
	

Compiler-­Directed	
 Automatic	
 Performance	
 Tuning	

Mary	
 Hall	
 (PI),	
 University	
 of	
 Utah	

Jacqueline	
 Chame	
 (co-­‐PI),	
 USC/ISI	

Jaewook	
 Shin	
 (co-­‐PI),	
 Paul	
 Hovland	
 (co-­‐PI),	
 Argonne	
 National	
 Laboratory	

Project	
 Summary	

This	
 project	
 has	
 developed	
 compiler-­‐directed	
 performance	
 tuning	
 technology	
 targeting	

the	
 Cray	
 XT4	
 Jaguar	
 system	
 at	
 Oak	
 Ridge,	
 which	
 has	
 multi-­‐core	
 Opteron	
 nodes	
 with	
 SSE-­‐
3	
 SIMD	
 extensions,	
 and	
 the	
 Cray	
 XE6	
 Hopper	
 system	
 at	
 NERSC.	
 To	
 achieve	
 this	
 goal,	
 we	

combined	
 compiler	
 technology	
 for	
 model-­‐guided	
 empirical	
 optimization	
 for	
 memory	

hierarchies	
 with	
 SIMD	
 code	
 generation,	
 which	
 have	
 been	
 developed	
 by	
 the	
 PIs	
 over	
 the	

past	
 several	
 years.	
 	
 We	
 examined	
 DOE	
 Office	
 of	
 Science	
 applications	
 to	
 identify	

performance	
 bottlenecks	
 and	
 apply	
 our	
 system	
 to	
 computational	
 kernels	
 that	
 operate	

on	
 dense	
 arrays.	
 	
 Our	
 goal	
 for	
 this	
 performance-­‐tuning	
 technology	
 has	
 been	
 to	
 yield	

hand-­‐tuned	
 levels	
 of	
 performance	
 on	
 DOE	
 Office	
 of	
 Science	
 computational	
 kernels,	

while	
 allowing	
 application	
 programmers	
 to	
 specify	
 their	
 computations	
 at	
 a	
 high	
 level	

without	
 requiring	
 manual	
 optimization.	
 Overall,	
 we	
 aim	
 to	
 make	
 our	
 technology	
 for	

SIMD	
 code	
 generation	
 and	
 memory	
 hierarchy	
 optimization	
 a	
 crucial	
 component	
 of	
 high-­‐
productivity	
 Petaflops	
 computing	
 through	
 a	
 close	
 collaboration	
 with	
 the	
 scientists	
 in	

national	
 laboratories.	

1. Code	
 Transformation	
 Framework	

This	
 project	
 has	
 funded	
 significant	
 development	
 of	
 CHiLL,	
 a	
 framework	
 for	
 composing	

high-­‐level	
 loop	
 transformations	
 designed	
 to	
 generate	
 efficient	
 code	
 for	
 complex	
 loop	

nests	
 [1].	
 It	
 supports	
 an	
 extensive	
 collection	
 of	
 loop	
 transformations	
 for	
 perfect	
 and	

imperfect	
 loop	
 nests,	
 including	
 tiling,	
 permutation	
 and	
 unroll-­‐and-­‐jam,	
 thus	
 lifting	
 the	

burden	
 of	
 generating	
 multiple	
 intermediate	
 steps	
 from	
 compilers	
 or	
 optimization	
 tools.	

CHiLL	
 uses	
 the	
 Omega	
 test	
 to	
 manipulate	
 integer	
 arithmetic	
 and	
 relies	
 on	
 polyhedral	

scanning	
 provided	
 by	
 Omega’s	
 code	
 generator.	
 Recently	
 we	
 have	
 integrated	
 new	

features	
 into	
 CHiLL,	
 including	
 support	
 for	
 user	
 input	
 to	
 the	
 tool.	
 Users	
 can	
 now	
 relay	

information	
 about	
 the	
 code	
 and	
 input	
 data	
 that	
 could	
 not	
 be	
 derived	
 by	
 static	
 analysis	

alone,	
 and	
 this	
 information	
 often	
 results	
 in	
 more	
 efficient	
 code	
 generation.	

	

We	
 have	
 publicly	
 released	
 CHiLL.	
 	
 We	
 have	
 also	
 updated	
 the	
 Omega	
 Library	
 and	
 the	

associated	
 code	
 generator,	
 released	
 as	
 Omega+	
 and	
 Codegen+,	
 which	
 is	
 a	
 main	

component	
 of	
 CHiLL.	
 All	
 have	
 been	
 released	
 and	
 can	
 be	
 found	
 on	
 our	
 research	
 page,	

http://ctop.cs.utah.edu/ctop/?page_id=21	

	

We	
 have	
 worked	
 extensively	
 to	
 increase	
 the	
 capability	
 of	
 CHiLL.	
 A	
 major	
 focus	
 of	
 this	

work	
 is	
 on	
 providing	
 the	
 appropriate	
 interface	
 to	
 application	
 and	
 library	
 developers	
 to	

	

increase	
 their	
 productivity.	
 	
