh) vh dV

∣∣∣∣
≥ −ChE

(
‖β‖∞,E |vh|1,E + ‖β‖W 1,∞(E)‖vh‖0,E

)
|vh|1,E . (24)

Using (24) into (22) and noting that ‖vh‖0,E ≤ ‖vh‖1,E , |vh|1,E ≤ ‖vh‖1,E it follows that

Ah(vh, vh) ≥
∑
E

[
α∗ξ − ChE

(
‖β‖∞,E + ‖β‖W 1,∞(E)

)]
‖vh‖21,E + min(1, γ∗)m0

∑
E

‖vh‖20,E

≥ min
E

{
α∗ξ − ChE

(
‖β‖∞,E + ‖β‖W 1,∞(E)

)}
‖vh‖21 + min(1, γ∗)m0‖vh‖20

≥ α‖vh‖21, (25)

where
α := min

{
min
E

{
α∗ξ − ChE

(
‖β‖∞,E + ‖β‖W 1,∞(E)

)}
,min{γ∗, 1}m0

}
.

From α > 0 and the fact that γ∗,m0 > 0, it may be seen that the VE bilinear form is coercive when

hE

(
‖β‖∞,E + ‖β‖W 1,∞(E)

)
α∗ξ

<
1

C
.

for all mesh elements E. This can be interpreted as showing that the method is coercive when the mesh
Péclet number is sufficiently small.

Lemma 4 (Continuity of Ah) Under the assumptions of polynomial consistency and stability along with
those on the coefficients K, β and c and their approximations, the bilinear form Ah is continuous.
Proof. From the stability property for the diffusion and reaction terms, and using their coercivity and
linearity, both aEh and cEh can be viewed as an inner product on the VE space V Eh over each element E.
Consequently,

aEh (uh, vh) ≤ (aEh (uh, uh))
1
2 (aEh (vh, vh))

1
2 ≤ α∗(aE(uh, uh))

1
2 (aE(vh, vh))

1
2

≤ α∗‖K‖∞‖∇uh‖0,E‖∇vh‖0,E ,

and, similarly, cEh (uh, vh) ≤ γ∗‖c‖∞‖uh‖0,E‖vh‖0,E . For the convection term, simply using the stability of

the L2 projector and the boundedness of the coefficient provides

bEh (uh, vh) ≤
∣∣∣∣β̂∣∣∣∣∞‖∇uh‖0,E‖vh‖0,E .
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Thus,

AEh (uh, vh) ≤ C(‖∇uh‖0,E‖∇vh‖0,E + ‖∇uh‖0,E‖vh‖0,E + ‖uh‖0,E‖vh‖0,E)

≤ C‖uh‖1,E‖vh‖1,E
where we take C = max

{
α∗‖K‖∞,

∣∣∣∣β̂∣∣∣∣∞, γ∗‖c‖∞} and so the bilinear form is continuous.

Theorem 1 (Existence and Uniqueness of Solutions) Under the assumptions of polynomial consis-
tency and stability along with those on the coefficients K, β and c and their approximations, the problem:
find uh ∈ Vh such that

Ah(uh, vh) := ah(uh, vh) + bh(uh, vh) + ch(uh, vh) = (fh, vh) ∀vh ∈ Vh,
where

(fh, vh) =

∫
Ω

fhvh dV (26)

possesses a unique solution provided that the mesh Péclet number is sufficiently small.
Proof. The previous lemmas and an appeal to the Lax-Milgram Lemma show that there exists a unique
solution to the problem.

9. Convergence theory in H1 norm

Let uI and uπ denote approximations of u with uI ∈ V kh and uπ piecewise in Pk on the mesh partitioning
of Ω. Assuming that the element E has a convex shape, standard approximation estimates yield immediately
that

‖u− uI‖1,E + ‖u− uπ‖1,E ≤ Ch
k
E‖u‖k+1,E . (27)

Since uπ ∈ Pk(E), the polynomial consistency property implies that

AEh (uπ, δ) =

∫
E

K̂∇uπ ·Π0
k−1(∇δ) dV +

∫
E

β̂ · ∇uπ Π0
k(δ) dV +

∫
E

ĉuπ Π0
k(δ) dV. (28)

Theorem 2 (H1-norm error estimate) Let u be the exact solution of problem (1), with coefficients
K,β, c ∈ W k,∞(Ω) satisfying conditions (2) and (3). Let uh be the solution to the virtual element approx-

imation (13), with polynomial coefficients K̂, β̂ and ĉ satisfying (6) and (7a)-(7c). Then, if f ∈ Hk−1(Ω)
and u ∈ Hk+1(Ω), the approximation error can be bounded as

‖u− uh‖1 ≤ Chk|u|k+1.

