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Executive Summary

Matrix diffusion and adsorption within a rock matrix are widely regarded as
important mechanisms for retarding the transport of radionuclides and other solutes
in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber,
1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003;
Reimus et al., 2003a,b). When remediation options are being evaluated for old
sources of contamination, where a large fraction of contaminants reside within the
rock matrix, slow diffusion out of the matrix greatly increases the difficulty and
timeframe of remediation. Estimating the rates of solute exchange between fractures
and the adjacent rock matrix is a critical factor in quantifying immobilization and/or
remobilization of DOE-relevant contaminants within the subsurface. In principle, the
most rigorous approach to modeling solute transport with fracture-matrix interaction
would be based on local-scale coupled advection-diffusion/dispersion equations for the
rock matrix and in discrete fractures that comprise the fracture network (Discrete
Fracture Network and Matrix approach, hereinafter referred to as DFNM approach),
fully resolving aperture variability in fractures and matrix property heterogeneity.
However, such approaches are computationally demanding, and thus, many predictive
models rely upon simplified models. These models typically idealize fracture rock
masses as a single fracture or system of parallel fractures interacting with slabs of
porous matrix or as a mobile-immobile or multi-rate mass transfer system. These
idealizations provide tractable approaches for interpreting tracer tests and predicting
contaminant mobility, but rely upon a fitted effective matrix diffusivity or
mass-transfer coefficients. However, because these fitted parameters are based upon
simplified conceptual models, their effectiveness at predicting long-term transport
processes remains uncertain. Evidence of scale dependence of effective matrix
diffusion coefficients obtained from tracer tests highlights this point and suggests that
the underlying mechanisms and relationship between rock and fracture properties are
not fully understood in large complex fracture networks. In this project, we developed
a high-resolution DFN model of solute transport in fracture networks to explore and
quantify the mechanisms that control transport in complex fracture networks and how
these may give rise to observed scale-dependent matrix diffusion coefficients. Results
demonstrate that small scale heterogeneity in the flow field caused by local aperture
variability within individual fractures can lead to long-tailed breakthrough curves
indicative of matrix diffusion, even in the absence of interactions with the fracture
matrix. Furthermore, the temporal and spatial scale dependence of these processes
highlights the inability of short-term tracer tests to estimate transport parameters
that will control long-term fate and transport of contaminants in fractured aquifers.



1 Introduction

Quantifying the long-term fate of contaminants in fractured rock is a challenging problem
with implications for nuclear waste storage (Reimus et al., 2003b; Hodgkinson et al., 2009)
and contaminant remediation in fractured aquifers (Dearden et al., 2013). Breakthrough
curves from field-scale tracer tests often exhibit early initial arrival times, multiple peaks,
and long power-law tails (Hoehn et al., 1998; Becker and Shapiro, 2000; Kurtzman et al.,
2007). Such breakthrough curves defy description using the classical advection-dispersion
equation. Early initial arrival of solute and multiple peaks can be explained by the presence
of a small number of preferential flow paths. Such flow paths occur within individual
fractures due to aperture variability and at the network scale due to interconnected,
high-transmissivity fractures. For conservative (non-sorbing) solutes, long-tailed,
non-Fickian breakthrough curves are often attributed to the influence of diffusion into the
porous rock matrix adjacent to fractures (Maloszewski et al., 2003; Reimus et al., 2003a).

In fractured rocks, matrix permeability is often negligible compared to fracture
permeability (e.g., smaller by several orders of magnitude). This results in a ‘dual porosity’
system in which the fractures serve as transport pathways and the matrix is an immobile
zone that solutes enter and exit by diffusion. Analytical solutions for dual-porosity single
fractures that include advection and longitudinal dispersion within the fracture and
molecular diffusion in the matrix provide a means of predicting breakthrough curves (e.g.,
Tang et al., 1981; Rasmuson and Neretnieks, 1981; Grisak and Pickens, 1981). Fitting
these analytical models to breakthrough curves measured during laboratory studies in
single fractures results in estimates of matrix diffusion coefficients (e.g. Callahan et al.,
2000; Maloszewski and Zuber, 1990; Dai et al., 2012). A characteristic of these
breakthrough curves is a power-law tail with a slope of —3/2.

