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present mass transport in cylindrical wire arrays

Al 8 x 15 pm wire arrays
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Bubbles arise at 20-25ns V. Ivanov et al., Phys. Rev. Lett. 97, 125001 (2006)

before the x-ray pulse )
C. J. Garasi et al., Phys. Plasmas, 11, 2729 (2004)

B. Jones et. al., Phys. Rev. Lett. 95, 225001 (2005)
S.V. Lebedev et al., Plasma Phys. Contr. Fusion, 47, A91 (2005)
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Plasma bubbles hit and sweep the precursor
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Bubbles with V, . >3-107 cm/s produces shock in the precursor

V. Ivanov et al., Phys. Rev. Lett. 97, 125001 (2006)
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Implosion Dynamics in Linear Wire Arrays
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see also V.V. Kantsyrev et al., IEEE Trans. Plasma Sci., 34, 2295 (2006)
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Four-frame shadowgram of implosion in Al 8x18 pm linear load
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Ablating plasma does not move to the axis of the linear array with an ST
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enlarged central gap

The central gap is enlarged. Al 6x20 pm (22322)
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® Mutual magnetic field in the equidistant linear wire array

2.4E-07 3.4E-07
A jxB force confines plasma. Ablating plasma

does not penetrate to the center.
* - V.I Sotnikov et al., Phys. Plasmas 9, 913 (2002)

@ In the array with the enlarged central gap
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#842. Al 4+4 x 12pm, ¥16/8mm #843. Al 4+4 x 12num, G16/8Smm Change of plasma
1 2 Axis perturbation scale

Two regimes: S.V. Lebedev et al., PRL 84, 2000.
S.N. Bland et al., Phys. Plasmas 10, 1100, 2003
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on the inner wires of the nested array

6-frame X-ray pinhole camera* Bubbles initiate hot spots
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Nested loads provide good implosion with low azimuthal symmetry
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Triple wire arrays produce a maximum of power and a shortest x-ray pulse [SNares
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Triple nested array
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B, =0 t =90 B,= 0.3

eIn the presence of external magnetic field B,, plasma column experiences drift

motion due to the J x B, force;

eFlow shear connected with the plasma drift motion across the axial direction can

suppress development of sausage and kink instabilities.

* - V.I. Sotnikov et al., presented in ICOPS 2004
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Cylindrical array Nested array “Star”-like loads
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Parameters for optimization

A number of wires in the ray;
A number of rays in the “star” (azimuthal homogeneity);

Mass scaling;
Wire spacing;
Diameter scaling;
Material;

AR A o

Optimization for K-shell radiation.

* - Design of A. Astanovitskiy
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Wire spacing azimuthal symmetry influences to plasma dynamics and
radiated x-ray power
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. Compact star-like wire array produces larger x-ray power.
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Shot to shot reproducibility and soft x-ray power increases with
a number of cylinders
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Comparison of Loads in the Zebra Generator
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Power of the soft x-ray pulse fall in light loads
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Light star-like loads are good radiators of K-shell x-ray
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power than Al loads
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Calculated kinetic energy falls in 3-mm loads but radiated power increases “Reno

Radiated peak power (Ni bolometer/XRD with a 2-um Kimfol filter)
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1. Does 0-D calculation return right kinetic energy?
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2. Is inter-wire gap important?

3. Can microturbulence play a role in the soft x-ray production
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Conclusions

1. Different types of loads were tested in the 1-MA Zebra generator. Star-like, compact
cylindrical, and linear wire arrays radiate the largest soft x-ray peak power.

2. Smoothing of MHD instability was observed in star-like loads during cascade implosion.
This could be linked to efficient production of soft x-ray radiation. High level of MHD
instability in light star-like loads correlates to the fall of radiated x-ray power. Light star-
like loads are good radiators of the K-shell x-ray.

3.  Very compact cylindrical loads produce a powerful soft x-ray pulse despite smaller
calculated Kinetic energy. More experiments are needed to investigate mechanisms of
implosion in compact arrays.
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