Proof. Define δ := uh − uI. The coercivity of the VE bilinear form, c.f. (25), implies that

α‖δ‖21 ≤ Ah(δ, δ) = Ah(uh, δ)−Ah(uI, δ) =

∫
Ω

fhδ dV −
∑
E

AEh (uI, δ). (29)

We manipulate the summation’s argument as follows; add and subtract AEh (uπ, δ):

AEh (uI, δ) = AEh (uI − uπ, δ) +AEh (uπ, δ)
[
add and subtract AE(uπ, δ)

]
=
(
TE1
)

+AEh (uπ, δ)−AE(uπ, δ) +AE(uπ, δ)
[
add and subtract AE(u, δ)

]
=
(
TE1
)

+
(
TE2
)

+AE(uπ − u, δ) +AE(u, δ)
[
substitute AE(u, δ) =

∫
E

fvh dV
]

=
(
TE1
)

+
(
TE2
)

+
(
TE3
)

+

∫
E

f vh dV.
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Substituting the last expression into (29) gives

α‖δ‖21 ≤ Tf −
∑
E

(
TE1 + TE2 + TE3

)
, (30)

where the error has been split up into four parts:

Tf :=

∫
Ω

fhδ dV −
∫

Ω

fδ dV, TE1 := AEh (uI − uπ, δ),

TE2 := AEh (uπ, δ)−AE(uπ, δ), TE3 := AE(uπ − u, δ).

Since fh = Π0
k−2(f), the term Tf can be bounded as∣∣Tf ∣∣ ≤ Chk|u|k+1‖δ‖1. (31)

From the continuity of the bilinear form, the terms TE1 and TE3 may be bounded as∣∣TE1 ∣∣ =
∣∣AEh (uI − uπ, δ)

∣∣ ≤ C‖uI − uπ‖1,E‖δ‖1,E ,∣∣TE3 ∣∣ =
∣∣AE(uπ − u, δ)

∣∣ ≤ C‖uπ − u‖1,E‖δ‖1,E .
From these inequalities and bounds (27) it follows that∣∣TE1 ∣∣+

∣∣TE3 ∣∣ ≤ C (‖uI − uπ‖1,E + ‖uπ − u‖1,E
)
‖δ‖1,E ≤ Ch

k|u|k+1‖δ‖1,E . (32)

Now, we are left to estimate term TE2 , which can be bounded as∣∣TE2 ∣∣ ≤ |aEh (uπ, δ)− aE(uπ, δ)|+ |bEh (uπ, δ)− bE(uπ, δ)|+ |cEh (uπ, δ)− cE(uπ, δ)|

=
∣∣TE21

∣∣+
∣∣TE22

∣∣+
∣∣TE23

∣∣. (33)

We will estimate the terms TE21, TE22, TE23 separately. To estimate TE21, we add and substract K∇uπ ·Π0
k−1(∇δ)

inside the integral arguments and we use the definition of the projection operator Π0
k−1 to obtain:

aEh (uπ, δ)− aE(uπ, δ) =

∫
E

K̂∇uπ ·Π0
k−1(∇δ) dV −

∫
E

K∇uπ · ∇δ dV

=

∫
E

(K̂− K)∇uπ ·Π0
k−1(∇δ) dV +

∫
E

K∇uπ · (Π0
k−1 − I)∇δ dV

=

∫
E

Π0
k−1

(
(K̂− K)∇uπ

)
· ∇δ dV +

∫
E

(Π0
k−1 − I)(K∇uπ) · ∇δ dV. (34)

Now, ∣∣aEh (uπ, δ)− aE(uπ, δ)
∣∣ ≤ ∣∣∣∣∫

E

Π0
k−1

(
(K̂− K)∇uπ

)
· ∇δ dV

∣∣∣∣+

∣∣∣∣∫
E

(Π0
k−1 − I)(K∇uπ) · ∇δ dV

∣∣∣∣
≤ C‖δ‖1,E

(∥∥∥K̂− K
∥∥∥
∞,E
‖∇u‖0,E +

∥∥(Π0
k−1 − I

)
(K∇uπ)

