Compiler-Directed Automatic Performance Tuning

Mary Hall (PI), University of Utah
Jacqueline Chame (co-PI), USC/ISI
Jaewook Shin (co-PI), Paul Hovland (co-PI), Argonne National Laboratory

Project Summary

This project has developed compiler-directed performance tuning technology targeting
the Cray XT4 Jaguar system at Oak Ridge, which has multi-core Opteron nodes with SSE-
3 SIMD extensions, and the Cray XE6 Hopper system at NERSC. To achieve this goal, we
combined compiler technology for model-guided empirical optimization for memory
hierarchies with SIMD code generation, which have been developed by the Pls over the
past several years. We examined DOE Office of Science applications to identify
performance bottlenecks and apply our system to computational kernels that operate
on dense arrays. Our goal for this performance-tuning technology has been to yield
hand-tuned levels of performance on DOE Office of Science computational kernels,
while allowing application programmers to specify their computations at a high level
without requiring manual optimization. Overall, we aim to make our technology for
SIMD code generation and memory hierarchy optimization a crucial component of high-
productivity Petaflops computing through a close collaboration with the scientists in
national laboratories.

1. Code Transformation Framework

This project has funded significant development of CHiLL, a framework for composing
high-level loop transformations designed to generate efficient code for complex loop
nests [1]. It supports an extensive collection of loop transformations for perfect and
imperfect loop nests, including tiling, permutation and unroll-and-jam, thus lifting the
burden of generating multiple intermediate steps from compilers or optimization tools.
CHILL uses the Omega test to manipulate integer arithmetic and relies on polyhedral
scanning provided by Omega’s code generator. Recently we have integrated new
features into CHiILL, including support for user input to the tool. Users can now relay
information about the code and input data that could not be derived by static analysis
alone, and this information often results in more efficient code generation.

We have publicly released CHiLL. We have also updated the Omega Library and the
associated code generator, released as Omega+ and Codegen+, which is a main
component of CHiLL. All have been released and can be found on our research page,
http://ctop.cs.utah.edu/ctop/?page_id=21

We have worked extensively to increase the capability of CHILL. A major focus of this
work is on providing the appropriate interface to application and library developers to

increase their productivity. In working with application and library developers, we have
discovered that many optimizations that are well-known and available in most compilers
are performed manually by the application developers. The reason behind this is the
application developers do not have sufficient control over how the optimizations are
performed or the parameters that are used by the compiler, and they cannot see the
results of the optimization. Our goal in building the interface to CHiLL was to expose the
transformation capability to the programmer, and then rely on the compiler and auto-
tuning framework to automate code generation and parameter selection. Over the past
year, we have broadened the capabilities of the interface in CHiLL We now support
OpenMP and CUDA code generation through high-level directives provided by the
programmer, and work is underway for OpenCL code generation. We have also raised
the level of abstraction for this interface so that programmers have a higher level of
abstraction when interacting with the system [1][2].

There are also two major internal improvements in CHiLL. Currently, CHiLL uses the
Stanford SUIF compiler to provide a frontend, intermediate representation (IR), and
backend code generation from the IR. However, the majority of CHiLL is independent of
its IR. We have built it in this way because we planned to replace SUIF, an infrastructure
that is over 15 years old, with more modern compiler platforms. To this end, we have
improved CHILL so that it no longer uses SUIF's control structures directly when
initializing a loop, but rather uses an infrastructure-independent abstraction in C++
classes. Combined with previous data type abstraction, CHiLL now has an independent
abstract layer over the underlying compiler IR, paving the way to other compiler
infrastructure. Migrations to ROSE and Clang infrastructures are underway (ROSE
completed after the grant ended and now released).

The other internal improvement to CHiLL is dependence graph updating for all loop
transformations. After each loop transformation, CHiLL updates its internal dependence
graph to maintain a consistent view of the loop structure and data accesses in the
(partially) transformed loop. This is critical in a polyhedral framework to allow
unrestrictive composition of multiple loop transformations, some of which might affect
loops in a complicated way. New relations of dependences are not calculated from
recomputing dependences among array references under the new iteration spaces.
They are deduced from the semantics of the transformation itself. Incremental
modification to the dependence graph is more efficient than simply rerunning
dependence analysis on the modified loop nest. By maintaining an accurate
dependence graph during the composition of transformations, CHiLL provides a robust
loop transformation framework that can handle complicated and unpredictable usage
situations.

2. Nek5k tuning results

Nek5000 is a scalable code for simulating fluid flow, heat transfer, and
magnetohydrodynamics as well as electromagnetics (in a separate code, NekCEM). The

code is based on the spectral element method (SEM), a hybrid of spectral and finite-
element methods.