Success with interpreting laboratory experiments using simple analytical models
motivated the use of these models for interpreting field-scale tracer tests (Zhou et al., 2007;
Reimus et al., 2011). These models also suggest that, in fractured systems where matrix
diffusion is prevalent, breakthrough curves for solutes with different diffusion coefficients
should exhibit distinct separation of the tails. Tracer tests using tracers with distinctly
different molecular diffusion coefficients in fractured saprolite (Jardine et al., 1999) and
fractured granite (Reimus et al., 2003a) both exhibited clear evidence of matrix diffusion.
A tracer test in a different fractured granite (Becker and Shapiro, 2000) exhibited a
long-tailed breakthrough curve that could be fit well by a single fracture matrix diffusion
model, but results showed no significant separation of breakthrough curves for different
solutes suggesting negligible influence of diffusive processes on the large-scale transport
behavior.

Zhou et al. (2007) presented calculations of matrix diffusion coefficients for field-scale
tracer tests carried out at scales ranging from 10 to 10* meters. Their results show that the
effective matrix diffusion coefficients required to explain the observations is scale dependent
and often many orders of magnitude larger than the molecular diffusion coefficient. These
results further support the idea that the non-Fickian behavior observed in tracer tests in
fractured systems cannot be completely attributed to matrix diffusion, and that advective



processes cannot be ignored.

Park et al. (2003) demonstrated that pressure gradients along the intersections of
parallel-plate fractures can lead to 'flow cells’ or advective loops within fractures in which
there is no net pressure gradient across the fracture. These advective loops result in
increased residence time of a fraction of solute as it travels through the system by
advection alone. These results suggest a potential mechanism for advection-induced
non-Fickian transport in fracture networks.

Recent efforts to incorporate both advective and diffusive processes into transport
models use different approaches for representing multiple interacting continua within the
fractured system (Wang et al., 2013). These models represent active fractures, inactive
fractures (e.g., fractures that are connected to the network but with no net advection), and
the porous matrix as distinct continua, each with transport properties that are
representative of the respective continuum. However, the models of transport within each
continuum require parameters to quantify the rates of transport and the rates of exchange
between interacting continua. Thus, though such models are capable of fitting observed
data, they do not provide a mechanistic prediction of transport through a complex system
consisting of multiple interacting continua.

A mechanistic approach, which directly represents advective and diffusive processes over
a broad hierarchy of length scales provides the ability to explicitly represent the transport
processes within the fracture network and quantify the relative influence of geometric
characteristics of a fracture network advective-diffusive transport processes. We use a
large-scale three-dimensional discrete fracture network to simulate transport through
fracture networks consisting of thousands of variable-aperture fractures. Because this
model explicitly represents transport mechanisms over the full range of length scales, it
requires no fitted mass transfer parameters and provides a means for directly relating the
behavior of measured breakthrough curves to the details of the fracture network.

2 Computational model development

To explore the influence of local transport processes on network-scale observations of solute
transport, we developed a high-resolution model of solute transport in discrete fracture
networks. The model explicitly represents the small-scale features (i.e., aperture
variability) and the physics that control fluid and solute transport within individual
fractures within networks consisting of tens of thousands of fractures and thus we call the
model Variable Aperture Solute Transport - Discrete Fracture Network (VAST-DFN)
model. This section describes the important components of the model and presents
highlights from our model evaluation process (full details are available in Zafarani (2013)).
This project focused on two-dimensional networks in which the individual links (or bonds)
in the network consisted of two-dimensional variable aperture fractures. This resulted in
three-dimensional flow fields that were similar in structure to numerous prior studies in
simple two-dimensional networks where the bonds were represented as one-dimensional
connections (e.g., Park et al., 2001).



