

Paper # C31

Topic: Kinetics

5th US Combustion Meeting
Organized by the Western States Section of the Combustion Institute
and Hosted by the University of California at San Diego
March 25-28, 2007.

Efficient slow manifold identification for tabulation based adaptive chemistry

José M. Ortega¹, Habib Najm¹, Mauro Valorani²,
Dimitris Goussis³ and Michael Frenklach⁴

¹Sandia National Laboratories, Livermore, CA, USA

²Università di Roma “La Sapienza”, Rome, Italy,

³National Technical University of Athens, Greece,

⁴Univ. of California at Berkeley & LBNL, Berkeley CA, USA

OUTLINE OF PRESENTATION

① **Background**

- Computational Singular Perturbation (CSP) for Automatic Simplification/Reduction of Chemical Kinetics Systems
- Reusing CSP Information Through Tabulation

② **CSP Homogeneous Correction**

- Slow Invariant Manifold Dimension
- Identification of Active Species and CSP Radicals

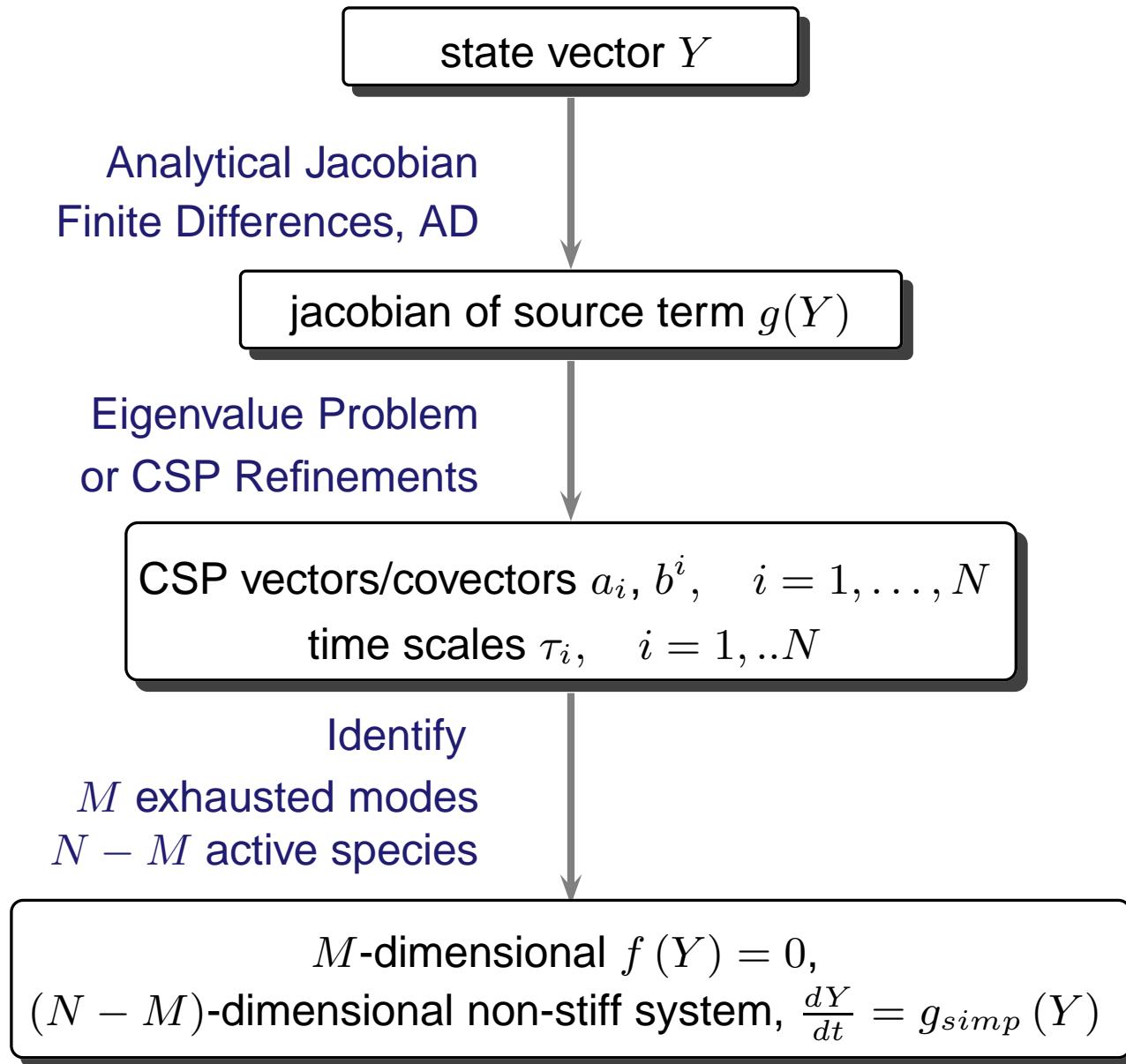
③ **Homogeneous Correction for Adaptive tabulation**

