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Project	
  Summary	
  
This	
  project	
  has	
  developed	
  compiler-­‐directed	
  performance	
  tuning	
  technology	
  targeting	
  
the	
  Cray	
  XT4	
  Jaguar	
  system	
  at	
  Oak	
  Ridge,	
  which	
  has	
  multi-­‐core	
  Opteron	
  nodes	
  with	
  SSE-­‐
3	
  SIMD	
  extensions,	
  and	
  the	
  Cray	
  XE6	
  Hopper	
  system	
  at	
  NERSC.	
  To	
  achieve	
  this	
  goal,	
  we	
  
combined	
   compiler	
   technology	
   for	
   model-­‐guided	
   empirical	
   optimization	
   for	
   memory	
  
hierarchies	
  with	
  SIMD	
  code	
  generation,	
  which	
  have	
  been	
  developed	
  by	
  the	
  PIs	
  over	
  the	
  
past	
   several	
   years.	
   	
   We	
   examined	
   DOE	
   Office	
   of	
   Science	
   applications	
   to	
   identify	
  
performance	
  bottlenecks	
  and	
  apply	
  our	
   system	
  to	
  computational	
  kernels	
   that	
  operate	
  
on	
   dense	
   arrays.	
   	
   Our	
   goal	
   for	
   this	
   performance-­‐tuning	
   technology	
   has	
   been	
   to	
   yield	
  
hand-­‐tuned	
   levels	
   of	
   performance	
   on	
   DOE	
   Office	
   of	
   Science	
   computational	
   kernels,	
  
while	
   allowing	
   application	
   programmers	
   to	
   specify	
   their	
   computations	
   at	
   a	
   high	
   level	
  
without	
   requiring	
   manual	
   optimization.	
   Overall,	
   we	
   aim	
   to	
   make	
   our	
   technology	
   for	
  
SIMD	
  code	
  generation	
  and	
  memory	
  hierarchy	
  optimization	
  a	
  crucial	
  component	
  of	
  high-­‐
productivity	
   Petaflops	
   computing	
   through	
   a	
   close	
   collaboration	
   with	
   the	
   scientists	
   in	
  
national	
  laboratories.	
  

1. Code	
  Transformation	
  Framework	
  
This	
  project	
  has	
   funded	
   significant	
  development	
  of	
  CHiLL,	
   a	
   framework	
   for	
   composing	
  
high-­‐level	
   loop	
   transformations	
   designed	
   to	
   generate	
   efficient	
   code	
   for	
   complex	
   loop	
  
nests	
   [1].	
   It	
   supports	
   an	
   extensive	
   collection	
   of	
   loop	
   transformations	
   for	
   perfect	
   and	
  
imperfect	
   loop	
  nests,	
   including	
   tiling,	
   permutation	
  and	
  unroll-­‐and-­‐jam,	
   thus	
   lifting	
   the	
  
burden	
  of	
  generating	
  multiple	
  intermediate	
  steps	
  from	
  compilers	
  or	
  optimization	
  tools.	
  
CHiLL	
   uses	
   the	
  Omega	
   test	
   to	
  manipulate	
   integer	
   arithmetic	
   and	
   relies	
   on	
   polyhedral	
  
scanning	
   provided	
   by	
   Omega’s	
   code	
   generator.	
   Recently	
   we	
   have	
   integrated	
   new	
  
features	
   into	
   CHiLL,	
   including	
   support	
   for	
   user	
   input	
   to	
   the	
   tool.	
  Users	
   can	
   now	
   relay	
  
information	
  about	
  the	
  code	
  and	
  input	
  data	
  that	
  could	
  not	
  be	
  derived	
  by	
  static	
  analysis	
  
alone,	
  and	
  this	
  information	
  often	
  results	
  in	
  more	
  efficient	
  code	
  generation.	
  
	
  
We	
   have	
   publicly	
   released	
   CHiLL.	
   	
