

~~SECRET~~

UNCLASSIFIED

THIS DOCUMENT CONSISTS OF 15 PAGES  
THIS IS COPY 10 OF 12A

MIL-75

MIL-M-MK-48-63-0017

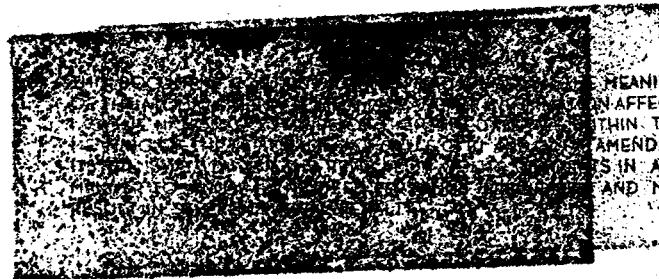
Contract Number AT-33-1-GEN-53

MONSANTO CHEMICAL COMPANY - UNIT III  
DAYTON, OHIO

RECEIVED

OCT 11 1995

OSTI


SPECIAL REREVIEW  
FINAL DETERMINATION

Classification: Unclassified  
Category:  
Signature: P.B. Dowd  
Date: 2/13/80

M. M. Haring  
Laboratory Director

Classification changed to UNCLASSIFIED  
authority of LASL Review 10/25/93  
by Carroll L. Lewis 10/23/93  
Reviewed by C.W. Huntington 8/21/99

ELECTRODEPOSITION RESEARCH PROGRESS REPORT



Note: Effective March 1, 1948 this report will be issued the first  
of every month instead of bi-monthly.

Date: March 1-31, 1948

Distributed:

Prepared by: Edward Orban

GROUP  
Excluded from automatic  
downgrading and  
declassification

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

UNCLASSIFIED

~~MASTER~~

~~SECRET~~

Electrodeposition Progress Report

~~UNCLASSIFIED~~

DISTRIBUTION

1. - Unit III

2. - Unit IV

3. - Site Y

4. - Site Y

5. - Area Manager

6. - Area Manager

7. - Area Manager

8. - Author

9. - Central Files

10. - Central Files

11. - Central Files

12. - Central Files

**DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

~~UNCLASSIFIED~~

~~SECRET~~

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

~~SECRET~~

# UNCLASSIFIED

## ELECTRODEPOSITION RESEARCH GROUP

W. Abel, R. Bell, E. Orban, and W. Raiff

### ABSTRACT

#### Plating of Postum out of Nitric Acid and Hydrofluoric Acid Solutions - W. Abel and W. Raiff

Postum was plated out of 1.5 normal nitric acid and 1.0 normal hydrofluoric acid under similar conditions. The hydrofluoric acid plate was better appearing, and had a much higher curie density. However, neutron counts in these runs were quite similar.

#### Neutron Counts - W. Abel and W. Raiff

A study of the change of neutron counts over a period of time was started.

#### Conversion of Active Hydrofluoric Acid Solutions to Hydrochloric Acid Solutions - W. Raiff

A 99.99<sup>+</sup> per cent conversion was effected.

#### Conversion of Production Solutions to 1.0 Normal Hydrofluoric Acid Solutions - R. Bell

Good conversion has been achieved; however, further work needs to be done on complete change of postum from the production solution to 1.0 normal hydrofluoric acid solutions.

### DETAILED REPORT

#### Plating of Postum out of Nitric Acid and Hydrofluoric Acid Solutions - W. Abel and W. Raiff

In order to make a comparison, two plating runs of postum on platinum were made; one out of hydrofluoric acid, and one out of nitric acid. A tabular compilation of the results is shown in Tables I and II.

The foils plated from nitric and hydrofluoric acids were rinsed for three minutes in 1.5 normal nitric acid with 50 ma. current flowing between cathode and anode. The voltage was maintained at 3<sup>+</sup> volts. The water rinse was carried out for two minutes with 3 volts between the electrodes. The current ranged from 0.3 to 0.7 ma. The final rinse in alcohol lasted two minutes.

The following points of comparison may be made:

~~SECRET~~  

# UNCLASSIFIED

UNCLASSIFIED

1. Per cent plated out of nitric acid compared favorably with the per cent plated out of hydrofluoric acid under the same conditions.