 In	
 working	
 with	
 application	
 and	
 library	
 developers,	
 we	
 have	

discovered	
 that	
 many	
 optimizations	
 that	
 are	
 well-­‐known	
 and	
 available	
 in	
 most	
 compilers	

are	
 performed	
 manually	
 by	
 the	
 application	
 developers.	
 	
 The	
 reason	
 behind	
 this	
 is	
 the	

application	
 developers	
 do	
 not	
 have	
 sufficient	
 control	
 over	
 how	
 the	
 optimizations	
 are	

performed	
 or	
 the	
 parameters	
 that	
 are	
 used	
 by	
 the	
 compiler,	
 and	
 they	
 cannot	
 see	
 the	

results	
 of	
 the	
 optimization.	
 	
 Our	
 goal	
 in	
 building	
 the	
 interface	
 to	
 CHiLL	
 was	
 to	
 expose	
 the	

transformation	
 capability	
 to	
 the	
 programmer,	
 and	
 then	
 rely	
 on	
 the	
 compiler	
 and	
 auto-­‐
tuning	
 framework	
 to	
 automate	
 code	
 generation	
 and	
 parameter	
 selection.	
 	
 Over	
 the	
 past	

year,	
 we	
 have	
 broadened	
 the	
 capabilities	
 of	
 the	
 interface	
 in	
 CHiLL	
 	
 We	
 now	
 support	

OpenMP	
 and	
 CUDA	
 code	
 generation	
 through	
 high-­‐level	
 directives	
 provided	
 by	
 the	

programmer,	
 and	
 work	
 is	
 underway	
 for	
 OpenCL	
 code	
 generation.	
 	
 We	
 have	
 also	
 raised	

the	
 level	
 of	
 abstraction	
 for	
 this	
 interface	
 so	
 that	
 programmers	
 have	
 a	
 higher	
 level	
 of	

abstraction	
 when	
 interacting	
 with	
 the	
 system	
 [1][2].	

	

There	
 are	
 also	
 two	
 major	
 internal	
 improvements	
 in	
 CHiLL.	
 	
 Currently,	
 CHiLL	
 uses	
 the	

Stanford	
 SUIF	
 compiler	
 to	
 provide	
 a	
 frontend,	
 intermediate	
 representation	
 (IR),	
 and	

backend	
 code	
 generation	
 from	
 the	
 IR.	
 	
 However,	
 the	
 majority	
 of	
 CHiLL	
 is	
 independent	
 of	

its	
 IR.	
 	
 We	
 have	
 built	
 it	
 in	
 this	
 way	
 because	
 we	
 planned	
 to	
 replace	
 SUIF,	
 an	
 infrastructure	

that	
 is	
 over	
 15	
 years	
 old,	
 with	
 more	
 modern	
 compiler	
 platforms.	
 	
 To	
 this	
 end,	
 we	
 have	

improved	
 CHiLL	
 so	
 that	
 it	
 no	
 longer	
 uses	
 SUIF's	
 control	
 structures	
 directly	
 when	

initializing	
 a	
 loop,	
 but	
 rather	
 uses	
 an	
 infrastructure-­‐independent	
 abstraction	
 in	
 C++	

classes.	
 	
 Combined	
 with	
 previous	
 data	
 type	
 abstraction,	
 CHiLL	
 now	
 has	
 an	
 independent	

abstract	
 layer	
 over	
 the	
 underlying	
 compiler	
 IR,	
 paving	
 the	
 way	
 to	
 other	
 compiler	

infrastructure.	
 	
 Migrations	
 to	
 ROSE	
 and	
 Clang	
 infrastructures	
 are	
 underway	
 (ROSE	

completed	
 after	
 the	
 grant	
 ended	
 and	
 now	
 released).	

	

The	
 other	
 internal	
 improvement	
 to	
 CHiLL	
 is	
 dependence	
 graph	
 updating	
 for	
 all	
 loop	

transformations.	
 	
 After	
 each	
 loop	
 transformation,	
 CHiLL	
 updates	
 its	
 internal	
 dependence	
 	

graph	
 to	
 maintain	
 a	
 consistent	
 view	
 of	
 the	
 loop	
 structure	
 and	
 data	
 accesses	
 in	
 the	

(partially)	
 transformed	
 loop.	
 This	
 is	
 critical	
 in	
 a	
 polyhedral	
 framework	
 to	
 allow	

unrestrictive	
 composition	
 of	
 multiple	
 loop	
 transformations,	
 some	
 of	
 which	
 might	
 affect	

loops	
 in	
 a	
 complicated	
 way.	
 	
