

~~SECRET~~

UNCLASSIFIED

SPECIAL REREVIEW
FINAL DETERMINATIONThis document consists of 4 pages
and 1 figure.This is copy 9 of 12A

MONSANTO CHEMICAL COMPANY - UNIT III

MLM-26

Classification:

Unclassified

Category:

Signature: P. B. DowdDate: 2/17/80

PROGRESS REPORT

January 16-31, 1948

ELECTRODEPOSITION RESEARCH GROUPAbel, Bell, Orban, and RaiffABSTRACTSolubilities - Orban

The solubility of postum in various concentrations of nitric acid was determined at 25.4°C.

Hydrofluoric and Trifluoroacetic Acids - Abel and Raiff

Details of this work will be reported in the next Progress Report.

Conversion of Nitric Acid Solutions to Hydrofluoric Acid Solutions - Bell

Conversion of production solutions to hydrofluoric acid solutions was tried by precipitation with ammonium oxalate, aluminum hydroxide, ammonium hydroxide, and sodium carbonate. Silver and Teflon discs were used.

DETAILED REPORTSolubilities

The solubility measurements at 25.4°C. were made in a way similar to that described in the Progress Report of October 1-15, 1947.

Measurements of the heating effect of the activity in solutions were made. Table I shows the data.

Table I
Heating Effect of Postum

<u>Solution No.</u>	<u>Normality HNO₃</u>	<u>Bath Temperature</u>	<u>Solution Temperature</u>
8	0.1036	25.4° ± 0.03°C.	26.1°C
9	0.5046	"	26.1°
11	1.006	"	26.1°
6	1.595	"	26.1°
7	2.081	"	26.9°

Classification changed to UNCLASSIFIED
authority of Paul B. Dowd, Jr. 6/10/70
by Alberta V. Weidner, 7/10/70
Reviewed by C.W. Huntington 8/2/79

RECEIVED
OCT 11 1995
OSTI

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

~~SECRET~~ UNCLASSIFIED

-2-

Electrodeposition Progress Report

The concentration of postum in acid solutions is shown in Table II.

Table II

Solubility of Postum in Nitric Acid at 25.4°C.

Age of Solution (days)	Solubility in Units/ml. Acid Solution				
	0.1036N	0.5046N	1.006N	1.595N	2.081N
1	0.044	0.096	0.177	0.333	0.609
2	0.018	0.067	-	0.365	0.536
3	0.019	0.071	0.269	0.477	0.824
4	0.020	0.070	0.131	0.409	0.599
5	-	-	-	0.368	0.538
6	0.018	0.062	0.128	0.414	0.452
7	0.063	0.123	0.132	0.218	0.283
8	-	-	0.132	0.155	0.238
9	0.086	0.152	0.130	0.134	0.205
10	0.018	0.062	-	-	-
11	-	-	-	0.116	0.168
12	0.020	0.065	-	0.205	0.420
13	0.018	0.065	-	-	-
14	0.020	0.067	-	0.208	0.244
15	0.020	0.082	-	0.105	0.172
16	-	-	0.127	-	-
17	-	-	0.134	0.107	0.173
18	-	-	-	0.105	0.172
19	-	-	-	0.107	0.176
22	0.019	0.073	-	-	-
23	0.018	0.075	-	-	-
27	-	-	-	0.109	0.168

~~SECRET~~ UNCLASSIFIED

UNCLASSIFIED

Electrodeposition Progress Report

These data are shown graphically in Figure 1. As has been noted before, the change in solubility is very marked in the higher concentrations, and becomes less in the more dilute acid solutions. In the case of 1.595 normal and 2.081 normal nitric acid solution the change is so rapid that it is difficult to extrapolate to zero time. Before any conclusions are drawn it will be necessary to recheck the solutions. The solubilities, as obtained from the extrapolation, are shown in Table III.

Table III

Solubility of Postum

<u>Normality of Nitric Acid</u>	<u>Solubility of Q (Units/ml.)</u>	<u>Solution Temperature</u>
0.1036	0.019	26.1°C.
0.5046	0.072	26.1°C.
1.006	0.131	26.1°C.
1.595	?	26.1°C.
2.081	0.628 (?)	26.9°C.

Conversion of Nitric Acid Solutions to Hydrofluoric Acid Solutions - Bell

Continuing the attempt to find a satisfactory method of precipitating and filtering postum and bismuth from production solutions, in order to convert to hydrofluoric acid solution, the following experiments were run:

