

SciDAC-2 PERI 1 FY10 annual report

Performance Engineering Research Institute
SciDAC-2 Enabling Technologies Institute

Final Report
Investigators

Lead investigators from the original PERI consortium:
Argonne National Laboratory Paul Hovland and Boyana Norris
Lawrence Berkeley National Laboratory David Bailey and Kathy Yelick
Lawrence Livermore National Laboratory Bronis de Supinski and Dan Quinlan
Oak Ridge National Laboratory Pat Worley, Jeff Vetter and Phil Roth
Rice University John Mellor-Crummey
University of California at San Diego Allan Snavely
University of Maryland Jeff Hollingsworth
University of North Carolina Rob Fowler
University of Southern California Bob Lucas and Jacqueline Chame
University of Tennessee at Knoxville Jack Dongarra and Shirley Moore
University of Utah Mary Hall

Other investigators who have received funding via PERI in FY2010:
North Carolina State University G. Mahinthakumar

I. Introduction

This document reports on work performed by the Performance Engineering Research Institute
(PERI), an Enabling Technologies Institute of the SciDAC-2 program of the Department of En-
ergy’s Office of Science (DOE-SC). Since Utah PI Mary Hall led the autotuning effort, this re-
port focuses on the Utah contributions to PERI.

Enhancing the performance of SciDAC applications on petascale systems has high priority within
DOE SC. As we look to the future, achieving expected levels of performance on high-end com-
puting (HEC) systems is growing ever more challenging due to enormous scale, increasing archi-
tectural complexity, and increasing application complexity. To address these challenges, PERI
has implemented a unified, tripartite research plan encompassing: (1) performance modeling and
prediction; (2) automatic performance tuning; and (3) performance engineering of high profile
applications. The PERI performance modeling and prediction activity is developing and refining
performance models, significantly reducing the cost of collecting the data upon which the models
are based, and increasing model fidelity, speed and generality. Our primary research activity is
automatic tuning (autotuning) of scientific software. This activity is spurred by the strong user
preference for automatic tools and is based on previous successful activities such as ATLAS,
which has automatically tuned components of the LAPACK linear algebra library, and other re-
cent work on autotuning domain-specific libraries. Our third major component is application en-
gagement, to which we are devoting approximately 30% of our effort to work directly with Sci-
DAC-2 applications. This last activity not only helps DOE scientists meet their near-term per-
formance goals, but also helps keep PERI research focused on the real challenges facing DOE
computational scientists as they enter the Petascale Era.

During the project, the original PERI consortium of ten institutions has been augmented with ad-
ditional researchers, either via subcontracts or because the researchers changed institutions and
their funding has followed. Inasmuch as these participants make significant contributions to the

SciDAC-2 PERI 2 FY10 annual report

overall PERI goals and are now being funded directly or indirectly through PERI, we have in-
cluded them in this report.

Accomplishments

As mentioned above, PERI has three primary activities: (a) application performance modeling,
(2) automatic performance tuning, and (3) application engagement. A brief overview of accom-
plishments in each of these areas is presented below. This is followed by a brief discussion of
other activities, such as management and outreach to others in the performance community. This
report is a summary of the overall progress of the PERI effort towards autotuning. PERI project
reports cover the remaining activities.

II. Automatic Performance Tuning
In the area of automatic performance tuning, PERI researchers are developing whole program
analyses that facilitate optimizations spanning multiple kernels, files, and procedure boundaries.
This work utilizes autotuning techniques on significantly larger scales than individual kernels,
and is targeted at full-scale SciDAC applications. The principal research focus involves scaling
and generalizing the techniques developed for kernel-level optimization and in leveraging work
elsewhere within PERI to identify opportunities for improvement and then generate viable search
strategies. As an outgrowth of collaborations with SciDAC application teams, we are defining
additional analysis and transformation support required to meet the needs of SciDAC application
developers. Architectural targets include utilizing SIMD compute engines such as SSE-3, pre-
fetch into cache, and managing multiple cores. In addition, PERI personnel are developing trans-
formations for specific application classes such as stencil computations, and specialization for
known problem sizes. A number of transformation mechanisms are being explored to simplify the
development of application-specific transformations. This work will result in a library of trans-
formations that are easy to specify and compose to create custom transformations. Mary Hall of
Utah is leading the PERI automatic performance tuning activity.