 New	
 relations	
 of	
 dependences	
 are	
 not	
 calculated	
 from	

recomputing	
 dependences	
 among	
 array	
 references	
 under	
 the	
 new	
 iteration	
 spaces.	
 	

They	
 are	
 deduced	
 from	
 the	
 semantics	
 of	
 the	
 transformation	
 itself.	
 	
 Incremental	

modification	
 to	
 the	
 dependence	
 graph	
 is	
 more	
 efficient	
 than	
 simply	
 rerunning	

dependence	
 analysis	
 on	
 the	
 modified	
 loop	
 nest.	
 	
 	
 By	
 maintaining	
 an	
 accurate	

dependence	
 graph	
 during	
 the	
 composition	
 of	
 transformations,	
 CHiLL	
 provides	
 a	
 robust	

loop	
 transformation	
 framework	
 that	
 can	
 handle	
 complicated	
 and	
 unpredictable	
 usage	

situations.	

2. Nek5k	
 tuning	
 results	

	

Nek5000	
 is	
 a	
 scalable	
 code	
 for	
 simulating	
 fluid	
 flow,	
 heat	
 transfer,	
 and	

magnetohydrodynamics	
 as	
 well	
 as	
 electromagnetics	
 (in	
 a	
 separate	
 code,	
 NekCEM).	
 The	

	

code	
 is	
 based	
 on	
 the	
 spectral	
 element	
 method	
 (SEM),	
 a	
 hybrid	
 of	
 spectral	
 and	
 finite-­‐
element	
 methods.	

	

The	
 core	
 computation	
 in	
 Nek5000	
 calls	
 for	
 repeated	
 function	
 evaluations	
 either	
 for	

explicit	
 substeps	
 of	
 the	
 time	
 advance	
 or	
 for	
 iterations	
 in	
 implicit	
 substeps.	
 Within	
 each	

element,	
 each	
 evaluation	
 entails	
 matrix-­‐vector	
 products	
 of	
 the	
 form	
 C	
 x	
 B	
 x	
 Aū.	

Specifically,	
 we	
 require	
 sums	
 of	
 the	
 following	
 form:	

	

vijk = ∑p=1, N Aipupjk, vijk = ∑p=1, N Bjpuipk, vijk = ∑p=1, N Ckpuijp, i,j,k Є {1, …, N}3
	

The	
 first	
 product	
 can	
 be	
 cast	
 as	
 a	
 matrix	
 multiply	
 if	
 uijk	
 is	
 viewed	
 as	
 an	
 array	
 having	
 N

2	

columns	
 of	
 length	
 N.	
 Similarly,	
 the	
 last	
 product	
 can	
 be	
 expressed	
 as	
 V	
 =	
 UCT	
 .	
 The	
 middle	

sum	
 is	
 expressed	
 as	
 a	
 sequence	
 of	
 small	
 products,	
 u(:,	
 :,	
 k)BT	
 ,	
 k	
 =	
 1,	
 .	
 .	
 .	
 ,	
 N.	
 Because	
 the	

approximation	
 order	
 of	
 the	
 pressure	
 and	
 velocity	
 spaces	
 differ	
 by	
 2,	
 the	
 above	
 sums	
 also	

appear	
 with	
 permutations	
 in	
 which	
 index	
 ranges	
 may	
 be	
 replaced	
 by	
 M	
 =	
 N	
 −	
 2.	
 Thus,	

Nek5000	
 requires	
 numerous	
 calls	
 to	
 small,	
 dense	
 matrix	
 multiplies	
 of	
 known	
 sizes	
 over	
 a	

limited	
 range	
 of	
 values.	

	

We	
 investigated	
 the	
 performance	
 impact	
 of	
 autotuning	
 and	
 specialization	
 for	
 two	

Nek5000	
 data	
 sets:	
 Helix2,	
 which	
 is	
 helical	
 pipe	
 flow,	
 similar	
 to	
 that	
 found	
 in	
 certain	

vascular	
 flows,	
 and	
 G6a,	
 which	
 is	
 turbulent	
 flow	
 in	
 a	
 channel	
 that	
 is	
 partially	
 blocked	
 by	

a	
 cylinder.	
 We	
 used	
 PAPI	
 to	
 collect	
 hardware	
 performance	
 metrics	
 and	
 observed	
 that,	

with	
 the	
 Helix2	
 input,	
 the	
 application	
 spends	
 approximately	
 60%	
 of	
 the	
 time	
 on	
 a	

particular	
 function,	
 mxm44_0.	
 This	
 function	
 is	
 a	
 manually	
 tuned	
 implementation	
 of	

matrix	
 multiply,	
 which	
 yields	
 overall	
 good	
 performance	
 over	
 a	
 wide	
 range	
 of	

architectures.	
 The	
 main	
 loop	
 nest	
 is	
 unrolled	
 by	
 4	
 for	
 each	
 of	
 the	
 i	
 and	
 j	
 loops	
 of	
 the	

original	
 loop	
 nest.	
 If	
 either	
 M	
 or	
 N	
 is	
 not	
 a	
 multiple	
 of	
 4,	
 clean-­‐up	
 loops	
 execute	
 the	

residual	
 iterations.	
 	
