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Abstract

The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter
identification that relies on full-field experimental measurements of displacements. VFM is
an alternative to standard approaches that require several experiments of simple geometries
to calibrate a constitutive model. VFM is one of several techniques that use full-field exper-
imental data, including Finite Element Method Updating (FEMU) techniques, but VEM is
computationally fast, not requiring iterative FEM analyses. This report describes the im-
plementation and evaluation of VFM primarily for finite-deformation plasticity constitutive
models. VFM was successfully implemented in MATLAB and evaluated using simulated
FEM data that included representative experimental noise found in the Digital Image Cor-
relation (DIC) optical technique that provides full-field displacement measurements. VFM
was able to identify constitutive model parameters for the BCJ plasticity model even in the
presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method.
Further research is required before VEM can be adopted as a standard method for constitu-
tive model parameter identification, but this study is a foundation for ongoing research at
Sandia for improving constitutive model calibration.
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Chapter 1

Introduction

Sandia requires reliable predictive capabilities for both safety and design of their systems
for a variety of demanding environments. One area for improvement is more robust mate-
rial modeling. Two ubiquitous problems that face scientists and engineers during any study
that involves materials are (1) what material models are appropriate in this situation and
(2) what are the material parameters in those models for the materials of interest. Selec-
tion and calibration of material models are key capabilities for predictive computational
simulations. Materials scientists and solid mechanicians develop material models for new
materials systems and for complex material deformation to be used in design and system
characterization.

At first glance, these problems appear solved with current techniques, but these techniques
have limitations that can result in poor predictive capabilities and poor understanding of
material behavior. The standard practice is to extrapolate material properties from simple
tests such as the uniaxial tension test. While quite straight forward for an isotropic material,
a single uniaxial tension test is not sufficient to characterize shear or torsional behavior,
anisotropy, spatially heterogeneous material properties, damage evolution, different fracture
modes, combined loading, strain-rate dependent behavior, among many others. Despite
these limitations, analysts often only have the time and funding to support simple material
tests with mixed results.

When more fidelity is required, researchers and analysts often require multiple experiments
to help with developing and calibrating an appropriate material model for their applications;
but, multiple experiments take considerable time to complete and are rather complex, which
is rather demanding for Sandia’s experimental capabilities. One response to a need for more
data from complex experiments is for the experimentalists to measure full-field quantities
such as displacements and temperatures with advanced optical techniques and specialized
equipment. Performing experiments with increased complexity where quantities of interest
vary spatially in essence allows for multiple types of deformation in fewer experiments, hence
the appeal of full-field measurements during these experiments. Unfortunately, interpretation
of full-field experimental data or even global measurements from multiple experiments is not
straightforward, i.e., the inverse problem to determine material properties from data from
many experiments and/or full-field experiments is far more difficult than for a uniaxial
tension test. The tools to solve these inverse problems are in their nascent form and require
extensive research and development.



The experimental mechanics research community has developed several approaches for in-
verse problem solving for material properties identification using full-field experimental data
over the past two decades. To clarify, the forward problem is the determination of forces and
stresses over the problem domain given deformation / loading information, domain geometry,
and calibrated material models. The inverse problem is the determination of the material
model parameters that connect measured force and displacements. The inverse problem
must first be solved before the forward problem can be solved for a different geometry and
loading condition.

The basic types of inverse problem methods are described in detail in [1]. The first type is a
finite element method updating (FEMU) technique, where either a measured boundary force
or displacement field over the domain is used to drive a FEM simulation that iteratively ad-
justs material properties in a chosen model to minimize an objective function comparing the
experimental and simulation displacements or forces. The second type is called the Constitu-
tive Equation Gap Method (CEGM), where an FEM simulation and an overdetermined set
of displacement measurements and force measurements are compared using an equilibrium
equation that contains a material model, hence an iterative minimization of the equilibrium
gap for material parameter identification. The third type is based on the Principle of Virtual
Work, called the Virtual Fields Methods (VFM) [1-13], where full-field measurements like
displacements or strains, and global resultant force measurements are used in the Principle of
Virtual Work along with advantageously chosen, kinematically admissible, virtual fields, to
directly solve for the material parameters without need for iterative FEM simulations.

The appeal of the FEMU and CEGM methods is that a complete set of full-field data
over the entire domain is not required, but the iterative simulation requirements can be
cost- and time-prohibitive. Additionally, these techniques require that the user selects a
material model before the iterative search, so the effort invested in these methods would
be multiplied by the number of material models that the user would like to try out, which
is not promising for material model selection or development. The appeal of VFM is that
it does not require iterative FEM simulations, thus identifying material parameters much
more quickly, allowing for identification of properties for many different material models
using the same experimental data. The main issue with VFM is that it does require full-
field experimental data over the entire domain, which is difficult for some applications,
particularly where through-thickness assumptions (i.e. plane stress) do not apply, requiring
internal measurements that are hard to obtain.

Given that there are research opportunities to deal with this issue with VEM (i.e. kinematic
assumptions and full-field volumetric displacement measurement techniques using computed
tomography (CT) scans), this method has great promise to be an effective and fast tool
for material parameter identification. This technique is powerful in that VEM (1) enables
comparison of different material models, helping analysts choose the best models for their
materials and giving them greater reliability in the material behavior in their simulations; (2)
aides constitutive modelers and materials scientists in the development of new constitutive
models; and, (3) extends to many different deformations and material models (including
rates, temperatures, complex mixed-mode loading). Essentially, VFM is widely applicable
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to any problem wherever the Principle of Virtual Work can be applied in a configuration
where full-field experimental measurements can be made.

This report describes recent efforts at Sandia to implement and evaluate VFM for constitutive
parameter identification primarily for large deformation plasticity models, but also includes
an example of how VFM may be utilized for small-strain theory. This study includes the
implementation of VFM in MATLAB and evaluation of the VFM identification capability
using FEM-simulated deformation data. In order to simulate experimental measurement
uncertainties and their effect on the constitutive parameter identification process, this study
also describes the effects of uncertainties associated with Digital Image Correlation (DIC)
displacement measurements, which is currently the most practical experimental technique to
gather full-field displacement data. The complete VE'M inverse problem methodology is sim-
ulated using computationally derived displacements with superimposed DIC measurement
uncertainties, which were quantified for representative DIC experimental setups, as inputs
to the identification algorithm. The simulated VFM process that incorporates measurement
errors allows for characterizing the impact of DIC uncertainties based on realistic experi-
mental parameters without requiring cost-prohibitive iterative experimental investigations
of the full VEM process. This study can help with specimen-geometry and DIC-setup designs
so that the real experiments provide optimal measurements for lower uncertainties in finite
deformation VFM material property identification. The examples described in this report
consider the deformation of a ductile metal, 304L stainless steel, using nominal constitutive
model parameters.
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Chapter 2

The Virtual Fields Method

The Virtual Fields Method (VEM) is an approach to constitutive model parameter identifi-
cation that utilizes full-field deformation measurements and the Principle of Virtual Work.
VFEM was first developed in the late 1980s and has been applied to static, vibrational, and
high strain rate deformations for several materials including composites, metals, polymers,
foam, and wood [2]. In general, VFM utilizes heterogeneous displacement field data from
a mechanical test and global force data with well-defined boundary conditions for the area
of interest. An analytical constitutive model is chosen for the material, and the virtual
fields are carefully constructed depending on the type of model, allowing for determination
of the constitutive parameters through numerically solving a system of equations that en-
forces the principle of virtual work, as previously has been addressed in literature [3-7].
Currently, there is limited work in VFM applied to metals for elasto-plasticity [8], heteroge-
neous elasto-plasticity [9], elasto-visco-plasticity [10], and 3D plasticity in the necking regime
[11-13]. Depending on the application, VFM can be written in terms of small-strain theory
or finite-deformation theory, which are both described in the following sections.

2.1 VFM for Small-Strain Theory

Given a volume V' with internal stress o0;;, internal strain ¢;;, applied tractions 7; on a surface
S applied volumetric body forces b;, density p, and acceleration a;, the Principle of Virtual
Work for a virtual displacement u; and virtual strain €;, in general, is

*
K

—/O’ijf;} deL/Tiu;k dS + /bluf dV = /paiu: dV Vui KA, (2.1)
1% S 1% v
where KA means kinematically admissible,
V[/;zt == —/Jijefj dV (22)
v

is the virtual work due to internal forces,
ot = /Tmf dsS + /bzu;“ dVv (2.3)
5 v
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is the virtual work due to external forces, and

wr. = /paiuf dv (2.4)

14

is the virtual work due to acceleration [2]. The relationship between the virtual displacement
u; and virtual strain €; for small deformations is the same as that between the actual
displacement and strain [2]:

* 1 * *

Kinematically admissible w; implies that the virtual displacement field is C(0), meaning it is
continuous and differentiable, and that the virtual displacement field is consistent with the
boundary conditions of the problem. The virtual strain field ¢;; can be discontinuous. The
virtual fields do not necessarily have to represent actual displacements and strains, allowing
for an infinite number of potential virtual fields. Some virtual fields are more advantageous
for the purpose of determination of constitutive parameters, but the only actual restriction
is the kinematic admissibility.

For plane stress conditions where 013 = 023 = 033 = 0, the Principle of Virtual Work further
reduces to the following, assuming u] and uj are independent of x3:

—t/(aueil+agge§2—|—20126’{2)d5—|—t/Tiu;‘dl%—t/biu;de:t/paiu:dS vV ui KA, (2.6)
S Ly

where ¢ is the thickness of the specimen, and Ly is the line over which the traction force
is applied [2]. For deformations without body forces and under quasi-static loading, the
Principle of Virtual Work reduces to the following, after dividing by ¢ and switching to Voigt
notation:

/(alef + 0265 + ogeg) S = /Tm;k dl YV u; KA. (2.7)
s Ly

A linear elastic isotropic material model in plane stress for elastic modulus E and Poisson’s
ratio v is

01 Qu Q12 0 €1
O2| = Qm Qn 0 €1, (2-8)
o6 0 0 Qes] |66
where
E vE Qu — Q12 E
Qu = Q2 1_ .2 Q12 = Q21 11— .2 and Qes 9 2(1+ ) (2.9)
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This can be written as

Cer [ Qu Q12 0 i (o]
1 1

Q1 - Q@ Qi — Qb
e == @z =~ = Qu =~ 0| |o2]- (2.10)

1~ Wiz Wi T Wiz
0 0 !

€ —| |o
- - Qesd - .

Inserting Eq. (2.8) into Eq. (2.7) gives the following:
) . o s Qu—Qi2 .o ) .
Que1e7dS+ | QuieesdS+ [ Qra(er€5+ere])dS+ TEﬁEGdS = [ Tou;dl ¥V u;KA.
S S S S Ly

(2.11)

Assuming that the material is homogeneous allows for the following simplification of the
Principle of Virtual Work in Eq. (2.11) [2]:

2
5 5 Ly

1 1
Q11/(616’{+6263+§6662> dS+Q12/<616§+6261‘——6662>d52/Tiufdl Vu; KA. (2.12)

2.2 VFM for Finite Deformation

VFM has been applied to finite-deformation plasticity [11, 12] using a nonlinear minimization
process where the constitutive model with an unknown parameter set £, measured displace-
ments u(x,, t) relative to the reference material coordinates x,, and user-defined virtual fields
are inserted into the Principle of Virtual Power for finite deformations to satisfy equilibrium,
resulting in the desired .

Consider a volume V' whose current position is given by ;. The motion / deformation of that
volume is given by x, and the displacement of the body relative to a reference configuration
V, with reference material position x, is

u(x,, t) = x(xo, t) — . (2.13)
The deformation gradient F' is then
F(x,,t) = Vx(z,,t) = Vu(z,,t) + L (2.14)

The volume is subjected to tractions t and body forces b in general. For a kinematically
admissible velocity vector field dv, assuming quasi-static loading and no body forces, the
Principle of Virtual Power in the current configuration is

o-0DdV = [ (on;)-0vdS (2.15)
/ /

Vi WV
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where o is the Cauchy stress, n; is the surface normal in the current configuration, and the
virtual stretch rate 0D is

1
6D = 5(vav + V7iv). (2.16)

An equivalent form of the Principle of Virtual Power is in terms of the Lagrangian descrip-
tion:

/ 17 : 6F dV = / (I1”'n,) - 6v dS (2.17)
Ve

oV,

where II is the first Piola-Kirchoff stress tensor, JF = Vév(zx,,t) is the virtual velocity
gradient tensor, dV, is the boundary of the reference volume, and n, is the surface normal
in the undeformed configuration.

The purpose of VFM is to identify a constitutive parameter set & from measured full-field
displacements and applied loads for heterogeneous stress states during the course of a test.
By choosing kinematically admissible virtual velocity fields and appropriately managing the
nonlinear VFM problem for the case of a nonlinear constitutive model, the user can identify
¢ by minimizing the following cost function ®(¢):

f Nstep

=D 2. /HT OF; dV — / n,) - ov; dS] (2.18)

=1 j=1 av,

where N,; is the number of virtual fields, and Nge, is the number of measurement steps.
Eq. (2.18) is the balance of the internal virtual power in the volume and the external virtual
power on the boundary. IT is dependent on the measured displacements and the constitutive
parameter set £ and can be written in terms of the Cauchy stress o (i.e. I = (detF) o-F~T,
where F is the actual deformation gradient tensor). The Cauchy stress can be written in
terms of the deviatoric stress tensor and the hystrostatic pressure such that o = s+% (tro) 1.
The internal virtual power can be rewritten as

/HT L OF dV = / ((detF)o - F~T) : 6F dV

= / ((detF)(s + %(U"O')I) FT) . 6F dV (2.19)
Vo
:/((detF)s-F—T) L OF dV+/((detF)(%(tra)I)-F‘T) . OF dV.