Autotuning Tool Integration
Within PERI, several different research groups are developing autotuning tools to address the
challenges of automatic performance tuning. These projects, many of which have benefitted from
years of DOE investment, have complementary strengths and can, therefore, be brought together
to develop an integrated autotuning system. Towards that end, PERI researchers are working to
develop a common framework to allow autotuning tools to share information and facilitate com-
position into the most appropriate set of tools for a particular application. Through common ap-
plication programming interfaces (APIs), they are creating an autotuning system that brings to-
gether the best capabilities of each of these tools. They anticipate that such a strategy will also
engage the broader community of tool developers beyond PERI researchers.

PERI researchers have focused their development of interfaces on two portions of the autotuning
process. Any compiler-based approach will apply code transformations to rewrite application
code from its original form to a form that more effectively exploits architectural features such as
registers, caches, SIMD compute engines, and multiple cores. Commonly used code transforma-
tions include loop unrolling, blocking for cache, and software pipelining. Thus, researchers are
designing a transformation API that is input to the Transformation box in Figure 1. This API pro-
vides a transformation recipe that describes how to transform original source into an optimized
source representation.

By accepting a common transformation recipe, the autotuning system permits code transforma-
tion strategies derived by PERI compilers and tools (or users) to be implemented using any trans-
formation and code generation tool, such as CHiLL (USC/ISI, Utah and Argonne), the ROSE
LoopProcessor (LLNL), and POET (UTSA). The API supports the specification of unbound

SciDAC-2 PERI 3 FY10 annual report

transformation parameters that are then tuned using search algorithms. The initial API includes a
naming convention for specifying language constructs in source code and code transformations
available in CHiLL and ROSE/POET. Researchers have published two papers describing trans-
formation recipes [Hall2009][Rudy2010]. The first paper, a collaboration between University of
Utah, USC/ISI and Argonne researchers, describes an API that attempts to generalize concepts
derived from the PERI team into a common recipe that can be the input/output of different PERI
tools. The second paper, produced in collaboration between University of Utah and USC/ISI,
raises the level of abstraction for this framework and offers a programming language interface for
developing libraries of optimization strategies. Such optimization libraries can be programmed
by compiler experts, and then made available to application developers, thus providing a high-
level interface to the compiler code generation and transformation and the auto-tuning frame-
work.

A search API provides input into the empirical optimization process by running experiments on
actual hardware to determine the best optimized implementation. The search API allows the
autotuning tools to exchange information about their available tuning options and constraints on
the search space, and to plug-in different search algorithms. The common framework will sup-
port both autotuning using training runs (and re-compilation) along with continuous optimization
during production runs. The search API, led by the UMD team, permits autotuning systems to
exchange information about their available tuning options, constraints on the search space, and to
plug-in different search algorithms. The common framework supports both automatic tuning us-
ing training runs along with continuous optimization during production runs.

Figure 1: PERI automatic tuning workflow.

PERI work in autotuning has focused on the integration of several PERI tools. Researchers at
UTK have integrated autotuning search (described below) with the ROSE LoopProcessor (LLNL)
and the POET code generator (UTSA). Similarly, an initial integration of UMD’s Active Har-
mony system and the CHiLL transformation framework developed and supported by researchers
at USC/ISI, Utah and ANL is providing experience in how to integrate these separate tools effec-

SciDAC-2 PERI 4 FY10 annual report

tively into an autotuning system. Through the APIs and substantial coordination activities, PERI
researchers are now focused on more extensive integration of end-to-end tools applied to com-
plete applications. At the mid-term review, researchers described how this integrated set of tools
was applied to SMG2000. Later in the project, they applied these tools to PFLOTRAN as part of
the Tiger Team activity [Chame2011]. Inspired by this effort, a University of Utah Masters pro-
ject looked at specialization and autotuning of PETSc in the context of three applications,
PFLOTRAN and two others [Ramalingam2012a] [Ramalingam2012b]. Most of the remainder of
this section describes work on PFLOTRAN, PETSc, and the research activities being carried out
by the PERI groups, and where relevant, integration activities between the tools.

Autotuning of PFLOTRAN
PFLOTRAN is a DOE application developed at LANL that models multiscale-multiphase-
multicomponent subsurface reactive flows. PFLOTRAN uses the PETSc library as the basis of
its parallel framework. As shown in Figure 8, PERI researchers integrated tools that included the
work of several PERI institutions to perform auto-tuning of key computations in PFLOTRAN. A
code triage phase examines the original PFLOTRAN code to identify the key computations. We
use HPCToolkit, which in turn uses PAPI, to collect performance monitoring information and
map it back to the application code structures.