2. A higher line voltage is required and a higher amperage is observed in plating nitric acid solutions.

Table I

POSTUM PLATED ON PLATINUM FROM 1.5 NORMAL NITRIC ACID

| Foil No.                                     | 533   | 534   | 535   | 536   | 537   | 538   |
|----------------------------------------------|-------|-------|-------|-------|-------|-------|
| Cathode Potential vs. N.C.E. (v.)            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Ave. Current Density (ma./cm. <sup>2</sup> ) | 2.0   | 2.0   | 2.0   | 2.4   | 2.4   | 2.4   |
| Applied voltage Ave. (v.)                    | 1.4   | 1.3   | 1.3   | 1.5   | 1.3   | 1.3   |
| Plating Time (min.)                          | 316   | 323   | 323   | 332   | 338   | 345   |
| Calorimetric Assay (c.)                      | 0.552 | 0.535 | 0.535 | 0.698 | 0.681 | 0.572 |
| Case density (c./cm. <sup>2</sup> )          | 2.216 | 2.152 | 2.152 | 2.808 | 2.744 | 2.296 |
| Neutrons/sec./c.                             | 112   | 61    | 61    | 63    | 55    | 0     |

Table II

POSTUM PLATED ON PLATINUM FROM 1 NORMAL HYDROFLUORIC ACID

| Foil No.                                     | 539   | 540   | 541   | 542   | 543    | 544    |
|----------------------------------------------|-------|-------|-------|-------|--------|--------|
| Cathode Potential vs. N.C.E. (v.)            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    |
| Ave. Current Density (ma./cm. <sup>2</sup> ) | 0.4   | 0.8   | 0.75  | 0.24  | 1.2    | 2.0    |
| Ave. Applied Voltage (v.)                    | 0.68  | 0.62  | 0.43  | 0.56  | 0.66   | 0.57   |
| Plating Time (min.)                          | 348   | 352   | 359   | 365   | 371    | 378    |
| Calorimetric Assay (c.)                      | 0.511 | 0.502 | 2.064 | 0.663 | 3.896  | 4.415  |
| Case Density (c./cm. <sup>2</sup> )          | 2.044 | 2.008 | 8.204 | 2.520 | 15.520 | 17.560 |
| Neutrons/sec./c.                             | 96    | 96    | 23    | 43    | 27     | 26     |

UNCLASSIFIED

SECRET

~~SECRET~~

UNCLASSIFIED

## Electrodeposition Research Progress Report

3. The appearance of the postum plated from nitric acid was dark gray to black; whereas, that plated from hydrofluoric acid was light gray with a sheen on the surface.

4. It was expected that the nitric acid plated material would have a higher neutron count; however, since the counts from the two solutions is essentially the same it may be that the neutron count is a function of the manner in which the material is handled.

5. Foil No. 544 is of particular interest because of its high curie density. On the basis of 4.405 sq. cm. per production gauze, it would be possible to plate about 77 curies on the standard production gauze.

6. As large amounts of polonium were plated out the neutron count falls off. This, and the fact that admission of oxygen to the container increases the neutron count, indicates that the phenomenon may be a surface one.

Neutron Counts - W. Abel and W. Baiff

It has been of interest to follow the neutron counts of the foils over a period of time. Checks have been made on the foils shown in Tables III and IV.

Table IIICHANGE OF NEUTRON COUNTS WITH TIME

| <u>Foil No.</u> | <u>n./sec./c.</u> |                 |
|-----------------|-------------------|-----------------|
|                 | <u>March 10</u>   | <u>March 12</u> |
| 539             | 96                | 70              |
| 540             | 96                | 94              |
| 541             | 23                | 19              |
| 542             | 43                | 0               |
| 543             | 27                | 22              |
| 544             | 26                | 32              |
|                 | <u>March 3</u>    | <u>March 8</u>  |
| 533             | 62                | 49              |
| 534             | 33                | 35              |
| 535             | -                 | -               |
| 536             | 44                | 12              |
| 537             | 38                | 38              |
| 538             | 0                 | 50              |

~~SECRET~~  
UNCLASSIFIED

~~SECRET~~

UNCLASSIFIED

Electrodeposition Research Progress Report

The results over a short period of time are not very conclusive, so neutron counts have been made as shown in Table IV.

Table IV

| <u>Date</u> | <u>Total Neutrons</u> |            |            |            |
|-------------|-----------------------|------------|------------|------------|
|             | <u>529</u>            | <u>530</u> | <u>531</u> | <u>532</u> |
| 1/30/48     | 0                     | 0          | 0          | 0          |
| 2/12/48     | 0                     | 12         | 24         | 24         |
| 2/20/48     | 0                     | 0          | 112        | 0          |
| 3/15/48     | 38                    | 21         | 138        | 0          |

Apparently low neutron counts are difficult to reproduce, but a continual increase such as Foil Number 531, is significant. A small amount of oxygen probably is leaking into the apparatus, giving increasing counts.

Conversion of Active Hydrofluoric Acid Solutions to Hydrochloric Acid Solutions - W. Raiff

A series of runs were made reconverting the hydrofluoric acid solutions into hydrochloric acid. The process has been used with success in the past by the Process Research Group - (Seminar Paper, April 1, 1946 by Carl Rollinson). The runs were combined and the resulting solution analyzed in two parts. The ammonium fluoride residue was also checked, in two parts, to determine the amount remaining. The recovery was better than 99.99 per cent. Table V records the data.