Additionally, the distribution of an applied force on the boundary 9V, is generally unknown,
and only the resultant load f is measured. Therefore, the virtual fields dv are chosen
to be a constant dv along the boundary where f is applied. The external virtual power
becomes

/(HTnO).(svdsz(/tds)-ﬁzf-ﬁ (2.20)

oV, Vi

16



Thus, given virtual velocities and known resultant loads f, the Principle of Virtual Power and
the cost function for identification of constitutive parameter set ® become, respectively,

/((detF)a BT 5P AV = £ 5v (2.21)
and -
B(¢) = Z Z [/((detFi)aj F7T) : 6F; dV — (fj .Tw)r (2.22)

By using a plasticity model in the cost function ®(&) with measured displacements and ap-
propriate virtual velocities, the minimization process of ®(&) returns values for the unknown
parameters set &.
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Chapter 3

VFM Implementation and
Evaluation

This chapter describes the numerical implementation of the VFM theory presented in Chap-
ter 2 and the evaluation of the VFM implementation based on simulated full-field experimen-
tal data based on nominal properties of 304L stainless steel. Section 3.1 gives an example of a
VFM for small-strain theory in the case of a diametrically compressed disk. Section 3.2 pro-
vides the background for the numerical methods implemented for finite-deformation VFM.
Section 3.3 describes the finite element analyses for the finite deformation examples of thin
sheet 304L stainless steel. Section 3.4 explains how we simulated DIC experimental data
based on an experimentally derived DIC noise analysis. Section 3.5 describes how the VEM
objective function for the finite deformation VFM implementation was evaluated. Section 3.6
presents the finite-deformation examples of VFM identification based on the simulated DIC
data and describes the viability of this method.

3.1 Linear Elasticity Example

3.1.1 Diametrically Compressed Disk Problem Setup

A diametrically compressed disk of thickness ¢t and radius R has a load on the edge of the
disk of magnitude P, as shown in Fig. 3.1. The analytical solution for the stress fields in
Cartesian coordinates is the following [14, p. 243]:

_ P (R — xp)a] (R+ag)ai 1

o _mf{ [+ (B—m)?  [2+ (R+m)’? 2R (3-1)
_ P (R — x5)° (R + z5)? 1

7= it Wi+ (R—22)2 | @i+ (Rt 2?2 2R } (3:2)
Py (R—m)’m (R+m)’m

e AUy oyl e e (3:3)

The analytical strain fields ¢;; for a linearly elastic isotropic material can be calculated by
using Eq. (2.10) and Eq. (3.1)-(3.3).
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Figure 3.1: Schematic of a diametrically compressed disk

From the example given in [2, p. 61-65], the first manually chosen virtual field is

ef(l) 0

U;( ) —k‘1<R + Ig) 63(1) 0
6

where k; is a nonzero constant. The virtual field u;(l) at (x1,2z2) = (0, —R) is zero, so u:(l)
is KA. From Eq. (3.4), the internal virtual work W, () for this virtual field becomes

wnt

Qn/ <61€1(1) + 6262(1) + 56666(1)> ds + ng/ (6162(1) + 6261(1) — 56666(1)) ds
S S

= _lell /62 ds — k’1Q12/61 ds. (35)

S S

The first manually chosen virtual field leads to a nonzero term in the W:x(tl ) term, utilizing

the resultant load P applied along (z1,x2) = (0, R) through thickness ¢, where u;(l)((), R) =
—2Rk1€5 and the applied load is F = —Pés:
2Pk,

. 1 . P
/Tiui(l) dl = <F - uy Y (0, R) = (— 7)(—21{/{1) === (3.6)

Ly

Combining Eq. (3.9) and (3.6), factoring by —k;, gives the following expression for the
Principle of Virtual Work for the first virtual field:

Qll/EQ ds + ng/El ds = ip (37)

t
S S
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The second manually chosen virtual field for this problem is

*(2)
*(2) €1 kQ
U kox N
Li(z) =[20 } & =0 (3.8)
2 e*(2) 0
6

where ko is a nonzero constant. The virtual field uf(z) at (x1,z2) = (0, —R) is zero, so u:@)

is KA. From Eq. (3.8), the internal virtual work W, @) for this virtual field becomes

wmnt
Qn/ (6161(2) + 6262(2) + 56666(2)) ds + ng/ <€162(2) + 6261(2) — 56666(2)) ds
S S

= kQQll/El dS—|—]€2Q12/€2 ds. (39)

S S

The second virtual field leads to a null term for the W:x(f ) term. Therefore, the Principle of
Virtual Work for the second virtual field is

Q11/€1 ds + Q12/62 dS = 0. (3.10)

S S

Combining Eq. (3.7) and (3.10) gives the following AQ = B matrix equation:

/62 dS /61 dS —2P
Qll -,
s 5 =| ¢ (3.11)

/61 dS /62 dS ng 0
LS S i

where ¢; are the actual strain fields on the surface S,. The strain fields are measured in full-
field at N discrete points centered in small areas Sl7, so the surface integrals in Eq. (3.11)
can be approximated by the following summation:

N N
/61 dS ~ Z E[IQ]SL[I‘A and /62 dS ~ Z 6[2(1]5([1‘7} (3.12)
q q

S S

4 i5 the ¢-th strain measurement in the field at location (z\7, z1%) on . If the small

areas S9 are regularly spaced and sized as S,, then the small areas can be moved to the
front of the summations. This implies that Eq. (3.11) can be written as the following, for
regularly spaced strain measurements, using Eq. (3.12):

where €

N N
Z 6[2(]] 6[1(1] Q —2P

q q e tS,

N N ~ (3.13)
S S @ 0
[ ¢ q J
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This derivation of the problem setup for VE'M shows the simplicity of VFM for linear elastic-
ity. Full-field strain measurements and load measurement at a single load step are sufficient
to determine the elastic properties. Sections 3.1.2-3.1.3 describe how this the elastic problem
is solved using simulated data without and with Gaussian noise.

3.1.2 Diametrically Compressed Disk Without Gaussian Noise

To simulate experimental data for this problem, a MATLAB script, LinEDiskV02.m was
written using the analytical solution for the strain fields. The “camera CCD” imaged a
nominal initial 2000 pixels x 2000 pixels, and the regular data step size was 10 pixels. The
length to ”camera” pixel ratio was the 2R/2000. The disk radius was 50 mm, and the disk
thickness was 2 mm. Nominal material properties for 304L stainless steel were used: E of
200 GPa and v of 0.29. The input ()1; and ()12 are then 218 GPa and 63.3 GPa, respectively.
The applied load was 7000 N, which led to average stresses (~ 12 - 44 MPa) that were below
the nominal yield stress of the material, which is 170 MPa. For this analytical solution
the stresses increase beyond yield near the load application points, such that the less than
2.2% of the area would have yielded. The effect of the yielded data points is ignored in this
simulated data. The goal of this was to simulate a full-field strain field with strain values
typical for linear elastic measurements (100 - 200 pe on average).

Since the step size in the data is 10 pixels, then the small areas S, had an area of 0.25 mm?.
Since this strain data is discrete and and the object is round, the discrete areas around the
edge of the disk will not exactly represent the curved area of the disk, leading to error in
the identification of ()11 and ()12. The ratio of the total area used in the discrete data to
the actual area of the Disk is 1.0004, so the discretized area is slightly larger than the actual
disk. The MATLAB script reported values for (1; and Q12 from the Virtual Fields Method
identification process were 219 GPa and 63.2 GPa, which had errors of 0.29% and —0.21%.
The identified values for £ and v were 200.8 GPa (0.38% error) and 0.289 (—0.5% error),
respectively. The MATLAB script, LinEDiskV02.m, is given in the Appendix.

If the step size is changed, then the identified parameters J1; and ()12, the relative errors,
and the ratio of the discretized versus actual area are given in Table 3.1. This example of
simulated strain data without any noise demonstrates how VFM can simply identify linear
elastic properties with small errors due to the discretization of the object.
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Table 3.1: Error in identification of £ and v due to data discretization for P = 7000 N
(Eres = 200 GPa, and v,..; = 0.29)

Step Length / Data E v Discrete /
Size Pixel S, Points E Error v Error | Actual Area
(pixels) | (mm/pixel) | (mm?) (GPa) | (%) (%)
1 0.05 0.0025 | 3141676 | 200.1 | 0.04 | 0.2898 | —0.05 1.00003
5 0.05 0.0625 | 125676 | 200.4 | 0.19 | 0.2893 | —0.25 1.0001
10 0.05 0.25 31428 200.8 | 0.38 | 0.2886 | —0.50 1.0004
15 0.05 0.5625 | 13966 200.0 | 0.08 | 0.2930 | 1.02 1.0002
20 0.05 1 7860 2015 | 0.76 | 0.2872 | —0.97 1.0008
25 0.05 1.5625 5024 201.9 | 0.95 | 0.2865 | —1.20 0.9995
30 0.05 2.25 3493 199.1 | —0.47 | 0.2830 | —2.43 1.0007

3.1.3 Diametrically Compressed Disk With Gaussian Noise

A MATLAB script, LinEDiskNoiseV02.m was written to simulate Gaussian noise with an
amplitude of strain similar to noise found in experimental data to see the effect on the iden-
tification of constitutive parameters. The same 10-pixel step size described in Section 3.1.2
is used here, in conjunction with several standard deviations of noise. The results are given
in Table 3.2.

Table 3.2: Error in identification of £ and v due to Gaussian noise for P = 7000 N, for
the 10-pixel step size case (E,.; = 200 GPa, and v,.; = 0.29)

Std. Dev. | Std. Dev. | Std. Dev. | Std. Dev.
of Stain Noise Noise Noise E v
Noise / €5ve / €5ve / exve E Error v Error
(pee) (%) (%0) (%) | (GPa) | (%) (%)
0 0 0 0 200.8 | 0.38 | 0.2886 | —0.50
1 1.00 0.45 0.54 200.8 | 0.38 | 0.2885 | —0.50
10 9.86 4.48 0.44 200.7 | 0.34 | 0.2885 | —0.51
20 49.28 22.39 27.19 201.0 | 0.50 | 0.2880 | —0.068
100 98.57 44.78 54.38 200.2 | 0.08 |0.2921 | 0.71
200 197.2 89.57 108.8 198.8 | —0.61 | 0.2856 | —1.52
500 492.9 224.0 271.9 203.28 | 1.64 | 0.2767 | —4.57

The error in the identified parameters does not vary in a predictable manner: as the Gaussian
noise increases for noise levels from 0 to 100%, the noise is about the same. The error
becomes nmore significant when the Gaussian noise rise to five times greater than the average
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strain. The error due to the summation approximation of the integrals in the Principle of
Virtual Work (Eq. (3.13)) has similar order of magnitude as the error due to Gaussian noise
investigated here. This analysis implies the following:

e the manually chosen virtual fields selected here produce well conditioned matrix A
that produce stable results, but there is not guarantee that other virtual fields will be
so stable with measurement noise and data point density;

e the summation approximation to the integrals in Eq. (3.13) in addition to the uniform
grid of data representing a curved volume can be large sources of error, so care must
be taken in the experiment to maximize the data density and better approximate the
volume shape; and

e the Poisson’s ratio is more sensitive to both the summation approximation and Gaus-
sian noise in the strain fields than the elastic modulus.

The portion of the MATLAB script, LinEDiskNoiseV02.m, that adds the Gaussian noise is
given in the Appendix.

3.2 Finite Deformation Plasticity

The prior examples for small-strain theory utilized a uniform grid of data overlaying a non-
rectangular body, which is common for experimental techniques like Digital Image Corre-
lation (DIC) where a uniform-grid CCD camera collects the images from which the experi-
mental data is derived. As seen in section 3.1, the identification process is quite sensitive to
the summation approximation using a uniform grid. One approach to better address numer-
ical approximation of deformation of non-rectangular volumes is to utilize FEM approaches
to meshes and kinematics, which has been implemented here for finite-deformation VFM.
Other advantages of FEM meshes and kinematics are efficient evaluation of the constitutive
models and approaches for mapping uniform grid experimental data to a non-rectangular
volumes. The following section describes this implementation of FEM-theory into the VEM
identification process for finite deformations, including the plasticity material models con-
sidered for the example of 304L stainless steel, the FEM kinematics utilized in the VFM
code, the material model evaluation using the FEM kinematics, and an outline of the VFM
procedure.

