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4. Progress and Accomplishments 

 
Our two key accomplishments in the first three years were towards  the development of, 
(1) a mathematically rigorous and at the same time computationally flexible framework 
for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs,  
and (2) spatial multilevel coarse-graining methods for  Monte Carlo sampling and 
molecular simulation.   A common underlying theme in  both these lines of our work is 
the development of numerical methods which are  at the same time both  computationally 
efficient and reliable, the latter in the sense that they  provide  controlled-error 
approximations for coarse observables of the simulated molecular systems. Finally, our 
key accomplishment in the last year of the grant is that we started developing (3) path-
wise information theory-based and goal-oriented sensitivity analysis and parameter 
identification methods for complex high-dimensional dynamics and in particular of non-
equilibrium extended (high-dimensional) systems. We discuss these three research 
directions in some detail below, along with the related publications. 

 
1. Hierarchical fractional-step approximations and parallel kinetic Monte Carlo 
algorithms 
 
Publication 1a: G.	
  Arampatzis,	
  M.	
  A.	
  Katsoulakis,	
  Petr	
  Plechac,	
  Michela	
  Taufer,	
  Lifan	
  
Xu	
   Hierarchical	
   fractional-­‐step	
   approximations	
   and	
   parallel	
   kinetic	
   Monte	
   Carlo	
  
algorithms,	
  	
  J.	
  Comp.	
  Phys.,	
  231,	
  7795-­‐7814,	
  (2012). 
  
We present a new framework for constructing parallel algorithms for lattice Kinetic 
Monte Carlo (KMC) simulations. These algorithms have the capacity to simulate a wide 
range of spatio-temporal scales of spatially distributed, non-equilibrium physiochemical 
processes with complex chemistry and transport micro-mechanisms, while they can be 
tailored to specific hierarchical parallel architectures such as clusters of GPUs. The 
proposed parallel algorithms are controlled approximations of kinetic Monte Carlo 
algorithms, departing from the predominant paradigm of creating parallel KMC 
algorithms with exactly the same master equation as the serial one. Instead, our 
methodology relies on first developing a spatio-temporal decomposition of the Markov 
operator underlying the KMC algorithm into a hierarchy of operators corresponding to 
the processors’ structure in the parallel architecture. Based on this operator 
decomposition, we formulate Fractional Step Approximation schemes by employing the 
Trotter Theorem; these schemes, (a) determine the communication schedule between 



processors, and (b) are run independently on each processor through a serial KMC 
simulation, called a kernel , on each fractional step time-window. The hierarchical struc- 
ture can be easily derived and implemented for very general physicochemical processes 
modeled by lattice systems, allowing users to input as the algorithm’s KMC kernel their 
serial algorithm of choice.  
 

                  
 
Figure 1  (a) Snapshot of the simulation of a catalytic process on 1024x1024 lattice 
(zoom of the lattice with two species of molecules and vacant sites.) (b) Accuracy testing: 
spatial correlations in 2D Ising model in sub and super-critical temperatures. 
 
 
This flexibility and hierarchical structure, see Fig. 3(b), are key advantages for tailoring 
our framework to particular parallel architectures with complex memory and processor 
hierarchies, e.g. clusters of GPUs. Temporal multi-scale methods such as Trotter-based 
algorithms for systems with well-separated fast and slow processes can be recombined 
with the proposed Fractional Step methods into a spatio-temporal hierarchy of operators.  
 

                             
 
Figure 2  Dynamic load balancing: example of an algorithm in 1D: (a) no balancing, (b) 
Dynamic load balancing using probabilistic mass transport framework by refining 
adaptively the sub-lattice of our  Fractional KMC framework. 
 
Furthermore, the numerical and statistical consistency of the proposed algorithms is 
rigorously justified, showing the convergence of our approximating schemes to the 



original serial KMC algorithm. In this paper we also include detailed benchmarking using 
available exact solutions, for example, in Ising-type systems and we demonstrate the 
capabilities of the method to simulate complex spatially distributed reactions at very large 
scales on GPUs. Finally, we discuss  work-load balancing between processors and 
propose a re-balancing scheme based on probabilistic mass transport methods. 
 