Though our approach is generalizable to more complex network topologies, in this study,
we used 2D bond percolation networks (Broadbent and Hammersley, 1957) to define
fracture network connectivity. We first defined a regular lattice of nodes and then connect
each pair of neighboring nodes with probability Pn. Thus, for Pn = 1 this results in a
uniform fully connected lattice. The percolation threshold occurs at Pn ~ 0.5, which
means that for Pn < 0.5 it is unlikely that a connected path through the network will exist.
Figure 1 shows two samples of percolation network maps randomly generated by the model.
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Figure 1: Samples of bond percolation networks. The size of network is 128 x 128 and Pn=0.52 (right) and
Pn=0.6 (left) resulting in a maximum of 32768 fractures when Pn = 1.

We then extended the two-dimensional bond percolation networks to three dimensions
by extruding each bond in the z-direction to create two-dimensional fractures. Each
fracture includes small-scale aperture variability that represents observations of fracture
apertures in natural fractures (Brown et al., 1995). Figure 2 shows an example of a
variable-aperture discrete-fracture network, where the colors represent mean fracture
aperture in the network-scale image and local aperture variability in the expanded image of
two intersecting fractures.

Each fracture in the network consists of a synthetic correlated random aperture field
generated using an approach proposed by Brown (1995). The power spectrum of aperture

field is defined as: ( )
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where k is the wave number vector, H is the Hurst exponent, which is typically in the range
0.5 < H < 1, and A is a cutoff length scale. This functional form of (k) yields a smooth
transition from the power law behavior (|k| > 1//lambda) to the cutoff value (|k| < 1/)\),
which results in elimination of oscillations that occur with a abrupt cutoff. This
characteristic of random field is referred to as well behaved semivariograms, with the cutoff
value reflecting the length scale above which the two fracture surfaces are well matched.



Figure 2: Example of a variable aperture discrete fracture network. Fach fracture includes aperture vari-
ability as depicted in blown up segment of the network.

A=4Ax A=40Ax

Figure 3: Sample of variable-aperture fractures generated for A=4 and 40, where X is the cutoff length scale
associated with Eq. 1.

2.1 Flow model

Our computational model explicitly represents preferential flow within each fracture
induced by aperture variability. Thus, the basic building block for the model is a single
variable-aperture fracture. These single fractures are then connected at fracture
intersections such that mass and momentum are conserved throughout the fracture
network. Here we first present the single fracture model and then discuss how these single
fractures are linked within the discrete fracture network.

Flow through the three-dimensional void space between rough fracture surfaces is
governed by the Navier-Stokes equations:
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p<a—|—u~Vu>:F—Vp+,uV2u (2)
where p is the fluid density, F is the body force vector (per unit mass), p is pressure, y is
the fluid viscosity, and u is the velocity vector. The left-hand-side quantifies the
acceleration of a fluid parcel along its trajectory and the terms on the right-hand side
represent the sum of applied body forces, applied pressure gradient, and viscous forces. For



an incompressible fluid, mass conservation also dictates that:

V-u=0 (3)

In subsurface flows, gravity is the acting body force, so F = g, which can be combined
with p by defining P = p + pgz. Furthermore, for low-Reynolds-number flows, typical in
the subsurface, the acceleration (or inertial) terms can be neglected and the resulting
steady-state flow equation reduces to the Stokes equation:

VP = uViu (4)

For the case of a parallel-plate fracture, pressure gradients across the fracture aperture
(z-direction) reduce to zero and this equation simplifies to the Reynolds equation or local
cubic law :
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q= Vh (5)
where q is the flow rate per unit width through a segment of fracture with aperture b and
h = P/pg is the hydraulic head. We apply the local cubic law to calculate flow within
variable-aperture fractures by assuming that (5) holds locally despite variations in b.
Finally, mass conservation requires that:

V-q=0 (6)

Numerous studies over the past two decades have explored the appropriateness of (5) for
representing flows through variable-aperture fractures (e.g., Zimmerman and Bodvarsson,
1996; Nicholl et al., 1999; Yeo and Ge, 2005; Brush and Thomson, 2003). Though aperture
variability induces pressure gradients in the z-direction, Brush and Thomson (2003)
demonstrated through detailed comparisons with Navier-Stokes based simulations and
local-cubic-law simulations that (5) captures preferential flow patterns and bulk flow rates
reasonably well if Re < 1, Re(b)/\y < 1, and Reoy,/(b) < 1, where Re = pq/pu, (b) is the
mean fracture aperture, A\, and o, are the correlation length and standard deviation of
aperture variability.