3.2.1 Plasticity Models Under Consideration

Two constitutive models were chosen for parameter estimation. The first model is an
isotropic, rate-independent, piecewise linear hardening model. The model is based on .Jy
plasticity and has a hardening function of the form

g =0, + h(e) (3.14)

24



where o is the von Mises stress, o, is the initial yield stress, €7 is the equivalent plastic strain,
and h is the hardening function. The hardening function is represented as a piecewise linear
function of the equivalent plastic strain.

The second constitutive model is the Bammann-Chiesa-Johnson (BCJ) model [15]. This
model is a viscoplastic model with temperature-dependent hardening and recovery. For
simplicity, the form of the model in this study has no rate or temperature dependence. In
this case, the effective stress has the form

g=0,+kK (3.15)

where o, is the initial yield stress, and x is a measure of statistically stored dislocations.

The evolution of & is o
k(EP) = i [1 — exp(—Rg4e?)] (3.16)
d

where H and Ry account for hardening and recovery respectively.

3.2.2 Outline of VFM Algorithm

Here are the basic steps involved with the VFM algorithm implemented in MATLAB from
a displacement field that would typically come form DIC and external resultant load over
the course of an “experiment” (note that the “VFM mesh” is the mesh used to perform
the VEM identification and this mesh is required whether or not the input data is from an
experiment or FEM simulation):

1. Input 3D nodal displacements for each time step, resultant force for each time step,
nodal connectivity for all VFM-mesh elements, specimen geometry, reference nodal
locations, and time steps.

(a) If original input data comes from an FEM simulation, then the FEM solution
must be mapped to the VFM mesh, either by directly sampling the FEM mesh
at the isoparametric coordinates of the VFM mesh nodes, or by the following:

i. Map FEM mesh data to uniform grid of DIC data locations by sampling the
FEM mesh at the isoparametric coordinates of the DIC points, and

ii. Add experimentally derived DIC noise to the DIC displacements, Upj¢;

iii. Map the uniform grid of DIC points, Up;¢, to the nodal locations of the VFM
mesh, uy Far—nodar, Using the isoparametric coordinates of the DIC locations
relative to the VFM mesh to get the relevant shape functions, ®, solving the
equation {Uprc} = [P{uvrrr—noda} by using a least-squares minimization
algorithm (see Kim et al., 2013 [16]).

(b) If the original input data comes for an experiment with a uniform grid of DIC
points, then map the uniform grid of DIC points, Up;c, to the nodal locations of
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the VEM mesh, uy par_nodai, USing a least-squares minimization algorithm that
uses the isoparametric coordinates of the DIC locations relative to the VFM
mesh to get the relevant shape functions, ®, solving the equation {Uprc} =

[N vy FM —nodat } -
. Define virtual velocity fields.

. Calculate kinematics using either the uniform gradient element approach (central in-
tegration point for both the deviatoric stress and for the pressure term) or the Q1P0
element approach (8 Gauss integration points for the deviatoric stresses and central
integration point for the pressure term) to be used in the calculation of Principle of
Virtual Power:

Gradient operator definition;

Material gradient of displacement field at each time step;

)
)

¢) Deformation gradient at each time step;
) Inverse transpose of deformation gradient at each time step;
) Rate of deformation (mid-point in time) at each time step;
)

Rotation matrix from polar decomposition of deformation gradient at each time
step; and,

(g) Material gradient of virtual velocity field.

. Define material model in MATLAB for either uniform gradient or Q1P0 hexahedron
elements.

. Define bounds on identified constitutive parameters.

. Perform VFM identification by solving a nonlinear minimization problem where the
cost function that is minimized is based on the Principle of Virtual Power, using the
constitutive model implemented in MATLAB with the given kinematics and the initial
guess for constitutive parameters.

. Compare identified parameters and stress history to FE-model parameters and stress
history.
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3.2.3 FEM Kinematics

Computing Rate of Deformation from the Deformation Gradient

Given the nodal displacement field discretized in time, w;; (¢,), then the increments in dis-
placement are

Auu = U;T (tn—i-l) — U;T (tn) (317)

The deformation gradient at every time increment is
1

Ej (tn) = dij + quBﬂ (3.18)

We can also calculate the inverse deformation gradient at every time, Fi;I (tn). We want
the rate of deformation, or strain increment, measured from the mid-step. We will need the
deformation gradient at the midstep. This is

1
Fij (tor1/2) = Fij (tn) + 57 Auir By (3.19)

The inverse is, Fgl (th /2). The midstep velocity gradient is

1

Lij (tny1j2) = VAtAuiIBkIFk_jl (tns1s2) (3.20)
The midstep rate of deformation is
1
Dij (tns12) = 5 [Lij (tns1j2) + Lji (tng1/2)] (3.21)

Objectivity

The Green-Mclnnis stress rate that we use in our codes is

c6=0—-Q-0c+0-9Q (3.22)

where o is the Cauchy stress tensor and €2 is the rate of the rotation tensor from the polar
decomposition. We numerically implement this stress rate by integrating the constitutive
model in an “un-rotated” configuration. To do this we will need to keep two rotations around:
the rotation at t,, and t,,1. Since the polar decomposition is

F=R- U=V R (3.23)
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where R is the rotation, U is the right stretch and V is the left stretch. We have at ¢,, and
tn—l—l
F,.=R,-U,=V,-R, (3.24)
Fn+1 - Rn+1 : Un+1 - Vn+1 : Rn+1 (325>

The algorithm that the Sierra FEM codes use is the following:

First, we have the Cauchy stress, o, and the un-rotated Cauchy stress, T,,, at time ¢,,

T,=R!.0, R, (3.26)

Next, we calculate the rate of deformation, D, and un-rotate it with the rotation at time
tni1 to give us d
d=R] - D R, (3.27)

Send this un-rotated rate of deformation to the constitutive model and update the un-rotated

stress to get T,,11
T,.1=T,+AT(d) (3.28)

This is essentially what the role of the constitutive model is. The stress is passed to the
constitutive model at time ¢, - really T, - and the “strain rate” - really d - and it returns the
stress at the end of the time step - T,, 1. We could just as easily write the above equation

as a function
T, =f(T,,d) (3.29)

Of course we also have state variables, which we have ignored. If we have an array of state
variables, &, we can write

[Toi1,€,1) = (T, &, d) (3.30)

For example, our model only has one state variable, the equivalent plastic strain. It is a
scalar variable, so we can write the above as

[Ti1,80 1] =£(T,, 2%, d) (3.31)

Finally, rotate the un-rotated stress at time ¢,,; to the Cauchy stress at time ¢, using the
rotation at time ¢,

Ont1=Ryqr - Topr- Rg—f-l (3'32)
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3.2.4 Uniform Gradient FEM Models

The uniform gradient (UG) element is based on the formulation developed by Flanagan and
Belytschko [17]. The main assumption of the UG element is that the stress is assumed
constant over the element. Using this in the internal virtual work results in the derivation
of a gradient operator that is volume averaged over the element. The interested reader is
directed to Flanagan and Belytschko [17].

The main result is the discrete gradient operator for the UG element. The discrete gradient
operator, B;j, is

dg 1<
o, =7 Z Birgr (3.33)
=1

where z; is the coordinate, V' is the volume of the element, g is some field (scalar, vector,
or tensor) and, g; is the field evaluated (or calculated) at node I. The expression for B;;
is

06 YIZK
Bi] :/ axldv: ZJUK C]JK (334)
14 ' LYK
where ¢; is the linear element shape function
1 1 1
or = gEI + 1 (&A1 + Eahor + E3A31) + 3 (&263100 11 + &&Tar + &6l sr) + 162630 (3.35)
and
1
Crix = —=¢€ijk BNirNjsNere + NirlisUje + DirAj i + Tl Ark) (3.36)

192

where 7,7, k range from 1 to 3. The A;; and I';; are the element base vectors given in
Table 3.3.

Using this gradient operator, the volume average displacement gradient for the UG element
is
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Table 3.3: Element Base Vectors for Uniform Gradient Elements

\g!
~
-
=
=
X
-
w
~
]
=
—
X
]
w
~
—
=

Node &1 S &3
1 -1/2 1 -1/2 | -1/2

1
2 1/2 1 -1/2 | -1/2 | 1 1 -1 -1 1 -1 -1 1
3 /2 | 1/2 | -1/2 | 1 1 1 -1 -1 -1 1 -1
4 |-1/201/2|-1/2 1| -1 |1 |-1]-1]1]-1]1
) -1/20-1/20 1/2 | 1 -1 -1 1 -1 -1 1 1
6 1/2 1 -1/2 | 1/2 | 1 1 -1 1 -1 1 -1 -1
7 /2 | 1/2 | 1/2 1 1 1 1 1 1 1 1
8 120 1/2 ) 1/2 |1 -1 1 1 1 -1 -1 -1
1 Ou; 1 o
Ui = — LV = — B 3.37
Us, 5 V/@:cj V;UI i ( )
v =

The internal force at each node, f;;, is calculated as

fuéu” = /UijauinV = V&ij&]i’j — fi[ = 61'ij (338)
Vv

The volume averaged stress, 7;; is computed from the constitutive model using the strain
rate calculated from the volume averaged incremental displacement gradient.

One major problem with this formulation is that there are zero-energy modes. These are
modes of deformation where the volume average displacement gradient is zero, which gives
no stress and no resistance to the deformation. Zero-energy modes, or hourglass modes, are
controlled with some method of hourglass control. This method adds some artificial energy
to the problem which has some ramifications for VFM, as will be discussed in section 3.6.1.
For more detail on hourglass control see Flanagan and Belytschko [17].

3.2.5 Q1P0 FEM Models

The Q1PO finite element models are based on a fully integrated hexahedron with 2 x 2 x 2
Gauss quadrature [18-20]. The fully integrated element is known to lock since it is over-
constrained. This constraint is relaxed by integrating the pressure with a single integration
point and fully integrating the deviatoric response. An slight modification to the Q1P0
element is to volume average the pressure response over the entire element rather than
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evaluate it at the integration point at £; = 0. This second approach is also common in finite
element codes, but it is not what we chose to implement.

For the Q1P0 element the shape functions are the same - linear shape functions for a hex-
ahedron. The internal force for a fully integrated element is calculated from the internal
virtual work

fl[éul]:/azj(sulﬁdvz/alj g¢15U11dV—6u11/01]g¢]dv
v 14

(3.39)
filz/azjg¢ldv

|4

As stated earlier, this element formulation is over-constrained. To ease the constrain the
pressure is integrated at the center of the element. Decomposing the stress into a pressure
and a deviatoric stress

Oij = Sij +P0ij 5 D= Z0kk (3.40)

we can substitute this into the expression for the internal virtual work and get
¢1 991
fI /S J a + 8!Ej . ( )
v

where (+)g denotes a quantity evaluated in the element at the isoparametric coordinates

& =0.

The first integral is evaluated in the standard way

/S” gaﬁz o — V NQ 3;2 W (3.42)
J

v k=

where n;, is the number of integration points (8 in our case), k is the integration point
number, and w® is the weight of the integration point.
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3.2.6 Material Model Evaluation
Stress State

In plasticity theory, the plastic, or permanent, deformation does not depend on the hy-
drostatic pressure. Therefore, it is advantageous to formulate a plasticity model using the
deviatoric stress. Given the Cauchy stress, o, the deviatoric stress is

s=0—-tr(o)1 (3.43)

Some general statement about the stress state can then be made by looking at the magni-
tude of the deviatoric stress. This basically amounts to replacing the tensorial information
contained in the deviatoric stress with a scalar. The magnitude of the deviatoric stress
is

Isll = V57 (3.44)

Rather than looking at the magnitude of the deviatoric stress, it is sometimes easier to use
the von Mises stress. One big advantage of the von Mises stress is that it is equal to the
stress in a uniaxial stress problem. For multi-axial stress states this allows us to equate,
in some way, a complex stress state with an “equivalent” uniaxial stress state. Of course
looking at this “equivalent” stress state may or may not be justified; we just don’t know
enough about the behavior of materials under multi-axial stress states.

The von Mises stress is

g=14/=s:8 (3.45)

_ 3
o= \/;IISII (3.46)

SO

Yield Surface

Plasticity models define a region in stress space that is bounded by something called the
yield surface. The idea of a yield surface is in many ways quite simple: it bounds a region of

LOne should not confuse knowing how material models behave with knowing how materials behave.
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allowable stress states. So in plasticity, the stress state is restricted to lie inside or on the yield
surface. Furthermore, the response of the material inside the yield surface is elastic.