	
   	
  
	
  
	
  
Figure 3  (a) Efficiency evaluation on NVIDIA GPUs achieving  speed-up 
10000x.Capability of simulating 1000x1000 lattice models of a heterogeneous catalysis 
example up to a steady state on a single GPU. (b) Two GPU units and two independent 
sublattices (B&W) on GPUs. 
 
	
  
Publication	
   1b.	
   G.	
   Arampatzis,	
   M.	
   A.	
   Katsoulakis,	
   Petr	
   Plechac,	
   Parallelization,	
  
processor	
   communication	
   and	
   error	
   analysis	
   in	
   lattice	
   kinetic	
   Monte	
   Carlo,	
   SIAM,	
  
Num.	
  Analysis,	
  52,	
  no.	
  3,	
  11561182,	
  (2014).	
  
	
  
In	
   this	
   paper	
   we	
   study	
   from	
   a	
   numerical	
   analysis	
   perspective	
   the	
   fractional	
   step	
  
kinetic	
  Monte	
  Carlo	
  (FS-­‐KMC)	
  algorithms	
  proposed	
  in	
  Publication	
  1a	
  for	
  the	
  parallel	
  
simulation	
   of	
   spatially	
   distributed	
   particle	
   systems	
   on	
   a	
   lattice.	
   FS-­‐KMC	
   are	
  
fractional	
   step	
   algorithms	
  with	
   a	
   time-­‐stepping	
   window	
   Δt,	
   and	
   as	
   such	
   they	
   are	
  
inherently	
  partially	
  asynchronous	
  since	
  there	
  is	
  no	
  	
  processor	
  communication	
  during	
  
the	
  period	
  Δt.	
   In	
   this	
   contribution	
  we	
  primarily	
   focus	
  on	
   the	
   error	
   analysis	
   of	
   FS-­‐
KMC	
  algorithms	
  as	
  approximations	
  of	
  conventional,	
  serial	
  KMC.	
  A	
  key	
  aspect	
  of	
  the	
  
presented	
   analysis	
   relies	
   on	
   emphasizing	
   a	
   goal-­‐oriented	
   approach	
   for	
   suitably	
  
defined	
   macroscopic	
   observables	
   (e.g.,	
   density,	
   energy,	
   correlations,	
   surface	
  
roughness),	
   rather	
   than	
   focusing	
   on	
   strong	
   topology	
   estimates	
   for	
   individual	
  
trajectories.	
   The	
   presented	
   error	
   analysis	
   allows	
   us	
   to	
   compare	
   different	
  
parallelization	
   strategies	
   and	
   their	
   processor	
   communications	
   by	
   relating	
   the	
  



algorithm	
  partial	
  asynchrony	
  to	
   the	
   time	
  step	
  Δt	
  and	
  a	
  prescribed	
  error	
   tolerance,	
  
see	
  for	
  instance	
  Figures	
  4a	
  and	
  4b	
  below.	
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Fig. 2. Convergence of the weak error for deterministic and randomized Lie splitting.

• Finally, among the PCS we studied, the Strang PCS yields parallel schemes
with the least processor communication, at least when L ∼ O(1), due to its
higher-order accuracy and the commutator estimate (5.4).

Example 6.4. We demonstrate this comparison in a computational example in
which a jump process defined by Arrhenius spin-flip dynamics on a one-dimensional
lattice was simulated. Simulations of two-dimensional Ising models were conducted
in [1], including detailed benchmarks at long times as well as close to criticality.
Numerous higher-dimensional simulations are also provided by SPPARKS [22].

The simulated system corresponds to the Ising model with nearest-neighbor in-
teractions and spins taking values in {0, 1}. The rate of the process is give by

c(x,σ) = cd(1− σ(x)) + caσ(x)e
−βU(x),

where U(x) = J(σ(x − 1) + σ(x + 1)) + h̄, and cd, ca, β, J , h are the parameters of
the model.