Using HPC Toolkit (Rice) and the Cray PAT tool, researchers at North Carolina State, Rice and
ORNL identified three main computations in PFLOTRAN as candidates for optimization: a
PETSc routine that computes a matrix-vector multiplication (MatMul_SeqBAIJ_N); a PETSc
function that solves the system A x = b, given a factored matrix A, (MatSolve_SeqBAIJ_N); and
a routine that calculates the contribution of aqueous equilibrium complexity to the residual and
Jacobian functions for Newton-Raphson (RTOTAL). These two PETSc functions comprise 17%
of execution time, and 6-7% of the computation is spent in a single loop nest computation of
RTOTAL; all functions achieve only between 4 and 5% of peak on a node on Jaguar.

In a collaboration between USC/ISI, Utah and UMD, PERI researchers performed autotuning of
MatSolve_SeqBAIJ_N, which performs a forward and a backward solve, and uses a blocked
compressed row representation for matrix A. The block size N is a parameter, but instrumenttion
data shows that during production runs the block sizes are small numbers, up to 15. As previous
work by the Utah, USC and ANL has shown [Shin2010], the performance of matrix computations
with small matrix sizes is very sensitive to optimization parameters such as loop unroll factors
and tile sizes. When combined with specialization, a compiler technique for generating highly
optimized code for known problem sizes, we can achieve better performance than most high per-
formance libraries. The auto-tuning team used CHiLL to generate specialized code versions for a
particular block size, and ActiveHarmony to search for the best performing version. Our experi-
ment used four different compilers available on Jaguar, and evaluated performance as a function
of unroll factors for the inner loops. PERI researchers compared results using Active Harmony
and an exhaustive search of a search space consisting of more than 1100 points. The results are
shown in Table 1. The original performance varies significantly by compiler, but the best
speedup and best overall performance was obtained with the Pathscale compiler, demonstrating a
1.8x performance gain with Active Harmony and a 1.9x performance gain using exhaustive
search. UMD and Utah are currently working on replacing this code in the full PFLOTRAN ap-
plication. USC/ISI is currently working on the performance optimization of the backward solve
targeting the Cray XT5 at ORNL (Jaguar).

SciDAC-2 PERI 5 FY10 annual report

Table 1. Auto-tuning results for forward solve from triangular solve library,

using CHiLL and Active Harmony.
In a collaboration between Argonne, Utah and UMD, we performed auto-tuning for the PETSc
routine MatMul_SeqBAIJ_N. Like the previous example, the code was specialized for block
sizes of N=15 or a multiple of 15 (15x105,15x90,15x75, 15x60). Performance gains were up to
1.5X on a single node of Jaguar using the PGI compiler.

In addition to these two PETSc kernels, we also optimized the RTOTAL function from
PFLOTRAN. Early pathfinding and hand optimization by ORNL researchers revealed a collec-
tion of optimizations that would improve the performance of the loop from this code in which the
application spent 6% of its time. The loop consisted of inner loop nests with a variable ncomp
used to establish the number of loop iterations. By analyzing instrumentation data, we discovered
that the value of ncomp was usually very small, between 2 and 4. By specializing the code for
specific values of ncomp and aggressively unrolling the inner loop nests, we can achieve speed-
ups ranging from 1.32X to 1.52X using CHiLL, or up to 1.8X with additional manual optimiza-
tions to remove recurrences between accumulations. These results are summarized in Table 2.

Ncomp Original Chill Hand Tuned

 Time Time Speedup Time Speedup

1 0.09 0.06 1.52 0.05 1.80

2 0.13 0.096 1.32 0.087 1.46

3 0.18 0.12 1.49 0.11 1.45

4 0.21 0.16 1.32 0.15 1.45

Table 2. Results of optimizing RTOTAL function in PFLOTRAN.

Original Active Harmony Exhaustive Com-
piler

Time Time (u1,u2) Speedup Time (u1,u2) Speed
up

path-
scale

0.58 0.32 (3,11) 1.81 0.30 (3,15) 1.93

gnu 0.71 0.47 (5,13) 1.51 0.46 (5,7) 1.54

pgi 0.90 0.53 (5,3) 1.70 0.53 (5,3) 1.70

cray 1.13 0.70 (15,5) 1.61 0.69 (15,15) 1.63

SciDAC-2 PERI 6 FY10 annual report

At SciDAC 2011, a poster and short paper reported on overall performance improvement for
PFLOTRAN [Chame 2011]. Beyond the kernel optimization, initial profiling studies on Cray
XT5 indicated that I/O is a major bottleneck for scaling PFLOTRAN beyond 32K cores. This is
primarily because parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well be-
yond 10K processor cores, especially on parallel file systems (like Lustre) with single point of
resource contention. PERI’s I/O optimization efforts led to a two-phase I/O approach at the appli-
cation level where a set of designated processes participate in the I/O process by splitting the I/O
operation into a communication phase and a disk I/O phase. The designated I/O processes are
created by splitting the MPI global communicator into multiple sub-communicators. The root
process in each sub-communicator is responsible for performing the I/O operations for the entire
group and then distributing the data to rest of the group. This approach resulted in over 25X
speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at
over 100K processor cores on the ORNL’s Cray XT5 systems [Sripathi 2009][Sripathi 2010].