If a stress state is on or inside the yield surface, and an elastic load increment results in
a stress state that is also inside the yield surface, then the response is elastic. If a stress
state is on or inside the yield surface and an elastic load increment results in a stress state
outside of the yield surface, then plastic deformation has occurred. The description of the
yield surface is very important for plasticity models. For isotropic materials the yield surface
is adequately described by its radius, R. The radius of the yield surface is related to the
magnitude of the deviatoric stress. In particular, the stress state must satisfy

Is|| < R (3.47)

Hardening Law

The hardening law for a plasticity model is, in general, written as

og=o0,+h(eP) (3.48)

where h (&7) is the hardening function that is a function of the equivalent plastic strain, 7.
This function can be linear, nonlinear or piecewise linear. Equating this to the radius of the
yield surface we have

2

R=\/5lo,+h (@) (3.49)

We can take the time derivative of each side and generate something more useful in what
follows

. doE).,
R=\3= ¢ (3.50)

Stress Update

For updating the stress given a strain increment Delta e, we start with a trial elastic stress
state

o"=0,+C: Ae (3.51)

The fourth order tensor C is the elasticity tensor

C=A@I+2ul (3.52)
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If the trial stress state is elastic, i.e. [[s"|| < R,, then Ae® = Ae and 0,1 = o and we
are done. If the trial stress state is outside of the yield surface, i.e. ||s'|| > R,, then we need
to solve for the plastic strain increment, A eP. Solving for this will give us the final stress

state
Ony1=0" —C°: AgP (3.53)

Flow Rule

The plastic strain increment is found from the flow rule. The flow rule gives us a rule for
how the plastic strain evolves. For metal plasticity, the material response is independent of
hydrostatic pressure, and the flow rule reflects this. The plastic strain rate is in a direction

normal to the yield surface.
Ael:1=0 (3.54)

The above equation can be written in terms of the deviatoric stress

Spp1=8" —2uA€P (3.55)

Returning radially to the yield surface we have

Str

e

Ae’=AWN ; N (3.56)

where the expression for the normal comes from a backward Euler algorithm. This gives
us

Sn1 = (|18 — 2uAy) N (3.57)

The radius of the yield surface at the end of the step is

R721+1 = Sn+1 ! Spt1 = (”SWH - QMA’Y)2 (3.58)
or
Ry = 8" — 2udy (3.59)

The radius of the yield surface at the end of the time step is also given by

2
B = /2o, 41 (E500)]

(3.60)



For linear hardening this is simply
2 _
Ry =R, + \/;HA P (3.61)

For isotropic hardening the equivalent plastic strain is
t
_ 2., .
el = / \/gsp : ePdt (3.62)
0

which can be simplified to

t
2
= \/g / it (3.63)
0

SO
. 2 2
D = - AP = —A .64
€ 37 Af \/; Y (3.64)
which gives us
2

This finally gives us, for linear hardening

2
or
3" || — R
Ay= ———— 3.67
7T 3ut+ H (3.67)

For nonlinear hardening, a Newton-Raphson algorithm is used. For this algorithm we start

with
2 2
Is|| — 2uly = Ry, + \/g [h (eﬁ + \/;A7> —h (eﬁ)] (3.68)

More simply, by defining A h (A7)

Ah(Av)=h (5{; + \/§A7> — h (&) (3.69)
we have
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2
Is"|| = 2pAy = Ry + \/;Ah (A7) (3.70)

For the Newton-Raphson algorithm we define ¢ (A~) as

¢ (Ay) = [Is"]| = Ry — 2pAy — \/gﬁh(ﬁv) (3.71)

and solve ¢ (Av) = 0. The derivative of ¢ is

¢ (Av) = —2p— 3m (8) (3.72)
The value for A~ in the algorithm is
¢
AyEFD = Aqk) 5 (3.73)

For nonlinear hardening, ¢ and ¢ are functions of A+, and we must iterate for a solution.

For linear hardening, as shown above, we have

2 2
o=l = R (204 3H) Ay 5 ¢ =2 3H (3.74)
which gives us
3" — Ry
= 3.75
7T 3u+ H (3:75)

in one step. So what we need is an algorithm to solve for A+ and then use that value to
update the equivalent plastic strain

2
g =&+ \/;Av (3.76)

3.3 Model Experiments and FEM Simulations for Plas-
ticity Examples

3.3.1 Uniform Gradient FEM Models

Two plate configurations were examined: a notched tensile plate and a T-shape. Each
configuration had two different geometries. The analyses were run with uniform gradient el-
ements. Three constitutive models are chosen for parameter estimation. The two models are
an isotropic, rate-independent, linear hardening model and an isotropic, rate-independent,
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piecewise linear hardening model called MLEP. The models are based on J, plasticity and
has a yield function of the form
g =0, + h() (3.77)

where o is the von Mises stress, o, is the initial yield stress, €7 is the equivalent plastic strain,
and h (&7) is the hardening function. The hardening function are represented as a linear or
a piecewise linear function of the equivalent plastic strain, respectively. The finite element
analyses for the MLEP model were the same as those of the linear hardening model, but
we defined the hardening curve as four segments with the same Aoy and Aey; the purpose
of the searching for the MLEP segments is to determine how well VFM can find values for
piecewise hardening model.

The third constitutive model is the Bammann-Chiesa-Johnson (BCJ) model [15]. This model
is a viscoplastic model with temperature-dependent hardening and recovery. For simplicity,
the form of the model in this study has no rate- or temperature-dependence. In this case,
the effective stress has the form

g=0y,+kK (3.78)

where o, is the initial yield stress, and x is a measure of statistically stored dislocations.
The evolution of « is

H

k(eP) = i [1 — exp(—Ry4e")] (3.79)
d

where H and Ry account for hardening and recovery respectively. The only real difference

between the two models is the recovery term, R, in the BCJ model. The material properties

are in Table 3.4

Table 3.4: Material properties

E =200 GPa | H = 2.28 GPa
v = 0.249 R=11
oy = 193 MPa

3.3.2 Notched Tensile Configuration

Two geometries were studied for the notched tensile configuration: one with a deep notch
and one with a shallow notch. Figure 3.2 shows the notched tensile geometry and defined
the length variables for the model. Geometry 1 was {W, H, h,d,d.} = {6.5,4.0,0.5,1.2,0.0}
mm, and Geometry 2 was {W, H, h,d,d.} = {6.5,4.0,0.5,1.2,0.6} mm. The mesh for these
models were 5-elements thick with around 25,000 elements.

The boundary conditions were prescribed displacement on the top (+y) and bottom (—y)
surfaces. On the top surface the x and z displacements were fixed and a prescribed y-
displacement of 0.2 mm was applied. On the bottom surface the z, y, and z displacements
were all fixed. The analysis was run in 100 equal time steps. Each time step applied an
incremental y displacement of 0.002 mm to the top surface.

37



—————

e ———td

______

Figure 3.2: Notched tensile configuration for the uniform gradient element finite element
analyses.

The maximum equivalent plastic strains, which can be used as an indicator of how much
plastic deformation occurs in each problem, depended on the geometry and the constitu-
tive models. For the shallow notched geometry with the linear hardening plasticity model,
el . = 0.08373, while for the BCJ model &7 = 0.08485. The BCJ model showed slightly
more plastic deformation which is due to the recovery term in the model. For the deep
notched geometry the plastic deformation was greater. For the linear hardening model
el .. = 0.09786, while for the BCJ model &2 = = 0.09935. Once again the BCJ model
showed slightly more plastic deformation than the linear hardening model.

3.3.3 T-Shape Configuration

Two geometries were studied for the T-shape configuration, schematically shown in Fig-
ure 3.3: one with a slightly thicker section on the T-shape configuration and one with a
much thicker configuration on the T-shape specimen. The length variables for the model
defined in Figure 3.3 are as follows: {L, H,t, Ly, Lo, Hy, Ho} is {1,1,0.05,0.3,0.4,0.3,0.2}
mm for Geometry 1 and {1,1,0.05,0.3,0.4,0.6,0.2} mm for Geometry 2.

The boundary conditions apply a y displacement of 0.02 mm on the top surface with the
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Figure 3.3: T-shape configuration with thickness ¢ for the uniform gradient element
finite element analyses.

two side surfaces fixed in the x, y, and z directions. The analysis was run in 100 equal time
steps with each time step applying an incremental y displacement of 0.0002 mm to the top
surface. The mesh had 5 elements through the thickness with around 12,000 elements.

As before, looking at the maximum equivalent plastic strains we see that the results depend
on the geometry and the material model. For the first specimen with linear hardening
el .- = 0.07520 while for the BCJ model €8, = 0.07580. Once again the BCJ model shows
slightly more plastic deformation. For the first specimen with linear hardening ¥ . =
0.04273 while for the BCJ model &8 . = 0.04278. Here the BCJ model shows slightly more
plastic deformation, again, but both models show less plastic deformation than in the first
geometry. This is because there is simply less deformation, specifically bending deformation,

in the thicker specimen.

3.3.4 Q1P0 FEM Models

Given the uncertainties when trying to deal with the hourglass energy in the uniform gradient
finite element analyses, as will be described in section 3.6.1, we decided to concentrate
modeling on our most likely candidate for a geometry - the notched tensile specimen - with
a better element formulation, the Q1P0 element. The generic notched tensile configuration
is shown in Figure 3.4, allowing for offset notches on the left and right of the specimen.
Initially ten geometries, labeled A though I, were examined, where Case A is similar to
the geometry from the uniform gradient analyses in that the notches are symmetric, and
where the other geometries led to asymmetry in the displacement fields. The values for the
geometry variables are given in Table 3.5. Each geometry had W = 66.96 mm, H = 80 mm
, and t = 1.524 mm, which were more realistic lengths for an actual physical experiment as
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compared to the analyses with the uniform gradient. From those ten geometries, we chose
three geometries to concentrate our evaluation of the VFM-identification process, as will be
described in section 3.6.2. All geometries were run for two different mesh densities, denoted
coarse and fine. Both meshes were 1-element thick; the coarse meshes had an aspect ratio
of 1.25 in-plane to 1 out-of-plane, and the fine meshes had an aspect ratio of 0.63 in-plane
to 1 out-of-plane. These mesh sizes led to models with around 1400 elements for the coarse
meshes and 5900 elements for the fine meshes. Figure 3.5 shows the coarse and fine meshes
for Case 1.
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Figure 3.4: Q1P0 notched tensile specimen geometries.

Table 3.5: Geometry Variation for Q1P0 Notched Tension Specimens (All Units in mm)

Case | Hi | Hy | Ry | Ry | dy | da
A |40 |40 |16 |16 | 0 | O
B 50 130 |16 |16 | O | O
C 40 |40 |16 | 8 | 0 | O
D [ 40 |40 |16 |16 | 4 | 0
E |40 |40 |16 |16 | 8 | O
F 50 130 |16 | 8 | O[O
G |50 (30|16 |16 4|0
H [50([30]|16]|16 | 8 |0
I 50 | 30 | 16 410
J 50 | 30 | 16 810

The BCJ model using nominal 304L stainless steel properties in Table 3.4 were used for all
analyses with the Q1P0 elements. Each model was loaded in tension in the y direction with

40



(a) Coarse (b) Fine

Figure 3.5: Meshes for Q1P0 notched tensile geometry Case I.

a prescribed displacement of 20 mm, while on the bottom surface the y displacement was
fixed. This gives a“nominal engineering strain” of 0.223 for the entire specimen. The x and
z directions on the boundaries were free to contract.

The three geometries that were chosen were based partly on the maximum equivalent plastic
strain seen in the analyses since this is a measure of how much plastic deformation can be
expected in each test. The maximum equivalent plastic strains for each integration point
can be seen in Table 3.6. Figure 3.6 shows the equivalent plastic strain maps at the end
of the simulation for Cases A and F. Case A has heterogeneous deformation with quarter
symmetry, while Case F lacks symmetry in its heterogeneous deformation, though the largest
deformation is still concentrated in the center of the model. It should be noted that the
equivalent plastic strain, a constitutive model state variable, exists for each integration point
in the Q1P0 element, including the center of the element. This results in nine equivalent
plastic strains per element. Integration point 0 in Table 3.6 is the integration point in the
center of the element, the other 8 integration points are the Gauss quadrature points.

In general, €8  for each integration point does not always occur in the same element. In
fact, only for case I in Table 3.6 is it the case that the maximum equivalent plastic strain for
each integration point occurs in the same element. This fact, however, does not eliminate
this state variable as a measure for plastic deformation in a model. It is also worth noting
that the equivalent plastic strains were significantly higher in the notched specimens than

the“nominal” applied strain of 0.223.
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Table 3.6: Maximum equivalent plastic strains in the notched specimen runs with the
Q1PO0 element for each integration point.

integration point A F I

0 0.5918 | 0.6209 | 0.6259
0.6034 | 0.6517 | 0.6569
0.6030 | 0.6502 | 0.6553
0.6043 | 0.6073 | 0.5961
0.6050 | 0.5967 | 0.6017
0.6034 | 0.6517 | 0.6569
0.6030 | 0.6502 | 0.6553
0.6043 | 0.6073 | 0.5961
0.6050 | 0.5967 | 0.6017
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Figure 3.6: Equivalent plastic strain field at the end of the simulation for Cases A and
F for the Q1P0 examples.
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3.4 Simulated Data Without and With Experimentally
Derived Noise

The simulated DIC data used in the VFM identification process is generated through a super-
position of experimentally derived uncertainty of position and displacement measurements
onto a FEM solution. The DIC errors come from stereo-DIC lab setups of a representative
field-of-view (FOV), here approximately 100-mm along one side for a 2448 x 2048 pixel CCD
cameras with 75-mm lenses. The uncertainty of the calibration, position, and displacements
are calculated from a combination of experimental images, Correlated Solutions” VIC3D
software, and Monte Carlo runs of the DIC analysis process as described in [21]. A large
calibration set of images are used to quantify the calibration uncertainties, and the matching
error between the two cameras is the error reported by VIC3D software in the calibration.
The position error are the standard deviation of the X, Y, and Z locations at each subset
of the image. Typically, the positional errors are smaller in the center of the FOV (around
0.0005-mm in X and Y and 0.002-mm in Z) and larger at the edges. The displacement errors
are determined using a Monte Carlo approach of images between two positions of the speckle
pattern, which was translated approximately 0.5-mm in X, Y, and Z. The displacement
errors are the standard deviations of these Monte Carlo runs.