We verified the theoretical order of convergence by computing the error

∫ T

0
|E[C(t)] − E[C̃(t)]| dt,

where C(t) and C̃(t) are the reference KMC and the FS-KMC solution, respectively,
obtained by averaging the spatial mean coverage process C(t) =

∑
x∈ΛN

σt(x) of the
system over K independent realizations. For the reference solution, the classical SSA
was used. In order to eliminate the impact of the statistical averaging error K = 105,
independent samples were used. The error bars are below resolution of the graph
depicted in Figure 2. In Figure 2 the error behavior is compared for different values
of the splitting time step h ≡ ∆t for the randomized PCS and the Lie splitting. The
lattice size is N = 800 and the parameters of the system are β = 15, J = 0.37,
h = 0.5, and ca = cd = 1. For the fractional step algorithm four processors were
used, and thus the size of the sublattice is q = 100. The final time is chosen to be
T = 4.

Example 6.5. In this example we investigate the dependence of the weak error,
as defined in the previous example, on the sublattice parameter q. The model we used
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Fig. 3. Dependence of the weak error on the sublattice size parameter q; see also (6.13).

to run the simulation is the Ising model, as described in Example 6.4. The parameters
for the model are β = 5, J = 1, h = 0.5, and ca = cd = 1. The final time is chosen
to be T = 5 and the dimension of the lattice N = 480. For the FS-KMC algorithm
a constant, and rather large, time step parameter ∆t = 5 was used. For the FS-
KMC algorithm we used K = 104 samples to compute the mean value of the solution
on the interval [0, T ], and for the reference solution, which was obtained with the
SSA algorithm, K = 105 samples were used. In Figure 3 we can observe that the
deterministic schedules of Lie and Strang give better results than those of the random
PCS. Also the Strang scheme has lower error than the Lie scheme, as expected from
the theoretical analysis. Finally, the dependence of the error on 1

q is also revealed,
which in logarithmic scale is shown as a straight line.

7. Conclusions. In this paper we presented numerical analysis for the compu-
tational framework introduced in [1] as a tool for constructing partially asynchronous
parallel KMC algorithms using the fractional step kinetic Monte Carlo method. This
class of parallel KMC algorithms, based on domain decomposition, approximates the
underlying continuous time Markov chain. The presented numerical analysis demon-
strates that for a particular set of observables the weak error (i.e., error in expected
values) is controlled by the fractional time step ∆t independently of the system size.
The class of observables includes statistically relevant macroscopic observables for
lattice systems of interacting particles, e.g., coverage, spatial correlations, and sur-
face roughness. The conditions on such observables are explicit and can be checked
a priori. The analysis also shows that the studied algorithms based on either de-
terministic (Lie, Strang) or random operator splitting are consistent and that the
weak error for the identified class of observables converges to zero with a given rate
as ∆t → 0.

The numerical analysis carried out here allows us, through the direct use of the
convergence rate, to address systematically the processor communication of differ-
ent parallelization strategies by demonstrating and comparing their (partial) asyn-
chrony. Such comparison is made possible by relations such as (6.13) obtained when
the approximation error is fixed within a prescribed tolerance. Furthermore, the
presented results show that previously developed KMC algorithms based on domain
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Figure	
   4 (a) Convergence of the weak error for deterministic and randomized Lie 
splitting. (b) Dependence of the weak error on the sub-lattice size parameter q for three 
different parallelization schemes. The related numerical analysis is carried out in our 
SIAM Num. Analysis publication. 