∥∥
0,E

)
. (35)

We easily bound the first norm in (35) by using (7a). To bound the second norm, we first manipulate its
argument by adding and subtracting Π0

k−1

(
K∇u

)
and K∇u and rearranging the summation we obtain:(

Π0
k−1 − I

)
(K∇uπ) = Π0

k−1

(
K∇uπ

)
− K∇uπ = Π0

k−1

(
K∇(uπ − u)

)
+ Π0

k−1

(
K∇u

)
− K∇(uπ − u)− K∇u

= Π0
k−1

(
K∇(uπ − u)

)
− K∇(uπ − u) + (Π0

k−1 − I)(K∇u). (36)

Using the last expression of (36) as the norm’s argument, applying the triangle inequality twice and using
the stability of the projection operator Π0

k−1 yield:∥∥(Π0
k−1 − I

)
(K∇uπ)

∥∥
0,E
≤
∥∥Π0

k−1(K∇(uπ − u))
∥∥

0,E
+ ‖K∇(uπ − u)‖0,E +

∥∥(Π0
k−1 − I

)
(K∇u)

∥∥
0,E

≤ C
(
‖K∇(uπ − u)‖0,E +

∥∥(Π0
k−1 − I

)
(K∇u)

∥∥
0,E

)
.
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The last two terms above can be bounded using (27) and the fact that the coefficients are in L∞:

‖K∇(uπ − u)‖0,E ≤ ‖K‖∞|uπ − u|1,E ≤ C‖K‖∞h
k|u|k+1∥∥(Π0

k−1 − I
)

(K∇u)
∥∥

0,E
≤ C‖K‖∞h

k|u|k+1.

Combining all such inequalities for all the mesh elements E yields the global bound:∣∣TE21

∣∣ ≤ C‖K‖∞hk|u|k+1‖δ‖1. (37)

To estimate TE22, we add and substract β · ∇uπ Π0
k(δ) inside the integral argument and we use the definition

of the projection operator Π0
k to obtain:

bEh (uπ, δ)− bE(uπ, δ) =

∫
E

β̂ · ∇uπ Π0
k(δ) dV −

∫
E

β · ∇uπ δ dV

=

∫
E

(β̂ − β) · ∇uπ Π0
k(δ) dV +

∫
E

β · ∇uπ (Π0
k − I)(δ) dV

=

∫
E

Π0
k

(
(β̂ − β) · ∇uπ

)
δ dV +

∫
E

(Π0
k − I)(β · ∇uπ) δ dV. (38)

Now, ∣∣bEh (uπ, δ)− bE(uπ, δ)
∣∣ ≤ ∣∣∣∣∫

E

Π0
k

(
(β̂ − β) · ∇uπ

)
δ dV

∣∣∣∣+

∣∣∣∣∫
E

(Π0
k − I)(β · ∇uπ) δ dV

∣∣∣∣
≤ C‖δ‖1,E

(∣∣∣∣β̂ − β∣∣∣∣∞,E‖∇uπ‖0,E +
∥∥(Π0

k−1 − I
)

(β · ∇uπ)
∥∥

0,E

)
. (39)

Since for hE → 0

‖∇uπ‖0,E ≤ ‖∇(uπ − u)‖0,E + ‖∇u‖0,E ≤ C(hE + 1)‖∇u‖0,E ≈ C‖∇u‖0,E ,
estimate (39) becomes∣∣bEh (uπ, δ)− bE(uπ, δ)

∣∣ ≤ C‖δ‖1,E (∣∣∣∣β̂ − β∣∣∣∣∞,E‖∇u‖0,E +
∥∥(Π0

k−1 − I
)

(β · ∇uπ)
∥∥

0,E

)
(40)

We easily bound the first norm in (40) by using (7b), and we manipulate the second norm as we have done
for the estimate of TE21 to obtain∥∥(Π0

k−1 − I
)

(β · ∇uπ)
∥∥

0,E
≤
∥∥Π0

k−1(β · ∇(uπ − u))
∥∥

0,E
+ ‖β · ∇(uπ − u)‖0,E +

∥∥(Π0
k−1 − I

)
(β · ∇u)

∥∥
0,E

≤ C
(
‖β · ∇(uπ − u)‖0,E +

∥∥(Π0
k−1 − I

)
(β · ∇u)

∥∥
0,E

)
.