A uniform grid of potential DIC data points are overlaid on a FEM solution at a data density
typical of DIC setups (for example, a step size of 12 pixels for a subset size of 25 pixels.) DIC
points are located at the center of the subsets, and the entirety of acceptable subsets must
lie inside the speckle pattern on the specimen. To simulate this, each potential DIC subset is
tested to determine if it is all on the surface of the FEM mesh, and all unacceptable subsets
are eliminated. Fig. 3.7 shows the front surface of a FEM mesh of an example notched tension
specimen and a closeup of the acceptable DIC data points.The FEM displacement solution
is sampled at the acceptable simulated DIC subset center points using standard linear shape
functions of the FEM elements. Simulated error in u, v, and w at each DIC data point is
taken as a random sample from a Gaussian distribution with standard deviation equal to the
experimentally measured uncertainties o, 0,, and o,, at the corresponding pixel location on
the CCD camera. These error values are added to the displacements at each point.

The DIC data points are projected on the VFM mesh nodal locations for the VFM identifi-
cation process. The scattered DIC points around each node inform each nodal displace-
ment [16]. The uniform grid of DIC points, Upsc, are mapped to the nodal locations
of the VFM mesh, uypyr_nodar; using the isoparametric coordinates of the DIC locations
relative to the VFM mesh to get the relevant shape functions, ®, solving the equation
{Upic} = [®{uvEm —nodar} by using a least-squares minimization algorithm, as previously
mentioned in section 3.2.2. The least-squares minimization algorithm to solve this equation
is the built-in MATLAB function mldivide or \, which solves a system of linear equations
of type Ax = B. In this system of equations, only the DIC points that are located in the
elements connected to each node are used to inform the displacements of that node. In order
to determine which DIC points are relevant to a node, first each node is related to a a set
of elements, and then the DIC points related to the elements in that set can be related to
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the node. Another aspect of this algorithm is determining the isoparametric coordinates
of the DIC points relative to a parent element of the VEM mesh to get the relevant shape
functions, ®. The method for determining the isoparametric coordinates of each DIC point
in at least one VFM element is as follows:

1. Determine if each DIC location is located within or on a bounding box of each element,
and note the potential parent elements for each DIC location;

2. Calculate the isoparametric coordinates of a DIC location in each potential parent
element; and

3. Associate a DIC location with a parent element only if all of the isoparametric coordi-
nates are between —1 and 1.

This process of DIC-to-VFM mesh data projection requires that every element in the VFM
mesh have at least one DIC point. This implies that the VFM cannot be too fine relative
to the experimentally-achievable DIC data density since the DIC data cannot be collected
near edges of bodies. This balance of VFM mesh and DIC data density must be consid-
ered when designing the experiment for the VFM identification, as will be described in
section 3.6.2.

This process for simulating the use of DIC data, including data density and experimentally
derived error values, allows for detailed characterization of how using DIC data affects the
identification process with the VFM. Additionally, this process allows the user to simulate
the experimental parameters such as DIC data density and specimen geometry prior to
performing the actual experiments, so the user can optimize these parameters for optimal
constitutive parameter identification with VFM.
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Figure 3.7: Example of a VFM mesh and overlay of DIC data locations.
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3.5 Evaluation of VFM Objective Function

The VFM identification process for finite deformations requires a nonlinear optimization
algorithm to minimize the value of the cost function, Eq. 2.22. The nonlinear optimiza-
tion algorithm used in this implementation of VFM is the MATLAB SQP algorithm in the
fmincon function, requiring the user to define an initial guess and lower and upper bounds
for the parameters, £. The parameters of interest here are the constitutive model parameters
that will minimize the cost function. From experience with this MATLAB algorithm, we
determined that the algorithm performs faster when the parameters were of similar order
of magnitude; thus we scaled all the parameters such that the values of interest would be
0(0.1)-O(1), though we did allow for larger bound than that range.

The SQP algorithm solves a user-defined MATLAB function that returns the value of the
cost function, Eq. 2.22, requiring the following inputs:

e Quantities to calculate the Cauchy stress history with the constitutive model:
— Current scaled &,

— d(tnyq /2): Un-rotated midstep rate of deformation at each integration point for
all the elements for all times, and

— Time steps;

e Quantities to evaluate the internal and external power of the Principal of Virtual Power,
Eq. 2.21, in addition to the Cauchy stress history:

— detF: Determinant of the deformation gradient at each integration point for all
the elements for all times,

— F~T: Inverse transpose of the deformation gradient at each integration point for
all the elements for all times,

— detJ: Determinant of the Jacobian at each integration point for all the elements
for all times,

— R: Rotation matrix at each integration point for all the elements for all times,
— f: Applied external load history for all times, and
— 0v: Virtual velocity fields for all times.

The SQP algorithm iteratively updates the parameters, £, in order to minimize the cost
function, requiring only updating the constitutive model to solve for the Cauchy stress
history; this does not require recalculating the kinematics, which only has to occur once
based on the input displacement data prior to using the SQP algorithm. Therefore the VFM
technique is much faster than FEMU and CEGM techniques that require a full FEM run
with each update of the constitutive model parameters &.
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3.6 Results for Plasticity Examples

The plasticity examples to evaluate the VEM identification process were aimed to gradually
increase the complexity of the simulated data to go from the ideal “perfect” FEM data to
data derived from FEM data in a manner as close to reality as in an experiment using the
DIC to measure surface displacements. Each level of complexity was intended to reveal
different sources of error in the VFM identification process. As will be described, some error
sources were minimized with changes in approach while others were not completely resolved
or even addressed, requiring further investigation. This section will focus on those areas that
could be well characterized and improved upon, with only brief descriptions of those areas
that need further investigation.

The main criteria for whether or not a procedure or aspect of the simulated experiment led
to significant error was the comparison of the VFM-identified constitutive model parameters
and the FEM-input values. The following is a list of levels of complexity that were considered,
some to a greater extent than others:

1. VFM kinematics and constitutive model evaluation code with “perfect” FEM displace-
ment data evaluated on the same original FEM mesh (no mapping of data between
different meshes);

2. Different geometries of specimens with “perfect” FEM displacement data evaluated on
the same original FEM mesh,;

3. Mapping FEM data to a uniform grid similar to that of a DIC measurement and then
mapping the uniform grid data onto the VFM mesh;

4. Different selections of virtual fields;

5. Adding experimentally derived noise to the simulated uniform-grid DIC data, and
propagating that error to the VFM mesh data;

6. Varying the density of the DIC data and the VFM mesh density; and

7. Geometry of the specimen to varying the heterogeneity of the displacement field in
light of the simulated noise, data density, and VFM mesh density.

3.6.1 Uniform Gradient Examples Without Noise

Evaluating the VFM identification capability using the uniform gradient elements involved
testing the VFM algorithm using “perfect” FEM displacement data evaluated on the same
original FEM mesh (no mapping of data between different meshes) for three plasticity models
and different specimen geometries as described in section 3.3.1. The selection of virtual
fields is an open topic of research; thus far there has only been a few early studies on
virtual field optimization, which focused on small-strain theory [7]. There has been no
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published research on selection of virtual fields for optimal VFM identification with nonlinear
optimization algorithms that are required for finite-deformation VFM implementations; thus,
we are left to select virtual fields manually at present. Some rules-of-thumb for virtual
fields are to (1) select spatially slowly varying virtual fields as to reduce effects from noisy
displacement data, particularly in regions of large gradients; (2) ensure that the virtual
fields are kinematically admissible; and, (3) ensure that the boundaries of the virtual fields
allow for simple evaluation of the surface integrals in the Principal of Virtual Work / Power.
These guidelines tend to lead the user towards simple algebraic and periodic functions.
Additionally, the user can select multiple sets of virtual fields in order to increase or decrease
the relative contribution of certain areas of the deformed geometry, providing some tailoring
ability in the VFM-identification process. Here, two sets of virtual fields were selected for
the different geometries. For the notched tensile geometries, the manually selected virtual
fields were

Virtual Field Set 1:

Sv1 =0 (3.80)
xr
vy = ﬁ (3.81)
_ T (T2
vy = = sm< . ) (3.82)
.f ’ % = 2fload (383)
and Virtual Field Set 2:
l’l(ZEg — H)(I’Q + H)
57}1 = WH? (3.84)
l’g([EQ — H)(l’g + H)
Svg = e (3.85)
(L’g(ZEQ - H)2
f-ov=0. (3.87)

For the T-shaped geometries, the manually selected virtual fields were
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(3.92)

(3.93)

Tables 3.7 — 3.10 list the constitutive model parameters used in the FEM models, the initial
guesses for the SQP optimization algorithm, and the upper and lower bounds for the SQP
optimization algorithm. Note that the lower bound of Ry for the T-shape geometries was
higher than the notched specimens, the reason for which will be described later.

Table 3.7: Linear Hardening Parameters and Associated SQP Algorithm Values For All

Geometries

Model Ref. | Initial | Lower | Upper
Parameters Guess | Bound | Bound
E (GPa) 200 10 0.1 500

v 0.249 0.1 0.01 0.499
oy (MPa) 193 100 1 10000
H (GPa) | 2.280 1 0.01 1000
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Table 3.8: MLEP Parameters and Associated SQP Algorithm Values For All Geometries
With A28, = 0.02

Model Ref. | Initial | Lower | Upper
Parameters Guess | Bound | Bound
E (GPa) 200 10 0.1 500

v 0.249 0.1 0.01 0.499
oy (MPa) 193 100 1 10000
Aoy (MPa) | 45.6 100 1 10000
Aoy (MPa) | 45.6 100 1 10000
Acs (MPa) | 45.6 100 1 10000
Aoy (MPa) | 45.6 100 1 10000

Table 3.9: BCJ Parameters and Associated SQP Algorithm Values For the Notched
Tensile Geometry

Model Ref. | Initial | Lower | Upper
Parameters Guess | Bound | Bound
E (GPa) 200 10 0.1 500

v 0.249 0.1 0.01 0.499
o, (MPa) 193 100 1 10000
H (GPa) | 2.280 1 0.01 1000

Ry 1.1 0.1 0.001 10

Table 3.10: BCJ Parameters and Associated SQP Algorithm Values For the T-shaped
Geometry

Model Ref. | Initial | Lower | Upper
Parameters Guess | Bound | Bound
E (GPa) 200 10 0.1 500

v 0.249 0.1 0.01 0.499
oy (MPa) 193 100 1 10000
H (GPa) | 2.280 1 0.01 1000

Ry 1.1 2 1 10
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The VFM identification process using the uniform gradient element gave mixed results and
revealed deficiencies in the element formulation. Tables 3.11 — 3.13 list the VFM-identified
parameters for each model and the percent error of these parameters relative to the FEM
input reference values. Figure 3.8 includes the true o - true € plots for each material model
based on the FEM input constitutive model parameter values and the VFM-identified con-
stitutive model parameter values. All geometries allowed for reasonable VFM identification
of the elastic properties and the initial yield stress for each constitutive model, but VFM
had varied success in identifying the hardening properties for each constitutive model. The
notched geometries performed better than the T-shape geometries for identifying H. Both
geometries allowed for good identification of the first segment of the MLEP model, with
increasingly worse identification for later segments.

For the BCJ model, the notched geometries had very poor identification of the recovery term
Ry, with the value remaining close to the initial guess of 0.1, though very good identification
of the other parameters. When we ran the FEM simulation to five times more y-displacement
on the upper boundary of the notch tensile geometries providing more deformation to help
with determining Ry, the VFM identification was almost identical for Ry and worse for all
the other parameters. When using same the bounds and initial guess for the parameter set
for the T-shape as for the notched tensile, the VFM-identified R; value went to the lower
bound of 0.001, which lead to a poor identification of H by an order of magnitude too small,
even though the elastic parameters were identified well (similar to those found in the linear
hardening case). When the bounds and initial guess were adjusted for the T-shape such
that the Ry value could not be below 1, then the optimization algorithm still pushed the
value to the lower limit; this essentially reduced the BCJ model to a linear hardening model,
which is why the VFM-identified parameters for the T-shape geometry were the same for
the linear hardening model and the BCJ model. These behaviors suggest that the objective
function is not sensitive enough to the R; parameter to allow for reasonable identification.
This, in combination with the poor identification of the later segments of the MLEP model,
suggests that there were not enough regions with large deformation in the geometry to help
the algorithm identity the parameters of the plasticity models associated with the large
deformation.