Furthermore,	
  the	
  presented	
  results	
  show	
  that	
  previously	
  developed	
  KMC	
  algorithms	
  
based	
   on	
   domain	
   decomposition	
   principles	
   also	
   allow	
   for	
   simulations	
   with	
  
controlled	
   errors	
   for	
   macroscopic	
   of	
   observables,	
   such	
   as	
   coverage,	
   Hamiltonian,	
  
surface	
  roughness,	
  spatial	
  correlations,	
  etc,	
  while	
  their	
  partial	
  asynchrony	
  also	
  can	
  
be	
   demonstrated	
   and	
   quantified.	
   Finally,	
   this	
   paper	
   also	
   provides	
   the	
   rigorous	
  
underpinnings	
   for	
   the	
   SANDIA	
   parallel	
   KMC	
   solver	
   SPPARKS,	
   while	
   it	
   provides	
   a	
  
flexible	
  framework	
  for	
  its	
  future	
  extension	
  to	
  concurrent	
  (hybrid)	
  PDE-­‐KMC	
  models,	
  
as	
  well	
  as	
  architectures	
  that	
  may	
  require	
  different	
  sub-­‐lattice	
  decompositions	
  with	
  
distinct	
  time-­‐stepping	
  windows	
  Δt,	
  e.g.	
  clusters	
  of	
  GPUs	
  or	
  GPU/CPU	
  architectures.	
  
 

2. Multilevel Coarse-Graining and Error Quantification for lattice dynamics 

Publication 2a. E. Kalligiannaki, M. A. Katsoulakis, P. Plechac, Spatial two-level 
interacting particle simulations and information theory-based error quantification,  
SIAM Sci. Comp., Vol. 36, No. 2, pp. A634-A667, (2014) 

In	
  this	
  article	
  we	
  propose	
  a	
  hierarchy	
  of	
  multi-­‐level	
  kinetic	
  Monte	
  Carlo	
  methods	
  for	
  
sampling	
   high-­‐dimensional,	
   stochastic	
   lattice	
   particle	
   dynamics	
   with	
   complex	
  
interactions.	
   The	
   method	
   is	
   based	
   on	
   the	
   efficient	
   coupling	
   of	
   different	
   spatial	
  
resolution	
  levels,	
  taking	
  advantage	
  of	
  the	
  low	
  sampling	
  cost	
  in	
  a	
  coarse	
  space	
  and	
  by	
  
developing	
  local	
  reconstruction	
  strategies	
  from	
  coarse-­‐grained	
  dynamics,	
  see	
  Figure	
  
5.	
   Microscopic	
   reconstruction	
   corrects	
   possibly	
   significant	
   errors	
   introduced	
  
through	
   coarse-­‐graining,	
   leading	
   to	
   the	
   controlled-­‐error	
   approximation	
   of	
   the	
  
sampled	
   stochastic	
   process.	
   In	
   this	
   manner,	
   the	
   proposed	
   multi-­‐level	
   algorithm	
  
overcomes	
   known	
   shortcomings	
   of	
   coarse-­‐graining	
   of	
   particle	
   systems	
   with	
  
complex	
   interactions	
   such	
   as	
   combined	
   long	
   and	
   short-­‐range	
   particle	
   interactions	
  
and/or	
  complex	
  lattice	
  geometries,	
  see	
  Figure	
  6.	
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Level 2:

Level 1:

σ
c(σ,σ′)≃c̃(σ,σ′) !!

Tσ=η

""

σ′

η
c̄(η,η′)

!! η′

crf (σ
′|η′,σ)

##

Fig. 1. Two-level decomposition, compressing with T and reconstructing with crf , of the evolu-
tion process per event.

rate function c̄(η, η′) which captures macroscopic information from c(σ,σ′). We de-
note the coarse space variables η = Tσ defined by a projection operator T : Σ → Σ̄.
For example, for stochastic lattice systems that we elaborate on in this work, approx-
imate coarse rate functions are explicitly known from coarse-graining techniques of
[15, 16]. In this work we analyze a two-level approach, i.e., coupling two configuration
spaces Σ and Σ̄ with different resolutions, while a multilevel extension can be consid-
ered analogously. The 2L-KMC method consists of the following steps (a schematic
description is demonstrated in Figure 1):
(i) Construct a computationally inexpensive approximating coarse-graining process

on the coarse space Σ̄ described by a coarse generator L̄ with rates c̄(η, η′).
(ii) Define the “reconstruction” rates crf(σ′|η′,σ) constrained on the updated coarse

state η′ that are simple to simulate and such that

c̄(η, η′)crf(σ
′|η′,σ) approximates c(σ,σ′) .