 To	
 investigate	
 the	
 frequency	
 of	
 each	
 array	
 size,	
 we	
 instrumented	

mxm44_0	
 so	
 that	
 it	
 captures	
 the	
 number	
 of	
 calls	
 for	
 each	
 matrix	
 size	
 across	
 all	
 of	
 its	

invocations	
 for	
 each	
 of	
 the	
 two	
 problems.	
 We	
 use	
 these	
 call	
 frequencies	
 to	
 select	
 sizes	

for	
 specialization	
 and	
 optimize	
 the	
 conditional	
 checks	
 for	
 matrix	
 size.	

	

The	
 methodology	
 for	
 optimizing	
 Nek5000	
 consists	
 of	
 three	
 steps.	
 We	
 first	
 use	
 CHiLL	
 to	

generate	
 code	
 versions	
 specialized	
 for	
 specific	
 matrix	
 sizes.	
 An	
 automated	
 empirical	

search	
 then	
 finds	
 the	
 best	
 optimization	
 parameters,	
 using	
 a	
 set	
 of	
 compiler	
 heuristics	
 to	

keep	
 the	
 search	
 space	
 manageable.	
 Finally,	
 we	
 create	
 a	
 library	
 of	
 specialized	
 code	

versions	
 and	
 replace	
 the	
 original	
 computation	
 with	
 calls	
 to	
 the	
 library.	
 At	
 run	
 time,	
 the	

matrix	
 size	
 determines	
 which	
 of	
 the	
 tuned	
 versions	
 will	
 be	
 executed.	

	

Specialization	
 information	
 allows	
 the	
 autotuning	
 tools	
 to	
 derive	
 highly	
 optimized	

specialized	
 versions	
 of	
 a	
 computation	
 for	
 known	
 input	
 sizes,	
 which	
 is	
 particularly	

valuable	
 for	
 Nek5k.	
 We	
 used	
 CHiLL	
 to	
 automatically	
 generate	
 the	
 specialized	
 versions	

for	
 the	
 library.	
 	
 Because	
 these	
 small	
 matrices	
 fit	
 within	
 even	
 small	
 L1	
 caches,	
 the	
 focus	

of	
 optimization	
 should	
 be	
 on	
 managing	
 registers,	
 exploiting	
 ILP	
 in	
 its	
 various	
 forms,	
 and	

	

reducing	
 loop	
 overhead.	
 For	
 these	
 purposes,	
 we	
 use	
 loop	
 permutation	
 and	
 aggressive	

loop	
 unrolling	
 for	
 all	
 loops	
 in	
 a	
 nest.	
 To	
 the	
 backend	
 compiler,	
 unrolling	
 exposes	

opportunities	
 for	
 instruction	
 scheduling,	
 scalar	
 replacement,	
 and	
 eliminating	
 redundant	

computations.	
 Loop	
 permutation	
 may	
 enable	
 the	
 backend	
 compiler	
 to	
 generate	
 more	

efficient	
 single-­‐instruction	
 multiple-­‐data	
 (SIMD)	
 instructions	
 by	
 bringing	
 a	
 loop	
 with	
 unit	

stride	
 access	
 in	
 memory	
 to	
 the	
 innermost	
 position,	
 as	
 required	
 for	
 utilization	
 of	

multimedia-­‐extension	
 instruction	
 set	
 architectures.	
 Thus	
 we	
 generate	
 specialized	

versions	
 using	
 a	
 combination	
 of	
 loop	
 permutation	
 and	
 unroll-­‐and-­‐jam.	
 In	
 some	
 cases,	

where	
 the	
 matrices	
 are	
 small,	
 we	
 obtain	
 the	
 best	
 performance	
 by	
 coming	
 close	
 to	
 fully	

unrolling	
 all	
 the	
 three	
 loops	
 in	
 the	
 nest.	
 When	
 applied	
 too	
 aggressively,	
 however,	
 loop	

unrolling	
 can	
 generate	
 code	
 that	
 exceeds	
 the	
 instruction	
 cache	
 or	
 register	
 file	
 capacity.	