The last two terms above can be bounded using (27) and the fact that the coefficients are in L∞:

‖β · ∇(uπ − u)‖0,E ≤ ‖β‖∞,E‖∇(uπ − u)‖0,E ≤ C‖β‖∞,Eh
k|u|k+1,E ,∥∥(Π0

k−1 − I
)

(β · ∇u)
∥∥

0,E
≤ C‖β‖∞,Eh

k|u|k+1,E .

Combining all such inequalities for all the mesh elements E yields the global bound:∣∣TE22

∣∣ ≤ C‖β‖∞hk|u|k+1‖δ‖1. (41)

To estimate TE23, we add and substract cuπ Π0
k(δ) inside the integral arguments and we use the definition of

the projection operator Π0
k to obtain:

cEh (uπ, δ)− bE(uπ, δ) =

∫
E

ĉuπ Π0
k(δ) dV −

∫
E

cuπ δ dV

=

∫
E

(ĉ− c)uπ Π0
k(δ) dV +

∫
E

cuπ (Π0
k − I)(δ) dV

=

∫
E

Π0
k

(
(ĉ− c)uπ

)
δ dV +

∫
E

(Π0
k − I)(cuπ) δ dV. (42)
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Now, ∣∣cEh (uπ, δ)− bE(uπ, δ)
∣∣ ≤ ∣∣∣∣∫

E

Π0
k

(
(ĉ− c)uπ

)
δ dV

∣∣∣∣+

∣∣∣∣∫
E

(Π0
k − I)(cuπ) δ dV

∣∣∣∣
≤ C‖δ‖1,E

(
‖ĉ− c‖∞,E‖u‖0,E +

∥∥(Π0
k − I

)
(uπ)

∥∥
0,E

)
. (43)

We easily bound the first norm in (43) by using (7c), and we manipulate the second norm as we have done
for the estimate of TE21 and TE22 to obtain∥∥(Π0

k − I
)

(uπ)
∥∥

0,E
≤
∥∥Π0

k(c(uπ − u))
∥∥

0,E
+ ‖c(uπ − u)‖0,E +

∥∥(Π0
k−1 − I

)
(cu)

∥∥
0,E

≤ C
(
‖c(uπ − u)‖0,E +

∥∥(Π0
k−1 − I

)
(cu)

∥∥
0,E

)
.

The last two terms above can be bounded using (27) and the fact that the coefficients are in L∞:

‖c(uπ − u)‖0,E ≤ ‖c‖∞,E‖uπ − u‖0,E ≤ C‖c‖∞,Eh
k|u|k+1,E ,∥∥(Π0

k−1 − I
)

(cu)
∥∥

0,E
≤ C‖c‖∞,Eh

k|u|k+1,E .

Combining all such inequalities for all the mesh elements E yields the global bound:∣∣TE23

∣∣ ≤ C‖c‖∞hk|u|k+1‖δ‖1. (44)

Inequalities (37), (41), and (44) gives the bound for TE2 :∣∣TE2 ∣∣ ≤ Chk|u|k+1‖δ‖1,E , (45)

where constant C absorbs the coefficients ‖K‖∞, ‖K‖β, ‖c‖∞.

Finally, we combine inequalities (31), (32), and (45) to form an O(hk) bound for the approximation error:

‖δ‖21 ≤ C(hk + hk+1)|u|k+1‖δ‖1.

The result then follows upon dividing through by ‖δ‖21 and applying the triangle inequality and bounds (27)
to

‖u− uh‖1 ≤ ‖u− uI‖1 + ‖uI − uh‖1.

10. Conclusions

In this work, we summarize some advances in the development of the Conforming Virtual Element method-
ology for the convection-diffusion-reaction problems with constant and variable coefficients. The Conforming
VEM is based on a suitable virtual space definitions as well as some consistency property on a subset of
polynomial functions that allows us to approximate all the bilinear form of the weak formulation without
the explicit construction of the shape functions. In this work, we present several possible combinations of
differential operators and projections. For one of them, we also prove the well-posedness and give an estimate
of the approximation error in the H1 norm.
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Appendix A. Relation between the modified projection operator and the mimetic method

The mimetic method is based on the integration by parts:∫
E

K∇u · ∇q dV = −
∫
E

div(K∇q)u dV +
∑
e∈∂E

∫
e

(
ne · K∇q

)
u dS

where we assume that q belongs to Pk(E). Note that the coefficient K(x, y) is always with ∇q.