  We	
   have	
   also	
   updated	
   the	
  Omega	
   Library	
   and	
   the	
  
associated	
   code	
   generator,	
   released	
   as	
   Omega+	
   and	
   Codegen+,	
   which	
   is	
   a	
   main	
  
component	
  of	
   CHiLL.	
  All	
   have	
  been	
   released	
   and	
   can	
  be	
   found	
  on	
  our	
   research	
  page,	
  
http://ctop.cs.utah.edu/ctop/?page_id=21	
  
	
  
We	
  have	
  worked	
  extensively	
   to	
   increase	
   the	
  capability	
  of	
  CHiLL.	
  A	
  major	
   focus	
  of	
   this	
  
work	
   is	
  on	
  providing	
  the	
  appropriate	
   interface	
  to	
  application	
  and	
  library	
  developers	
  to	
  



	
  

increase	
  their	
  productivity.	
  	
  In	
  working	
  with	
  application	
  and	
  library	
  developers,	
  we	
  have	
  
discovered	
  that	
  many	
  optimizations	
  that	
  are	
  well-­‐known	
  and	
  available	
  in	
  most	
  compilers	
  
are	
  performed	
  manually	
  by	
   the	
  application	
  developers.	
   	
   The	
   reason	
  behind	
   this	
   is	
   the	
  
application	
   developers	
   do	
   not	
   have	
   sufficient	
   control	
   over	
   how	
   the	
   optimizations	
   are	
  
performed	
  or	
   the	
  parameters	
   that	
  are	
  used	
  by	
   the	
  compiler,	
  and	
   they	
  cannot	
   see	
   the	
  
results	
  of	
  the	
  optimization.	
  	
  Our	
  goal	
  in	
  building	
  the	
  interface	
  to	
  CHiLL	
  was	
  to	
  expose	
  the	
  
transformation	
  capability	
  to	
  the	
  programmer,	
  and	
  then	
  rely	
  on	
  the	
  compiler	
  and	
  auto-­‐
tuning	
  framework	
  to	
  automate	
  code	
  generation	
  and	
  parameter	
  selection.	
  	
  Over	
  the	
  past	
  
year,	
   we	
   have	
   broadened	
   the	
   capabilities	
   of	
   the	
   interface	
   in	
   CHiLL	
   	
  We	
   now	
   support	
  
OpenMP	
   and	
   CUDA	
   code	
   generation	
   through	
   high-­‐level	
   directives	
   provided	
   by	
   the	
  
programmer,	
  and	
  work	
  is	
  underway	
  for	
  OpenCL	
  code	
  generation.	
  	
  We	
  have	
  also	
  raised	
  
the	
   level	
   of	
   abstraction	
   for	
   this	
   interface	
   so	
   that	
   programmers	
   have	
   a	
   higher	
   level	
   of	
  
abstraction	
  when	
  interacting	
  with	
  the	
  system	
  [1][2].	
  
	
  
There	
   are	
   also	
   two	
  major	
   internal	
   improvements	
   in	
   CHiLL.	
   	
  Currently,	
   CHiLL	
   uses	
   the	
  
Stanford	
   SUIF	
   compiler	
   to	
   provide	
   a	
   frontend,	
   intermediate	
   representation	
   (IR),	
   and	
  
backend	
  code	
  generation	
  from	
  the	
  IR.	
  	
  However,	
  the	
  majority	
  of	
  CHiLL	
  is	
  independent	
  of	
  
its	
  IR.	
  	
  We	
  have	
  built	
  it	
  in	
  this	
  way	
  because	
  we	
  planned	
  to	
  replace	
  SUIF,	
  an	
  infrastructure	
  
that	
  is	
  over	
  15	
  years	
  old,	
  with	
  more	
  modern	
  compiler	
  platforms.	
  	
  To	
  this	
  end,	
  we	
  have	
  
improved	
   CHiLL	
   so	
   that	
   it	
   no	
   longer	
   uses	
   SUIF's	
   control	
   structures	
   directly	
   when	
  
initializing	
   a	
   loop,	
   but	
   rather	
   uses	
   an	
   infrastructure-­‐independent	
   abstraction	
   in	
   C++	
  
classes.	
  	
  Combined	
  with	
  previous	
  data	
  type	
  abstraction,	
  CHiLL	
  now	
  has	
  an	
  independent	
  
abstract	
   layer	
   over	
   the	
   underlying	
   compiler	
   IR,	
   paving	
   the	
   way	
   to	
   other	
   compiler	
  
infrastructure.	
   	