The approximation and its error are quantified in section 5. The overall procedure can
be thought of as a reconstruction in dynamics of stochastic processes from a coarse-
graining process. Furthermore, this procedure generates stochastic processes that
are controlled-error approximations of the process ({σt}t≥0,L), determined by the
reconstruction rates crf(σ′|η′,σ) and the level of coarsening. The function crf(σ′|η′,σ)
enriches the coarse-graining procedure by reinserting details that were smoothed out
by the coarsening procedure.

Implementation. The multilevel nature of the method provides the flexibility of
combining rejection-free and null-event implementation algorithms at each resolution
and consists of the following:
(i) A rejection-free algorithm for sampling in the coarse space with c̄(η, η′), where

the reduction of the computational cost compared to microscopic sampling is
significant due to the compression of spatial scales and interaction ranges. The
rejection-free algorithm selects the most probable coarse state η′ that the system
will evolve to.

(ii) A null-event algorithm for sampling at the fine space with crf(σ′|η′,σ), however,
with a low rejection rate due to the fact that η′ was chosen as the most probable
event.

This partially rejection-free implementation approach suggests a nonconstant time-
step update in contrast to null-event methods where the time update is uniform for
all system states. Nonconstant time-step updating algorithms have been proposed
in [1] for designing a class of kMC algorithms with an adaptive time step inter-

	
  
	
  
	
  

Figure	
  5	
   Two-­‐level	
   decomposition,	
   compressing	
  with	
  T	
   and	
   reconstructing	
   of	
   the	
  
evolution	
  process	
  per	
  event,	
  as	
  described	
  in	
  the	
  publication	
  

	
  
	
  



Specifically,	
  we	
  provide	
  error	
  analysis	
  for	
  the	
  approximation	
  of	
  long-­‐time	
  stationary	
  
dynamics	
  in	
  terms	
  of	
  relative	
  entropy	
  and	
  prove	
  that	
  information	
  loss	
  in	
  the	
  multi-­‐
level	
  methods	
  is	
  growing	
  linearly	
  in	
  time,	
  which	
  in	
  turn	
  implies	
  that	
  an	
  appropriate	
  
observable	
  in	
  the	
  stationary	
  regime	
  is	
  the	
  information	
  loss	
  of	
  the	
  path	
  measures	
  per	
  
unit	
   time,	
   i.e.	
   the	
   Relative	
   Entropy	
   Rate	
   (RER).	
   We	
   also	
   refer	
   to	
   the	
   use	
   of	
   this	
  
important	
   observable	
   for	
   sensitivity	
   analysis	
   and	
   in	
   general	
   uncertainty	
  
quantification	
  in	
  Section	
  3	
  below.	
  	
  We	
  show	
  that	
  the	
  observable	
  defined	
  as	
  RER	
  can	
  
be	
  either	
  estimated	
  a	
  priori,	
  or	
  it	
  can	
  be	
  tracked	
  computationally	
  a	
  posteriori	
  in	
  the	
  
course	
  of	
  a	
  simulation.	
  The	
  stationary	
  regime	
  is	
  of	
  critical	
  importance	
  to	
  molecular	
  
simulations	
  as	
  it	
  is	
  relevant	
  to	
  long-­‐time	
  sampling,	
  obtaining	
  phase	
  diagrams	
  and	
  in	
  
studying	
  meta-­‐stability	
  properties	
  of	
  high-­‐dimensional	
  complex	
  systems.	
  Finally,	
  the	
  
multi-­‐level	
  nature	
  of	
  the	
  method	
  provides	
  flexibility	
  in	
  combining	
  rejection-­‐free	
  and	
  
null-­‐event	
  implementations,	
  generating	
  a	
  hierarchy	
  of	
  algorithms	
  with	
  an	
  adjustable	
  
number	
   of	
   rejections	
   that	
   includes	
   well-­‐known	
   rejection-­‐free	
   and	
   null-­‐event	
  
algorithms.	
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Fig. 3. Hysteresis simulation in a single-phase regime. Potential parameters K = −5, J = 5,
L = 20, the lattice size N = 256, and the coarsening parameter q = N .
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Fig. 4. Hysteresis simulation in a bi-stable regime. Potential parameters K = −5, J = 10,
L = 100, the lattice size N = 1024, and the coarsening parameter q = N .