Final PFLOTRAN results. After autotuning, each of these routines was sped up by nearly a fac-
tor of two. Additional I/O tuning described above resulted in a final overall 40-fold speedup of
the initialization phase, 4-fold improvement in the write stage, and a 5-fold improvement of total
simulation time on 90,000 cores.

Autotuning and Specialization of PETSc
Libraries such as PETSc are written in a very general way to anticipate a wide variety of ways in
which they may be used. This generality may lead to extensive control flow tests or other
overheads, and reduces optimization opportunities. Through instrumentation, we may be able to
identify common use cases within a specific application, and improve optimization effectiveness
when such information is available. For example, selecting unroll factors and tile sizes for loop
nests benefits from information about the iteration count and memory accesses within the nest.

During the optimization of PFLOTRAN above, instead of writing manually optimized versions of
PETSc library calls and testing for different unroll/tiling factors, the kernel along with its known
parameters were provided as inputs to CHiLL. CHiLL was used to generate different code
variants according to the parameter values and transformation factors. A heuristic based search
was then performed by Active Harmony to find the best performing variant for each permutation
of values a set of parameters/variables can possess. The experiment was performed swiftly and
the overall applications performance was improved by 5%.

Writing specialized code is a technique often used by library developers to optimize applications.
However, manually-written code has several disadvantages when compared to our framework.

• The library developer will not possess the values of parameters along with their
frequencies at design time. Hence, he would be able to write specialized functions only
for specific values.

• It gets a little difficult for the developer to reason about the best implementation when the
number of variables/parameter along with each of their possible values is more than a
few.

• It is not feasible to expect the application programmer to write specialized code.
• Performance of implementations vary according to the architecture.

SciDAC-2 PERI 7 FY10 annual report

PETSc alone has 29 functions which have been specialized, amounting to a total of 242
manually-written functions. For the last few months we have been investigating how to combine
CHiLL with PETSC such that applications can use the CHiLL framework to generate these
specialized versions to reduce the amount of code that is provided by the library and, using auto-
tuning and specialization, derive more highly optimized versions of the library functions. This
code generation could be deferred until the build of the application so that the code can be
specialized for the application and execution context. Such an integration would allow users to
study the hotspots in the PETSC library and extract frequent values if possible. The best
performing code would then be automatically generated and included in the PETSC library.

Figure 2 shows results from a study using CHiLL to specialize PETSc code for three large-
scale applications: PFLOTRAN (as previously described), the Uintah Problem Solving
Framework and UNIC, a 3D unstructured deterministic neutron transport code. This work
demonstrated significant performance improvements of more than 1.8X on the library functions
and overall gains of 9 to 24% on the overall applications. A full report of this experiment and
methodology can be found elsewhere [Ramalingam2012a][Ramalingam2012b].

Figure 2. Impact of PETSc specialization on application performance.	
 	

Autotuning Technology Development
PERI researchers at University of Maryland enhanced their Active Harmony framework to permit
new code to be compiled during program execution and loaded into a running application (on-line
performance tuning). As we explore a broader search space of transformation strategies in PERI,
often exponential, it is not feasible to generate all possible code variants off-line and then select
among these generated versions of the code. By dynamically generating the code variants, we
can generate the code in the execution context of the running application. The tuned variants are
implemented with wrapper functions that query Active Harmony to receive the status of code
generation. Once the new code is ready, the old code is transparently replaced with new code us-
ing the dlopen-dlsym mechanism. Each node running the application keeps track of the best code-
variant it has seen thus far in the tuning process. When the code-server fails to deliver new ver-
sions on time, the nodes continue their execution with the best version that they have discovered
until that point in the tuning process. The decision about what code-variants to generate and
evaluate at each iteration is made completely by the centralized tuning server. The UMD team also
investigated the important technical question of how many nodes are required to generate all of the code
variants. On a specific Lattice-Boltzmann example, we were able to achieve up to a 48% speedup in a sin-
gle run by using only 1.5% additional cores for code generation.