We discretize fractures within a fracture network into square grid blocks with uniform b.
Applying (5) and (6) to variable aperture fractures requires an approximation for the
effective aperture between adjacent grid blocks with different aperture. We use the
harmonic average:
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Nicholl et al. (1999) compared simulations using a range of different approximations for
b} 12 and found this scheme resulted in the best agreement between simulations and
experimental observations.



Within individual fractures, boundary conditions can be applied around the edges of the
fracture. These are typically no-flow (i.e., Vh-n = 0, where n is a unit vector normal to
the boundary) or constant head boundaries. However, within a fracture network, many
fractures may not intersect a boundary, but will intersect other fractures within the
network. To represent fracture intersections, we define a connected line of grid blocks
within one of the intersecting fractures as intersection grid blocks. These grid blocks are
then connected to the neighboring grid block within each of the intersecting fractures and
continuity is enforced by specifying that """ | q; = 0 where n is the number of fractures
connected to the intersection grid block (Figure 4). This approach to discretizing the

Figure 4: Simple 4-fracture network with 4-way fracture intersection. In this case the intersection node
belongs to Fracture 0 (F0) and links are established between each of the neighboring fractures. Intersection
nodes (red) are connected to the corresponding grid block in each fracture (F0, F1, F2, and F4).

fracture network allows us to define a local coordinate system within each fracture with
communication between connected fractures only occurring at intersection nodes. Thus,
this approach is readily parallelized by assigning individual fractures to individual
computational processes and establishing communication between processes only at
intersection grid blocks. Using Message Passing Interface (MIP), we parallelized this
algorithm following an approach originally proposed by (Detwiler et al., 2006). At the
fracture-network scale, we impose either constant A or no-flow boundaries and develop a
system of equations that we solve implicitly for h throughout the entire fracture network.
We then use (5) with the calculated values of & to calculate q throughout the fracture
network, which is then used as input to large-scale solute transport simulations.

2.2 Solute Transport Model

Transport within fractured rock mass is governed by the three-dimensional
advection-diffusion equation:

% +u-Ve= D,V (8)



where c¢ is the solute concentration and D,, is the molecular diffusion coefficient. We
simplify this problem by neglecting advective transport in the rock matrix such that
advection occurs only through the variable-aperture fractures. Though we do not explicitly
solve for the three-dimensional velocity field within each fracture, u, a reasonable
approximation is to assume a parabolic velocity profile between the fracture surfaces, with
the local average velocity defined as t = q/b. This assumption is consistent with the
assumption of negligible z-direction pressure gradients used to develop the flow model and
is, thus, likely subject to similar constraints. The resulting quasi-three-dimensional velocity

field is then: 5
u= 5(1 —42%)0 (9)

where —b/2 < z < b/2.

Rather than develop an Eulerian discretization of (8), we use a Lagrangian approach
that tracks particles subjected to advective and diffusive displacements within each time
step as they travel through the interconnected fractures. When a particle enters the rock
matrix by diffusion, the residence time in the rock matrix is described by an appropriate
probability density function (described below). The particle-tracking approach has two
primary advantages: 1) it does not introduce numerical diffusion, which is a persistent
challenge with Eulerian solutions to advective processes and 2) it is able to quantify the
impact of low-velocity, low-probability pathways through the fracture network on solute
breakthrough curves.

Each three-dimensional particle displacement step is calculated as:

Ax = uAt + w+/2D,, At (10)

where w is a three-dimensional vector of random numbers drawn from a Gaussian
probability density function with zero mean and unit variance. We use bilinear
interpolation to estimate local velocities between grid-block faces.