Table V

RECOVERY OF ACTIVITY FROM HYDROFLUORIC ACID

| <u>Solution</u>      | <u>Volume</u> | <u>Total Activity</u>   |
|----------------------|---------------|-------------------------|
| Hydrochloric Acid #1 | 950 ml.       | 3.29 c.                 |
| Hydrochloric Acid #2 | 950 ml.       | 11.20 c.                |
| Ammonium Fluoride #1 | 2500 ml.      | $9.9 \times 10^{-4}$ c. |
| Ammonium Fluoride #2 | 2000 ml.      | $4.5 \times 10^{-4}$ c. |

~~SECRET~~  
UNCLASSIFIED

UNCLASSIFIED

Conversion of Production Solutions to Hydrofluoric Acid Solutions - R. Ball

To determine the best conditions for the preparation of hydrofluoric acid solutions from production solutions, the following experiment was carried out:

1. Excess saturated sodium carbonate solution was added to 25 ml. of production solution containing 5.24 c.

2. The precipitate was filtered through a fine sintered glass filter stick and washed twice. At this point postum and bismuth carbonates were crystalline materials in the bottom of the vessel. The filtrate and wash waters were acidified and were shown by count to contained 0.675 c. of postum.

3. Forty-eight per cent hydrofluoric acid was added to the precipitate. The bismuth carbonate and postum carbonate reacted to form the corresponding fluorides. Postum fluoride went into solution; whereas, most of the bismuth fluoride remained on this filter. This method, then gives an addition removal of bismuth before plating.

4. The resulting solution was filtered through a "Teflon" filter disc. This filtrate contained 3.00 c. of postum.

5. The bismuth precipitate remaining on the "Teflon" filter disc contained 1.40 c. of postum as well. Collected data are shown in Table VI.

Since much postum remained in the precipitate and the first filtrate, the procedure was modified in the next run. In step 1, saturated ammonium carbonate was used in place of saturated sodium carbonate. In step three, hot 48 per cent hydrofluoric acid was used and the solution was stirred until cool. The results were somewhat better. (See Table VI).

In the third run the production solution was made alkaline with an excess of saturated sodium carbonate. The first filtration was made with a coarse glass filter stick, and the leaching of postum out of the carbonate precipitate was made in the following way: Ten ml. of warm ( $60^{\circ}\text{C}.$ ) 10 N hydrofluoric acid was added to the precipitate and maintained at  $60^{\circ}\text{C}.$  (using a platinum immersion heater) for 45 minutes with vigorous stirring. It was then allowed to cool to room temperature with continuous stirring.

It was found that less postum appeared in the first filtrate. (See Table VI).

~~SECRET~~  
UNCLASSIFIED

~~SECRET~~

UNCLASSIFIED

Electrodeposition Research Progress Report

The third run was repeated except that a fine glass filter was used to draw off the sodium carbonate solution. In order to determine where the postum was being lost, the apparatus was extracted with 200 ml. of concentrated hydrochloric acid. These results are also shown in Table VI. It was possible to remove 99.96 per cent of the postum from the production solution.

The postum remaining in the precipitate, and the postum unaccounted for suggests the course of immediate research.

Some of the equipment designed and constructed for this work is shown in Figures 1 through 6.

FUTURE PLANS

1. Work is under way on determining the relative cohesive qualities of postum plated on platinum out of 1.5 N nitric acid solution to that plated out of 1.0 N hydrofluoric acid solution.
2. Continued attempts to improve the per cent conversion of postum in production solutions to hydrofluoric acid solutions will be made.
3. Attempts to produce production size foils plated out of hydrofluoric acid will be made.