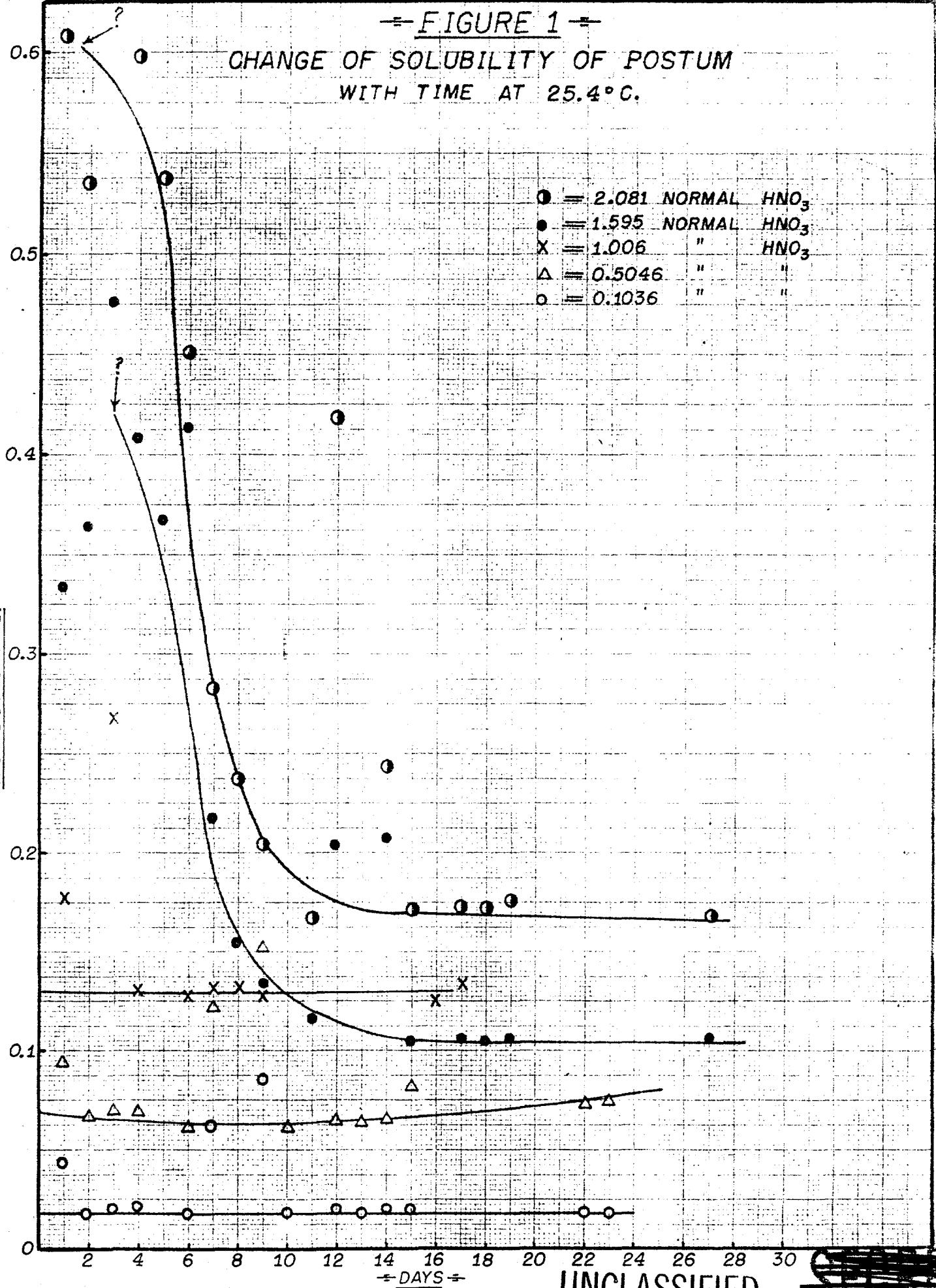
(1) Using a sintered silver filter (1/2 inch in diameter) 10 ml. of solution containing 0.0896 units was filtered after precipitation with ammonium oxalate. The filtrate was collected and assayed. The precipitate was dissolved in 1.5 N nitric acid and also assayed. Fifty per cent of the activity could not be accounted for, but it was found to have remained undissolved on the filter.

(2) Using the same silver disc, 0.092 units per 10 ml. was filtered through after precipitation in the presence of aluminum hydroxide using ammonium hydroxide (pH was adjusted to a value of 9). Most of the activity remained in solution.

(3) 0.0896 units/10 ml. was precipitated with sodium carbonate at a pH of 5. It was filtered twice through an 1/8 in. thick sheet of porous Teflon gasket material. Only a small percentage filtered through.

(4) A run similar to the previous one was made except that only one filtration was made.

UNCLASSIFIED ~~SECRET~~


~~SECRET~~ UNCLASSIFIED

- FIGURE 1 -

CHANGE OF SOLUBILITY OF POSTUM
WITH TIME AT 25.4°C.

● = 2.081 NORMAL HNO_3
● = 1.595 NORMAL HNO_3
X = 1.006 " HNO_3
△ = 0.5046 " "
○ = 0.1036 "

- UNIT POSTUM/ml. -

~~SECRET~~ UNCLASSIFIED

UNCLASSIFIED

Electrodeposition Progress Report

The results are compiled in Table IV.

Table IV

Precipitation of Postum in Various Media and Filtration Through
Silver and Teflon Discs

Run	Filter Disc	Total Activity	Precipitant	No. of Passes	% of Activity	
					in filtrate	in ppt.
1	Silver	0.0896	$(\text{NH}_4)_2\text{C}_2\text{O}_4$	1	6	94
2	Silver	0.092	$\text{Al}(\text{OH})_3$ NH_4OH	1	99.5	0.4
3	Teflon	0.0896	Na_2CO_3	2	0.6	99.2
4	Teflon	0.0896	"	1	0.7	96

An apparatus is being constructed which will permit production solutions to be precipitated, filtered, and the precipitate dissolved in hydrofluoric acid, all in a closed system. Porous Teflon will be used as the filter medium, and the production solutions will be precipitated with sodium carbonate solution.

Hydrofluoric Acid and Trifluoroacetic Acid - Abel and Raiff

Work on these acids will be reported on in the next Progress Report.

FUTURE PLANS

Details will appear in the next Progress Report.

Edward Orban

EO/rec

DISTRIBUTION:

1. - Unit III
2. - Unit IV
3. - Site Y
4. - Site Y
5. - Area Manager
6. - Area Manager
7. - Area Manager
8. - Author
9. - Central Files
10. - Central Files
11. - Central Files
12. - Central Files

UNCLASSIFIED ~~SECRET~~