2.2.1 Transport within fractures

Adaptive time stepping ensures that particles do not experience large velocity gradients
during any single displacement. Velocity gradients occur in the fracture plane due to
aperture variability and across the fracture aperture due to the imposed parabolic velocity
profile. Thus, two criteria are needed to determine each time step, one that limits the
displacement across the fracture aperture to a small fraction of the fracture aperture and
one that limits displacements in the z-y plane to a fraction of a grid block.

Reimus and James (2002) noted that by defining a constraint on diffusive time steps,
many diffusive displacements may be arbitrarily small. They thus developed a time-domain
approach that rather specifies a fixed displacement and then selects the corresponding time
step from a probability density function (pdf) of travel times. They simplified the resulting
series solution by developing an empirical relationship for the resulting pdf. We apply this



approach by defining a maximum z-displacement of 0.05b, which results in a diffusive time

step of:

0.05)>
Aty = 0.376(D—) exp[0.787 - W] (11)

where w is a zero-mean, unit-variance, normally-distributed random number.

We then select a maximum displacement in the x — y plane of 0.5Ax, where Ax is the
grid spacing, which results in an advective time step of:

At, = [u

" 0.5Azx (12)

The time step for each displacement is then selected as min(At,, Aty).

The transport model outlined to this point provides a means for tracking particles
through individual rough-walled fractures and has been demonstrated to capture
fracture-scale transport processes reasonably well (e.g., Detwiler et al., 2000). However,
simulating transport through a fracture network requires an approach for routing particles
through fracture intersections. Previous efforts to simulate transport through fracture
intersections have assumed either complete mixing within the fracture intersection (Smith
and Schwartz, 1984) or stream tube routing (Endo et al., 1984; Hull et al., 1987). In the
case of complete mixing, the intersection acts as a mixer such that all fluid leaving the
intersection has the same solute concentration, whereas stream tube routing assumes zero
mixing within the intersection and assigns mass fluxes leaving the intersection as
corresponding weighted averages of the incoming fluxes. High-resolution simulations using
direct solutions to the Stokes equations through idealized fracture intersections (Mourzenko
et al., 2002) show that the mixing that occurs within the fracture intersections is
dependent upon the Peclet number (Pe = q/D,,). The amount of mixing ranges from
complete mixing in the diffusive limit (Pe — 0) to streamtube routing (Pe — 00).
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Figure 5: Mixing ratio at fracture intersections for Pe ranging from the diffusive limit (left side) to the
advective limit (right side). Our newly proposed time-domain random walk approach accurately represents
the Pe-dependent behavior observed in our high-resolution, Navier-Stokes-based benchmark simulations.

In order to represent the range of intersection mixing observed in these studies in our
network-scale solute transport model, we developed an efficient approach for routing
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particles through each intersection that does not require explicit calculation of the velocity
field within the fracture intersection (Zafarani and Detwiler, 2013). The model uses a
time-domain random walk approach and idealized representations of the velocity field
within the fracture intersection to determine the path of particles through a fracture
intersection in a single step. We evaluated the intersection mixing model by comparing
simulation results to high-resolution mechanistic simulations in which we solved the Stokes
equations for different intersection geometries and transported particles through the
intersection. Calculated mixing ratios, M, = for 1072 < Pe < 10* exhibit excellent
agreement over the entire range indicating the robustness of our new intersection transport
model (Figure 5).

2.2.2 Transport within the rock matrix

Diffusive particle displacements perpendicular to the fracture plane occasionally result in
particles intersecting the fracture surface. At each of these events, the probability that the
particle enters the fracture matrix is given by:

Pmatri:r; = (b Dme (13)
VD + ¢V Die

where D,,. is the effective diffusion coefficient in the rock matrix and ¢ is the rock porosity.
Once a particle enters the matrix, it is necessary to calculate both the time spent in the
matrix before reentering the fracture and the displacement, Ax of the particle in the x-y
plane of the fracture. To calculate the residence time within the rock matrix we
approximate the fracture surface as a plane and select the first arrival time at the plane
from the probability density function:

Az?
Atatriz = m (14)

where Az, is the distance into the matrix from the fracture surface, or the endpoint of the
previous displacement of magnitude Az, which is given by:

AZO _ \/Dme(At - Atfracture) (15)

D, At
where At ¢,qcture 1 the portion of the previous time step spent in the fracture. The location

at which the particle reenters the fracture can then be drawn from a probability density
function representing the two-dimensional diffusion equation:

AX = W/ 2D, At yatriz (16)

where w is a vector of zero-mean, unit-variance random numbers.
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3 Summary of major results

We carried out parametric studies in large-scale fracture networks to explore the influence
on network-scale transport behavior of: i) aperture variability within individual fractures;

ii) configuration of solute injection; and iii) measurement scale. Following is a summary of
key findings from these studies.