In comparing VFM identification for the two geometries, we observed that the T-shape
geometry tended to have worse identification values for the plasticity parameters. After
some investigation, we determined that a major error source was due to artificial hourglass
control present in Sierra SM, which manifests itself as a hourglass energy that is not present in
the kinematics and constitutive model evaluations in the VFM code. This leads to incorrect
values of the constitutive parameters in order to best match the displacement fields produced
from an FEM with artificial hourglass energy. The value for the cost function in the VFM
optimization algorithm when using the FEM input values was usually larger than that found
to be a minimum in the optimization algorithm by an order of magnitude, implying that
the Principal of Virtual Power is not balancing when the FEM input values are used due to
the hourglass energy that the VFM code cannot account for. A small error in the energy
calculation, which is the area under the true o - true e curve, would lead to deviation in the
true o - true € curve, and therefore a larger error in the plasticity parameters. Hourglass
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energy is an consequence of the hourglass control of the uniform gradient element that is
a function of the FEM mesh density. Figure 3.9 shows how hourglass energy changes with
mesh density in the T-shape geometry 1, where the coarse mesh has 1496 elements, the
original mesh has 11,836 elements, and the fine mesh has 97,200 elements. This figure
shows how much of the total energy of the simulation is hourglass energy as the a function
of simulation time. The original mesh used in the VF'M identification process has more than
2% hourglass energy by the end of the simulation, which is most likely the largest error
source for this geometry. In the notched tensile case with five times more displacement on
the y boundary, there would have been more hourglass energy accumulated for the larger
displacement FEM analysis than for the shorter one; the fact that the identification overall
became worse indicates that the hourglass energy has a significant effect on the quality of
the VFM identification process with uniform gradient element.s

Given that the VFM code needs to best approximate the energy evolution of a real experi-
ment, then the VFM code should not rely on the kinematics of the uniform gradient element
that requires hourglass control to balance the Principal of Virtual Power. The VFM code
would be better formulated if the kinematics of the element did not require any artificial
energy source, but could balance the Principal of Virtual Power with just the experimental
inputs of displacements and external force. Therefore, we implemented the Q1P0 element,
which does not have hourglass energy issues, in the VFM code.

Table 3.11: VFM-Identified Parameters for the Linear Hardening Model Using Uniform
Gradient Elements

E oy H
Spec. Cost (GPa) v (MPa) | (GPa)
Geom. | Function | Found, | Found, | Found, | Found,
Value FError Error Error Error
Notched 4.29 199.9 0.2493 193.1 2.296

Geom. 1 | x107" | —0.04% | 0.12% | 0.05% | 0.70%
Notched 7.43 200.48 | 0.2484 192.9 2.295
Geom. 2 | x1071 | —0.24% | —0.24% | —0.05% | 0.66%

T-Shape 8.68 199.8 | 0.2481 192.2 2.543
Geom. 1 | x107™* | —0.11% | —0.36% | —0.41% | 11.54%
T-Shape 1.90 200.6 | 0.2452 | 192.9 2.364
Geom. 2 | x1073 0.31% | —1.53% | —0.05% | 3.68%
Reference Values ‘ 200 ‘ 0.249 ‘ 193 ‘ 2.280 ‘
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Table 3.12: VFM-Identified Parameters for the MLEP Model Using Uniform Gradient

Elements

E oy Aoy Aoy Aos Aoy

Spec. Cost (GPa) v (MPa) | (MPa) | (MPa) (MPa) (MPa)
Geom. | Function | Found, | Found, | Found, | Found, | Found, Found, Found,
Value Error Error Error Error Error Error Error

Notched 6.33 200.02 | 0.2492 193.3 45.6 41.5 90.0 100.5
Geom. 1 | x10~1 0.01% 0.08% 0.16% | 0.00% | —8.99% | 97.37% | 120.39%

Notched 6.66 200.33 | 0.2487 192.9 46.5 39.5 73.4 99.8
Geom. 2 | x107M | 0.17% | —0.12% | —0.05% | 1.97% | —13.38% | 60.96% | 118.86%
T-Shape 8.08 199.63 | 0.2483 192.7 47.6 64.8 26.8 51.4
Geom. 1 | x107* | —0.19% | —0.28% | —0.05% | 4.39% | 42.11% | —41.23% | 12.72%

T-Shape 1.80 200.5 0.2455 192.9 47.1 48.6 1 100
Geom. 2 | x1073 0.25% | —1.41% | —0.05% | 3.29% 6.58% —97.81% | 119.3%

Reference Values | 200 | 0249 | 193 | 456 | 456 45.6 45.6

Table 3.13: VFM-Identified Parameters for the BCJ Model Using Uniform Gradient

Elements
FE oy H
Spec. Cost (GPa) v (MPa) | (GPa) Ry
Geom. | Function | Found, | Found, | Found, | Found, Found,
Value Error Error Error Error Error
Notched 1.90 199.5 0.2498 193.5 2.247 0.1005
Geom. 1 | x10710 | —0.24% | 0.32% | 0.26% | —1.45% | —90.86%
Notched 5.96 200.0 0.2490 193.3 2.426 0.1007
Geom. 2 | x1071! 0.00% 0.00% 0.16% | —1.49% | —90.85%
T-Shape 8.76 199.8 0.2481 192.2 2.545 1.000
Geom. 1 x107* | —0.11% | —0.36% | —0.41% | 11.62% | —9.09%
T-Shape 1.90 200.6 0.2452 192.9 2.362 1.000
Geom. 2 x1073 0.30% | —1.53% | —0.05% | 3.60% —9.09%
Reference Values ‘ 200 ‘ 0.249 ‘ 193 ‘ 2.280 ‘ 1.10
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Figure 3.8: True Stress - True Strain plots of each material model and geometry based
on the FEM input values and the VFM-identified parameters (note: these plots do not

capture the effect of v).
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Figure 3.9: Evolution of hourglass energy through the T-shape geometry simulation
depending on FEM mesh density.

3.6.2 Q1P0 Examples Without and With Noise

All prior examples focused on demonstrating how the VFM-identification process would rea-
sonably find constitutive model parameters for simulated data with little consideration of
aspects of real experimental data. Instead of iteratively demonstrating the finite deforma-
tion VFM-identification process with costly and time-consuming DIC experimental data, we
first simulated experimental data for VFM so that we could isolate different factors of the
experiment that would affect the VEM identification. The main factors considered were (1)
transfer of uniform grid DIC displacement data to the VEM mesh; (2) experimental noise in
the position and displacement data from DIC; (3) specimen geometry; and, (4) the interplay
of VFM mesh density and DIC data density. We also briefly investigated the effect of dif-
ferent manually selected virtual velocity fields. The following examples also demonstrated
that the Q1P0 element formulation of VFEM does not suffer from the hourglass energy issues
of the uniform gradient element.

The finite element analyses with the Q1P0 element used the notched tensile geometry, de-
scribed in section 3.3.4, because this would be practically feasible in an experiment on 304L
stainless steel thin sheets; the T-shape geometry may have a tendency to buckle for large
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deformations. The global geometry of the notched tensile specimens would be a reasonable
size such that the region of interest would fit in a typical DIC camera setup of approximately
84 x 100 mm FOV for the 2048 x 2448-pixel CCD camera (see section 3.4); in other words,
the region of interest would stay in the DIC field of view for the duration of an experiment.
This size specimen would also be reasonable in terms of maximum load for a 400-kN load
frame to pull.

The DIC setup simulated here has a subset size of 25 pixels with either 7 or 12-pixel step
sizes, meaning the uniform grid of DIC has a physical step size of 0.286 or 0.490 mm. In this
VFEM-identification process, the FEM mesh and the VFM mesh are the same. The 7-pixel
step size was used for the fine VFM mesh, and the 12-pixel step size was used for the coarse
mesh. In these examples, there were two DIC setups to cover the front and back surfaces of
the thin-sheet specimen. Even though the algorithm from DIC-to-VFM mesh project could
have used the DIC data from both surfaces to enrich nodes on both surfaces of the VFM
mesh given that these examples were 1-element thick, the DIC data from the front surface
(+2) was projected only on the front surface nodes, and the DIC data from the back surface
(—z) was projected only on the back surface nodes. With the DIC data density described
above, each DIC setup contributed 1-9 DIC points per element , leading to 6-101 DIC points
per node for the DIC-to-VFM mesh data projection. Figure 3.10 shows the coarse FEM /
VEM mesh relative to the DIC data for Case A, where there are 18368 DIC data points per
surface relative to the 1449 nodes per surface. The simulated DIC data had noise added to
the z-position and u-, v-, and w- displacements, with average values of 0.0005 mm, 0.0001
mm, 0.0001 mm, and 0.0005 mm, respectively. This led to small errors in the VFM-mesh
displacement fields relative to the original FEM displacement data, but these VFM-mesh
displacement errors were larger where there were fewer DIC points at the edges of specimens,
particularly around the notches, which happens to coincide with the largest displacements;
thus the small DIC noise did have significant effect on the identification, as will be discussed
below. Figure 3.11 shows an overlay of the end-of-simulation FEM and VFM-mesh deformed
shapes for Case A; the error is indistinguishable on a global level.
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Figure 3.10: Example of a FEM / VFEM mesh for Case A and overlay of DIC data
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Figure 3.11: Original FEM deformed model with and overlay of the VEM-mesh deformed

shaped at the end of the simulation for Case A.
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For these VFM-identification runs, several different virtual velocity field sets were considered
for Case A. We looked at the error in the cost function when we varied each of the five
constitutive model parameters to see how sensitive the combination of the cost function and
each virtual velocity set was to error in the parameters. From this, we selected two sets
of virtual fields that were the most sensitive to error in the parameters. Figure 3.12 shows
the change in in the cost function value with percent error of each of the constitutive model
parameters for Case A geometry. The cost function and these virtual fields lack sensitivity to
error in R, as compared to their sensitivity to the other constitutive parameters, but these
virtual fields were more sensitive to Ry than other virtual fields considered such as those
used in Section 3.6.1. Based on these high-level considerations, we selected the following
virtual fields for all of Cases A-I:

Virtual Field Set 1:

_ (2my— H\ (2729 + H ]
dvy = < i )( i )COS[W] (3.100)
. 21’2 + H
Sy = <T> (3.101)
Svy =0 (3.102)
f ’ % = 2fload (3103)
and Virtual Field Set 2:
vy =0 (3.104)
Svy = 1+ sin [%’"2} (3.105)
Svy =0 (3.106)
f 60 =2 fioa- (3.107)
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Figure 3.12: Sensitivity of the cost function to error in constitutive parameter value
with the chosen virtual fields in Q1P0 geometry case A.

Though we performed the VFM identification for all cases, we will focus the discussion of the
results on Cases A, F, and I, which represent the general trends in the results. Table 3.14 and
Figure 3.13 summarize the VFM identification results for Cases A, F, and I for the coarse
mesh without and with DIC noise, where the average absolute percent error is an average
of the absolute values of error for each parameter. The cases without noise underwent the
same transfer of data from the FEM data to the DIC uniform grid and then to the VFM
mesh as with the case with noise added, so that the results capture error from the numerical
method of the transfer of data from the DIC uniform grid to the VFM mesh.

Here, the DIC noise does not necessarily lead to poor identification when compared to the
case without noise: the overall error is about the same for each geometry case, and for Cases
F and I, the overall error is lower. The identifications for Case A for each parameter are quite
different for the noise vs. no-noise cases, though the overall error is about the same. Cases
F and I, whether with noise or not, all had better identification than Case A; this implies
that the asymmetry in the geometry (for virtual fields that are relatively symmetric over the
body) appears to improve the identification. In fact, Case I with the most asymmetry of the
three geometries had the best identification of parameters.

The hardest parameters to identify appear to be v and Ry. The difficulty with identifying
Ry is likely due to the cost function not being sensitive to error inRy for the amount of
deformation in these finite element analyses (recall Figure 3.12). We are not certain why
Poisson’s ratio is difficult to identify given that the cost function is quite sensitive to that
parameter; perhaps the ensemble multi-dimensional cost function surface (not investigated
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here) allows for a larger variation in v when trying to identify all the parameters at once
than when only varying a single parameter.

The presence of DIC noise increases the minimum cost function value in each geometry by
two orders of magnitude but without marked difference in the quality of the identification,
suggesting that the cost function surface increases in value without drastically changing its
overall shape due to the DIC noise. This also implies that the identification is not very
sensitive to DIC noise for these geometries with this coarse mesh and DIC data density. Sur-
prisingly, the lower minimum cost function values do not necessarily correspond to better
parameter identification. We had originally hypothesized that geometries with lower mini-
mum cost function values would have better parameter identification; we were going to use
the absolute cost function value as a criterion for specimen geometry down-selection, but
these results tell us that that notion is not a viable criterion.