   Migrations	
   to	
   ROSE	
   and	
   Clang	
   infrastructures	
   are	
   underway	
   (ROSE	
  
completed	
  after	
  the	
  grant	
  ended	
  and	
  now	
  released).	
  
	
  
The	
   other	
   internal	
   improvement	
   to	
   CHiLL	
   is	
   dependence	
   graph	
   updating	
   for	
   all	
   loop	
  
transformations.	
  	
  After	
  each	
  loop	
  transformation,	
  CHiLL	
  updates	
  its	
  internal	
  dependence	
  	
  
graph	
   to	
   maintain	
   a	
   consistent	
   view	
   of	
   the	
   loop	
   structure	
   and	
   data	
   accesses	
   in	
   the	
  
(partially)	
   transformed	
   loop.	
   This	
   is	
   critical	
   in	
   a	
   polyhedral	
   framework	
   to	
   allow	
  
unrestrictive	
  composition	
  of	
  multiple	
  loop	
  transformations,	
  some	
  of	
  which	
  might	
  affect	
  
loops	
   in	
   a	
   complicated	
   way.	
   	
   New	
   relations	
   of	
   dependences	
   are	
   not	
   calculated	
   from	
  
recomputing	
   dependences	
   among	
   array	
   references	
   under	
   the	
   new	
   iteration	
   spaces.	
  	
  
They	
   are	
   deduced	
   from	
   the	
   semantics	
   of	
   the	
   transformation	
   itself.	
   	
   Incremental	
  
modification	
   to	
   the	
   dependence	
   graph	
   is	
   more	
   efficient	
   than	
   simply	
   rerunning	
  
dependence	
   analysis	
   on	
   the	
   modified	
   loop	
   nest.	
   	
   	
   By	
   maintaining	
   an	
   accurate	
  
dependence	
  graph	
  during	
  the	
  composition	
  of	
  transformations,	
  CHiLL	
  provides	
  a	
  robust	
  
loop	
   transformation	
   framework	
   that	
   can	
  handle	
   complicated	
  and	
  unpredictable	
  usage	
  
situations.	
  

2. Nek5k	
  tuning	
  results	
  
	
  
Nek5000	
   is	
   a	
   scalable	
   code	
   for	
   simulating	
   fluid	
   flow,	
   heat	
   transfer,	
   and	
  
magnetohydrodynamics	
  as	
  well	
  as	
  electromagnetics	
  (in	
  a	
  separate	
  code,	
  NekCEM).	
  The	
  



	
  

code	
   is	
   based	
  on	
   the	
   spectral	
   element	
  method	
   (SEM),	
   a	
   hybrid	
   of	
   spectral	
   and	
   finite-­‐
element	
  methods.	
  
	
  
The	
   core	
   computation	
   in	
   Nek5000	
   calls	
   for	
   repeated	
   function	
   evaluations	
   either	
   for	
  
explicit	
  substeps	
  of	
  the	
  time	
  advance	
  or	
  for	
  iterations	
  in	
  implicit	
  substeps.	
  Within	
  each	
  
element,	
  each	
  evaluation	
  entails	
  matrix-­‐vector	
  products	
  of	
  the	
  form	
  C	
  x	
  B	
  x	
  Aū.	
  
Specifically,	
  we	
  require	
  sums	
  of	
  the	
  following	
  form:	
  
	
  
vijk = ∑p=1, N Aipupjk, vijk = ∑p=1, N Bjpuipk,  vijk = ∑p=1, N Ckpuijp, i,j,k Є {1, …, N}3 
	
  
The	
  first	
  product	
  can	
  be	
  cast	
  as	
  a	
  matrix	
  multiply	
  if	
  uijk	
   is	
  viewed	
  as	
  an	
  array	
  having	
  N

2	
  
columns	
  of	
  length	
  N.	
  Similarly,	
  the	
  last	
  product	
  can	
  be	
  expressed	
  as	
  V	
  =	
  UCT	
  .	
  The	
  middle	
  
sum	
  is	
  expressed	
  as	
  a	
  sequence	
  of	
  small	
  products,	
  u(:,	
  :,	
  k)BT	
  ,	
  k	
  =	
  1,	
  .	
  .	
  .	
  ,	
  N.	
  Because	
  the	
  
approximation	
  order	
  of	
  the	
  pressure	
  and	
  velocity	
  spaces	
  differ	
  by	
  2,	
  the	
  above	
  sums	
  also	
  
appear	
  with	
  permutations	
   in	
  which	
   index	
  ranges	
  may	
  be	
  replaced	
  by	
  M	
  =	
  N	
  −	
  2.	
  Thus,	
  
Nek5000	
  requires	
  numerous	
  calls	
  to	
  small,	
  dense	
  matrix	
  multiplies	
  of	
  known	
  sizes	
  over	
  a	
  
limited	
  range	
  of	
  values.	
  
