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OUTLINE OF PRESENTATION

➀ Background
➜ Computational Singular Perturbation (CSP) for Automatic

Simplification/Reduction of Chemical Kinetics Systems
➜ Reusing CSP Information Through Tabulation

➁ CSP Homogeneous Correction
➜ Slow Invariant Manifold Dimension
➜ Identification of Active Species and CSP Radicals

➂ Homogeneous Correction for Adaptive tabulation
➜ Partition of Chemical Composition Space
➜ Response Surfaces of CSP Quantities
➜ Construction of Local Slow Manifold Models

➃ Example: A 3-species kinetics Problem
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CSP ANALYSIS FOR MODEL REDUCTION /SIMPLIFICATION

➀ Addresses wide range of time scales in the dynamics of
chemical kinetics systems

➁ Automatic decomposition of fast and slow dynamics
➜ Fast dynamics constrain the system evolution to a lower di-

mensional manifold. Irrelevant, Expensive, Difficult
➜ Slow dynamics drive the system along the manifold

➂ Building a reduced model focusing on the subprocesses of the
slow scales let us
➜ describe the system as a function of fewer (active) species
➜ integrate the non-stiff system with efficient explicit one-

step algorithms
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state vector Y

Analytical Jacobian
Finite Differences, AD

jacobian of source term g(Y )

Eigenvalue Problem
or CSP Refinements

CSP vectors/covectors ai, bi, i = 1, . . . , N

time scales τi, i = 1, ..N

Identify
M exhausted modes

N − M active species

M -dimensional f (Y ) = 0,
(N − M)-dimensional non-stiff system, dY

dt
= gsimp (Y )
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➜ store and reuse CSP
information

➜ Based on PRISM1

• local response
surfaces

• hypercubes in CCS2

1 Piecewise Reusable Implementation of
Solution Mapping

2 Chemical Composition Space
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REUSE STRATEGY

based on the ability to store basic information from CSP analysis
and retrieve it when needed without expensive computations :

tabulate the CSP basis vectors/covectors using local –low-order–
polynomial response surfaces of the first M

➀ vectors a1, a2, . . . , aM and

➁ covectors b1,b2, . . . ,bM

as a function of the N − M active species

Equations of State YM = f (YN−M )

Non Stiff Model dY
dt

=
(

IN −

∑r=M

r=1
arb

r
)

× g(Y )
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MAIN CHALLENGES DURING TABLE CONSTRUCTION

➀ identification of the N − M

active species and M CSP

radicals
➁ identification of (N − M) di-

mensional manifold surfaces

in a N -dimensional space
➂ optimal size of hypercubes

for accurate local response
surfaces of the CSP quanti-

ties

Computing trajectories to identify the manifolds is very expensive
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THE CSP “H OMOGENEOUS CORRECTION”

brings the state vector y arbitrarily close to an (N − M)-dimensional

manifold where M fast scales exist

δy = −

∑M

m,n=1
amτm

n fn

where

➜ {fn = bn · g}M
n=1, non-vanished fast mode amplitudes

➜ g, right hand side (RHS) of ODE

➜ J, jacobian of RHS

➜ τm
n , inverse of λm

n

λi
j =

“

dbi

dt
+ biJ

”

aj
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Homogeneous Correction Computed with M = 1
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M = 1 y1 y2 y3 dy1/y1 dy2/y2 dy3/y3 f1

Initial 0.97003 0.92696 0.99514 -128.35270

1 HC 0.94726 0.97593 0.99401 0.02346 -0.05283 0.00113 2.41797

2 HC 0.94768 0.97504 0.99403 -0.00044 0.00091 -0.00002 0.00454

dy

dt
= a1f

1 + a2f
2 + a3f

3

Homogeneous Correction Computed with M = 1
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Homogeneous Correction Computed with M = 2
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M = 2 y1 y2 y3 dy1/y1 dy2/y2 dy3/y3 f1 f2

Initial 0.97003 0.92696 0.99514 -128.35269 -11.47343

1 HC 0.97782 0.99093 0.96854 -0.00804 -0.06901 0.02673 4.59536 -0.06144

2 HC 0.97876 0.98934 0.96844 -0.00096 0.00160 0.00010 0.00275 -0.00033

dy

dt
= a1f

1 + a2f
2 + a3f

3

Homogeneous Correction Computed with M = 2
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Manifold surfaces for M = 1 and M = 2
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Manifold surfaces for M = 1 and M = 2
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Qm11 Qm22 Qm33

M = 1 0.18 0.82 7.4E-04

M = 2 0.36 0.46 0.17

Manifold surfaces for M = 1 and M = 2

⇒ CSP Radicals {y2}

⇒ CSP Radicals {y2, y1}
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USING THE HOMOGENEOUS CORRECTION FOR ADAPTIVE TABULATION

Optimization Problem
Maximize model reduction M = argmax M∗

Maximize size of hypercube S = argmax S∗

subject to

➜ S∗ ∈ {S1, S2, S3, . . . , Sn}, where S1 > S2 > . . . Sn−1 > Sn

➜ 0 < M∗ < N

➜ Identical M∗ CSP radical pointers and N − M∗ active species.

➜ Corrections computed with M∗ do NOT take the state vector outside
the hypercube

➜ After n ≤ 2 corrections amplitudes vanish f ≈ 0, and CSP tolerance

errors are met

➜ goodness-of-fit statistics χ2 < χ2

max for low order polynomial model of

ai and bi, i = 1, . . . , M∗ w.r.t. N − M∗ active species.
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Initialization

➜ Initial Hypercube {0, 0, 0}, S = 1

➜ Hypercube Sizes: S = [1, 1

2
, 1

4
, 1

8
, 1

16
]

➜ Goodness-of-fit statistics threshold χ2 < 0.01

Generated Table Entry

➜ Hypercube: {0.875, 0.875, 0.875}, S = 1/8

➜ Number of fast and exhausted time scales M = 2

➜ Active species YN−M = {y3}

➜ CSP radicals YM = {y1, y2}

➜ Response surface polynomial

h

a1
T a2

T b1 b2

iT

= ΘX

X = [1 log (y3) ( log (y3))
2]T
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INTEGRATION WITH TABULATED INFORMATION

After 2 homogeneous corrections:
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➜ maximum error < 0.2 %

➜ time integration step O(3.8) seconds

➜ Computational cost comparison:

0.550 ms (full CSP) vs 40 ms (Tabulated CSP)
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CONCLUSIONS

➜ The CSP homogeneous correction provides an efficient way to

identify an SIM

➜ No need to resort to expensive trajectory calculations

➜ An effective dimensionality reduction is obtained (N − M major

species)

➜ Significant CPU savings can be achieved by skipping the fast
dynamics and tabulating the CSP information
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