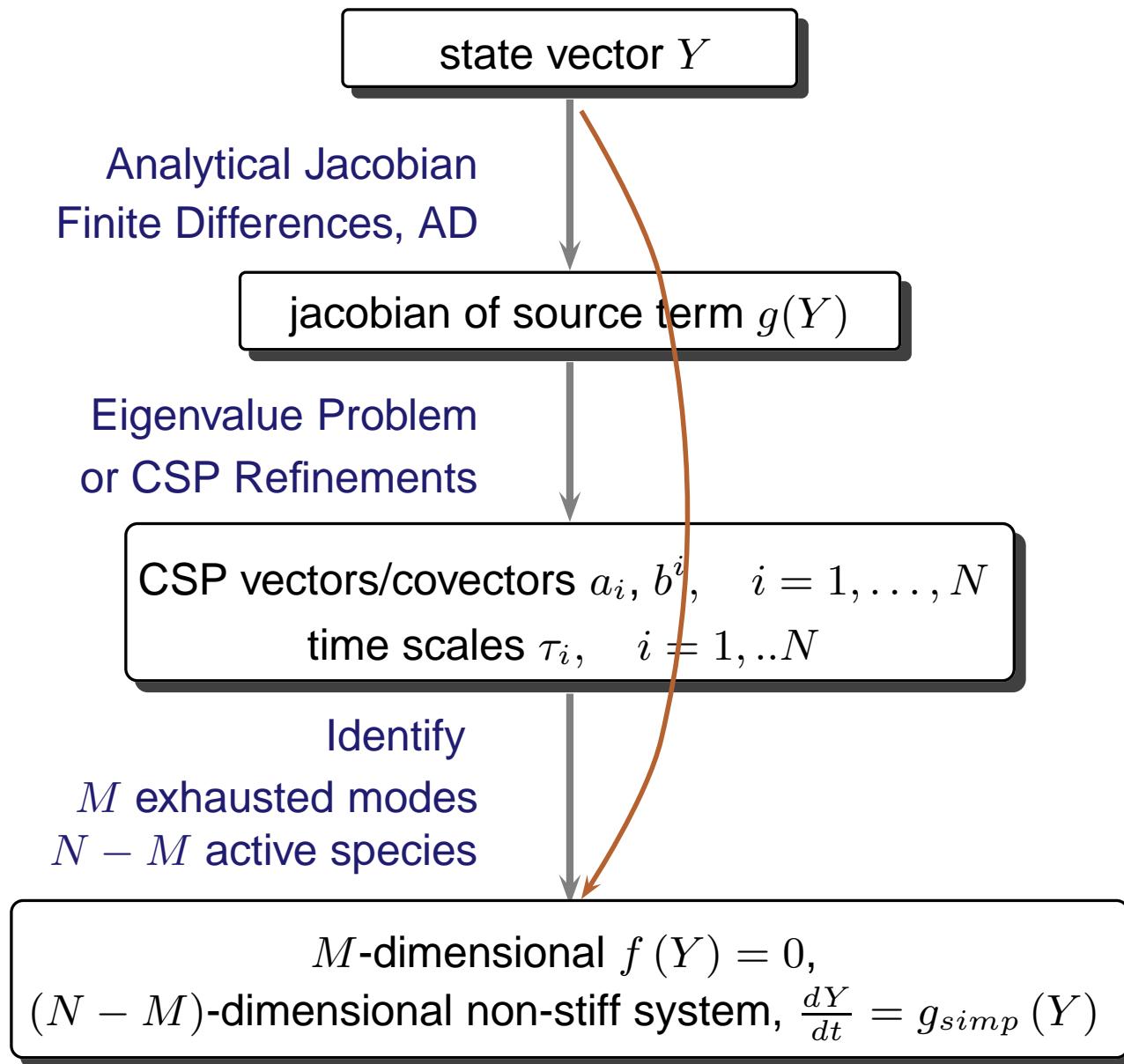
- Partition of Chemical Composition Space
- Response Surfaces of CSP Quantities
- Construction of Local Slow Manifold Models