The core computation in Nek5000 calls for repeated function evaluations either for
explicit substeps of the time advance or for iterations in implicit substeps. Within each
element, each evaluation entails matrix-vector products of the form Cx B x Ad.
Specifically, we require sums of the following form:

_ _ _ .. 3
Viik = Zp=1, NAipupjlo Viik = Zp=1, NB;'pUipk, Viik = Zp=1, NCkpuijp; ik €{1, .., N}

The first product can be cast as a matrix multiply if uji is viewed as an array having N’
columns of length N. Similarly, the last product can be expressed as V = UC" . The middle
sum is expressed as a sequence of small products, u(;, :, k)BT, k=1,..., N.Because the
approximation order of the pressure and velocity spaces differ by 2, the above sums also
appear with permutations in which index ranges may be replaced by M = N - 2. Thus,
Nek5000 requires numerous calls to small, dense matrix multiplies of known sizes over a
limited range of values.

We investigated the performance impact of autotuning and specialization for two
Nek5000 data sets: Helix2, which is helical pipe flow, similar to that found in certain
vascular flows, and G6a, which is turbulent flow in a channel that is partially blocked by
a cylinder. We used PAPI to collect hardware performance metrics and observed that,
with the Helix2 input, the application spends approximately 60% of the time on a
particular function, mxm44_0. This function is a manually tuned implementation of
matrix multiply, which vyields overall good performance over a wide range of
architectures. The main loop nest is unrolled by 4 for each of the i and j loops of the
original loop nest. If either M or N is not a multiple of 4, clean-up loops execute the
residual iterations. To investigate the frequency of each array size, we instrumented
mxm44_0 so that it captures the number of calls for each matrix size across all of its
invocations for each of the two problems. We use these call frequencies to select sizes
for specialization and optimize the conditional checks for matrix size.

The methodology for optimizing Nek5000 consists of three steps. We first use CHiLL to
generate code versions specialized for specific matrix sizes. An automated empirical
search then finds the best optimization parameters, using a set of compiler heuristics to
keep the search space manageable. Finally, we create a library of specialized code
versions and replace the original computation with calls to the library. At run time, the
matrix size determines which of the tuned versions will be executed.

Specialization information allows the autotuning tools to derive highly optimized
specialized versions of a computation for known input sizes, which is particularly
valuable for Nek5k. We used CHiLL to automatically generate the specialized versions
for the library. Because these small matrices fit within even small L1 caches, the focus
of optimization should be on managing registers, exploiting ILP in its various forms, and

reducing loop overhead. For these purposes, we use loop permutation and aggressive
loop unrolling for all loops in a nest. To the backend compiler, unrolling exposes
opportunities for instruction scheduling, scalar replacement, and eliminating redundant
computations. Loop permutation may enable the backend compiler to generate more
efficient single-instruction multiple-data (SIMD) instructions by bringing a loop with unit
stride access in memory to the innermost position, as required for utilization of
multimedia-extension instruction set architectures. Thus we generate specialized
versions using a combination of loop permutation and unroll-and-jam. In some cases,
where the matrices are small, we obtain the best performance by coming close to fully
unrolling all the three loops in the nest. When applied too aggressively, however, loop
unrolling can generate code that exceeds the instruction cache or register file capacity.
Therefore, we use autotuning to identify the unroll factors that navigate the tradeoff
between increased ILP and exceeding capacity of the instruction cache and registers. We
rely on the native backend compiler for the architecture to identify the SIMD
instructions, and simply expose code to the backend that will be optimized most
effectively. Even better performance can be obtained by aggregating multiple calls to
matrix-matrix multiply and optimizing the code to exploit reuse in registers and cache.
Being compiler-based, our approach can optimize the middle loop that contains multiple
calls to matrix-matrix multiply. To do this, we inline the matrix-multiply function into the
loop, and use the inlined loop nest as the input to the autotuning framework.

Performance improvements for the full Nek5k application running on the Cray XT5

jaguar system at Oak Ridge are 38% on 4 nodes for input helix2, and up to 26% on 256
nodes for input gb6a, as illustrated in Figure 1 and Figure 2.

5 T T

=—&1 Manually tuned

Cray scientific library
OG- Autotuned matrix multiply
Sk—3¢ Autotuned matrix multiply + higher-level tuning

IS
I

N w
| |

Speedup over manually tuned sequential execution
I

| | |
o 1 2 4

Number of processors

Figure 1. Nek5000 with input helix2 on jaguar using 1 core per node.

2 T T T T

8 |— [3—& Manually tuned —
Cray scientific library -
7= OG- Autotuned matrix multiply < |

Sk—k Autotuned matrix multiply + higher-level tuning

Speedup over manually tuned 32 processes

o | ! ! |
32 64 128 256

Number of processors

Figure 2. Nek5000 with input géa on jaguar using 1 core per node.