~~SECRET~~  
UNCLASSIFIED

~~SECRET~~  
Electrodeposition Research Progress Report  
EG-11504RIVU

720012

UNCLASSIFIED

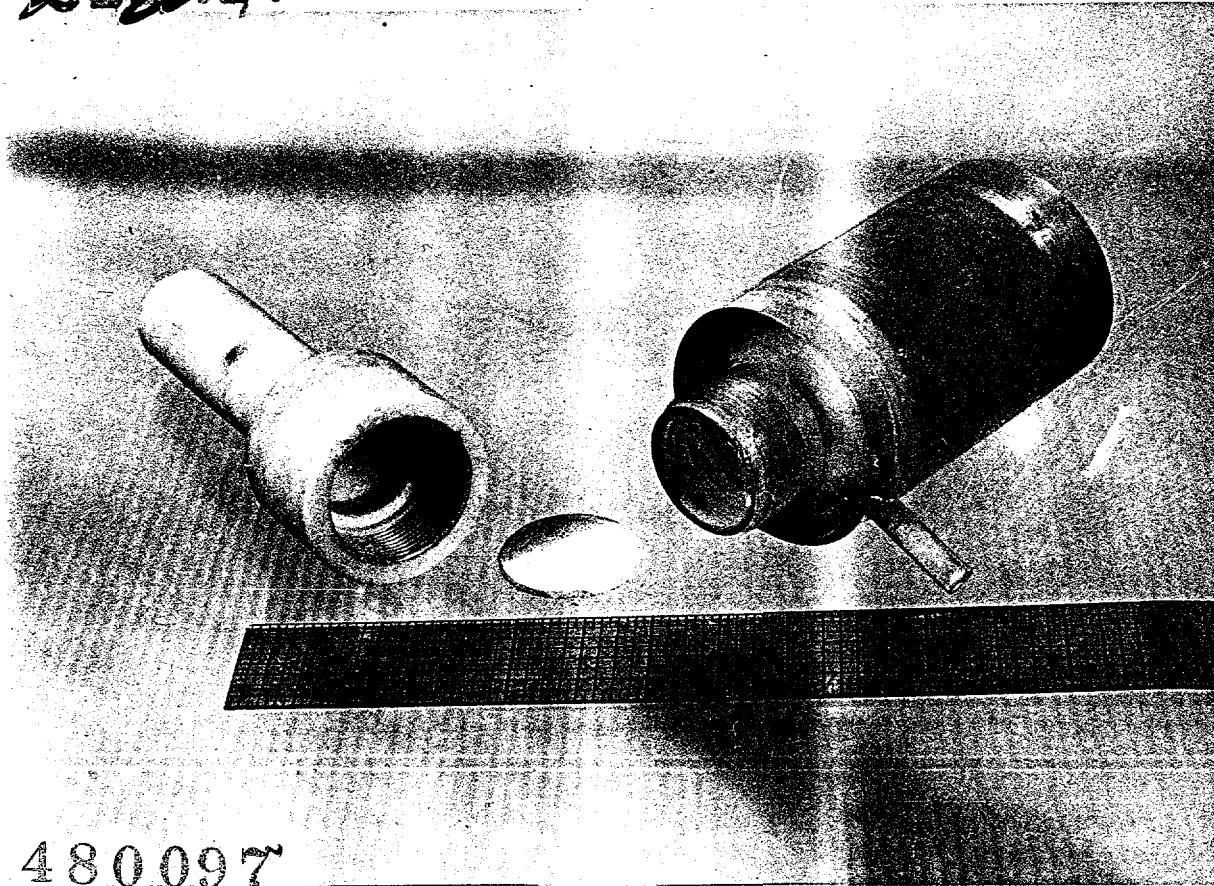
480097

Figure 1

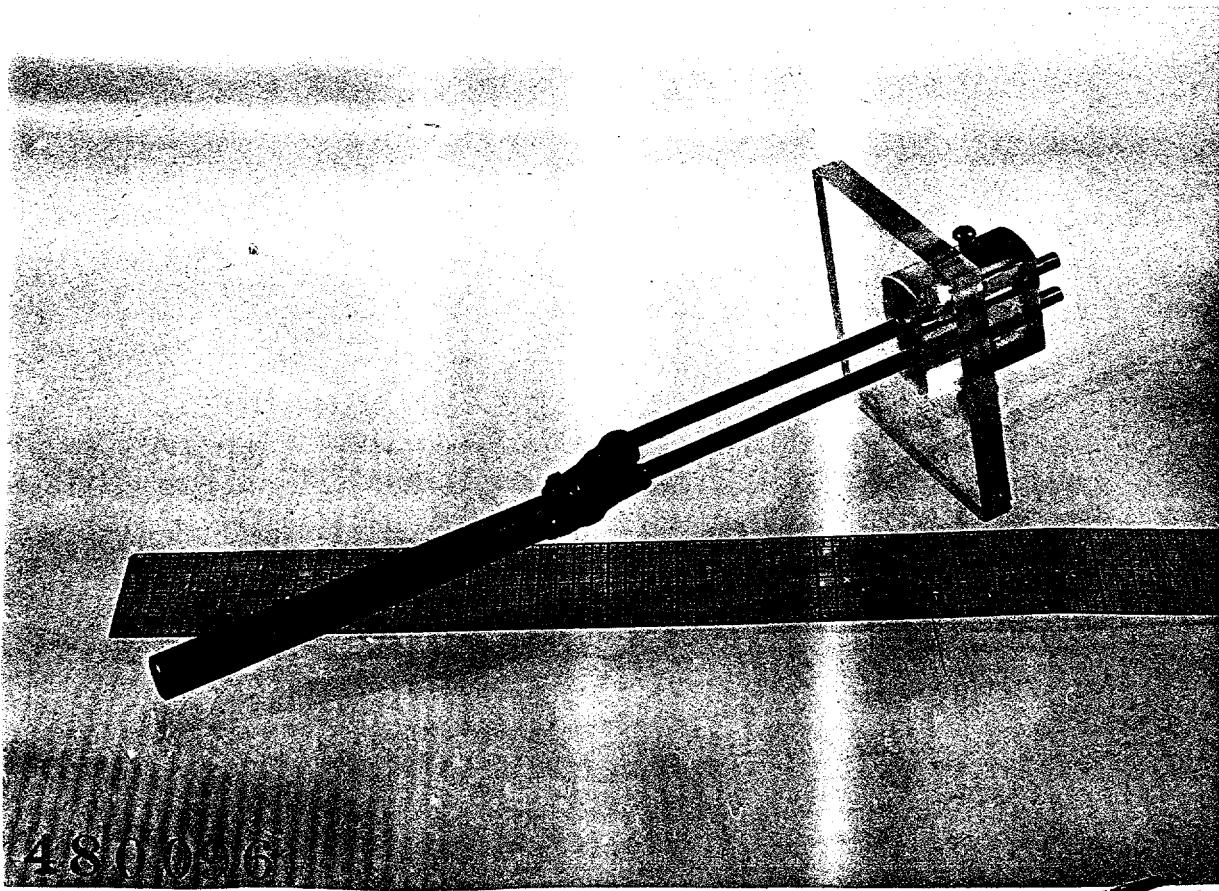
"Teflon" Filter Arrangement (Disassembled)