Therefore,	
 we	
 use	
 autotuning	
 to	
 identify	
 the	
 unroll	
 factors	
 that	
 navigate	
 the	
 tradeoff	

between	
 increased	
 ILP	
 and	
 exceeding	
 capacity	
 of	
 the	
 instruction	
 cache	
 and	
 registers.	
 We	

rely	
 on	
 the	
 native	
 backend	
 compiler	
 for	
 the	
 architecture	
 to	
 identify	
 the	
 SIMD	

instructions,	
 and	
 simply	
 expose	
 code	
 to	
 the	
 backend	
 that	
 will	
 be	
 optimized	
 most	

effectively.	
 	
 Even	
 better	
 performance	
 can	
 be	
 obtained	
 by	
 aggregating	
 multiple	
 calls	
 to	

matrix-­‐matrix	
 multiply	
 and	
 optimizing	
 the	
 code	
 to	
 exploit	
 reuse	
 in	
 registers	
 and	
 cache.	

Being	
 compiler-­‐based,	
 our	
 approach	
 can	
 optimize	
 the	
 middle	
 loop	
 that	
 contains	
 multiple	

calls	
 to	
 matrix-­‐matrix	
 multiply.	
 To	
 do	
 this,	
 we	
 inline	
 the	
 matrix-­‐multiply	
 function	
 into	
 the	

loop,	
 and	
 use	
 the	
 inlined	
 loop	
 nest	
 as	
 the	
 input	
 to	
 the	
 autotuning	
 framework.	

	

Performance	
 improvements	
 for	
 the	
 full	
 Nek5k	
 application	
 running	
 on	
 the	
 Cray	
 XT5	

jaguar	
 system	
 at	
 Oak	
 Ridge	
 are	
 38%	
 on	
 4	
 nodes	
 for	
 input	
 helix2,	
 and	
 up	
 to	
 26%	
 on	
 256	

nodes	
 for	
 input	
 g6a,	
 as	
 illustrated	
 in	
 Figure	
 1	
 and	
 Figure	
 2.	

	

	

	

Figure 1. Nek5000 with input helix2 on jaguar using 1 core per node.

.

	

Figure 2. Nek5000 with input g6a on jaguar using 1 core per node.	
 	

	

3. Auto-­‐tuning	
 for	
 instruction	
 selection	
 and	
 scheduling	

	

With	
 a	
 faculty	
 and	
 student	
 team	
 from	
 Chicago	
 State	
 University,	
 we	
 investigated	

techniques	
 to	
 improve	
 the	
 performance	
 of	
 small	
 matrix-­‐matrix	
 multiply	
 through	

instruction	
 selection	
 and	
 empirical	
 instruction	
 scheduling.	
 	
 As	
 part	
 of	
 this	
 research,	
 we	

identified	
 an	
 opportunity	
 to	
 replace	
 two	
 instructions	
 (MOVSD	
 and	
 UNPCKLPD)	

generated	
 by	
 the	
 compiler	
 with	
 a	
 single	
 instruction	
 (MOVDDUP).	
 	
 In	
 addition,	
 we	

developed	
 a	
 binary	
 instruction	
 rescheduler	
 and	
 a	
 binary	
 instruction	
 generator	
 that	

employs	
 very	
 aggressive	
 unrolling.	
 	
 Together,	
 these	
 techniques	
 raise	
 the	
 performance	
 of	

(10,10,10)	
 matrix-­‐matrix	
 multiply	
 from	
 57%	
 of	
 peak	
 to	
 nearly	
 70%	
 of	
 peak	
 on	
 an	
 AMD	

K10	
 processor.	
 	
 Our	
 preliminary	
 analysis	
 suggests	
 that	
 70%	
 is	
 close	
 to	
 the	
 maximum	

achievable	
 performance	
 on	
 this	
 processor	
 family.	

	

4. Analysis	
 of	
 PETSc	

	

An	
 important	
 lesson	
 from	
 optimizing	
 nek5000	
 is	
 the	
 performance	
 gain	
 that	
 can	
 be	

achieved	
 by	
 specializing	
 library	
 code	
 for	
 its	
 execution	
 context.	
 	
 Libraries	
 are	
 written	
 in	
 a	

very	
 general	
 way	
 to	
 anticipate	
 a	
 wide	
 variety	
 of	
 ways	
 in	
 which	
 they	
 may	
 be	
 used.	
 This	

generality	
 may	
 lead	
 to	
 extensive	
 control	
 flow	
 tests	
 or	
 other	
 overheads,	
 and	
 reduces	

optimization	
 opportunities,	
 especially	
 when	
 the	
 libraries	
 are	
 used	
 in	
 ways	
 that	
 differ	

from	
 the	
 common	
 case	
 (such	
 as	
 the	
 small	
 matrices	
 used	
 in	
 nek5000).	
 	