	
  
We	
   investigated	
   the	
   performance	
   impact	
   of	
   autotuning	
   and	
   specialization	
   for	
   two	
  
Nek5000	
   data	
   sets:	
   Helix2,	
  which	
   is	
   helical	
   pipe	
   flow,	
   similar	
   to	
   that	
   found	
   in	
   certain	
  
vascular	
  flows,	
  and	
  G6a,	
  which	
  is	
  turbulent	
  flow	
  in	
  a	
  channel	
  that	
  is	
  partially	
  blocked	
  by	
  
a	
  cylinder.	
  We	
  used	
  PAPI	
   to	
  collect	
  hardware	
  performance	
  metrics	
  and	
  observed	
  that,	
  
with	
   the	
   Helix2	
   input,	
   the	
   application	
   spends	
   approximately	
   60%	
   of	
   the	
   time	
   on	
   a	
  
particular	
   function,	
   mxm44_0.	
   This	
   function	
   is	
   a	
   manually	
   tuned	
   implementation	
   of	
  
matrix	
   multiply,	
   which	
   yields	
   overall	
   good	
   performance	
   over	
   a	
   wide	
   range	
   of	
  
architectures.	
  The	
  main	
   loop	
  nest	
   is	
  unrolled	
  by	
  4	
   for	
  each	
  of	
   the	
   i	
   and	
   j	
   loops	
  of	
   the	
  
original	
   loop	
  nest.	
   If	
   either	
  M	
  or	
  N	
   is	
   not	
   a	
  multiple	
   of	
   4,	
   clean-­‐up	
   loops	
   execute	
   the	
  
residual	
   iterations.	
   	
   To	
   investigate	
   the	
   frequency	
   of	
   each	
   array	
   size,	
  we	
   instrumented	
  
mxm44_0	
   so	
   that	
   it	
   captures	
   the	
  number	
  of	
   calls	
   for	
   each	
  matrix	
   size	
   across	
   all	
   of	
   its	
  
invocations	
  for	
  each	
  of	
  the	
  two	
  problems.	
  We	
  use	
  these	
  call	
  frequencies	
  to	
  select	
  sizes	
  
for	
  specialization	
  and	
  optimize	
  the	
  conditional	
  checks	
  for	
  matrix	
  size.	
  
	
  
The	
  methodology	
  for	
  optimizing	
  Nek5000	
  consists	
  of	
  three	
  steps.	
  We	
  first	
  use	
  CHiLL	
  to	
  
generate	
   code	
   versions	
   specialized	
   for	
   specific	
   matrix	
   sizes.	
   An	
   automated	
   empirical	
  
search	
  then	
  finds	
  the	
  best	
  optimization	
  parameters,	
  using	
  a	
  set	
  of	
  compiler	
  heuristics	
  to	
  
keep	
   the	
   search	
   space	
   manageable.	
   Finally,	
   we	
   create	
   a	
   library	
   of	
   specialized	
   code	
  
versions	
  and	
  replace	
  the	
  original	
  computation	
  with	
  calls	
  to	
  the	
  library.	
  At	
  run	
  time,	
  the	
  
matrix	
  size	
  determines	
  which	
  of	
  the	
  tuned	
  versions	
  will	
  be	
  executed.	
  
	
  
Specialization	
   information	
   allows	
   the	
   autotuning	
   tools	
   to	
   derive	
   highly	
   optimized	
  
specialized	
   versions	
   of	
   a	
   computation	
   for	
   known	
   input	
   sizes,	
   which	
   is	
   particularly	
  
valuable	
   for	
  Nek5k.	
  We	
  used	
  CHiLL	
   to	
   automatically	
   generate	
   the	
   specialized	
   versions	
  
for	
  the	
  library.	
  	