	
  
	
  
	
  
Figure	
  6	
   Comparing	
   the	
  proposed	
  multi-­‐scale	
   coarse-­‐grained	
  Kinetic	
  Monte	
  Carlo	
  
method	
   to	
   a	
   one-­‐scale	
   coarse-­‐graining	
   and	
   direct	
   numerical	
   simulation.	
   Here	
   we	
  
depict	
  a	
  hysteresis	
  simulation	
  in	
  a	
  bi-­‐stable	
  regime.	
  
	
  
 
Publication	
  2b.	
  M.	
  A.	
  Katsoulakis,	
  P.	
  Plechac,	
  L.	
  Rey-­‐Bellet	
  and	
  D.	
  	
  Tsagkarogiannis,	
  
Coarse-­‐graining	
   schemes	
   for	
   stochastic	
   lattice	
   systems	
   with	
   short	
   and	
   long-­‐range	
  
interactions,	
  Math.	
  Comp.,	
  83,	
  no.288,	
  17571793,	
  (2014).	
  
 
In	
  this	
  manuscript	
  we	
  develop	
  coarse-­‐graining	
  schemes	
  for	
  stochastic	
  many-­‐particle	
  
microscopic	
   models	
   with	
   competing	
   short-­‐	
   and	
   long-­‐range	
   interactions	
   on	
   a	
   d-­‐
dimensional	
   lattice.	
   First,	
   we	
   focus	
   on	
   the	
   coarse-­‐graining	
   of	
   equilibrium	
   Gibbs	
  



states	
  and	
  using	
  cluster	
  expansions	
  we	
  analyze	
  the	
  corresponding	
  renormalization	
  
group	
  map.	
  We	
  quantify	
  the	
  approximation	
  properties	
  of	
  the	
  coarse-­‐grained	
  terms	
  
arising	
   from	
   different	
   types	
   of	
   interactions	
   and	
   present	
   a	
   hierarchy	
   of	
   correction	
  
terms.	
  We	
  derive	
   semi-­‐analytical	
  numerical	
   schemes	
   that	
   are	
   accompanied	
  with	
  a	
  
posteriori	
   error	
   estimates	
   for	
   coarse-­‐grained	
   lattice	
   systems	
  with	
   short	
   and	
   long-­‐
range	
   interactions.	
   These	
   semi-­‐analytical	
   methods	
   are	
   based	
   	
   on	
   a	
   multi-­‐level	
  
decomposition	
   of	
   the	
   microscopic	
   Gibbs	
   states	
   which	
   is	
   in	
   turn	
   	
   induced	
   by	
   the	
  
cluster	
  expansion.	
  
	
  
On	
  one	
  hand,	
  this	
  is	
  a	
  key	
  mathematical	
  and	
  algorithmic	
  tool	
  towards	
  efficient	
  and	
  
accurate	
   simulation	
   of	
   self-­‐assembly	
   in	
   materials	
   and	
   surface	
   processes	
   at	
  
mesoscales.	
  Pattern	
   formation	
   in	
   such	
   systems	
  arises	
   	
   typically	
  due	
   to	
   	
   competing	
  
short-­‐	
   and	
   long-­‐range	
   interactions.	
   Furthermore,	
   this	
   work	
   also	
   addresses	
   the	
  
coarse-­‐graining	
  of	
  systems	
  with	
  short-­‐range	
  interactions,	
  such	
  as	
  the	
  ones	
  arising	
  in	
  
catalysis;	
   it	
   is	
   	
   demonstrated	
   	
   that	
   multi-­‐body	
   coarse-­‐grained	
   interactions	
   and	
  
transition	
   rates	
   are	
   unavoidable	
   for	
   coarse-­‐grained	
   simulations	
   with	
   desired	
  