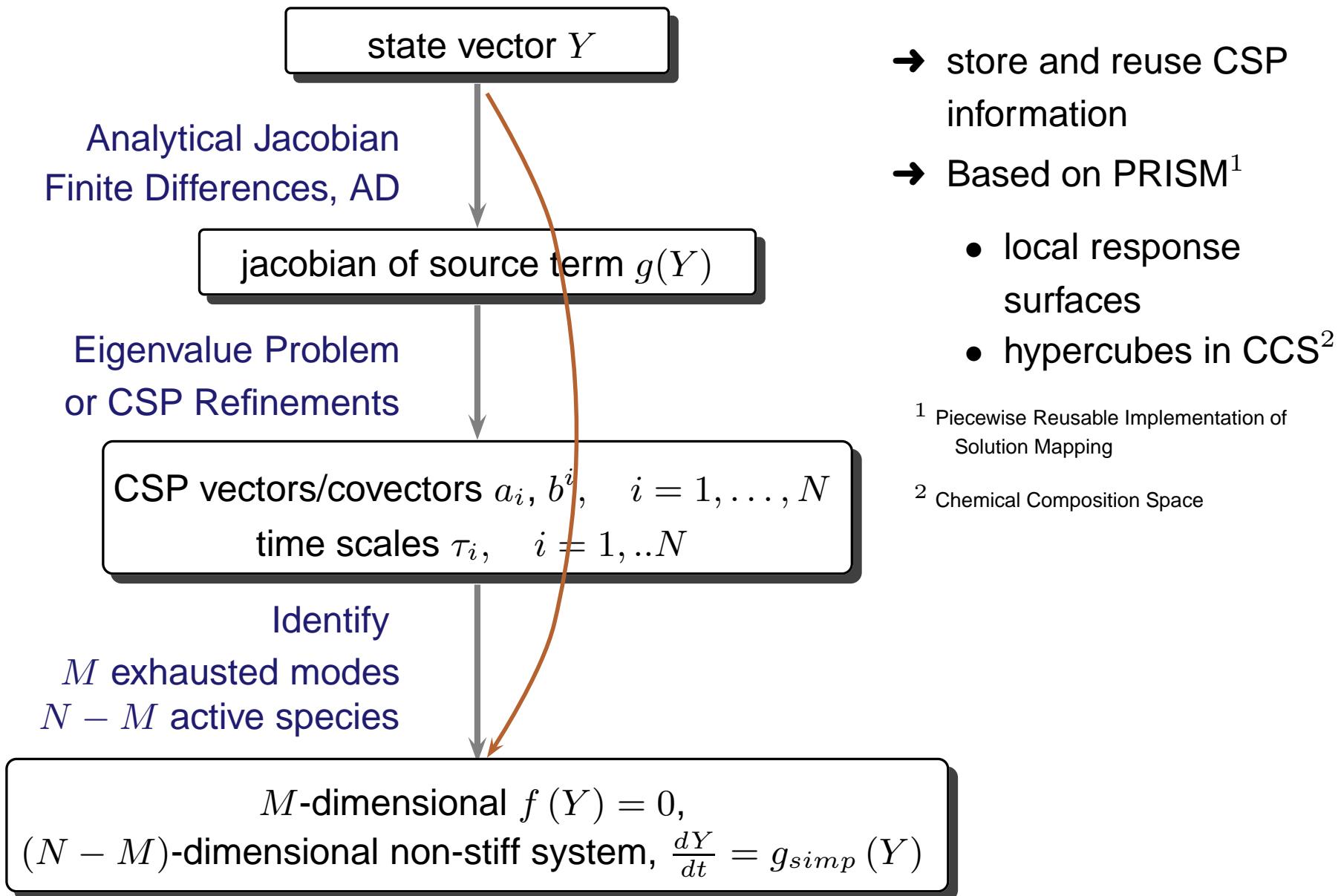
④ **Example: A 3-species kinetics Problem**

CSP ANALYSIS FOR MODEL REDUCTION/SIMPLIFICATION

- ① Addresses **wide range of time scales** in the dynamics of chemical kinetics systems
- ② **Automatic decomposition** of fast and slow dynamics
 - Fast dynamics constrain the system evolution to a lower dimensional manifold. Irrelevant, Expensive, Difficult
 - Slow dynamics drive the system along the manifold
- ③ Building a **reduced model** focusing on the subprocesses of the slow scales let us
 - describe the system as a function of **fewer (active) species**
 - integrate the **non-stiff system** with efficient **explicit** one-step algorithms







REUSE STRATEGY

based on the ability to store basic information from CSP analysis and retrieve it when needed without expensive computations :

tabulate the CSP basis vectors/covectors using local –low-order– polynomial response surfaces of the first M

- ① vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_M$ and
- ② covectors $\mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^M$

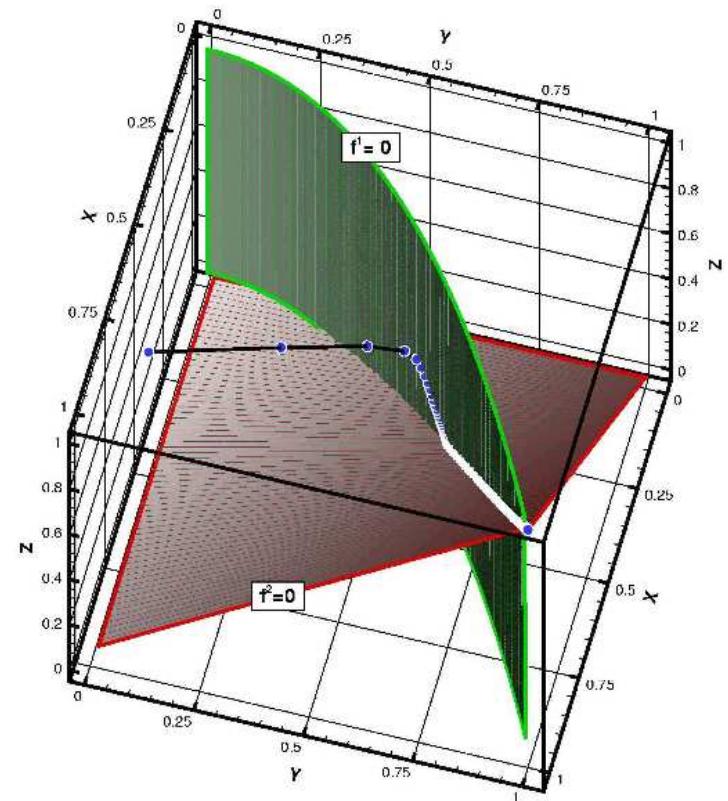
as a function of the $N - M$ active species