  Because	
  these	
  small	
  matrices	
  fit	
  within	
  even	
  small	
  L1	
  caches,	
  the	
  focus	
  
of	
  optimization	
  should	
  be	
  on	
  managing	
  registers,	
  exploiting	
  ILP	
  in	
  its	
  various	
  forms,	
  and	
  



	
  

reducing	
   loop	
  overhead.	
   For	
   these	
  purposes,	
  we	
  use	
   loop	
  permutation	
  and	
  aggressive	
  
loop	
   unrolling	
   for	
   all	
   loops	
   in	
   a	
   nest.	
   To	
   the	
   backend	
   compiler,	
   unrolling	
   exposes	
  
opportunities	
  for	
  instruction	
  scheduling,	
  scalar	
  replacement,	
  and	
  eliminating	
  redundant	
  
computations.	
   Loop	
  permutation	
  may	
  enable	
   the	
  backend	
   compiler	
   to	
   generate	
  more	
  
efficient	
  single-­‐instruction	
  multiple-­‐data	
  (SIMD)	
  instructions	
  by	
  bringing	
  a	
  loop	
  with	
  unit	
  
stride	
   access	
   in	
   memory	
   to	
   the	
   innermost	
   position,	
   as	
   required	
   for	
   utilization	
   of	
  
multimedia-­‐extension	
   instruction	
   set	
   architectures.	
   Thus	
   we	
   generate	
   specialized	
  
versions	
  using	
   a	
   combination	
  of	
   loop	
  permutation	
   and	
  unroll-­‐and-­‐jam.	
   In	
   some	
   cases,	
  
where	
  the	
  matrices	
  are	
  small,	
  we	
  obtain	
  the	
  best	
  performance	
  by	
  coming	
  close	
  to	
  fully	
  
unrolling	
  all	
  the	
  three	
  loops	
  in	
  the	
  nest.	
  When	
  applied	
  too	
  aggressively,	
  however,	
   loop	
  
unrolling	
  can	
  generate	
  code	
  that	
  exceeds	
  the	
  instruction	
  cache	
  or	
  register	
  file	
  capacity.	
  
Therefore,	
  we	
  use	
   autotuning	
   to	
   identify	
   the	
  unroll	
   factors	
   that	
   navigate	
   the	
   tradeoff	
  
between	
  increased	
  ILP	
  and	
  exceeding	
  capacity	
  of	
  the	
  instruction	
  cache	
  and	
  registers.	
  We	
  
rely	
   on	
   the	
   native	
   backend	
   compiler	
   for	
   the	
   architecture	
   to	
   identify	
   the	
   SIMD	
  
instructions,	
   and	
   simply	
   expose	
   code	
   to	
   the	
   backend	
   that	
   will	
   be	
   optimized	
   most	
  
effectively.	
   	
  Even	
  better	
  performance	
  can	
  be	
  obtained	
  by	
  aggregating	
  multiple	
  calls	
   to	
  
matrix-­‐matrix	
  multiply	
  and	
  optimizing	
  the	
  code	
  to	
  exploit	
  reuse	
  in	
  registers	
  and	
  cache.	
  
Being	
  compiler-­‐based,	
  our	
  approach	
  can	
  optimize	
  the	
  middle	
  loop	
  that	
  contains	
  multiple	
  
calls	
  to	
  matrix-­‐matrix	
  multiply.	
  To	
  do	
  this,	
  we	
  inline	
  the	
  matrix-­‐multiply	
  function	
  into	
  the	
  
loop,	
  and	
  use	
  the	
  inlined	
  loop	
  nest	
  as	
  the	
  input	
  to	
  the	
  autotuning	
  framework.	
  
	
  
Performance	
   improvements	
   for	
   the	
   full	
   Nek5k	
   application	
   running	
   on	
   the	
   Cray	
   XT5	
  
jaguar	
  system	
  at	
  Oak	
  Ridge	
  are	
  38%	
  on	
  4	
  nodes	
  for	
  input	
  helix2,	
  and	
  up	
  to	
  26%	
  on	
  256	
  
nodes	
  for	
  input	
  g6a,	
  as	
  illustrated	
  in	
  Figure	
  1	
  and	
  Figure	
  2.	
  