accuracy,	
   	
  due	
   to	
   the	
   sub-­‐grid	
  particle/particle	
   correlations,	
   and	
  can	
  be	
  calculated	
  
through	
   	
   semi-­‐analytical	
   formulas.	
   A notable result of our error analysis is the 
quantification of the role of multi-body terms in coarse-graining schemes, and the relative 
ease to implement them. Finally the a posteriori error analysis identifies and quantifies 
the regimes where multi-body terms need to be included in coarse-graining schemes and 
allows for on-the-fly  adaptive coarse-graining of microscopic  lattice systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Uncertainty Quantification (UQ) for Non-equilibrium Complex Systems 
 
 
Our key accomplishment in the last year of the grant is that we started developing path-
wise information theory-based and goal-oriented sensitivity analysis and parameter 
identification methods for complex high-dimensional dynamics and in particular  of non-
equilibrium extended systems. The combination of these novel methodologies provide 
the first methods in the literature which are capable to handle UQ questions for stochastic 
complex systems with some or all of the following features: (a) stochastic models with a 
very large number of parameters, (b) spatially distributed systems such as Kinetic Monte 
Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with 
coupled physico-chemical mechanisms, driven boundary conditions, etc. The first two 
such publications sponsored by the grant, have just been published: 
	
  
	
  
	
  
Publication	
   3a.	
   A	
   Relative	
   Entropy	
   Rate	
   Method	
   for	
   Path	
   Space	
   Sensitivity	
   Analysis	
   of	
  
Stationary	
   Complex	
   Stochastic	
   Dynamics,	
   (Y.	
   Pantazis	
   and	
   M.	
   A.	
   Katsoulakis),	
   J.	
   Chem.	
  
Phys.,	
  138,	
  054115,	
  (2013).	
  
 
In this paper we proposed for the first time a new sensitivity analysis methodology for 
complex stochastic dynamics based on the relative entropy rate. The method becomes 
computationally feasible at the stationary regime of the process and involves the 
calculation of suitable observables in path space for the relative entropy rate and the 
corresponding Fisher information matrix. The stationary regime is crucial for stochastic 
dynamics and here allows us to address the sensitivity analysis of complex systems, 
including examples of processes with complex landscapes that exhibit metastability, non-
reversible systems from a statistical mechanics perspective, and high-dimensional, 
spatially distributed models. All these systems exhibit, typically non-Gaussian stationary 
probability distributions, while in the case of high-dimensionality, histograms are 
impossible to construct directly.  
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Figure 7 Typical configurations in a spatial KMC system (ZGB catalysis model) 
obtained by perturbations of the most and least sensitive parameters. The comparison 
with the reference configuration reveals the differences between the most and least 
sensitive perturbation parameters. 
 
Our proposed methods bypass these challenges relying on the direct Monte Carlo 
simulation of rigorously derived observables for the relative entropy rate and Fisher 
information in path space rather than on the stationary probability 
distribution itself. We demonstrated the capabilities of the proposed methodology by 
focusing here on two classes of problems: (a) Langevin particle systems with either 
reversible (gradient) or non-reversible (non-gradient) forcing, highlighting the ability of 
the method to carry out sensitivity analysis in non-equilibrium systems; and, (b) spatially 
extended kinetic Monte Carlo models (see Figure 7), showing that the method can handle 
high-dimensional problems. 

 
Publication 3b. Parametric Sensitivity Analysis for Biochemical Reaction Networks 
based on Pathwise Information Theory, (Y. Pantazis, M. A. Katsoulakis and D.G. 
Vlachos), BMC Bionformatics, 14:311, (2013). 
 