Equations of State $Y_M = f(Y_{N-M})$

Non Stiff Model $\frac{dY}{dt} = \left(\mathbf{I}_N - \sum_{r=1}^{r=M} a_r \mathbf{b}^r \right) \times g(Y)$

MAIN CHALLENGES DURING TABLE CONSTRUCTION

- ① identification of the $N - M$ active species and M CSP radicals
- ② identification of $(N - M)$ dimensional manifold surfaces in a N -dimensional space
- ③ optimal size of hypercubes for accurate local response surfaces of the CSP quantities



Computing trajectories to identify the manifolds is very expensive

THE CSP “HOMOGENEOUS CORRECTION”

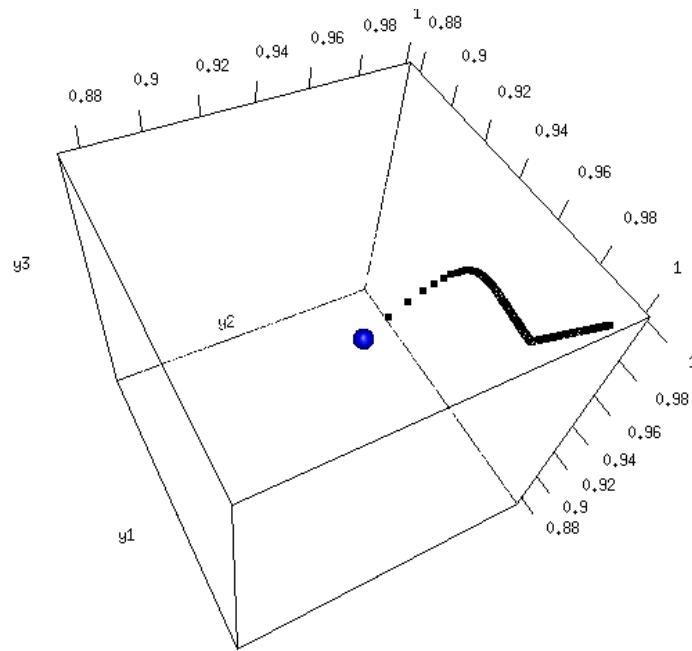
brings the state vector \mathbf{y} arbitrarily close to an $(N - M)$ -dimensional manifold where M fast scales exist

$$\delta \mathbf{y} = - \sum_{m,n=1}^M \mathbf{a}_m \tau_n^m f^n$$

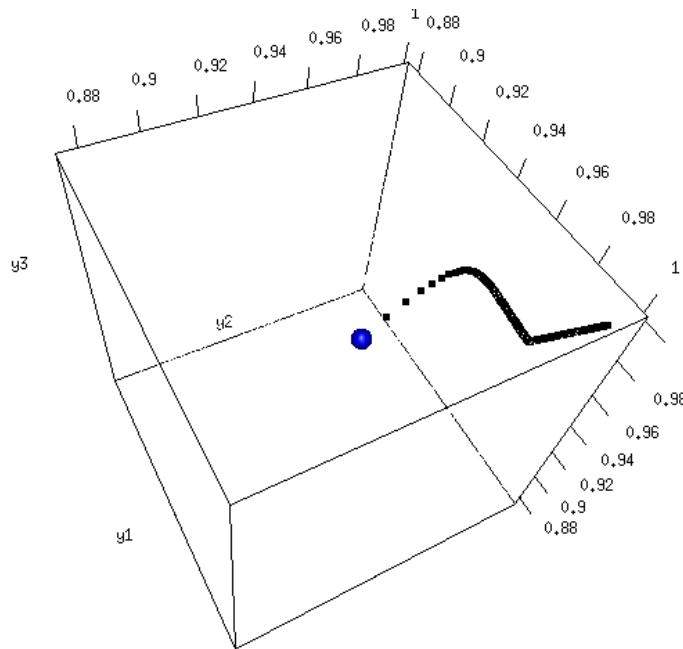
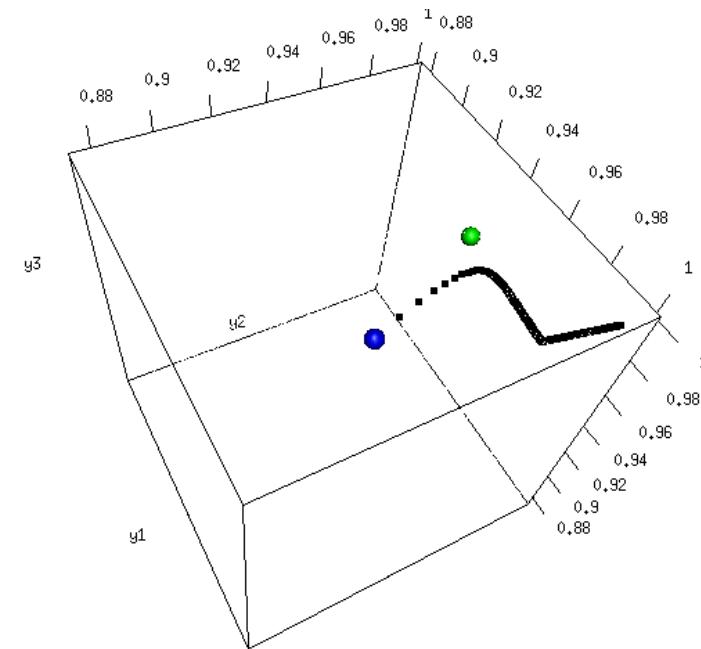
where

