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5. Brief Description (abstract) of Project Goal and Objective

In this project, we are performing basic and applied research to systematically investigate our
newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the
great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC
structures. This quantum-engineered approach will enable PV cells to efficiently convert
infrared radiation from the sun or other heat source, to electricity. Such cells will have important
applications for more efficient use of solar energy, waste-heat recovery, and power beaming in
combination with mid-infrared lasers. The objectives of our investigations are to: achieve
extensive understanding of the fundamental aspects of the proposed PV structures, develop the
necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells.
This research will focus on IC PV structures and their segments for utilizing infrared radiation
with wavelengths from 2 to 5 um, a range well suited for emission by heat sources (1,000-2,000
K) that are widely available from combustion systems. The long-term goal of this project is to
push PV technology to longer wavelengths, allowing for relatively low-temperature thermal
sources. Our investigations address material quality, electrical and optical properties, and their
interplay for the different regions of an IC PV structure. The tasks involve: design, modeling
and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and
relevant segments, material characterization, prototype device fabrication and testing. At the end
of this program, we expect to generate new cutting-edge knowledge in the design and
understanding of quantum-engineered semiconductor structures, and demonstrate the concepts
for IC PV devices with high conversion efficiencies.

6. Accomplishments and Significance

Highlights:

e Demonstrated the operation of IC PV devices at room temperature and above with a high
open-circuit voltage that exceeded the single bandgap determined limit.

e Demonstrated the conversion of long-wavelength radiant photons into electricity with
narrow bandgap semiconductors (e.g. 0.23 eV corresponding to a cutoff wavelength
exceeding 5.3 pum), which would enable an attractive technology that converts the
otherwise-wasted radiant energy from a heat source into useful electrical energy.



e Developed a theoretical framework for multiple stage IC PV devices, based on which the
power efficiency improvement of ICPV devices are projected.

e Demonstrated the feasibility of achieving current matching between stages in ICPV
devices.

Some details of these accomplishments are provided below.

. . . Energy (eV)
An IC structure with seven identical cascade 0.6 05 04 03

stages was designed for PV operation [4-5]. Each oF
stage was composed of a 0.15-um-thick 33-period
InAs/GaSb SL absorber sandwiched between an
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(EL) spectra at these two temperatures. The Fig. .1. Spectral QE of a device at 300 and 340 K.
bandgap values obtained from EL are in good The inset shows the corresponding EL spectra.
agreement with the cutoff wavelengths. The QE value is relatively low due to the ~31%
reflection loss from the air/semiconductor interface and the rather short overall absorber
thickness (~1.1 um total from the seven stages), which only absorbs part of the incident light.
This allowed a significant amount of incident light to be transmitted to and absorbed in the ~150-
pum-thick substrate. A portion of that light is reflected back from the interface between the
substrate and metal sub-mount as evidenced by the somewhat strong, high-frequency
interference oscillations observed in the QE curves. The value of QE was increased at the higher
device temperature due to the bandgap narrowing, confirming the efficient photocarrier
collection associated with the use of the short-discrete-absorber architecture in ICPV devices.
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(Eg/e~0.25 V), validating the successful operation of multiple stages in series with significantly
enhanced output voltage. At 340 K, the open-circuit voltage was still near 0.4 V with a cutoff
wavelength near 5.2 um and the short-circuit current density Js is higher due to the higher
absorption coefficient at the same wavelength (4.3 um) caused by the reduction in bandgap.

From the J-V characteristics, the extracted maximum output power density P is 395
mW/cm? with a fill factor (FF) of 43% at 300 K, which is smaller than a typical value (60-70%)
for TPV cells with absorbers having a bandgap of 0.5-0.6 eV. This relatively low FF is partially
due to the much narrower bandgap (<0.25 eV) and low QE (~15% at 4.3 um from Fig. 1) with a
thin total absorber layer (~1.1 um). It is also possibly due to surface leakage current associated
with imperfect passivation. For the same reasons, Py.x was limited at an incident laser power
density of 18.9 W/cm®, resulting in a power efficiency of 2.1%. The voltage efficiency
eVoo/(7Eg) 1s ~37%, which ultimately sets the power efficiency limit that a PV cell can achieve.
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devices. This suggests that better performance
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data for the GaSb-based devices was acquired
under a much higher incident light intensity (the reported Js is 3.5 A/em? [9], which is about an
order of magnitude higher than that of our devices). When the laser intensity was increased (to
~8 W/cm?) on ICPV devices, the open-circuit voltage V. reached to 447 mV for a 0.2x0.2 mm’
three-stage device at Jo=1.5 A/em” at 300 K as shown in Fig. 4. This again validates the
advantage of the discrete cascade absorber architecture. Additionally, the photocurrent observed
from these devices increased with temperature up to 350 K as shown in Fig. 4 and Fig. 5, while
the diffusion length decreases with temperature. This suggests that ICPV devices indeed have
efficient collection of photo-generated carriers over a large temperature range.

At 300 K, the extracted internal QE (number of photogenerated carriers collected in all stages
per an incident photon) near the laser emission wavelength is about 25% and 19% for the three-
and two-stage ICPV devices, resulting in a power conversion efficiency of ~4.0 % and ~ 3.1 %,
respectively. Although measured at a lower light intensity (8 vs. 19 W/cm?), these values of the
power efficiency are higher than for the previous 7-stage long-cutoff-wavelength ICPV devices
because of their overall thicker absorbers and the somewhat wider bandgap. It should be noted
that the devices with smaller size (0.2x0.2 mm®) had a larger leakage current (>60%) as
determined by the size-dependent product of resistance and area [7]. Hence, with more stages
and antireflection coating for QE near 80% or higher, and improved passivation and device
fabrication to eliminate leakage current, a power conversion efficiency approaching or even
exceeding 30% is feasible in ICPV devices with cutoff wavelengths between 2 to 4 um and
better current matching. Better current matching can be achieved by simply adjusting individual
absorber thicknesses and the number of cascade stages. This has been demonstrated recently by
us on two long cutoff-wavelength (>5 um) ICPV device structures, which comprised 2 or 3
stages with varied InAs/GaSb absorber thicknesses (~0.61-0.94 um) across each structure [8,
10]. Fig. 6 shows plots of V, and Jg for the two- and three-stage devices (with illumination of a
laser) at different temperatures. The photocurrent density for the two devices with different
stages is roughly equal under the same level of light illumination. The monotonic decrease in
the V.. values with increasing temperature was mainly caused by the higher dark current and
shorter carrier lifetime at higher temperatures. Fig. 6 also indicates that the short-circuit current
density increased from T=150 K to T=300 K for both devices and decreased at T=340 K. The
rise of photocurrents with temperature was due to the increased absorption of photons as the
bandgap decreased with increasing temperature. The decreasing photocurrent at the high
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of this technology. Our highest

power conversion efficiency is ~ 4% for illumination at ~2.9 um. For narrow bandgap materials
with a cutoff wavelength near 5 um, the dark current density is quite high. For a cutoff of 2 to 4
pm, we estimate that an antireflection coating, better current matching with more stages, as well
as improved device passivation, would potentially raise the quantum efficiency to 80% and the
power conversion efficiency to more than 20%, which would fulfill the requirements for certain
thermophotovoltaic (TPV) systems operating at an extended wavelength spectrum and with
modest concentrated light intensities. Achievement of a power efficiency of 30% will require
advances in other materials aspects such as the optimization of the design of layer structures, and
the further reduction of dark current through improved epitaxial materials and better device
fabrication.
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