SciDAC-2 PERI 8 FY10 annual report

PERI researchers at Argonne continued extending Orio, which is an annotation-based system for
automated generation of multiple tuned versions of critical computations. Researchers have suc-
cessfully applied Orio to both dense linear algebra kernels and block sparse matrix computations
in PETSc. We have also applied it to Fortran kernels based on FLASH using the new Fortran
code generation capabilities. Understanding the performance of applications prior to analysis or
tuning is a labor-intensive process because of differences among architectures and performance
tool interfaces. Working closely with the SciDAC Center for Technology for Advanced Scientific
Component Software (TASCS) center, Argonne researchers developed a set of prototype compo-
nents for managing performance experiments for arbitrary parallel applications. The goal of this
effort is to simplify and automate the process of defining and executing performance experiments
and subsequent performance data storage and analysis.

Utah, USC/ISI and ANL have developed CHiLL, a framework for composing high-level loop
transformations designed to generate efficient code for complex loop nests. It supports an exten-
sive set of loop transformations for perfect and imperfect loop nests, including tiling, permutation
and unroll-and-jam, thus lifting the burden of generating multiple intermediate steps from com-
pilers or optimization tools. CHiLL uses an improved version of Omega (OmegaPlus) to manipu-
late integer arithmetic and relies on polyhedral scanning provided by Omega’s code generator.
Utah, USC/ISI and UMD researchers have been working to integrate the Active Harmony system
with the CHiLL framework. Users can customize the CHiLL optimizer via a process called reci-
pes. This integrated framework was applied to the problem of auto-tuning PFLOTRAN, and the
previously-described results were from the combination of CHiLL and Active Harmony. In the
past year, we have performed additional experiments applying CHiLL to two SciDAC-e codes,
MGDC and the QR factorization of <??>. A recent integration of CHiLL with the ROSE com-
piler is undergoing extensive testing in preparation for release within the next year.

PERI researchers at University of Tennessee Knoxville (UTK) have developed an auto-tuning
process for parallel I/O. The process combines a mathematical model with simulation and em-
pirical search. We use the mathematical model to generate a set of parameters that serve as the
starting point of the tuning process. Each set of parameters is input to the simulation, which has
been calibrated using an I/O benchmark. In addition, the UTK team has continued to develop
DAG-based scheduling of tasks and automatic selection of blocking sizes for auto-tuning of
dense linear software on multi-core architectures. The approach uses a pruned search methodol-
ogy for the one-sided factorization algorithms.

Autotuning Software Products
The following provides information on availability of PERI autotuning software.

1. ROSE is available at http://www.roseCompiler.org, with all software and documentation in-
cluding access to the SVN repository. Additional documentation provides a tutorial on how to
use ROSE to connect together different PERI tools to perform whole program autotuning.

2. Active Harmony is available at http://www.dyninst.org/harmony/software/software.html

3. CHiLL and Omega Plus are available from http://www.cs.utah.edu/~chunchen/.

4. Orio is available at http://trac.mcs.anl.gov/projects/performance/wiki/Orio or
http://tinyurl.com/OrioTool. CQoS database components (with TASCS) are available from
http://trac.mcs.anl.gov/projects/cca/wiki/cqos.

SciDAC-2 PERI 9 FY10 annual report

PERI Bibliography

Books:
David H. Bailey, Robert F. Lucas and Samuel W. Williams, ed., Performance Tuning of Scientific
Applications, Taylor and Francis, New York, manuscript now complete; to be released in late
2010.
Chapters 1, 2, 3, 4, 7,10, 11, 12, 14, 15, 16 were directly authored or co-authored by PERI-funded
researchers; all chapters were at least edited by PERI-funded personnel:
1. “Introduction” by David H. Bailey
2. “Parallel Computer Architecture, by Samuel W. Williams and David H. Bailey
3. “Software Interfaces to Hardware Counters,” by Shirley V. Moore, Daniel K. Terpstra, and

Vincent M. Weaver.
4. “Measurement and Analysis of Parallel Program Performance using TAU and HPCToolkit,”

by Allen D. Malony, John Mellor-Crummey, and Sameer S. Shende.
5. “Trace-Based Tools,” by Jesus Labarta (Labarta is at the University of Barcelona in Spain,

but has collaborated with PERI in application analysis).
6. “Large-Scale Numerical Simulations on High-End Computational Platforms,” Leonid Oliker,

Jonathan Carter, Vincent Beckner, John Bell, Harvey Wasserman, Mark Adams, Stephane
Ethier, and Erik Schnetter.

7. “Performance Modeling: The Convolution Approach,” by David H Bailey, Allan Snavely,
and Laura Carrington.

8. “Analytic Modeling for Memory Access Patterns Based on Apex-MAP,” by Erich
Strohmaier, Hongzhang Shan, and Khaled Ibrahim.