Stochastic modeling and simulation provide powerful predictive methods for the intrinsic 
understanding of fundamental mechanisms in complex biochemical networks. Typically, 
mathematical models involve networks of coupled jump stochastic processes with a large 
number of parameters that need to be suitably calibrated against experimental data. In this 
direction, the parameter sensitivity analysis of reaction networks is an essential 
mathematical and computational  tool, yielding information regarding the robustness and  
the identifiability of model parameters. However, existing sensitivity analysis approaches  
such as variants of the finite difference method  can have  an overwhelming 
computational cost  in models with a high-dimensional parameter space. 

 
We developed a sensitivity analysis methodology suitable for complex stochastic 
reaction networks with a large number of parameters, e.g. Figure 8. The proposed 
approach is based on Information Theory methods and relied on the quantification of 
information loss due to  parameter perturbations between time-series distributions. For 
this reason, we need to work on path-space, i.e., the set consisting  of all stochastic 
trajectories, hence the  
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Table 3 Initial population of the species for the EGFR network

EGF EGFR GAP Grb2 Sos Ras-GDP Shc

4.98e10 5e4 1.2e4 5.1e4 6.63e4 1.14e7 1.01e6

Raf Phosphatase 1 Phosphatase 2 Phosphatase 3 MEK ERK Pxrot

4e4 4e4 4e4 1e6 2.2e7 2.1e7 8.1e4

reactions– therefore the diagonal elements correspond
to the eigenvalues of the FIM. The sensitivity analy-
sis depicted in Figure 7, demonstrates that most model
parameters allow for a vast range of perturbations with-
out affecting the dynamics. Furthermore, this robustness
to variations in most parameters was also reported in the
original, fully deterministic EGFR model in [31]. This is
a feature shared by many multi-parameter models in sys-
tems biology and which is known as “sloppiness” , [38].
Our methodology can easily demonstrate such properties
in stochastic dynamics, as we can readily see in Figure 7,
even if the models include a large number of parameters.

The previous discussion refers to the analysis of the
EGFR model to the steady state regime. On the other
hand, EGFR is a signaling model whose transient regime,
in addition to the steady state, is of great interest. As dis-
cussed in Remark 3, we can justify the application of the
RER and FIM sensitivity analysis in the transient regime.

Therefore, we compute the proposed FIM at the time
interval [0, 10], using (22). The lower plot of Figure 7
shows the diagonal elements of the pathwise FIM in
the transient regime while keeping the ordering of the
parameters unchanged from the upper, steady state plot.
The parameter sensitivity ordering is completely different
meaning that the sensitivities are time-dependent in the
transient regime. For instance, the most sensitive parame-
ters in the stationary regime correspond to the final prod-
ucts of the reaction network, however, in the time interval
[0, 10] these species have not been produced yet resulting
to insensitive reaction constants. In terms of parameter
identification and estimation, the time-dependent sensi-
tivities imply that in order to extract the maximum infor-
mation content from the experimental data, we have to
estimate the parameters drawing samples from different
time intervals. These time intervals should be defined
based on the respective sensitivity indices and selected
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Figure 7 Diagonal elements of the FIM computed at the steady state regime (upper plot) and at the transient regime (lower plot). Note
the changes in sensitivity and consequently the parameter identifiability. The parameter sensitivities differ by orders of magnitude.

 
 

 
proposed approach is  referred to as ``pathwise". The pathwise sensitivity analysis 
method is realized   by employing the rigorously-derived Relative Entropy Rate, which is  
directly  computable from the propensity functions. A key aspect of the method is that an  

Figure 8 Diagonal elements of the path-wise FIM for the EGFR model computed at a steady 
state regime (upper plot) and at a transient regime (lower plot); The EGFR model is a 
signaling biochemical network with 207 parameters. This analysis would have been 
computationally prohibitive with earlier UQ methodologies for stochastic systems. 

	
  



associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes 
a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM  
turns out to be block-diagonal,  revealing    hidden parameter dependencies and 
sensitivities in reaction networks. Furthermore, we suggested using not only exact 
stochastic simulation algorithms but also multi-scale numerical approximations of 
stochastic reaction networks (mean field, stochastic Langevin, τ-leap, etc.) in order to 
derive efficient statistical estimators for the FIM. 
	
  
	
  