480096

Figure 2


Platinum Immersion Heater

UNCLASSIFIED


~~SECRET~~

~~SECRET~~

UNCLASSIFIED



480097



480096

10  
UNCLASSIFIED

~~SECRET~~

~~SECRET~~ UNCLASSIFIED

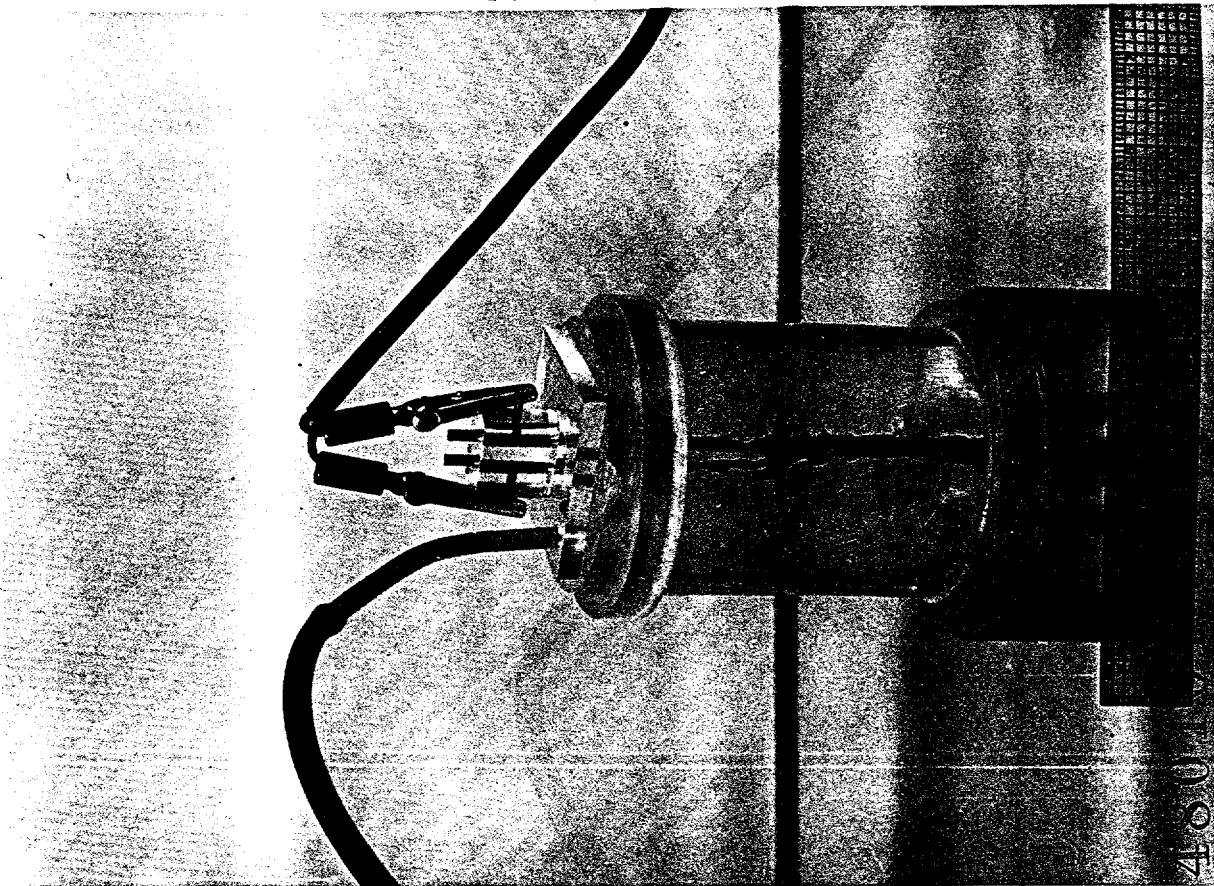
Electrodeposition Research Progress Report

