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Plasma Diagnostics on the Vacuum Chamber of Zebra
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Implosion bubbles indicate breaks in wires and 
present mass transport in cylindrical wire arrays
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Plasma bubbles hit and sweep the precursor
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Bubbles are smaller and more regular in multi-wire arrays
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Implosion Dynamics in Linear Wire Arrays
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Cascade Implosion in Linear Wire Arrays

Four-frame shadowgram of implosion in Al 8x18 µm linear load
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Ablating plasma does not move to the axis of the linear array with an 
enlarged central gap

The central gap is enlarged. Al 6x20 µm (22322) Equidistant linear arrays
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Cascade Implosion in Nested Wire Arrays
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Implosion bubbles from the outer wires initiate hot spots 
on the inner wires of the nested array
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Triple wire arrays produce a maximum of power and a shortest x-ray pulse
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Triple loads demonstrate smoothing of the MHD instability
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“Star”-like wire arrays present smoothing of instabilities
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Stabilization of the plasma column crossing the magnetic field*

zB0 = 0 t = 90 B0 = 0.3

*  - V.I. Sotnikov et al., presented in ICOPS 2004

•In the presence of external magnetic field B0, plasma column experiences drift 
motion due to the J × B0 force;

•Flow shear connected with the plasma drift motion across the axial direction can 
suppress development of sausage and kink instabilities.
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“Star”-like wire arrays demonstrate directed implosions 
with smoothing of instabilities

Cylindrical array Nested array “Star”-like loads
Nested quadruple* load, 
24wires, Ø16/12/8/6 mm

Is a linear array a member of this class?

Parameters for optimization

1. A number of wires in the ray;
2. A number of rays in the “star” (azimuthal homogeneity);
3. Mass scaling;
4. Wire spacing;
5. Diameter scaling;
6. Material;
7. Optimization for K-shell radiation.

* - Design of A. Astanovitskiy



Wire spacing azimuthal symmetry influences to plasma dynamics and 
radiated x-ray power
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• Improved azimuthal symmetry increases radiated soft x-ray 
power in star-like loads. 

• Compact star-like wire array produces larger x-ray power.
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Shot to shot reproducibility and soft x-ray power increases with  
a number of cylinders
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Comparison of Loads in the Zebra Generator

Comparison of loads. XRD Kimfol 2µm
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Power of the soft x-ray pulse fall in light loads

MHD instability breaks the leading edge of the 
moving plasma column
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Light star-like loads are good radiators of K-shell x-ray
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Stainless steel and Ni star-like wire arrays produce larger soft x-ray 
power than Al loads
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Calculated kinetic energy falls in 3-mm loads but radiated power increases
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Conclusions

1. Different types of loads were tested in the 1-MA Zebra generator. Star-like, compact 
cylindrical, and linear wire arrays radiate the largest soft x-ray peak power.

2. Smoothing of MHD instability was observed in star-like loads during cascade implosion. 
This could be linked to efficient production of soft x-ray radiation. High level of MHD 
instability in light star-like loads correlates to the fall of radiated x-ray power. Light star-
like loads are good radiators of the K-shell x-ray.

3. Very compact cylindrical loads produce a powerful soft x-ray pulse despite smaller 
calculated kinetic energy. More experiments are needed to investigate mechanisms of 
implosion in compact arrays.  
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