- $\{f^n = \mathbf{b}^n \cdot \mathbf{g}\}_{n=1}^M$, non-vanished fast mode amplitudes
- \mathbf{g} , right hand side (RHS) of ODE
- \mathbf{J} , jacobian of RHS
- τ_n^m , inverse of λ_n^m

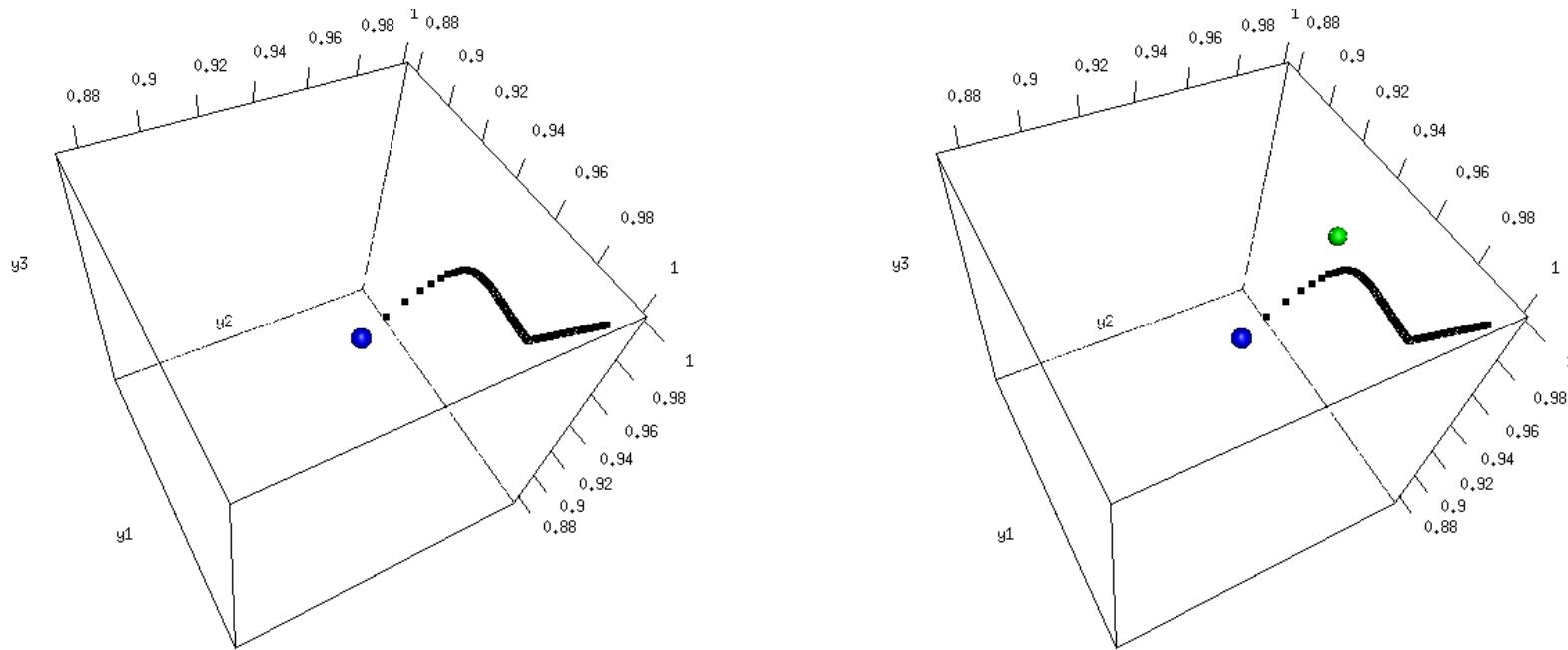
$$\lambda_j^i = \left(\frac{d\mathbf{b}^i}{dt} + \mathbf{b}^i \mathbf{J} \right) \mathbf{a}_j$$



Homogeneous Correction Computed with $M = 1$



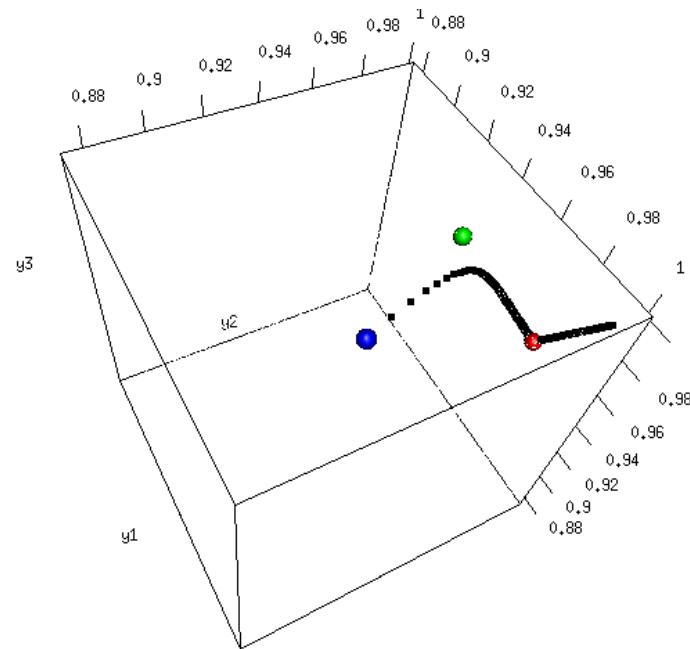
Homogeneous Correction Computed with $M = 1$