9. “The Roofline Model,” by Samuel W. Williams.
10. “End-to-end Auto-tuning with Active Harmony,” by Jeffrey K. Hollingsworth and Ananta

Tiwari.
11. “Languages and Compilers for Auto-Tuning,” by Mary Hall and Jacqueline Chame.
12. “Empirical Performance Tuning of Dense Linear Algebra Software,” by Jack Dongarra and

Shirley Moore.
13. “Auto-Tuning Memory-Intensive Kernels for Multicore.” By Samuel W. Williams, Kaushik

Datta, Leonid Oliker, Jonathan Carter, John Shalf, and Katherine Yelick.
14. “Flexible Tools Supporting a Scalable First-Principles MD Code,” Bronis R. de Supinski,

Martin Schulz, and Erik W. Draeger.
15. “The Community Climate System Model,” by Patrick H. Worley.
16. “Tuning an Electronic Structure Code,” by David H Bailey, Lin-Wang Wang, Hongzhang

Shan, Zhengji Zhao, Juan Meza, Erich Strohmaier, and Byounghak Lee.

Technical Articles:

[Barnes2010] Bradley Barnes, Jeonifer Garren, David K. Lowenthal, Jaxk Reeves, Bronis R. de
Supinski, Martin Schulz and Barry Rountree, “Using Focused Regression for Accurate Time-
Constrained Scaling of Scientific Applications,” Twenty Fourth International Parallel and Dis-
tributed Processing Symposium (IPDPS 2010), Atlanta, GA, Apr 19-23, 2010.

SciDAC-2 PERI 10 FY10 annual report

[Bedard2010] Daniel Bedard, Min Yeol Lim, Robert Fowler, and Allan Porterfield, “PowerMon:
Fine-grained and integrated power monitoring for commodity computer systems,” in Proceedings
Southeastcon 2010, Charlotte, NC, IEEE, March 2010.
[Bedard2009] Daniel Bedard, Allan Porterfield, Rob Fowler and Min Yeol Lim, “PowerMon 2:
Fine-grained, Integrated Power Measurement,” Technical Report TR-09-04, RENCI, North Caro-
lina, October 2009.
[Boehme2010] David Boehme, Martin Schulz, Bronis R. de Supinski, Markus Geimer and Felix
Wolf, “Critical Path Analysis for Large-Scale MPI Programs,” poster at SC2010, New Orleans,
Louisiana, Nov 13-19, 2010.
[Bui2009] V. Bui, B. Norris, and L. C. McInnes. An automated component-based performance
experiment environment. Proceedings of the 2009 Workshop on Component-Based High Per-
formance Computing (CBHPC 2009), Nov. 2009.
[Chame 2011] Jacqueline Chame, Chun Chen, Mary Hall, Jeffrey K. Hollingsworth, Kumar
Mahinthakumar, Gabriel Marin, Shreyas Ramalingam, Sarat Sreepathi, Vamsi Sripathi, Ananta
Tiwari, “PERI Autotuning of PFLOTRAN,” Journal of Physics (to appear), Proceedings of Sci-
DAC 2011, July 2011.
[Gamblin2010] Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Robert J. Fowler and Dan-
iel A. Reed, “Clustering Performance Data Efficiently at Massive Scales,” Twenty Fourth Inter-
national Conference on Supercomputing (ICS 2010), Tsukuba, Japan, Jun 1-4, 2010.
[Haidar2011] Haidar, A., Ltaief, H., YarKhan, A., Dongarra, J. "Analysis of Dynamically Sched-
uled Tile Algorithms for Dense Linear Algebra on Multicore Architectures," IEEE International
Parallel and Distributed Processing Symposium (submitted), Anchorage, AK, May 16-20, 2011.
[Hall2009] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, M. Khan, Loop Transformation Reci-
pes for Code Generation and Auto-Tuning, The 22nd International Workshop on Languages and
Compilers for Parallel Computing, October 8-10, 2009.
[Li2009] Dong Li, Bronis R. de Supinski, Martin Schulz, Kirk W. Cameron and Dimitrios S.
Nikolopoulos, “Model-Based Hybrid MPI/OpenMP Power-Aware Computing,” aposter at
SC2009, Portland, Oregon, November 14–20, 2009.
[Li2010] Dong Li, Bronis R. de Supinski, Martin Schulz, Kirk Cameron and Dimitrios S. Nik-
olopoulos, “Power-aware MPI Task Aggregation Prediction for High-End Computing Systems,”
Twenty Fourth International Parallel and Distributed Processing Symposium (IPDPS 2010), At-
lanta, GA, Apr 19-23, 2010.
[Li2010b] Dong Li, Dimitrios S. Nikolopoulos, Kirk Cameron, Bronis R. de Supinski, and Martin
Schulz, “Hybrid MPI/OpenMP Power-Aware Computing,” Twenty Fourth International Parallel
and Distributed Processing Symposium (IPDPS 2010), Atlanta, GA, Apr 19-23, 2010.
[Liao2010] Chunhua Liao, Chunhua, Daniel J. Quinlan, Thomas Panas and Bronis R. de Supin-
ski, “A ROSE-based OpenMP 3.0 Research Compiler Supporting Multiple Runtime Libraries,”
Sixth International Workshop on OpenMP (IWOMP 2010), Tsukuba, Japan, Jun 14-16, 2010.
[Lim2010] Min Yeol Lim, Allan Porterfield, and Robert Fowler, “SoftPower: Fine-Grain Power
Estimations Using Performance Counters,” in ACM International Symposium on High Perform-
ance Distributed Computing (HPDC), Chicago, IL, ACM, July 2010. Best short paper award.
[Mandal2010] Anirban Mandal, Rob Fowler, and Allan Porterfield, “Modeling memory
concurrency for multi-socket multi-core systems,” in Proceedings of the 2010 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS2010), pg. 56–75, White
Plains, NY, IEEE, March 2010.