We selected network properties to reflect the field-scale tracer tests reported by (e.g.,
Zhou et al., 2007) and used small-scale aperture variability consistent with measurements
of Brown (1995). We used values of percolation number, Pn, ranging from the percolation
threshold to a uniform lattice. We generated correlated random aperture fields with
H =0.8,b=3x 107" (m), cutoff lengths of A= 4Ax and 40A and standard deviation of
0 =6.0x 107 (m). In each case we also considered the case of uniform fractures (o = 0)
to directly assess the effect of small-scale aperture variability on network-scale transport
processes. Simulations proceeded for a total time of 50 years.

In addition, we tested two source configurations: (1) point source injection and (2)
uniform concentration in the inflow boundary fractures. These conditions represent
idealizations of a localized tracer test in which solute is introduced into a single fracture
and release of a contaminant over a larger area, which is an idealization of a typical
contaminant source zone. For the point source injection we initialized particles in a single
fracture and flux weighted their locations across the width of the fracture to represent a
uniform concentration. We chose the fracture for injection to coincide with flux-weighted
middle of the inlet boundary of the fracture network, so that injected particles are
hydraulically equidistant from the two no flow boundaries located on top and bottom of
the network (Figure 6).
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Figure 6: Cross-sections of fracture networks at different values of Pn. The color scale represents the
mean flow velocity through each fracture on a logarithmic scale. Gray regions indicate fractures that are
hydraulically connected to the boundaries but have a mean velocity of zero.

The distribution of flow rates exhibited a strong dependence on the connectivity of the
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network (Figure 6). Purple regions indicate preferential pathways through the network
where mean velocities are significantly larger than in the remainder of the fractures in the
network. These fractures lie on pathways that are hydraulically well connected to the
constant-head boundaries on the left and right of each network. For Pn = 0.8 the purple
fractures are largely aligned with the mean flow direction (left to right), but as Pn
decreases, the preferential pathways become more tortuous. In addition, the secondary flow
loops (light blue regions) become longer an more circuitous; at large Pn the secondary
loops largely connect adjacent fractures where there is a small local gradient perpendicular
to the regional gradient. When Pn decreases, the secondary loops largely connect to two
different locations along one preferential pathway, where flow is driven through the
secondary pathway (which is much longer than the preferential pathway) by the same local
gradient. The gray regions indicate fractures that are hydraulically connected to the
boundaries, but have a net flow of zero. In many studies of transport through fracture
networks, such connected but inactive fractures are removed from the network to improve
computational efficiency. Indeed in a two-dimensional fracture network this is reasonable
because there is no driving force for flow through these dead-end fractures.

In three-dimensional fracture networks, aperture variability within individual fractures
leads to local pressure gradients along fracture intersections. The result is that, even
though the net flow through the fracture may be zero, the possibility for advection in and
out of these no-flow regions exists. Figure 7 demonstrates this through an enlargement of
the intersection of two fractures on the preferential flow path [1], a secondary fracture [2],
and a dead-end fracture [3].
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Figure 7: An example simulation highlighting key transport mechanisms in a variable-aperture fracture
network. The figure shows fracture aperture (left) and flux with particle trajectories (right) and highlights
three distinct transport regimes in the network: (1) Network-scale preferential flow paths; (2) Secondary
loops that consist of connected fractures with non-zero flow; and (3) Dead-end fractures that are hydraulically
connected to the boundaries on one end and thus have zero net flow. Advective loops in the are disconnected
fracture caused by pressure gradients along the fracture intersection entrain particles into these dead-end
fractures.
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In the dead-end fracture [3], there is a sequence of advective loops that decrease in
magnitude as the source and sink of the respective loops become further apart. Thus, these
loops provide a localized scale-dependent mechanism for causing solute to enter and
'no-flow’ fractures as can be seen by the white lines highlighting particle trajectories.
Furthermore, because the velocities in these dead-end fractures are typically orders of
magnitude less than those in the preferential and secondary fractures, diffusion contributes
more significantly to transport than it does in the higher velocity flow paths.