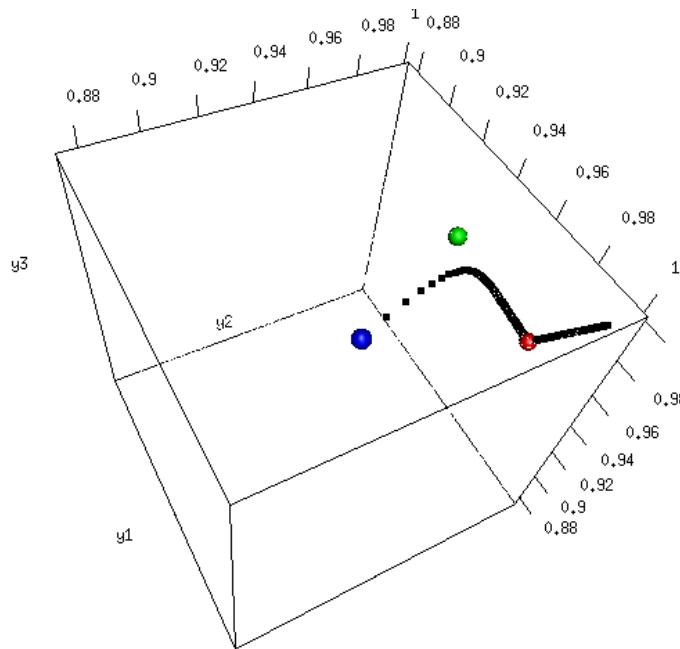
$M = 1$	y_1	y_2	y_3	dy_1/y_1	dy_2/y_2	dy_3/y_3	f^1
Initial	0.97003	0.92696	0.99514				-128.35270
1 HC	0.94726	0.97593	0.99401	0.02346	-0.05283	0.00113	2.41797
2 HC	0.94768	0.97504	0.99403	-0.00044	0.00091	-0.00002	0.00454

$$\frac{d\mathbf{y}}{dt} = \mathbf{a}_1 f^1 + \mathbf{a}_2 f^2 + \mathbf{a}_3 f^3$$

Homogeneous Correction Computed with $M = 2$



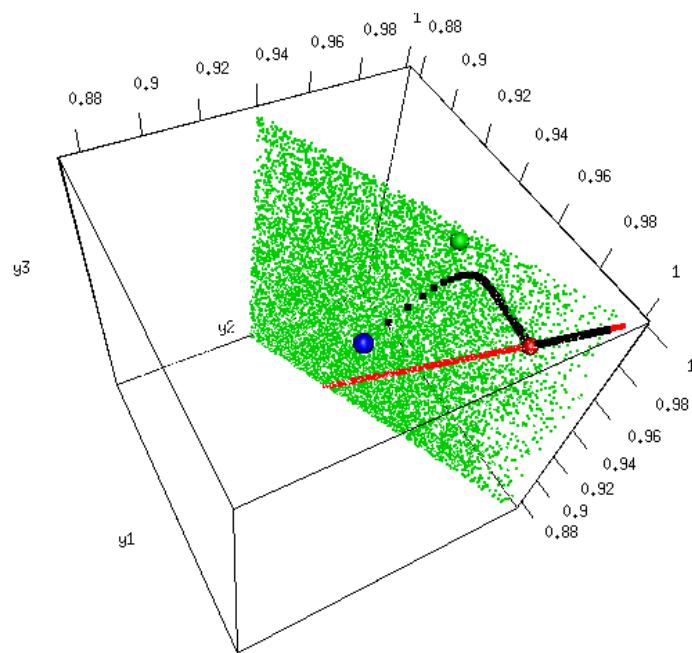
Homogeneous Correction Computed with $M = 2$