 Through	

instrumentation,	
 we	
 may	
 be	
 able	
 to	
 identify	
 common	
 use	
 cases	
 within	
 a	
 specific	

application,	
 and	
 improve	
 optimization	
 effectiveness	
 when	
 such	
 information	
 is	
 available.	
 	

For	
 example,	
 selecting	
 unroll	
 factors	
 and	
 tile	
 sizes	
 for	
 loop	
 nests	
 benefits	
 from	

information	
 about	
 the	
 iteration	
 count	
 and	
 memory	
 accesses	
 within	
 the	
 nest.	

	

	

In	
 the	
 related	
 SciDAC	
 project	
 PERI,	
 we	
 applied	
 CHiLL	
 to	
 optimize	
 PFLOTRAN,	
 a	
 DOE	

application	
 developed	
 at	
 LANL	
 that	
 models	
 multiscale-­‐multiphase-­‐multicomponent	

subsurface	
 reactive	
 flows.	
 PFLOTRAN	
 uses	
 the	
 PETSc	
 library	
 as	
 the	
 basis	
 of	
 its	
 parallel	

framework.	
 	
 	
 The	
 PERI	
 team	
 identified	
 three	
 main	
 computations	
 in	
 PFLOTRAN	
 as	

candidates	
 for	
 optimization:	
 	
 a	
 PETSc	
 routine	
 that	
 computes	
 a	
 matrix-­‐vector	

multiplication	
 (MatMul_SeqBAIJ_N);	
 a	
 PETSc	
 function	
 that	
 solves	
 the	
 system	
 A	
 x	
 =	
 b,	

given	
 a	
 factored	
 matrix	
 A,	
 (MatSolve_SeqBAIJ_N);	
 and	
 a	
 routine	
 that	
 calculates	
 the	

contribution	
 of	
 aqueous	
 equilibrium	
 complexity	
 to	
 the	
 residual	
 and	
 Jacobian	
 functions	

for	
 Newton-­‐Raphson	
 (RTOTAL).	

	

Instead	
 of	
 writing	
 manually	
 optimized	
 versions	
 of	
 PETSc	
 library	
 calls	
 and	
 testing	
 for	

different	
 unroll/tiling	
 factors,	
 the	
 kernel	
 along	
 with	
 its	
 known	
 parameters	
 were	
 provided	

as	
 inputs	
 to	
 CHiLL.	
 CHiLL	
 was	
 used	
 to	
 generate	
 different	
 code	
 variants	
 according	
 to	
 the	

parameter	
 values	
 and	
 transformation	
 factors.	
 A	
 heuristic	
 based	
 search	
 was	
 then	

performed	
 by	
 Active	
 Harmony	
 to	
 find	
 the	
 best	
 performing	
 variant	
 for	
 each	
 permutation	

of	
 values	
 a	
 set	
 of	
 parameters/variables	
 can	
 possess.	
 The	
 experiment	
 was	
 performed	

swiftly	
 and	
 the	
 overall	
 applications	
 performance	
 was	
 improved	
 by	
 5%.	

	

Writing	
 specialized	
 code	
 is	
 a	
 technique	
 often	
 used	
 by	
 library	
 developers	
 to	
 optimize	

applications.	
 However,	
 manually-­‐written	
 code	
 has	
 several	
 disadvantages	
 when	

compared	
 to	
 our	
 framework.	
 	

• The	
 library	
 developer	
 will	
 not	
 possess	
 the	
 values	
 of	
 parameters	
 along	
 with	
 their	

frequencies	
 at	
 design	
 time.	
 Hence,	
 he	
 would	
 be	
 able	
 to	
 write	
 specialized	

functions	
 only	
 for	
 specific	
 values.	

• It	
 gets	
 a	
 little	
 difficult	
 for	
 the	
 developer	
 to	
 reason	
 about	
 the	
 best	
 implementation	

when	
 the	
 number	
 of	
 variables/parameter	
 along	
 with	
 each	
 of	
 their	
 possible	

values	
 is	
 more	
 than	
 a	
 few.	

• It	
 is	
 not	
 feasible	
 to	
 expect	
 the	
 application	
 programmer	
 to	
 write	
 specialized	
 code.	

• Performance	
 of	
 implementations	
 vary	
 according	
 to	
 the	
 architecture.	