SciDAC-2 PERI 11 FY10 annual report

[Mandal2010b] Anirban Mandal, Min Yeol Lim, Allan Porterfield, and Robert Fowler, “Implica-
tions for Applications and Compilers of Multi-core Memory Concurrency,” International Work-
shop on Languages and Compilers for Parallel Computing (LCPC2010), Houston, TX, Oct.
2010.
[Mueller2010] Frank Mueller, Xing Wu, Martin Schulz, Todd Gamblin and Bronis R. de Supin-
ski, "ScalaTrace: Tracing, Analysis and Modeling of HPC Codes at Scale," Para 2010: State of
the Art in Scientific and Parallel Computing, Reykjavík, Iceland, Jun 6-9, 2010.
[Mills2009a] Richard Tran Mills, Vamsi Sripathi, G. (Kumar) Mahinthakumar, Glenn E.
Hammond, Peter C. Lichtner, Barry F. Smith, Experiences and Challenges Scaling PFLOTRAN,
a PETSc-based Code for Subsurface Reactive Flow Simulations, Towards the Petascale on Cray
XT Systems, Cray Users Group Meeting, May 2009, Atlanta, GA, 14 pages.
[Mills2009b] Mills, RT, GE Hammond, PC Lichtner, V. Sripathi, G (Kumar) Mahinthakumar,
and BF Smith, (2009). Modeling Subsurface Reactive Flows Using Leadership-Class Computing,
Journal of Physics, 180 (2009) 012062 doi:10.1088/1742-6596/180/1/012062.
[Mills2010] Mills, R.T., V. Sripathi, G. (Kumar) Mahinthakumar, G. E. Hammond, P. C.
Lichtner, Barry F. Smith, (2010). Engineering PFLOTRAN for Scalable Performance on Cray XT
and IBM BlueGene Architectures, poster presentation, SciDAC 2010.
[Muszala2009] S. Muszala, J. Amundson, L. C. McInnes, and B. Norris. Two-tiered component
design and performance analysis of Synergia2 accelerator simulations. Proceedings of the 2009
Workshop on Component-Based High Performance Computing (CBHPC 2009), Nov. 2009.
[Olschanowsky2010] Catherine Mills Olschanowsky, Tajana Rosing, Allan Snavely, Laura Car-
rington, Mustafa M. Tikir and Michael Laurenzano, “Fine-grained Energy Consumption Charac-
terization and Modeling,” Proceedings of the 2010 DoD Users Group Conference, to appear,
2010.
[Narayanan2010] S. H. K. Narayanan, B. Norris, and P. D. Hovland. Generating performance
bounds from source code. Proceedings of the First International Workshop on Parallel Software
Tools and Tool Infrastructures (PSTI 2010), 2010.
[Pearce2010] Olga Pearce, Todd Gamblin, Martin Schulz, Bronis R. de Supinski and Nancy
Amato, “Load Balance: Correlating Application-Independent Measurements with Application-
Semantic Computational Models,” aposter at SC2010, New Orleans, Louisiana, Nov 13-19, 2010.
[Porterfield2010] Allan Porterfield, Rob Fowler, Min Yeol Lim, “RCRTool: Design Document;
Version 0.1,” Technical Report TR-10-01, RENCI, North Carolina, February 2010.
[Preissl2010] Robert, Robert, Bronis R. de Supinski, Martin Schulz, Daniel J. Quinlan, Dieter
Kranzlmueller and Thomas Panas, “Exploitation of Dynamic Communication Patterns through
Static Analysis,” Proceedings of 2010 International Conference on Parallel Processing (ICPP-
10), San Diego, CA, Sep 13-16, 2010.
[Preissl2010b] Robert Preissl, Martin Schulz, Dieter Kranzlmueller, Bronis R. de Supinski and
Daniel J. Quinlan, “Transforming MPI Source Code Based on Communication Patterns,” Future
Generation Computer Systems, vol. 26, No. 1, Jan 2010, pg. 147-154.
[Ramakrishnan20009] L. Ramakrishnan, D. Nurmi, A. Mandal, C. Koelbel, D. Gannon, T. M.
Huang, Y. S. Kee, G. Obertelli, K. Thyagaraja, R. Wolski, A. Yarkhan, D. Zagorodnov,
“VGrADS: Enabling e-Science Workflows on Grids and Clouds with Fault Tolerance”, in Pro-
ceedings of the IEEE/ACM International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) ’09, Portland, OR, Nov 2009.
[Ramalingam2012a] S. Ramalingam, M. Hall, and C. Chen; "Improving High-Performance
Sparse Libraries Using Compiler-Assisted Specialization: A PETSc Case Study," 2012 IEEE 26th