3. Auto-tuning for instruction selection and scheduling

With a faculty and student team from Chicago State University, we investigated
techniques to improve the performance of small matrix-matrix multiply through
instruction selection and empirical instruction scheduling. As part of this research, we
identified an opportunity to replace two instructions (MOVSD and UNPCKLPD)
generated by the compiler with a single instruction (MOVDDUP). In addition, we
developed a binary instruction rescheduler and a binary instruction generator that
employs very aggressive unrolling. Together, these techniques raise the performance of
(10,10,10) matrix-matrix multiply from 57% of peak to nearly 70% of peak on an AMD
K10 processor. Our preliminary analysis suggests that 70% is close to the maximum
achievable performance on this processor family.

4. Analysis of PETSc

An important lesson from optimizing nek5000 is the performance gain that can be
achieved by specializing library code for its execution context. Libraries are written in a
very general way to anticipate a wide variety of ways in which they may be used. This
generality may lead to extensive control flow tests or other overheads, and reduces
optimization opportunities, especially when the libraries are used in ways that differ
from the common case (such as the small matrices used in nek5000). Through
instrumentation, we may be able to identify common use cases within a specific
application, and improve optimization effectiveness when such information is available.
For example, selecting unroll factors and tile sizes for loop nests benefits from
information about the iteration count and memory accesses within the nest.

In the related SciDAC project PERI, we applied CHiLL to optimize PFLOTRAN, a DOE
application developed at LANL that models multiscale-multiphase-multicomponent
subsurface reactive flows. PFLOTRAN uses the PETSc library as the basis of its parallel
framework. The PERI team identified three main computations in PFLOTRAN as
candidates for optimization: a PETSc routine that computes a matrix-vector
multiplication (MatMul_SeqBAlJ_N); a PETSc function that solves the system A x = b,
given a factored matrix A, (MatSolve_SeqBAIlJ_N); and a routine that calculates the
contribution of aqueous equilibrium complexity to the residual and Jacobian functions
for Newton-Raphson (RTOTAL).

Instead of writing manually optimized versions of PETSc library calls and testing for
different unroll/tiling factors, the kernel along with its known parameters were provided
as inputs to CHILL. CHILL was used to generate different code variants according to the
parameter values and transformation factors. A heuristic based search was then
performed by Active Harmony to find the best performing variant for each permutation
of values a set of parameters/variables can possess. The experiment was performed
swiftly and the overall applications performance was improved by 5%.

Writing specialized code is a technique often used by library developers to optimize
applications. However, manually-written code has several disadvantages when
compared to our framework.

* The library developer will not possess the values of parameters along with their
frequencies at design time. Hence, he would be able to write specialized
functions only for specific values.

* |t gets a little difficult for the developer to reason about the best implementation
when the number of variables/parameter along with each of their possible
values is more than a few.

* Itis not feasible to expect the application programmer to write specialized code.

* Performance of implementations vary according to the architecture.

PETSc alone has 29 functions which have been specialized, amounting to a total of 242
manually-written functions. For the last few months we have been investigating how to
combine CHiLL with PETSC such that applications can use the CHiLL framework to
generate these specialized versions to reduce the amount of code that is provided by
the library and, using auto-tuning and specialization, derive more highly optimized
versions of the library functions. This code generation could be deferred until the build
of the application so that the code can be specialized for the application and execution
context. Such an integration would allow users to study the hotspots in the PETSC

library and extract frequent values if possible. The best performing code would then be
automatically generated and included in the PETSC library.

Figure 3 shows results from a study using CHILL to specialize PETSc code for three
large-scale applications: PFLOTRAN (as previously described), the Uintah Problem
Solving Framework and UNIC, a 3D unstructured deterministic neutron transport code.
This work demonstrated significant performance improvements of more than 1.8X on
the library functions and overall gains of 9 to 24% on the overall applications. A full
report of this experiment and methodology can be found elsewhere [8][9].

PFLOTRAN Uintah - Methane Fire Container UNIC
120x240x40 IA(MMMAO Speedup
Speedup 13

115

M Specialized
11 M Specialized W Specialized Library -PGI
L -
brary - PGI Library - PGI —
105 : B Specialized B Specialized Library -intel
Library - Intel Library - Intel
1 1
16 1 2 4 B8 16

32 64 128 256

Figure 3. Impact of PETSc specmhzatlon on application performance.