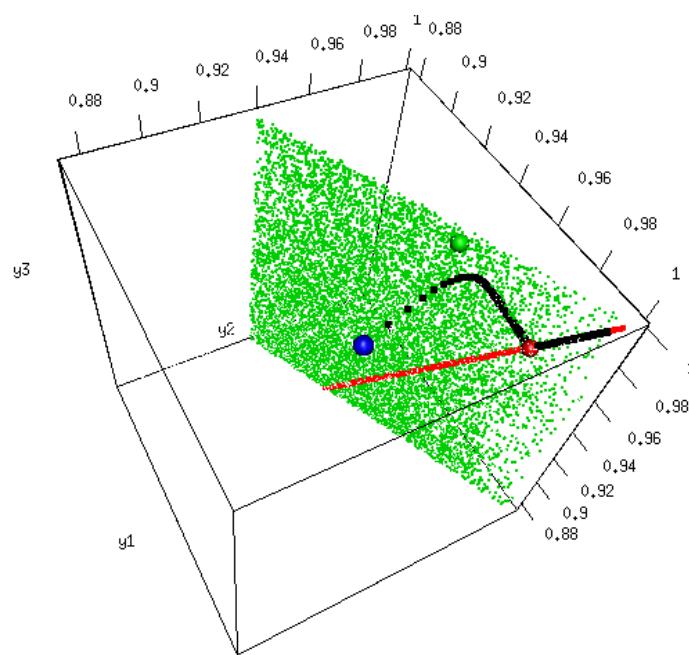
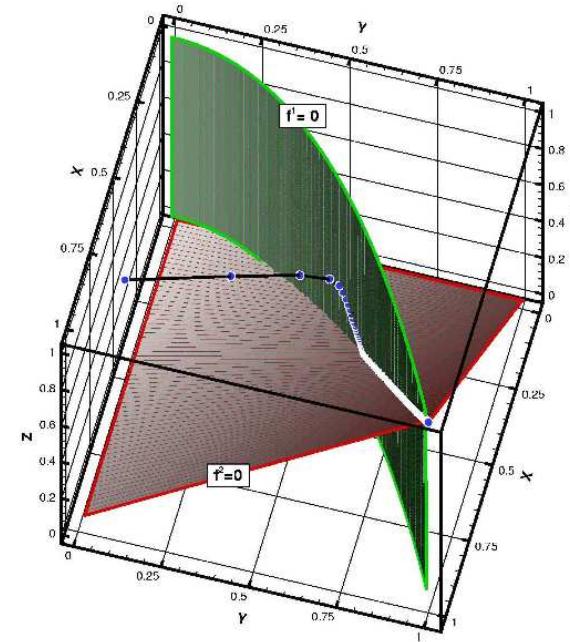
$M = 2$	y_1	y_2	y_3	dy_1/y_1	dy_2/y_2	dy_3/y_3	f^1	f^2
Initial	0.97003	0.92696	0.99514				-128.35269	-11.47343
1 HC	0.97782	0.99093	0.96854	-0.00804	-0.06901	0.02673	4.59536	-0.06144
2 HC	0.97876	0.98934	0.96844	-0.00096	0.00160	0.00010	0.00275	-0.00033

$$\frac{d\mathbf{y}}{dt} = \mathbf{a}_1 f^1 + \mathbf{a}_2 f^2 + \mathbf{a}_3 f^3$$

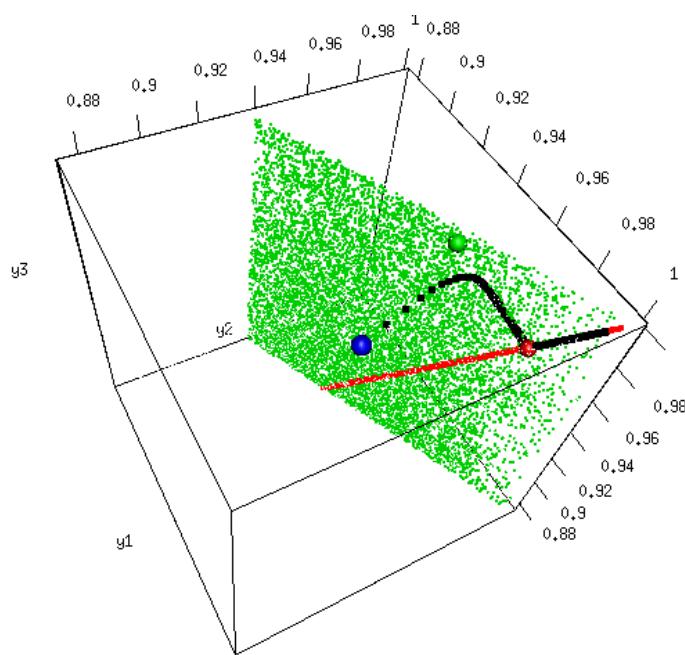
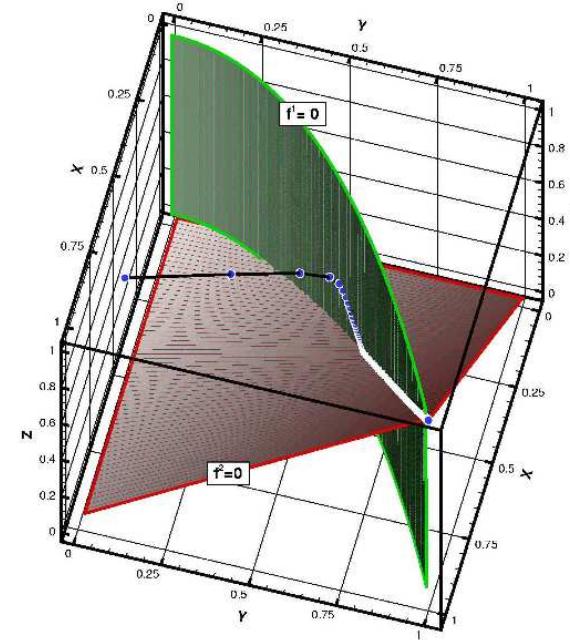
Manifold surfaces for $M = 1$ and $M = 2$