Figure 3.14 shows the true o - true € plots based on the FEM input constitutive model
parameter values and the VFM-identified constitutive model parameter values for the coarse
meshes of Cases A, F, and I with added DIC noise. The small variations in the BCJ
model parameters found in these cases lead to similar true o - true € plots that are nearly
indistinguishable from the original input to the FEM analyses, even in the presence of the
DIC noise. Thus, the variation in parameters between cases appear to balance out to achieve
good agreement with the model used in the FEM analyses.
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Table 3.14: VFM-Identified BCJ Model Parameters for the Coarse Mesh Q1P0 Geome-
tries With and Without DIC Noise

Case | Added Cost E (GPa) v oy (MPa) | H (MPa) Ry Absolute
DIC | Function | Found, Found, Found, Found, Found, | Average
Noise Value Error Error Error Error Error Error
A No 5.40 196.7 0.260 190.3 2.220 1.033
x1078 | —1.66% | 4.42% —1.4% | —2.64% | —6.08% | 3.24%
A Yes 1.95 204.9 0.240 196.4 2.298 1.002
%1076 2.46% —3.61% 1.74% 0.81% —8.93% 3.51%
F No 3.95 198.7 0.251 193.6 2.265 1.052
x1078 —0.92% 0.97% 0.32% —0.64% | —4.36% 1.44%
F Yes 2.62 198.1 0.253 193.1 2.264 1.068
%1076 —0.96% 1.47% 0.03% —0.69% | —2.90% 1.21%
I No 2.45 198.2 0.251 193.4 2.270 1.069
x1078 —0.88% 0.97% 0.20% —0.43% | —2.85% 1.06%
I Yes 2.68 198.6 0.249 195.0 2.281 1.081
%1076 —0.72% | —0.01% 1.04% —0.04% | —1.711% 0.70%
Reference Values 200 0.249 193 2.28 1.10
Initial SQP Algo. Guess 205 0.25 190 2.0 1.0
Lower SQP Algo. Bound 190 0.24 170 0.10 0.60
Upper SQP Algo. Bound 210 0.26 200 10.00 1.50
Average
Elastic Possion's (Absolute
Modulus Ratio Yield Stress H R Value)
6.00%
3.00%
0.00% ™ i - - [~ -
| [
-3.00% B = e
-6.00%
-9.00% -
EA-No Noise EA-Noise “F-NoNoise “WF-Noise “1-No Noise “1-Noise

Figure 3.13: Percent errors in VFM identification of BCJ model parameters for coarse
meshes with and without added DIC noise.
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BCJ Models from Noisy DIC Data for Coarse Meshes
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Figure 3.14: True stress - true strain plots based on the BCJ model parameters from
the FEM analyses and the VFM identifications for the coarse meshes of Cases A, F and
I with DIC noise.

Table 3.15 and Figure 3.15 summarize the VFM identification results for Cases A, F, and I for
the coarse and fine meshes with DIC noise. The ratio of DIC points to nodes is approximately
12-13 to 1 for the coarse meshes and about 9-10 to 1 for the fine meshes, which are relatively
similar, neutralizing the effect of that ratio when comparing those meshes. It is important
to note that the fine mesh cases without noise tended to have similar identification behavior
as the coarse mesh cases without noise, so the results for the fine mesh without noise cases
are not presented here. The equivalence of the coarse and fine mesh cases without noise
suggests that the numerical methods of transferring data do not lead to significant error,
but rather that experimental noise and other issues regarding data and mesh density have
more effect on error in the identification. We did not consider the less dense DIC data set
for the fine mesh because not all of the nodes had DIC points close to them. We also did
not consider the finer density DIC data set for the coarse mesh in this study, but that would
be an interesting variable to consider more carefully in the future.

The comparison of coarse and fine meshes in the presence of simulated DIC noise shows that
the finer mesh density leads to worse identification of nearly every parameter for all geometry
cases than the coarse mesh density. Identification of parameters F, o, and R, tend to be too
high for the fine mesh cases, and the identification of ¥ and H tend to be too low for the fine
mesh cases. We hypothesize that the coarse meshes filter the DIC noise better than the fine
meshes, leading to better identification. Table 3.16 shows the average and maximum error
(absolute value of the difference) of the position and displacement nodal values, comparing
the VFM mesh noisy data and the original FEM mesh data. The average errors are slightly
higher for the fine meshes, but the maximum displacement errors are much larger for the
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fine meshes. The fine meshes have more DIC error at the edge elements due to slightly fewer
DIC points there.

Again, Case I had the best identification of parameters, for both the fine and coarse meshes
in the presence of DIC noise, likely due to the greater asymmetry of the geometry, as seen
in the comparison of the coarse meshes with and without DIC noise. Figure 3.16 shows
the true o - true € plots based on the FEM input constitutive model parameter values and
the VFM-identified constitutive model parameter values for the coarse and fine meshes of
the best geometry, Case I, with added DIC noise. Here, the coarse mesh data had better
identification, leading to a very slight visible difference in the true o - true € plots, though
the difference is only visible in the large deformation regime.

These issues with the larger effect of noise in the case of the fine meshes on the VFM
identification for these geometries, despite the fine meshes having only slightly fewer DIC
points per node, leads us to believe that there is a delicate balance of VFM mesh size and
DIC data density that must be struck to have optimal identification. Not knowing where
that balance is tells us that these numerical studies are invaluable for not only determining
the optimal geometry, but also in designing the VFM mesh and the DIC experimental
setup.

Overall, the Q1P0-element examples described above demonstrate that the VFM identifica-
tion process implemented in this study can successfully find constitutive model parameters
given global displacement data similar to that generated from full-field DIC experiments.
The simulated experiments allowed us to evaluate the effect on theVFM identification of
transferring uniform grid DIC data to a VFM mesh, of experimental noise, of specimen
geometry, the balance of VFM mesh density and DIC data density, and different virtual
velocity fields. A purely experimental program of testing the VFM identification imple-
mentation would not have allowed to us to decouple any of these factors. There certainly
are many other variables that can be considered to best optimize the VFM identification
process, but we believe these were some of the key variables to demonstrate the viability
of VFM for identifying finite-deformation constitutive model parameters from full-field DIC
displacement data.
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Table 3.15: VFM-Identified BCJ Model Parameters for the Coarse and Fine Meshes
Q1P0 Geometries With DIC Noise

Case | Coarse Cost E (GPa) v oy (MPa) | H (MPa) Ry Absolute
or Fine | Function | Found, Found, Found, Found, Found, Average
Mesh Value Error Error Error Error Error Error
A Coarse 1.95 204.9 0.240 196.4 2.298 1.002
%1076 2.46% | —3.61% | 1.74% 0.81% | —8.93% | 3.51%
A Fine 3.57 202.3 0.247 200.0 2.188 0.878
%1076 L13% | —0.94% | 3.63% —4.03% | —20.21% | 5.99%
F Coarse 2.62 198.1 0.253 193.1 2.264 1.068
x1076 —0.96% 1.47% 0.03% —0.69% —2.90% 1.21%
F Fine 3.33 208.4 0.240 198.1 2.189 0.879
%1076 4.20% -3.61% 2.63% —3.98% | —20.13% 6.91%
I Coarse 2.68 198.6 0.249 195.0 2.281 1.081
x1076 —0.72% | —0.01% 1.04% —0.04% —-1.71% 0.70%
I Fine 5.06 209.3 0.240 196.3 2.211 0.966
x1076 4.67% -3.61% 1.72% —3.04% | —12.14% 5.04%
Reference Values 200 0.249 193 2.28 1.10
Initial SQP Algo. Guess 205 0.25 190 2.0 1.0
Lower SQP Algo. Bound 190 0.24 170 0.10 0.60
Upper SQP Algo. Bound 210 0.26 200 10.00 1.50
Average
Elastic Possion's (Absolute
Modulus Ratio Yield Stress H R Value)
10.00%
5.00%
0.00% @ - -— - =u N
-5.00% i 6 -
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Figure 3.15: Percent errors in VFM identification of BCJ model parameters for coarse
fine meshes meshes with added DIC noise.
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Table 3.16: Error (pm) in Position and Displacement in VEM Mesh as Compared to
the Original FEM Mesh Data Due to DIC Noise

Error Coarse | Fine

(pm) Case I | Case I
z (Ave.) | 0.269 | 0.372
z (max.) | 0.269 | 0.372
u (Ave.) | 0.057 | 0.076
u (max.) | 1.453 | 24.35
v (Ave.) | 0.059 | 0.079
v (max.) | 1.359 | 33.95
w (Ave.) | 0.266 | 0.352
w (max.) | 6.728 | 134.4

BCJ Models from Noisy DIC Data for Both Meshes
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Figure 3.16: True stress - true strain plots based on the BCJ model parameters from
the FEM analyses and the VFM identifications for the coarse and fine meshes of Case
I with DIC noise.
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Chapter 4

Future Work

The main purpose of this study was to implement and evaluate the use of VFM for iden-
tification of constitutive model parameters, which was achieved through simulated data.
We focused the research on the key aspects of implementation and evaluation, but we did
not address in detail several aspects of the simulated experiments, nor did we demonstrate
the technique using actual experimental data. The following describes several unresolved
research topics for VEM that should eventually be addressed before this technique can con-
fidently be adopted as a reliable alternative to the standard methods.

First, the examples for finite deformation described in section 3.6 utilize the same meshes for
the VFM identification as the FEM analyses. Some preliminary work in this area during the
course of this study showed that using different meshes for the VFM mesh, such as perhaps
a coarser VFM mesh than the FEM analysis, led to very poor identification, even with the
Q1P0 elements. One might think that a very fine mesh FEM analysis would best simulate a
real material, so then a slightly coarser VEM mesh that could reasonably be populated with
DIC data would presumably show similar results as described in section 3.6.2. Unfortunately,
that was not the case in the few examples that we tried. We do not have any explanation
for this issue. Fortunately, this issue does not automatically disqualify the use of VFM in
conjunction with real experimental data since we have seen in the literature many examples
of VFM working well with experimental data, including plasticity models [13, 16]. Further
research is required to fully understand the FEM-VFM mesh relationship for simulated
data.

Second, there is no research in the published literature that address optimal selection of
virtual fields for VFM when the identification requires nonlinear optimization algorithms.
This is a particularly difficult topic of research since it may depend on the chosen nonlinear
optimization algorithm. The choice of virtual field should technically only depend on it being
kinematically admissible, but advantageous selection may help with experimental noise and
with emphasizing the identification of parts of the constitutive model that are more important
or particularly difficult to determine. For example, in the BCJ model used frequently in
this study, the R4 parameter was particularly difficult to identify and the cost function we
designed was not very sensitive to error in that identified parameter; if more optimal virtual
fields were selected, perhaps this parameter would be easier to identify.

Third, the finite-deformation implementation in this study used only one cost function and
only one type of nonlinear optimization algorithm. Other cost functions that satisfy the
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Principle of Virtual Work / Power may have improved the identification. Other nonlinear
optimization algorithms may have been faster computationally and performed better in the
presence of DIC noise. These topics are certainly open research topics.

Fourth, the finite-deformation Q1P0 examples of the offset notched tensile geometry in
section 3.6 could be tested experimentally and compared to standard inverse methods. In
fact, specimens very similar to geometry Cases A, F, and I were fabricated and are ready
for testing as of the date of this report, and the standard uniaxial tensile tests for the same
lot of 304L stainless steel have previously been completed. The geometry Cases A, F, and
I had to be slightly modified for practical experimental reasons; these geometries have been
modeled with FEM analyses using the same nominal 304L stainless steel properties used
in this report, awaiting VFM identification testing of the simulated data. Figure 4.1 is a
schematic of the ungripped region of the offset notched tensile specimen, where the blue
region is the region of interest of the DIC setup that can be tracked by the DIC setup for
the course of the experiment, and where the red-brown portions (the 12.7-mm lengths above
and below the blue region) are outside the region of interest of the DIC setup. Table 4.1
gives the notch geometries for the experimental specimens, where W = H = 76.2 mm and
thickness t = 1.5875 mm. The actual specimens have additional 69.85-mm lengths above
and below the ungripped region shown in Figure 4.1 so that the specimen could be gripped
in a 400-kN uniaxial load frame in the Sandia Structural Mechanics Laboratory. From the
investigation in section 3.6, we expect that Case I will provide the best identification, but
those experiments must be completed before any conclusions can be made.

Table 4.1: Geometry for Experimental Specimens of 304L Stainless Steel Sheet.

Case | Hy (mm) | Hy (mm) | Ry (mm) | Re (mm) | d; (mm) | do (mm)
A 38.1 38.1 15.875 15.875 0 0
F | 48.41875 | 27.78125 | 15.875 7.9375 0 0
I 48.41875 | 27.78125 15.875 7.9375 3.96875 0

Fifth, future research on the development of a new hybrid constitutive model parameter
identification inverse method is planned for FY15-FY17; this new method will employ both
VFM and FEMU techniques. The purpose of the hybrid method is to overcome the main
limitation of VFM, which is the requirement of full-field displacement / strain data over the
entire volume of the deforming body. This method would allow users to perform identification
of parameters for a geometry where in the internal displacements / strains are unknown and
would be estimated by an FEM analysis iteration. Also, this hybrid technique provides
a better objective function, in the form of the Principal of Virtual Work / Power, than
normally used in FEMU techniques that usually just consider misfit of the displacement field
or force measurement between the current iteration of the FEM analysis and the experiment.
The VFM objective function allows for more tailor-ability of the identification process: for
example, the user could select virtual fields that more heavily weight the experimental data
on the surface than the FEM-derived displacements / strains in the middle of the specimen.
Two drawbacks to this technique are that it is computationally expensive to have iterative
FEM analyses and that the user must select a single constitutive model for the identification
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Figure 4.1: Schematic of the ungripped region of the notched tensile experimental 304L
stainless steel specimens that await testing.

at the start of the process. These drawbacks reduce the advantage of VEM having relatively
small computational effort that allows for investigation of many different constitutive models
for the same experimental data set in a short period of time. We anticipate that the improved
VFM objective function embedded in the FEMU technique will improve the convergence of
the nonlinear optimization of the parameter identification, reducing the number of required
FEM iterations.
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Chapter 5

Conclusions

VFM is a promising inverse method for constitutive model parameter identification. In
this study, we implemented VFM for small-strain linear elasticity and finite deformation
plasticity in MATLAB and evaluated the quality of the VFM-identification process using
simulated full-field deformation data. The VFM code utilizes the Principle of Virtual Work,
full-field strain, and resultant external load for the case of small-strain linear elasticity, but
uses the Principle of Virtual Power (integration over time of the Principle of Virtual Work),
full-field displacements, and resultant external load for finite deformation plasticity. VFM
allows the user to quickly identify constitutive model parameters without requiring iterative
FEM analyses, which in turn allows the user to explore several constitutive models for the
same set of experimental data in a short period of time. The main drawback of VFM is that
the technique requires full-field measurements over the entire volume, which is only possible
for thin-sheet applications or when 3-D measurement techniques such as Digital Volume
Correlation (DVC) performed using a computed tomography (CT) or MRI are applicable
for in situ testing. Nevertheless, this technique is very powerful for the regimes in which it
is applicable, and can fundamentally change how we calibrate constitutive models.