	
  
	
  

	
  
Figure 1. Nek5000 with input helix2 on jaguar using 1 core per node. 

.



	
  

 
Figure 2. Nek5000 with input g6a on jaguar using 1 core per node.	
  	
  

	
  

3. Auto-­‐tuning	
  for	
  instruction	
  selection	
  and	
  scheduling	
  
	
  

With	
   a	
   faculty	
   and	
   student	
   team	
   from	
   Chicago	
   State	
   University,	
   we	
   investigated	
  
techniques	
   to	
   improve	
   the	
   performance	
   of	
   small	
   matrix-­‐matrix	
   multiply	
   through	
  
instruction	
  selection	
  and	
  empirical	
   instruction	
  scheduling.	
   	
  As	
  part	
  of	
  this	
  research,	
  we	
  
identified	
   an	
   opportunity	
   to	
   replace	
   two	
   instructions	
   (MOVSD	
   and	
   UNPCKLPD)	
  
generated	
   by	
   the	
   compiler	
   with	
   a	
   single	
   instruction	
   (MOVDDUP).	
   	
  In	
   addition,	
   we	
  
developed	
   a	
   binary	
   instruction	
   rescheduler	
   and	
   a	
   binary	
   instruction	
   generator	
   that	
  
employs	
  very	
  aggressive	
  unrolling.	
  	
  Together,	
  these	
  techniques	
  raise	
  the	
  performance	
  of	
  
(10,10,10)	
  matrix-­‐matrix	
  multiply	
   from	
  57%	
  of	
  peak	
  to	
  nearly	
  70%	
  of	
  peak	
  on	
  an	
  AMD	
  
K10	
   processor.	
   	
  Our	
   preliminary	
   analysis	
   suggests	
   that	
   70%	
   is	
   close	
   to	
   the	
   maximum	
  
achievable	
  performance	
  on	
  this	
  processor	
  family.	
  
	
  

4. Analysis	
  of	
  PETSc	
  
	
  
An	
   important	
   lesson	
   from	
   optimizing	
   nek5000	
   is	
   the	
   performance	
   gain	
   that	
   can	
   be	
  
achieved	
  by	
  specializing	
  library	
  code	
  for	
  its	
  execution	
  context.	
  	
  Libraries	
  are	
  written	
  in	
  a	
  
very	
  general	
  way	
  to	
  anticipate	
  a	
  wide	
  variety	
  of	
  ways	
   in	
  which	
  they	
  may	
  be	
  used.	
  This	
  
generality	
   may	
   lead	
   to	
   extensive	
   control	
   flow	
   tests	
   or	
   other	
   overheads,	
   and	
   reduces	
  
optimization	
   opportunities,	
   especially	
   when	
   the	
   libraries	
   are	
   used	
   in	
   ways	
   that	
   differ	
  
from	
   the	
   common	
   case	
   (such	
   as	
   the	
   small	
   matrices	
   used	
   in	
   nek5000).	
   	
   Through	
  
instrumentation,	
   we	
   may	
   be	
   able	
   to	
   identify	
   common	
   use	
   cases	
   within	
   a	
   specific	
  
application,	
  and	
  improve	
  optimization	
  effectiveness	
  when	
  such	
  information	
  is	
  available.	
  	
  
For	
   example,	
   selecting	
   unroll	
   factors	
   and	
   tile	
   sizes	
   for	
   loop	
   nests	
   benefits	
   from	
  
information	
  about	
  the	
  iteration	
  count	
  and	
  memory	
  accesses	
  within	
  the	
  nest.	
  
	
  



	
  

In	
   the	
   related	
   SciDAC	
   project	
   PERI,	
   we	
   applied	
   CHiLL	
   to	
   optimize	
   PFLOTRAN,	
   a	
   DOE	
  
application	
   developed	
   at	
   LANL	
   that	
   models	
   multiscale-­‐multiphase-­‐multicomponent	
  
subsurface	
   reactive	
   flows.	
  PFLOTRAN	
  uses	
   the	
  PETSc	
   library	
  as	
   the	
  basis	
  of	
   its	
  parallel	
  
framework.	
   	