5. Other benchmark: MADNESS

We have also applied the combined autotuning and specialization technology to the
core computation of MADNESS. As in Nek5000, computational kernels performing
matrix multiplications of small matrices are responsible for large fractions of execution
time. On MADNESS, typical matrix sizes are in the range of 2 to 30. We used the same
autotuning and specialization methodology to derive specialized code versions for
MTXMQ, a matrix-transpose matrix multiplication routine. Our results show our
automatically-generated library yields better performance than the hand-coded
assembly library for MADNESS on small problem sizes, but not yet for larger problem
sizes. Our auto-tuned library is also sometimes better than the ACML library due to
specialization. Table 1 shows the number of FLOPS per cycle of MTXMQ, ACML and our
TUNE versions of the original MTXMQ routine.

ni nj nk MTXMQ ACML TUNE TUNE %peak
4 2 2 0.10 0.07 1.50 37.66
16 4 4 1.04 0.51 1.63 40.84
36 6 6 1.74 0.99 1.89 47.47
64 8 8 2.33 1.56 1.96 49.10
100 10 10 2.61 1.80 2.26 56.00
144 12 12 2.69 2.12 2.42 60.72

Table 1. Performance of MTXMQ (from MADNESS’s implementation) versus ACML and TUNE.
ni, nj and nk are matrix dimensions.

We are currently investigating the performance of MADNESS on multiple nodes and

multiple cores per node on jaguar, the Cray XT5 at ORNL.
Publications

[1] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, M. Khan, Loop Transformation
Recipes for Code Generation and Auto-Tuning, The 22nd International Workshop on
Languages and Compilers for Parallel Computing, October 8-10, 2009.

[2] G. Rudy, M. Hall, C. Chen, J. Chame, M. Khan, “A Programming Language Interface
to Describe Transformations and Code Generation,” The 23rd International Workshop
on Languages and Compilers for Parallel Computing, October, 2010.

[3]J. Shin, M. Hall, J. Chame, C. Chen, P. Fisher and P. Hovland. “Speeding up
Nek5000 with Autotuning and Specialization. The 24" International Conference in
Supercomputing (ICS 2010), June 2010.

[4]]. Shin, M. W. Hall,]. Chame, C. Chen, P. D. Hovland, “Autotuning and Specialization:
Speeding up Matrix Multiply for Small Matrices with Compiler Technology,”
International Workshop on Automatic Performance Tuning, October, 2009.

[5] M. Khan, C. Chen, M. Hall, J. Chame, “CUDA-CHiLL: Using Compiler-Based
Autotuning to Generate High-Performance GPU Libraries,” Poster presentation, SC
2010, November, 2010.

[6] J. Shin, M. W. Hall, J. Chame, C. Chen, P. D. Hovland, "Autotuning and
Specialization: Speeding up Matrix Multiply for Small Matrices with Compiler
Technology, Software Automatic Tuning: from concepts to state-of-the-art results,
edited by Keita Teranishi, John Cavazos, Ken Naono and Reiji Suda, to appear 2010.
[7] M.W. Hall and J. Chame, “Languages and Compilers for Autotuning," In Scientific
Computer Performance, edited by David Bailey and Robert F. Lucas. Taylor and
Francis publishers, to appear 2011.

[8] S. Ramalingam, M. Hall, and C. Chen; "Improving High-Performance Sparse
Libraries Using Compiler-Assisted Specialization: A PETSc Case Study," 2012 IEEE
26th International Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), May 2012.

[9] S. Ramalingam, “"Improving High-Performance Sparse Libraries Using Compiler-
Assisted Specialization: A PETSc (Portable Extensible Toolkit for Scientific
Computation) Case Study," May 2012.

Presentations
“Tools for High Productivity HPC Software Development", Paul Hovland, Aachen
University, June 2010.

“Collaborative Autotuning of Scientific Applications," Mary Hall, SIAM Parallel
Processing Symposium, Feb. 2010.

“Paving the Way for Programming Extreme Scale Systems," DOE Institute for
Computing in Science, Future of the Field Workshop, Jul. 2010.

“Compiler-Based Auto-tuning for Application and Library Code," Mary Hall, Invited
talk, DOE SciDAC Center for Scalable Application Development Software Workshop on
Libraries and Autotuning for Petascale Applications, August, 2010.

""Next Generation Compiler", Mary Hall, Panelist, DOE SciDAC Center for Scalable
Application Development Software Workshop on Libraries and Autotuning for Petascale
Applications, August, 2010.

“Compiler-Based Autotuning of Energy Applications,"USC-DOE Conference on
Materials for Energy Applications: Experiment, Modeling and Simulations, March, 2011.

”Autotuning Compilers: Paving the Way to Exascale", Invited Talk, Joint DOE ASCR
and NNSA Exascale PI meeting, Annapolis, MD, October 2011.

“Automating Application Mapping with Autotuning: Paving the Way to
Exascale,"SalishanConference on High-Speed Computing, April 2012.

“Autotuning Compiler and Language Techology and its Role in Exascale Systems,”
Invited speaker, 6™ International Conference on Automatic Differentiation, July 2012.