Transport of particles into dead-end fractures leads to a significant increase in residence
time for a fraction of the particles. Figure 8 shows breakthrough curves measured at the
right-side boundary for particles released as a point source on the left-side boundary for
networks consisting of fractures with different amounts of aperture variability. For
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Figure 8: Breakthrough curves for four different network realizations. For each network realization, the
network was populated with three different types of fractures: i) parallel-plate; ii) variable aperture with
A = 4Ax; and iii) variable aperture with A = 40Axz.

networks consisting of parallel-plate fractures, pressure gradients along fracture
intersections are nonexistent such that the results are identical to what would be predicted
for a two-dimensional network. For the network with Pn = 0.8, the parallel-plate network
results in near-Fickian behavior, while increasing aperture variability for the same network
geometries leads to a significant increase in tailing. The breakthrough-curve tails exhibit
slopes of about -3/2 as expected for the case of transport through fractures with matrix
diffusion, but for these simulations D,,. = 0 and ¢ = 0 so there is no interaction with the
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rock matrix. Thus, these results show that simply adding local aperture variability causes
the transition away from a Fickian dispersion process. As the fracture networks become
more sparse, the influence of aperture variability on the breakthrough curves becomes less
significant and inter-realization variability increases, but the long-time behavior is
consistent, in that the breakthrough-curve tails have a similar slope to that observed for
the variable-aperture Pn = 0.8 networks.
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Figure 9: Trajectory of particles through networks with different values of Pn. The color scale reflects the
relative number of particles that passed through each fracture in the network. The left-hand column used a
point source injection of the particles and the right-hand column used a uniform flux-weighted source along
the left-hand boundary through the same network. During these simulations, breakthrough curves were
recorded at multiple distances from the source (Figure 10).

The length scale at which travel times are recorded and the type of source both
influence interpretation of measured breakthrough curves. Figure 9 shows particle
trajectories through a set of fracture networks with different values of Pn. For the case of
Pn = 0.8 the tracer plume appears fairly uniform as one might expect from a Fickian
dispersion process. However, as noted above, due to local aperture variability, the resulting
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breakthrough curves are non-Fickian. As Pn and the connectivity of the network
decreases, the tracer plume becomes more irregular and focused through a smaller number
of preferential flow paths. In addition, particles are increasingly exposed to regions
identified as secondary loops and dead-end fractures (Figure 6). The resulting
breakthrough curves exhibit scale dependence and, to a lesser extent, a dependence upon
the type of boundary condition (Figure 10). At short length scales, the breakthrough
curves exhibit multiple peaks at early time and a -3/2 slope characteristic of matrix
diffusion. However, as the distance from the source plane increases, the initial peaks in the
breakthrough curves become smoother because particles have the opportunity to sample
more fractures with a broader range of mean velocities. In addition, in all cases, at larger
scales, the power-law slope of the breakthrough-curve tails increases. This effect is more
pronounced for the point source simulations.
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Figure 10: Breakthrough curve results for a network with P=0.52 are shown for distances from source
(D.F.S) ranging from 2 to 128 meters. Solid line indicates slope 3/2 (log-log scale), which is suggested as
indicator of matrix diffusion in fracture networks. Point source injection results in closer distances from
source shows slopes close to —3/2. Results of uniform injection (left) and point source injection (right) show
key differences in slope in small scale, while In larger scales their slope converges to the same value.
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4 Conclusions

During this project, we developed and tested a model of variable-aperture solute transport
in discrete fracture networks (VAST-DEN). The model is parallelized to allow direct
simulation of small-scale transport processes in fracture networks consisting of O(10°)
fractures spanning 100s of meters. The model includes diffusion into the rock matrix, but
our results to date have focused on the transport processes occurring within the fractures.
In addition, we developed a new particle-tracking-based approach for simulating solute
transport through fracture intersections. The model predicts the Pe-dependent nature of
transport through intersections without the need for high-resolution calculation of the
velocity field within the fracture intersections. This allows a rigorous representation of
fracture intersections in large-scale fracture networks where high-resolution calculation of
the velocity fields within each intersection is not computationally feasible.