	

PETSc	
 alone	
 has	
 29	
 functions	
 which	
 have	
 been	
 specialized,	
 amounting	
 to	
 a	
 total	
 of	
 242	

manually-­‐written	
 functions.	
 For	
 the	
 last	
 few	
 months	
 we	
 have	
 been	
 investigating	
 how	
 to	

combine	
 CHiLL	
 with	
 PETSC	
 such	
 that	
 applications	
 can	
 use	
 the	
 CHiLL	
 framework	
 to	

generate	
 these	
 specialized	
 versions	
 to	
 reduce	
 the	
 amount	
 of	
 code	
 that	
 is	
 provided	
 by	

the	
 library	
 and,	
 using	
 auto-­‐tuning	
 and	
 specialization,	
 derive	
 more	
 highly	
 optimized	

versions	
 of	
 the	
 library	
 functions.	
 	
 This	
 code	
 generation	
 could	
 be	
 deferred	
 until	
 the	
 build	

of	
 the	
 application	
 so	
 that	
 the	
 code	
 can	
 be	
 specialized	
 for	
 the	
 application	
 and	
 execution	

context.	
 	
 Such	
 an	
 integration	
 would	
 allow	
 users	
 to	
 study	
 the	
 hotspots	
 in	
 the	
 PETSC	

	

library	
 and	
 extract	
 frequent	
 values	
 if	
 possible.	
 The	
 best	
 performing	
 code	
 would	
 then	
 be	

automatically	
 generated	
 and	
 included	
 in	
 the	
 PETSC	
 library.	

Figure	
 3	
 shows	
 results	
 from	
 a	
 study	
 using	
 CHiLL	
 to	
 specialize	
 PETSc	
 code	
 for	
 three	

large-­‐scale	
 applications:	
 PFLOTRAN	
 (as	
 previously	
 described),	
 the	
 Uintah	
 Problem	

Solving	
 Framework	
 and	
 UNIC,	
 a	
 3D	
 unstructured	
 deterministic	
 neutron	
 transport	
 code.	
 	

This	
 work	
 demonstrated	
 significant	
 performance	
 improvements	
 of	
 more	
 than	
 1.8X	
 on	

the	
 library	
 functions	
 and	
 overall	
 gains	
 of	
 9	
 to	
 24%	
 on	
 the	
 overall	
 applications.	
 	
 A	
 full	

report	
 of	
 this	
 experiment	
 and	
 methodology	
 can	
 be	
 found	
 elsewhere	
 [8][9].	

Figure 3. Impact of PETSc specialization on application performance.	
 	

5. Other	
 benchmark:	
 MADNESS	

We	
 have	
 also	
 applied	
 the	
 combined	
 autotuning	
 and	
 specialization	
 technology	
 to	
 the	

core	
 computation	
 of	
 MADNESS.	
 As	
 in	
 Nek5000,	
 computational	
 kernels	
 performing	

matrix	
 multiplications	
 of	
 small	
 matrices	
 are	
 responsible	
 for	
 large	
 fractions	
 of	
 execution	

time.	
 On	
 MADNESS,	
 typical	
 matrix	
 sizes	
 are	
 in	
 the	
 range	
 of	
 2	
 to	
 30.	
 We	
 used	
 the	
 same	

autotuning	
 and	
 specialization	
 methodology	
 to	
 derive	
 specialized	
 code	
 versions	
 for	

MTXMQ,	
 a	
 matrix-­‐transpose	
 matrix	
 multiplication	
 routine.	
 Our	
 results	
 show	
 our	

automatically-­‐generated	
 library	
 yields	
 better	
 performance	
 than	
 the	
 hand-­‐coded	

assembly	
 library	
 for	
 MADNESS	
 on	
 small	
 problem	
 sizes,	
 but	
 not	
 yet	
 for	
 larger	
 problem	

sizes.	
 Our	
 auto-­‐tuned	
 library	
 is	
 also	
 sometimes	
 better	
 than	
 the	
 ACML	
 library	
 due	
 to	

specialization.	
 Table	
 1	
 shows	
 the	
 number	
 of	
 FLOPS	
 per	
 cycle	
 of	
 MTXMQ,	
 ACML	
 and	
 our	

TUNE	
 versions	
 of	
 the	
 original	
 MTXMQ	
 routine.	

ni nj nk MTXMQ ACML TUNE TUNE %peak

4 2 2 0.10 0.07 1.50 37.66
16 4 4 1.04 0.51 1.63 40.84
36 6 6 1.74 0.99 1.89 47.47
64 8 8 2.33 1.56 1.96 49.10

100 10 10 2.61 1.80 2.26 56.00
144 12 12 2.69 2.12 2.42 60.72

	

Table 1. Performance of MTXMQ (from MADNESS’s implementation) versus ACML and TUNE.
ni, nj and nk are matrix dimensions.