Now we have two special cases:

– k = 1, q is a linear polynomial, ∇q is a constant vector. We can approximate K(x, y) by a constant
KE and note that
- the integral on E in the right-hand side is zero because div(KE∇q) is zero;
- ne · ∇q is constant, we can take it out of the integral, and we are left with

∫
e
u dS which can be

approximated by using the trapezoidal rule if we know the values of u at the vertices of e. In the VEM,
this is not even an approximation because the trace of u on e is a linear function and is determined by
its values at the vertices.

– K is constant. Then, K∇q is a vector of polynomials of degree up to k − 1 if q is in Pk(E). In this case,
the integral of

∫
E
K∇u · ∇q dV is still computable if we know the cell moments of u against polynomials

of degree up to k − 2 and we approximate the trace of u on each edge e by the polynomial interpolant
of degree k. To compute such interpolant, we need to define suitable degrees of freedom of u on e. In the
conforming VEM this not an approximation because the trace of u is a polynomial of degree k on each
edge.

In the general case for k > 1 and K(x, y) not constant on E it happens that K∇q is not anymore a vector
of polynomials when q is a polynomial. So, the idea is to project K∇q onto the polynomials of degree k − 1
and absorb the non-constant K inside this projection:

∫
E

K∇u · ∇q dV =

∫
E

∇u · K∇q dV ≈
∫
E

∇u ·Π0
k−1(K∇q) dV

= −
∫
E

div(Π0
k−1(K∇q))u dV +

∑
e∈∂E

∫
e

(
ne ·Π0

k−1(K∇q)
)
u dS

Now, the two terms on the right are computable:

– div(Π0
k−1(K∇q)) is a polynomial of degree k− 2 and

∫
E

div(Π0
k−1(K∇q))u dV is computable through the

moments of degree up to k − 2 of u;

– ne · Π0
k−1(K∇q) is a polynomial of degree k − 1 and

∫
e

(
ne · Π0

k−1(K∇q)
)
u dS by interpolating u on

polynomials of degree k.

In VEM we do the same using the modified projection oprrator, but the interpretation is different. Let
the VEM diffusive bilinear form be given by:

aEh (uh, vh) =

∫
E

∇Π̃K∇(uh) · ∇Π∇k (vh) dV + stab
[
aEh
]
,

where the modified projector is defined by:∫
E

∇Π̃K∇(uh) · ∇q dV =

∫
E

∇uh ·Π0
k−1(K∇q) dV ∀q ∈ Pk(E),

(plus the projection on constants as in the usual case of Π∇k ). Using such definition, the diffusion tensor

K is incorporated in the definition of Π̃K∇(uh).

Π̃K∇(uh) is computed explicitly by running q on the basis of monomials mα:
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∫
E

∇Π̃K∇(uh) · ∇mα dV =

∫
E

∇uh ·Π0
k−1(K∇mα) dV ∀α such that Pk(E) = span({mα})

Note that the second integral is computable knowing only the degrees of freedom of uh after integration by
parts ∫

E

∇uh ·Π0
k−1(K∇mα) dV = −

∫
E

uh · div
(
Π0
k−1(K∇mα)

)
dV +

∑
e∈∂E

∫
e

uhne ·Π0
k−1(K∇mα) dS,

since again div
(
Π0
k−1(K∇mα)

)
is a polynomial of degree k − 2 and the trace of uh on e is a polynomial of

degree k (use the same arguments as above).

So, the VEM with the modified projector works exactly like the normal VEM (without K), where instead
of

Mij =

∫
E

∇Π∇k φi · ∇Π∇k φj + stab
[
M
]

we use the (modified) stiffness matrix

M̃ij =

∫
E

∇Π̃K∇φi · ∇Π∇k φj dV + stab
[
M
]

The stabilization term remains the same for both (at least this is what we do in MFD).

The approach using the modified projector requires two ”nabla” projectors: Π∇k (which is the usual one)

and Π̃K∇ (defined as above), and the action of these operators on the shape functions must be computed
explicitly.
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