SciDAC-2 PERI 12 FY10 annual report

International Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), May 2012.
[Ramalingam2012b] S. Ramalingam, “"Improving High-Performance Sparse Libraries Using
Compiler-Assisted Specialization: A PETSc (Portable Extensible Toolkit for Scientific Computa-
tion) Case Study," May 2012.
[Rudy2010] G. Rudy, M. Hall, C. Chen, J. Chame, M. Khan, “A Programming Language Inter-
face to Describe Transformations and Code Generation,” The 23rd International Workshop on
Languages and Compilers for Parallel Computing, October, 2010.
[Sarjar2009] V. Sarkar, W. Harrod and A. E. Snavely, “Software challenges in extreme scale sys-
tems,” Journal of Physics: Conference Series, vol.180, 012045, 2009.
[Schulz2009] Schulz, Martin, Andrew W. Cook, William H. Cabot, Bronis R. de Supinski and
William D. Krauss, "On the Performance of the Miranda CFD Code on Multicore Architectures,"
Twenty First International Conference on Parallel Computational Fluid Dynamics (ParallelCFD
2009), Moffett Field, California, May 18 -22, 2009.
[Shin2010] Speeding up Nek5000 with Autotuning and Specialization. Jaewook Shin, Mary
Hall, Jacqueline Chame, Chun Chen, Paul Fisher and Paul Hovland. The 24th International Con-
ference in Supercomputing (ICS 2010), June 2010.
[Singh2010] Karan Singh, Matthew Curtis-Maury, Sally A. McKee, Filip Blagojevic, Dimitris S.
Nikolopoulos, Bronis R. de Supinski and Martin Schulz, “Comparing Scalability Prediction
Strategies on an SMP of CMPs,” Euro-Par 2010, Naples, Italy, Aug 31-Sep 3, 2010.
[Sripathi 2009] Vamsi Sripathi, Glenn E. Hammond, G. (Kumar) Mahinthakumar, Richard T.
Mills, Patrick H. Worley and Peter C. Lichtner (2009). Performance Analysis and Optimization
of Parallel I/O in a large scale groundwater application on the Cray XT5, Poster Presentation,
Supercomputing 2009, Portland, Oregon, Nov 12-16.
[Sripathi2010] Sripathi, V., Performance Analysis and Optimization of Parallel I/O in a large
scale Groundwater Application on Petascale Architectures, MS Thesis, North Carolina State Uni-
versity, August 2010.
[Tallent2010] Nathan R. Tallent, John M. Mellor-Crummey, Alan Porterfield, “Analyzing Lock
Contention in Multithreaded Applications,” Proceedings of PPoPP 2010, January 2010.
[Tilson2010] Jeffrey L Tilson, Gloria Rendon, Eric Jakobsson, “Using high performance comput-
ing and domain-based functional annotation of proteins to enhance discovery of novel proteins,
identify functional homology, and characterize phylogenetic relatedness,” Technical Report TR-
10-02, RENCI, North Carolina, June 2010.
[You2011] You, H., Li, Z., Liu, Q, Moore, S. "An Auto-tuning I/O Framework for Lustre File
Systems," IEEE International Parallel and Distributed Processing Symposium (submitted), An-
chorage, AK, May 16-20, 2011.