We used simulations in a series of large-scale fracture networks with characteristics
(length scale, fracture connectivity, aperture variability) representative of previously
reported field-scale tracer tests (Zhou et al., 2007) to explore the mechanisms responsible
for observations of scale dependence of parameters fitted during tracer tests. Our results
show that small-scale aperture variability can lead to enhanced tailing of breakthrough
curves even in the absence of matrix diffusion. These results provide a mechanistic
explanation for the observed scale dependence of fitted effective matrix diffusion coefficient
and highlight the importance of developing upscaled models that effectively represent the
mechanisms that lead to long-tailed breakthrough curves: (i) diffusion in and out of the
rock matrix; (ii) advection-driven transport in and out of dead-end fractures; and (iii)
advective transport within secondary flow channels.

Though the simulations carried out during this project involved somewhat idealized
fracture networks, we still observed the scale-dependent, non-Fickian dispersion commonly
observed in field-scale data. Thus, these simulations present an important step towards
developing a mechanistic basis for upscaled models of solute transport in large-scale
fracture networks. However, the ability to represent a broad range of network topologies is
clearly necessary to fully realize the connection between the mechanisms controlling
transport through fracture networks and field-scale observations. An outstanding question
is the role of fracture intersections in transport processes. Our three-dimensional networks,
generated by extruding a two-dimensional network in the third dimension, result in
regional pressure gradients that are always perpendicular to the fracture intersections. In
the other limit, in which pressure gradients are parallel to fracture intersections, the
influence of fracture intersections will be quite different as the intersections will become
localized preferential flow paths. Our modeling approach provides a mechanistic approach
to explore the influence of this transition in more complex network geometries.

This project was part of a collaboration with the University of Colorado, Boulder where
they developed robust upscaled models of solute transport through single fractures. During
this project, we began integrating their upscaled model into our discrete fracture network
model. Using the upscaled approach, it is unnecessary to explicitly represent
three-dimensional transport within each fracture, which greatly enhances the
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computational efficiency of the model with no measurable degradation in the accuracy of
the simulation results. As a result, this upscaled approach promises to allow field-scale
simulations in discrete fracture networks at a fraction of the computational run times
required for our high-resolution model.
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this project
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Zafarani, A. and Detwiler, R. L. (2013). An efficient time-domain approach for
simulating pe-dependent transport through fracture intersections, Advances in
Water Resources, 53:198-207.

Zafarani, A. and Detwiler, R. L. (to be submitted). Solute transport in discrete
fracture networks: The role of small-scale aperture variability on network-scale
transport processes, Water Resources Research.

Zafarani, A. (2013). High-Resolution Analyses Of Anomalous Transport In
Large-Scale Variable-Aperture Discrete Fracture Networks. PhD thesis,
University of California, Irvine.

Presentations

Zafarani, A. and Detwiler, R. L., American Geophysical Union Fall Meeting, ” Solute
transport in three-dimensional variable-aperture discrete fracture networks,” San
Francisco, California. (December 3, 2012 - December 7, 2012).

Zafarani, A. and Detwiler, R. L., American Geophysical Union Fall Meeting, ” Solute
transport through fracture intersections: An efficient time-domain random-walk
algorithm,” San Francisco, California. (December 5, 2011 - December 9, 2011).

Detwiler, R. L. and Zafarani, A., Engineering Mechanics Institute 2010, ” Numerical
modeling of solute transport at fracture intersections,” University of Southern
California, Los Angeles, California. (August 8, 2010 - August 11, 2010).
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