480100

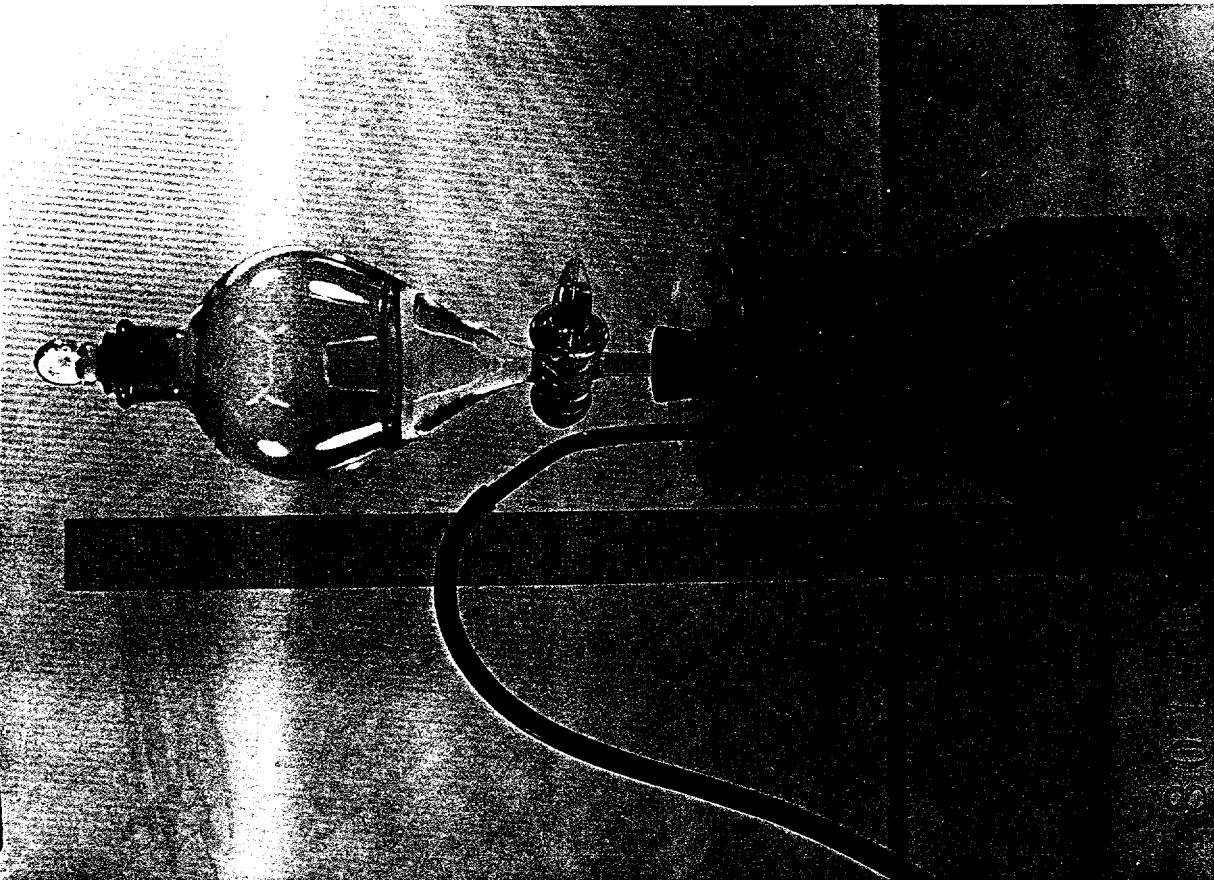
Figure 3

Polystyrene Reaction Flask for the  
Neutralization of Production Solutions  
with Sodium Carbonate

480101


Figure 4

Polystyrene Reaction Chamber with  
Immersion Heater for Leaching of  
Bismuth Fluoride Precipitate