Manifold surfaces for $M = 1$ and $M = 2$



Manifold surfaces for $M = 1$ and $M = 2$



	Q_{m11}	Q_{m22}	Q_{m33}
$M = 1$	0.18	0.82	7.4E-04
$M = 2$	0.36	0.46	0.17

\Rightarrow CSP Radicals $\{ y_2 \}$

\Rightarrow CSP Radicals $\{ y_2, y_1 \}$

USING THE HOMOGENEOUS CORRECTION FOR ADAPTIVE TABULATION

Optimization Problem

Maximize model reduction $M = \operatorname{argmax} M^*$

Maximize size of hypercube $S = \operatorname{argmax} S^*$
subject to

- $S^* \in \{S_1, S_2, S_3, \dots, S_n\}$, where $S_1 > S_2 > \dots > S_{n-1} > S_n$
- $0 < M^* < N$
- Identical M^* CSP radical pointers and $N - M^*$ active species.
- Corrections computed with M^* do NOT take the state vector outside the hypercube
- After $n \leq 2$ corrections amplitudes vanish $f \approx 0$, and CSP tolerance errors are met
- goodness-of-fit statistics $\chi^2 < \chi^2_{max}$ for low order polynomial model of a_i and b^i , $i = 1, \dots, M^*$ w.r.t. $N - M^*$ active species.

Initialization

- Initial Hypercube $\{0, 0, 0\}$, $S = 1$
- Hypercube Sizes: $S = [1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}]$
- Goodness-of-fit statistics threshold $\chi^2 < 0.01$

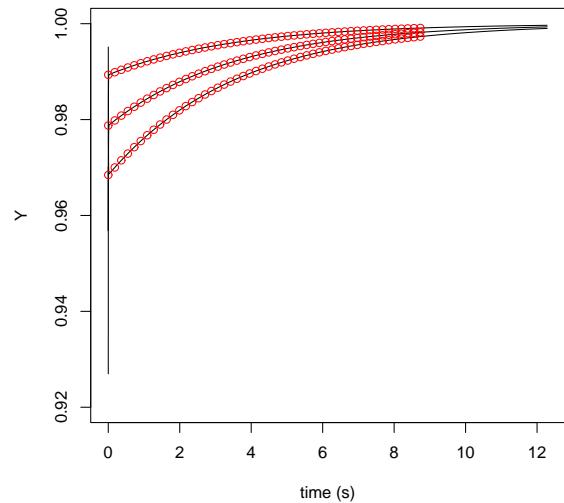
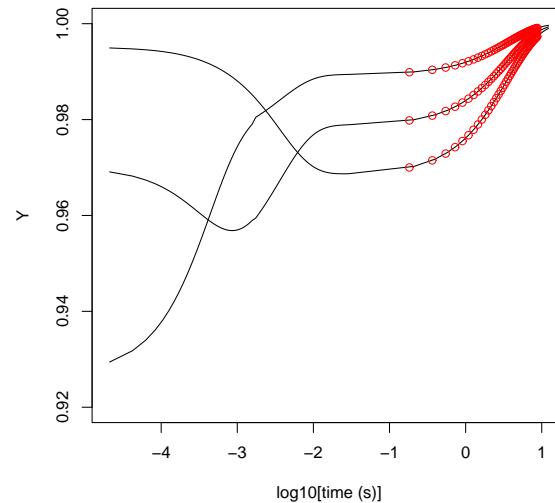
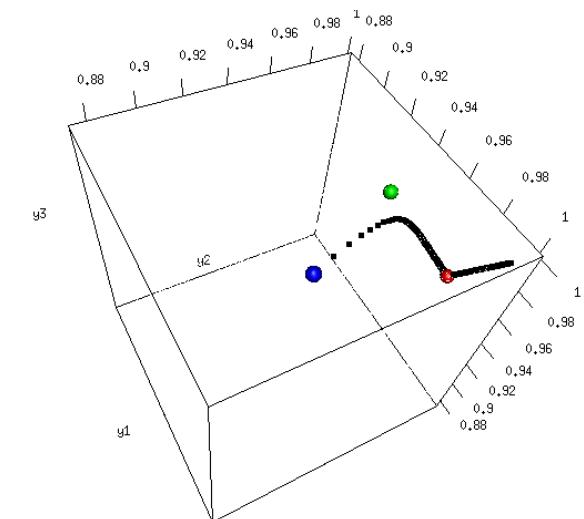
Generated Table Entry

- Hypercube: $\{0.875, 0.875, 0.875\}$, $S = 1/8$
- Number of fast and exhausted time scales $M = 2$
- Active species $Y_{N-M} = \{y_3\}$
- CSP radicals $Y_M = \{y_1, y_2\}$
- Response surface polynomial

$$\begin{bmatrix} \mathbf{a}_1^T \mathbf{a}_2^T \mathbf{b}^1 \mathbf{b}^2 \end{bmatrix}^T = \Theta \mathbf{X}$$
$$\mathbf{X} = [1 \ \log(y_3) \ (\log(y_3))^2]^T$$

INTEGRATION WITH TABULATED INFORMATION

After 2 homogeneous corrections:



- maximum error $< 0.2 \%$
- time integration step $O(3.8)$ seconds
- Computational cost comparison:
0.550 ms (full CSP) vs 40 ms (Tabulated CSP)

CONCLUSIONS

- The CSP homogeneous correction provides an efficient way to identify an SIM
- No need to resort to expensive trajectory calculations
- An effective dimensionality reduction is obtained ($N - M$ major species)
- Significant CPU savings can be achieved by skipping the fast dynamics and tabulating the CSP information