In this study, we demonstrated that VEM performs very well in small-strain theory and
can very simply be used with even a single load step of a specimen. The error sources for
this regime are (1) summation approximation of the integrals in the Principle of Virtual
Work given discrete strain data, (2) the technique for discretizing a non-rectangular volume
with a uniform grid of data, (3) measurement noise from the experimental technique which
may be relatively large compared to the absolute measurement for small strains, and, (4)
the selection of virtual fields in the presence of measurement noise and discrete data. Even
though these issues have been investigated in the literature for elasticity [2], we performed a
short demonstration of the method for small-strain theory to show the simplest case of the
technique, highlighting the ease of use of VFM.

We also implemented VFM in MATLAB using the Principle of Virtual Power, exploiting
FEM kinematics and meshing methods, in conjunction with nonlinear optimization methods
to perform the identification of finite-deformation plasticity constitutive models that have a
nonlinear behavior over time. We used both uniform gradient elements and Q1P0 elements
for the integration techniques. The first evaluation of these two element formulations was a
direct use of the FEM-simulated data without any simulation of the experimental technique,
DIC, in the data; this approach allowed us to see the best-case scenario where VFM-identified
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constitutive model parameters should match the input values to the original FEM analyses.
We determined that the uniform gradient element formulation of VFM did not capture
artificial hourglass energy that is accounted for in the FEM simulation, leading to significant
errors in the identification of plasticity model parameters. On the other hand, the Q1P0
formulation, which does not suffer from the hourglass control issue, was able to return the
FEM-analyses input values with little error.

To evaluate VFM identification of plasticity constitutive models in light of experimental data
considerations, we simulated DIC experimental data, with experimentally derived noise, and
implemented all the code necessary to utilize experimental data in our VFM MATLAB code;
we then ran the VFM identification for various specimen geometries for a notched tensile
specimen with nominal 304L stainless steel properties for the BCJ constitutive model, VFM
mesh densities, and DIC data densities. We determined that the Q1P0 VFM implementation
did return reasonable identification of the FEM-analyses input values, even in the presence
of simulated DIC noise. This evaluation showed that

e Asymmetry in the geometry tends to improve the identification of parameters;

e DIC noise does not necessarily decrease the quality of the VFM identification, though
it does increase the minimum value found for the cost function of the nonlinear opti-
mization algorithm;

e Not all parameters are identified as well when all parameters are determined as an
ensemble, though comparison of true o - true € plots based on the FEM-input values
and; the VFM-identified values are qualitatively indistinguishable;

e A lower cost function value does not necessarily correspond to better identification of
the parameters;

e The numerical method of transferring uniform grid data without noise to the VFM
mesh for identification does appear to greatly affect the end result, where good results
require sufficient data points around each node of the VFM mesh; and

e There is a delicate balance between VFM mesh density and DIC data density, partic-
ularly near the specimen edges where DIC noise tends to get amplified when there are
few DIC data points, in order to get good identification.

A numerical study of the effect of DIC noise allowed us to isolate the different factors arising
from using experimental data with VFM. An equivalent experimental program would not
have allowed that isolation and would have been relatively cost-prohibitive. The numerical
study also allowed us to select the best candidate specimen geometries to try experimentally.
We identified several areas for future work including mesh sensitivity between the FEM and
VFM mesh; optimal selection of virtual fields for plasticity model applications; improvements
in the nonlinear optimization algorithm and associated cost function; experimental testing
of the notched tensile specimens studied here for Q1P0 elements; and new hybrid inverse
methods that extend VFM to geometries where the displacements cannot be measured over
the entire volume. Overall, this study demonstrated that VFM is a viable technique for
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constitutive model parameter identification when using full-field DIC data.
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Appendix A

Linear Elasticity Example
Programs

Below is the MATLAB script, LinEDiskV02.m, for the linear elasticity example of the dia-
metrically compressed disk without simulated noise in section 3.1.

Yoo 1o oo o ToTo o 1o o ToTo o o o ToToTo o o To o o o JoTo o o o ToToTo o o To T o o o To T o o ToTo o o o To T o o o To o o o o Ta o o o To T o o o To T o o o o
b

yA VFM for Linear Elastic Isotropic Plane Stress
pA Diametrically Compressed Disk

yA Using Manually Chosen Virtual Fields

A Written by Sharlotte Kramer, 13 March 2013

b
Tolo o oo oo o oo o oo ToTo o To oo o o o o o 1o o o o o o o o oo o To o ToToToTo oo oo oo o o o o o o o o o o T o To T To T To T oo oo oo oo o

% Nominal Elastic Parameters for 304L SS
% Elastic Modulus

E = 200000; % MPa=N/mm"2

nu = 0.29;

% Consitutive Parameter Input Variable to be found, Q11 & Q12
InputQ11l = E/(1-(au"2));
InputQ12 = nuxE/(1-(nu"2));

% Dimensions of Disk
% Radius

Rad = 50; % in mm

t =2; % in mm

% CCD and 2D-DIC parameters

Step = 10; % in pixels

mmPerPix = 2%Rad/2000; % mm / pixel ratio
SmallArea = (Step*mmPerPix)~2; % in mm~2

1)



% x and y coordinates in mm
x = (-Rad-(Step*mmPerPix/2): (Step*mmPerPix) :Rad+(Step*mmPerPix/2));
y = (Rad+(Step*mmPerPix/2) : (-Step*mmPerPix) : -Rad- (Step*mmPerPix/2)) ;
xMat = zeros(length(y),length(x)); ’% matrix of x coordinates
yMat = zeros(length(y),length(x)); % matrix of y coordinates
for i=1:length(y)
xMat(i,:) = x;
end
for i=1:length(x)
yMat(:,1) = y’;
end

/» Determining the polar coordinates from the Cartesian
theta = zeros(length(y),length(x));
r = zeros(length(y),length(x));
% using a for loop to calculate a column of n values for each y at every x
for i = 1:length(y)
% Loop once for each y, for all x calculating one column of the n matrix
% calculate r and theta for y(i) and all x in this loop
[th, radius] = cart2pol(x,y(i));
theta(i,:) = th;
r(i,:) = radius;
end

figure;
imagesc(x,y,theta)
axis image

axis xy

colorbar

figure;
imagesc(x,y,r)
axis image
axis xy
colorbar

% Digital mask to outline the disk in the matrix
Mask = r<Rad; % in mm
NumDataPoints = sum(sum(Mask)); % number of data points

figure;
imagesc(x,y,r.*Mask)
axis image

axis xy

colorbar

76



% Applied Load
P = 7000; % in N

% Stresses in MPa
sigmal = (-2#P/(pi*t)) * ((((Rad-yMat).*(xMat."2))...
./ (((zxMat."2)+((Rad-yMat)."2)).72)) ...
+ (((Rad+yMat) .*(xMat."2))./(((xMat."2)+((Rad+yMat)."2))."2)). ..
- (1/(2*Rad)));
sigma2 = (-2+P/(pixt)) * ((((Rad-yMat)."3)...
./ (((zxMat."2)+((Rad-yMat)."2)).72)) ...
+ (((Rad+yMat)."3)./(((xMat."2)+((Rad+yMat)."2))."2))...
- (1/(2*Rad)));
sigma6 = (2*%P/(pixt)) * (((((Rad-yMat)."2).*xMat)...
./ (((xMat. 2)+((Rad-yMat)."2))."2))...
- ((((Rad+yMat)."2) .*xMat) ./ (((xMat."2)+((Rad+yMat)."2)).72)));

% Strains

epsilonl = ((InputQ11/((InputQ11°2)-(InputQ12°2)))*sigmal)...
- ((InputQ12/((InputQ1172)-(InputQ1272)))*sigma?2);

epsilon2 = -((InputQ12/((InputQ11~2)-(InputQ12°2)))*sigmal)...
+ ((InputQ11/((InputQ11°2)-(InputQ12°2)))*sigma?2);

epsilon6 = (2/((InputQ11)-(InputQl2)))*sigmab;

%l VEM

% For Virtual Field #1
% Ul=k2x*x

% U2=k2*(-R-y)

% For Virtual Field #2
% Ul=k2*x

% U2=0

% "A" matrix

A = zeros(2,2);

A(1,1) sum(sum(epsilon2.*Mask)) ;
A(2,2) = sum(sum(epsilon2.*Mask));
A(1,2) sum(sum(epsilonl.*Mask));
A(C2,1) sum(sum(epsilonl.*Mask));

% "B" matrix
B = [(-2xP*Rad)/(t*SmallArea);0];

% Solving for the Q matrix
Q = A\B;
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% Q = 1.0e+05 * [2.1900;0.6319]

% [InputQil;InputQ12] = 1.0e+05 * [2.1836; 0.6333]
% Error for Q11 and Q12: 0.29% and -0.21Y%

QError = Q./[InputQ11;InputQi2];

EVFM = Q(1)*(1-((Q(2)/Q(1))~2));
% E from VFM: 2.0076e+05 (0.38% error)
Eerror = (EVFM-E)/E;

nuVFM = Q(2)/Q(1);
% nu from VFM: 0.2886 (-0.5% error)
nuError = (nuVFM-nu)/nu;

% Total area used / Actual disk area = 1.0004
AreaError = (sum(sum(Mask)))*((Step*mmPerPix)~2)/(pi*(Rad~2));

Below is the MATLAB script, LinEDiskNoiseV02.m, for the linear elasticity example of the
diametrically compressed disk with simulated noise in section 3.1.

Voo o o oo oo oo ToTo o ToToToTo oo oo oo 1o o o o o o o o o o o T Jo T T ToTo T oo oo oo o oo o o o o o o o o To T T T T T oo oo oo
o

yA VFM for Linear Elastic Isotropic Plane Stress
yA Diametrically Compressed Disk

pA Using Manually Chosen Virtual Fields

yA And Simulated Noise

A Written by Sharlotte Kramer, 15 March 2013

h
Tolo oo oo oo o oo oo ToTo o To oo o o o o o o o o o o o o o oo oo ToToToToTo oo oo o o o o o o o o o o o o To o ToToTo oo oo oo oo o o

Tolo oo oo oo ToToToToToToTo oo

% Noisy Strains %

Yoo To o To oo o o o ToToTo oo o

% amplitude to Gaussian noise, corresponding to standard deviation
NoiseAmp = 0.000001;

[NNX,NNY] = size(epsilonl);

epsilonln = epsilonl + (randn(NNX,NNY)*NoiseAmp);
epsilon2n = epsilon2 + (randn(NNX,NNY)*NoiseAmp);
epsilonén = epsilon6 + (randn(NNX,NNY)*NoiseAmp);

JPercentage of noise as compared to average strain

NoiseRatiol = NoiseAmp/(sum(sum(Mask.*abs(epsilonl)))/sum(sum(Mask)))
NoiseRatio2 = NoiseAmp/ (sum(sum(Mask.*abs(epsilon2)))/sum(sum(Mask)))
NoiseRatio6 = NoiseAmp/(sum(sum(Mask.*abs(epsilon6)))/sum(sum(Mask)))
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%)% VEM

% For Virtual Field #1
% Ul=k2x*x

% U2=k2*(-R-y)

% For Virtual Field #2
% Ul=k2*x

% U2=0

% "A" matrix

An = zeros(2,2);

An(1,1) = sum(sum(epsilon2n.*Mask));
An(2,2) = sum(sum(epsilon2n.*Mask));
An(1,2) = sum(sum(epsilonin.*Mask));
An(2,1) sum(sum(epsilonin.*Mask)) ;

% "B" matrix
Bn = [(-2*P*Rad)/(t*SmallArea);0];

% Solving for the Q matrix
Qn = An\Bn;
QnError = Qn./[InputQ11;InputQ12];

% Identified Parameters and associated errors
EnVFM = Qn(1)*(1-((Qn(2)/Qn(1))"2))

Enerror = (EnVFM-E)/E

nunVFM = Qn(2)/Qn(1)

nuError = (nunVFM-nu)/nu
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