	

We	
 are	
 currently	
 investigating	
 the	
 performance	
 of	
 MADNESS	
 on	
 multiple	
 nodes	
 and	

	

multiple	
 cores	
 per	
 node	
 on	
 jaguar,	
 the	
 Cray	
 XT5	
 at	
 ORNL.	
 	
 	

Publications	

[1]	
 M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, M. Khan, Loop Transformation
Recipes for Code Generation and Auto-Tuning, The 22nd International Workshop on
Languages and Compilers for Parallel Computing, October 8-10, 2009.
[2] G.	
 Rudy,	
 M.	
 Hall,	
 C.	
 Chen,	
 J.	
 Chame,	
 M.	
 Khan,	
 “A	
 Programming	
 Language	
 Interface	

to	
 Describe	
 Transformations	
 and	
 Code	
 Generation,”	
 The 23rd International Workshop
on Languages and Compilers for Parallel Computing, October, 2010.
[3] J. Shin, M. Hall, J. Chame, C. Chen, P. Fisher and P. Hovland. “Speeding up
Nek5000 with Autotuning and Specialization. The 24th International Conference in
Supercomputing (ICS 2010), June 2010.
[4] J.	
 Shin,	
 M.	
 W.	
 Hall,	
 J.	
 Chame,	
 C.	
 Chen,	
 P.	
 D.	
 Hovland,	
 “Autotuning and Specialization:
Speeding up Matrix Multiply for Small Matrices with Compiler Technology,”
International Workshop on Automatic Performance Tuning, October, 2009.
[5] M. Khan, C. Chen, M. Hall, J. Chame, “CUDA-CHiLL: Using Compiler-Based
Autotuning to Generate High-Performance GPU Libraries,” Poster presentation, SC
2010, November, 2010.
[6]	
 J.	
 Shin,	
 M.	
 W.	
 Hall,	
 J.	
 Chame,	
 C.	
 Chen,	
 P.	
 D.	
 Hovland,	
 ”Autotuning	
 and	

Specialization:	
 Speeding	
 up	
 Matrix	
 Multiply	
 for	
 Small	
 Matrices	
 with	
 Compiler	

Technology,	
 Software	
 Automatic	
 Tuning:	
 from	
 concepts	
 to	
 state-­of-­the-­art	
 results,	

edited	
 by	
 Keita	
 Teranishi,	
 John	
 Cavazos,	
 Ken	
 Naono	
 and	
 Reiji	
 Suda,	
 to	
 appear	
 2010.	

[7]	
 M.W.	
 Hall	
 and	
 J.	
 Chame,	
 	
 “Languages	
 and	
 Compilers	
 for	
 Autotuning,''	
 In	
 Scientific	

Computer	
 Performance,	
 edited	
 by	
 David	
 Bailey	
 and	
 Robert	
 F.	
 Lucas.	
 Taylor	
 and	

Francis	
 publishers,	
 to	
 appear	
 2011.	

[8] S. Ramalingam, M. Hall, and C. Chen; "Improving High-Performance Sparse
Libraries Using Compiler-Assisted Specialization: A PETSc Case Study," 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), May 2012.
[9] S.	
 Ramalingam,	
 “"Improving High-Performance Sparse Libraries Using Compiler-
Assisted Specialization: A PETSc (Portable Extensible Toolkit for Scientific
Computation) Case Study," May 2012.

Presentations	

“Tools for High Productivity HPC Software Development", Paul Hovland, Aachen
University, June 2010.

“Collaborative Autotuning of Scientific Applications,'' Mary Hall, SIAM Parallel
Processing Symposium, Feb. 2010.

“Paving the Way for Programming Extreme Scale Systems,'' DOE Institute for
Computing in Science, Future of the Field Workshop, Jul. 2010.

“Compiler-Based Auto-tuning for Application and Library Code,'' Mary Hall, Invited
talk, DOE SciDAC Center for Scalable Application Development Software Workshop on
Libraries and Autotuning for Petascale Applications, August, 2010.

	

``Next Generation Compiler'', Mary Hall, Panelist, DOE SciDAC Center for Scalable
Application Development Software Workshop on Libraries and Autotuning for Petascale
Applications, August, 2010.
“Compiler-Based Autotuning of Energy Applications,"USC-DOE Conference on
Materials for Energy Applications: Experiment, Modeling and Simulations, March, 2011.
”Autotuning Compilers: Paving the Way to Exascale", Invited Talk, Joint DOE ASCR
and NNSA Exascale PI meeting, Annapolis, MD, October 2011.
“Automating Application Mapping with Autotuning: Paving the Way to
Exascale,"SalishanConference on High-Speed Computing, April 2012.
“Autotuning Compiler and Language Techology and its Role in Exascale Systems,”
Invited speaker, 6th International Conference on Automatic Differentiation, July 2012.