   	
   The	
   PERI	
   team	
   identified	
   three	
   main	
   computations	
   in	
   PFLOTRAN	
   as	
  
candidates	
   for	
   optimization:	
   	
   a	
   PETSc	
   routine	
   that	
   computes	
   a	
   matrix-­‐vector	
  
multiplication	
   (MatMul_SeqBAIJ_N);	
   a	
   PETSc	
   function	
   that	
   solves	
   the	
   system	
  A	
   x	
   =	
   b,	
  
given	
   a	
   factored	
   matrix	
   A,	
   (MatSolve_SeqBAIJ_N);	
   and	
   a	
   routine	
   that	
   calculates	
   the	
  
contribution	
  of	
  aqueous	
  equilibrium	
  complexity	
   to	
   the	
  residual	
  and	
  Jacobian	
   functions	
  
for	
  Newton-­‐Raphson	
  (RTOTAL).	
  
	
  
Instead	
   of	
   writing	
   manually	
   optimized	
   versions	
   of	
   PETSc	
   library	
   calls	
   and	
   testing	
   for	
  
different	
  unroll/tiling	
  factors,	
  the	
  kernel	
  along	
  with	
  its	
  known	
  parameters	
  were	
  provided	
  
as	
  inputs	
  to	
  CHiLL.	
  CHiLL	
  was	
  used	
  to	
  generate	
  different	
  code	
  variants	
  according	
  to	
  the	
  
parameter	
   values	
   and	
   transformation	
   factors.	
   A	
   heuristic	
   based	
   search	
   was	
   then	
  
performed	
  by	
  Active	
  Harmony	
  to	
  find	
  the	
  best	
  performing	
  variant	
  for	
  each	
  permutation	
  
of	
   values	
   a	
   set	
   of	
   parameters/variables	
   can	
   possess.	
   The	
   experiment	
   was	
   performed	
  
swiftly	
  and	
  the	
  overall	
  applications	
  performance	
  was	
  improved	
  by	
  5%.	
  
	
  
Writing	
   specialized	
   code	
   is	
   a	
   technique	
   often	
   used	
   by	
   library	
   developers	
   to	
   optimize	
  
applications.	
   However,	
   manually-­‐written	
   code	
   has	
   several	
   disadvantages	
   when	
  
compared	
  to	
  our	
  framework.	
  	
  

• The	
  library	
  developer	
  will	
  not	
  possess	
  the	
  values	
  of	
  parameters	
  along	
  with	
  their	
  
frequencies	
   at	
   design	
   time.	
   Hence,	
   he	
   would	
   be	
   able	
   to	
   write	
   specialized	
  
functions	
  only	
  for	
  specific	
  values.	
  

• It	
  gets	
  a	
  little	
  difficult	
  for	
  the	
  developer	
  to	
  reason	
  about	
  the	
  best	
  implementation	
  
when	
   the	
   number	
   of	
   variables/parameter	
   along	
   with	
   each	
   of	
   their	
   possible	
  
values	
  is	
  more	
  than	
  a	
  few.	
  

• It	
  is	
  not	
  feasible	
  to	
  expect	
  the	
  application	
  programmer	
  to	
  write	
  specialized	
  code.	
  
• Performance	
  of	
  implementations	
  vary	
  according	
  to	
  the	
  architecture.	
  

	
  
PETSc	
  alone	
  has	
  29	
  functions	
  which	
  have	
  been	
  specialized,	
  amounting	
  to	
  a	
  total	
  of	
  242	
  
manually-­‐written	
  functions.	
  For	
  the	
  last	
  few	
  months	
  we	
  have	
  been	
  investigating	
  how	
  to	
  
combine	
   CHiLL	
   with	
   PETSC	
   such	
   that	
   applications	
   can	
   use	
   the	
   CHiLL	
   framework	
   to	
  
generate	
   these	
   specialized	
  versions	
   to	
   reduce	
   the	
  amount	
  of	
   code	
   that	
   is	
  provided	
  by	
  
the	
   library	
   and,	
   using	
   auto-­‐tuning	
   and	
   specialization,	
   derive	
   more	
   highly	
   optimized	
  
versions	
  of	
  the	
  library	
  functions.	
  	
  This	
  code	
  generation	
  could	
  be	
  deferred	
  until	
  the	
  build	
  
of	
  the	
  application	
  so	
  that	
  the	
  code	
  can	
  be	
  specialized	
  for	
  the	
  application	
  and	
  execution	
  
context.	
   	