UNCLASSIFIED

UNCLASSIFIED

~~SECRET~~



-12-



UNCLASSIFIED

~~SECRET~~

UNCLASSIFIED

Electrodeposition Research Progress Report

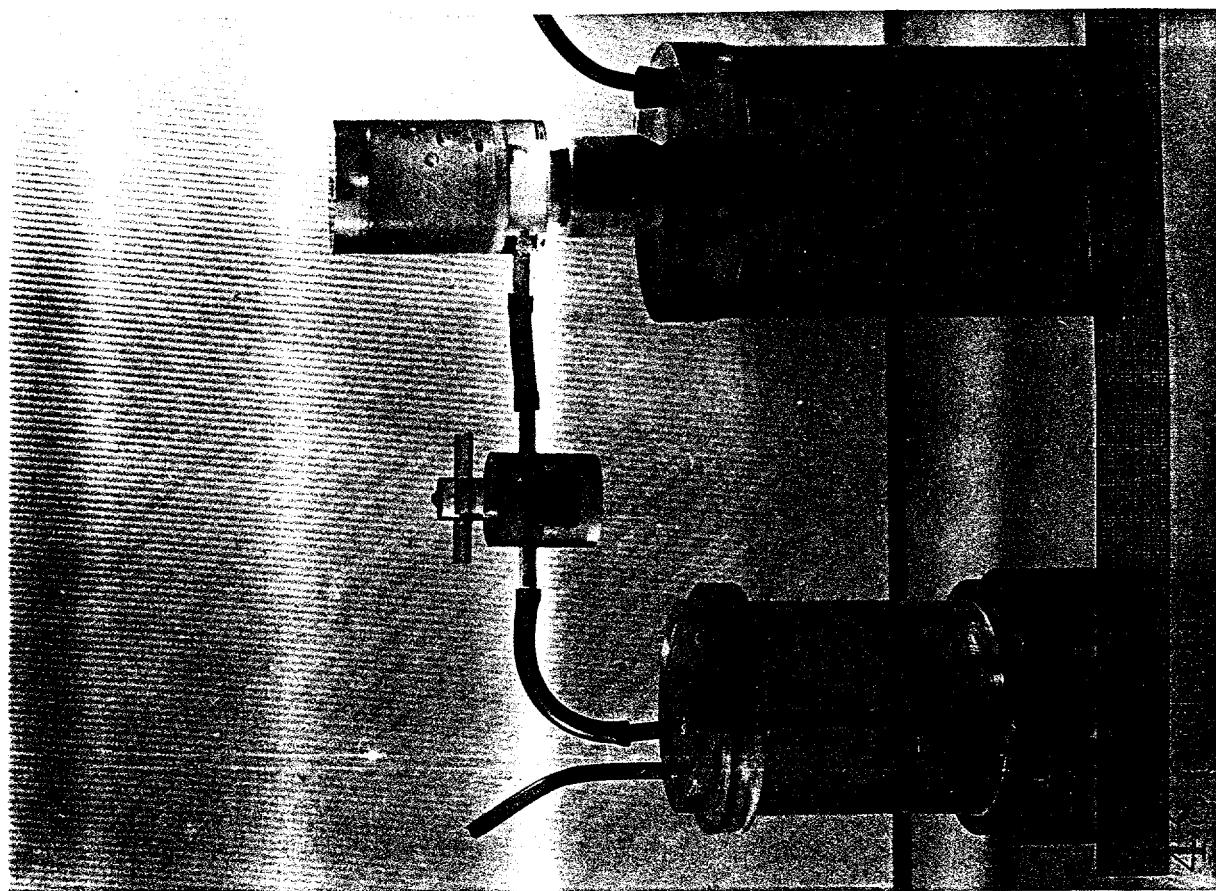
480098

Figure 5

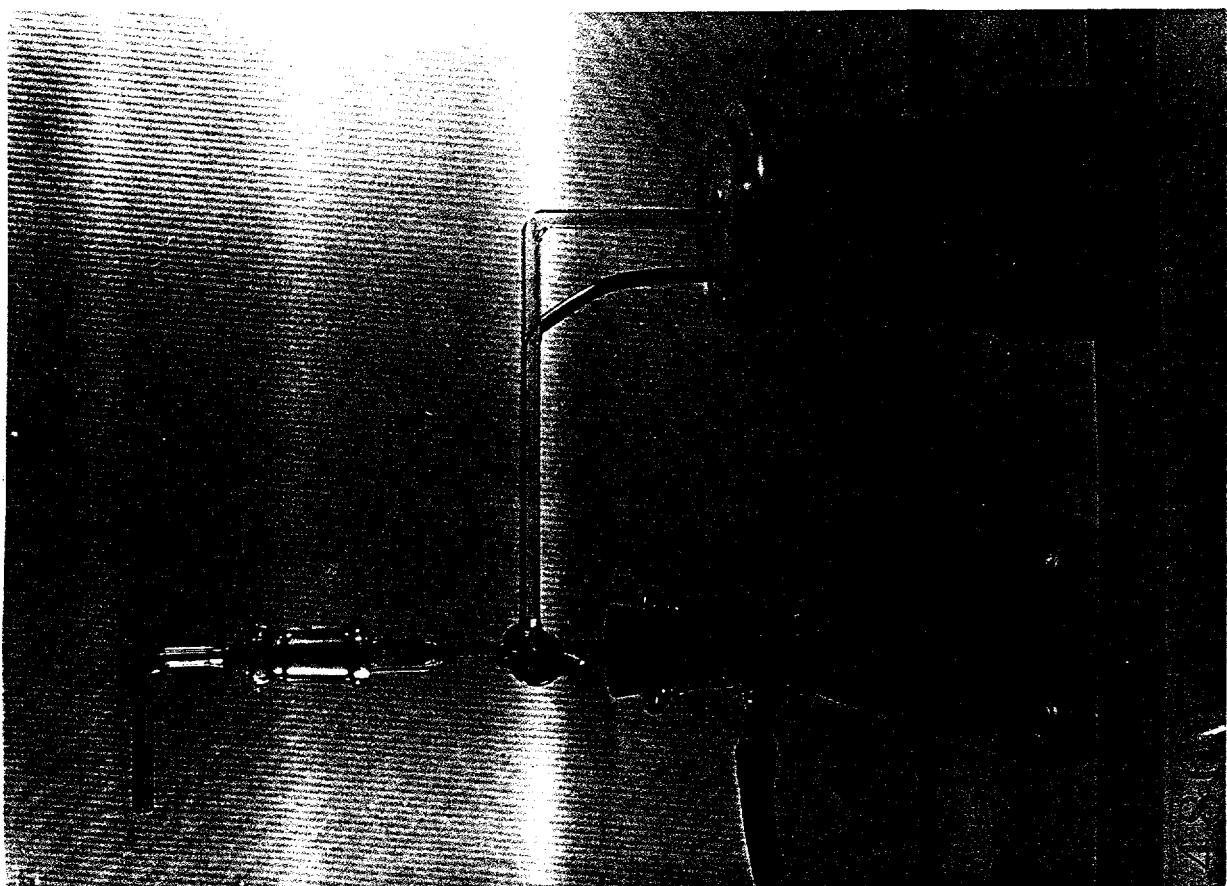
Setup for Filtering Bismuth Carbonate and  
Postum Carbonate Precipitate using a  
Sintered Glass Filter Stick

480099

Figure 6


"Teflon" Filter Funnel and Polystyrene  
Vacuum Flask used in the Final  
Filtration of a Solution of Postum  
Fluoride from Bismuth Fluoride Precipitate

UNCLASSIFIED


~~SECRET~~

UNCLASSIFIED

74



-14-



UNCLASSIFIED

UNCLASSIFIED

Table VI  
PREPARATION OF POSTUM IN 1.0 NORMAL HYDROFLUORIC ACID

| Run No. | Total Postum in Original Solution | Postum Remaining in First Filtrate | Postum in HF Solution | Postum Remaining in Precipitate | Postum Removed from System with Hydrochloric Acid | Uncounted for |
|---------|-----------------------------------|------------------------------------|-----------------------|---------------------------------|---------------------------------------------------|---------------|
| 1       | 5.24 c.                           | 0.675 c.                           | 3.00 c.               | 1.40 c.                         |                                                   | 0.16          |
| 2       | 5.22 c.                           | 0.52 c.                            | 4.05 c.               | 0.35 c.                         |                                                   | 0.30          |
| 3       | 4.95 c.                           | 0.20 c.                            | 3.78 c.               | 0.39 c.                         |                                                   | 0.58          |
| 4       | 4.90 c.                           | 0.02 c.                            | 3.70 c.               | 0.21 c.                         | 0.16 c.                                           | 0.81          |

THIS DOCUMENT CONTAINS RESTRICTED DATA WITHIN THE MEANING  
OF THE ATOMIC ENERGY ACT OF 1946 AND/OR INFORMATION AFFECTING  
THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE  
MEANING OF THE ESPIONAGE ACT (U.S.C. 31 AND 32) AS AMENDED.  
IT IS PROHIBITED OR THE REVELATION OF ITS CONTENTS IN ANY  
MANNER TO UNAUTHORIZED PERSONS. PROHIBITED AND MAY  
RESULT IN SEVERE CRIMINAL PENALTY.

UNCLASSIFIED