   Such	
   an	
   integration	
   would	
   allow	
   users	
   to	
   study	
   the	
   hotspots	
   in	
   the	
   PETSC	
  



	
  

library	
  and	
  extract	
  frequent	
  values	
  if	
  possible.	
  The	
  best	
  performing	
  code	
  would	
  then	
  be	
  
automatically	
  generated	
  and	
  included	
  in	
  the	
  PETSC	
  library.	
  

Figure	
  3	
  shows	
  results	
   from	
  a	
  study	
  using	
  CHiLL	
   to	
  specialize	
  PETSc	
  code	
   for	
   three	
  
large-­‐scale	
   applications:	
   PFLOTRAN	
   (as	
   previously	
   described),	
   the	
   Uintah	
   Problem	
  
Solving	
  Framework	
  and	
  UNIC,	
  a	
  3D	
  unstructured	
  deterministic	
  neutron	
  transport	
  code.	
  	
  
This	
  work	
  demonstrated	
   significant	
  performance	
   improvements	
  of	
  more	
   than	
  1.8X	
  on	
  
the	
   library	
   functions	
   and	
  overall	
   gains	
   of	
   9	
   to	
   24%	
  on	
   the	
   overall	
   applications.	
   	
   A	
   full	
  
report	
  of	
  this	
  experiment	
  and	
  methodology	
  can	
  be	
  found	
  elsewhere	
  [8][9].	
  

 
Figure 3. Impact of PETSc specialization on application performance.	
  	
  

5. Other	
  benchmark:	
  MADNESS	
  
We	
   have	
   also	
   applied	
   the	
   combined	
   autotuning	
   and	
   specialization	
   technology	
   to	
   the	
  
core	
   computation	
   of	
   MADNESS.	
   As	
   in	
   Nek5000,	
   computational	
   kernels	
   performing	
  
matrix	
  multiplications	
  of	
  small	
  matrices	
  are	
  responsible	
  for	
  large	
  fractions	
  of	
  execution	
  
time.	
  On	
  MADNESS,	
  typical	
  matrix	
  sizes	
  are	
  in	
  the	
  range	
  of	
  2	
  to	
  30.	
  We	
  used	
  the	
  same	
  
autotuning	
   and	
   specialization	
   methodology	
   to	
   derive	
   specialized	
   code	
   versions	
   for	
  
MTXMQ,	
   a	
   matrix-­‐transpose	
   matrix	
   multiplication	
   routine.	
   Our	
   results	
   show	
   our	
  
automatically-­‐generated	
   library	
   yields	
   better	
   performance	
   than	
   the	
   hand-­‐coded	
  
assembly	
   library	
   for	
  MADNESS	
  on	
   small	
   problem	
  sizes,	
  but	
  not	
   yet	
   for	
   larger	
  problem	
  
sizes.	
   Our	
   auto-­‐tuned	
   library	
   is	
   also	
   sometimes	
   better	
   than	
   the	
   ACML	
   library	
   due	
   to	
  
specialization.	
  Table	
  1	
  shows	
  the	
  number	
  of	
  FLOPS	
  per	
  cycle	
  of	
  MTXMQ,	
  ACML	
  and	
  our	
  
TUNE	
  versions	
  of	
  the	
  original	
  MTXMQ	
  routine.	
  

 
ni nj nk MTXMQ ACML TUNE TUNE %peak 

4 2 2 0.10 0.07 1.50 37.66 
16 4 4 1.04 0.51 1.63 40.84 
36 6 6 1.74 0.99 1.89 47.47 
64 8 8 2.33 1.56 1.96 49.10 

100 10 10 2.61 1.80 2.26 56.00 
144 12 12 2.69 2.12 2.42 60.72 

	
  
Table 1. Performance of MTXMQ (from MADNESS’s implementation) versus ACML and TUNE. 
ni, nj and nk are matrix dimensions. 

	
  
We	
   are	
   currently	
   investigating	
   the	
   performance	
   of	
   MADNESS	
   on	
   multiple	
   nodes	
   and	
  



	
  

multiple	
  cores	
  per	
  node	
  on	
  jaguar,	
  the	
  Cray	
  XT5	
  at	
  ORNL.	
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