Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using “Omics”

Our overarching goal for this research was to harness the power of multiple meta-omics tools to
gain greater understanding of the functioning of whole-soil microbial communities and their role in C
cycling (Myrold et al., 2014). This entailed three objectives with multiple tasks.

Objective 1. Further develop and optimize a combination of meta-omics approaches to understand how
climate shifts (precipitation timing/amount) impact microbially-mediated C cycling functions at different
levels of expression and regulation.

Task 1.1-Generate a metagenome for the Kansas prairie soil. More than 500 Gb of
metagenome sequence was generated for Kansas native prairie soil through the JGI Great Prairie Grand
Challenge project. The data were assembled and annotated and used as a scaffold for
metatranscriptome and metaproteome data generated in the project. One complication with
sequencing of bulk soil DNA is that the DNA originates from populations that are dormant or even dead,
in addition to actively-growing members of the community. To overcome this challenge and to reduce
the diversity of the metagenome, we focused on the actively growing members of the soil community by
specifically extracting DNA that had incorporated a thymine analog, bromodeoxyuridine (BrdU), during
DNA replication in native bulk soils. The BrdU-labeled DNA was extracted using magnetic beads coated
with goat anti-mouse IgG targeted to BrdU. By focusing on the active metagenome, the metagenome
assembly was significantly improved based on a larger number and greater length of contigs (Fig.1;
6.8x10° contigs of at least 200 bp), which in turn resulted in better annotation. For example, a
comparison of the active taxa based on extracting the reads annotated as rrs gene (16S) in the BrdU-
labeled metagenomic shotgun data and the total DNA allowed us to identify taxa present and actively
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Figure 1. Comparison of metagenome assembly distribution between total and BrdU-labeled DNA extracted from Kanza native
and acetate-amended prairie soil. The assembly has been performed using clc workbench, after quality trimming on galaxy (JGI
platform). The figure shows longer contigs after BrdU-labeled metagenome showing (in red) than the total DNA (in blue).
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Figure 2. Comparison of total DNA and BrdU-labeled DNA from 16S annotated reads at phylum level. The results presented
here provided from the metagenomic shotgun sequencing, extracting the reads annotated as 16S.

metabolizing, such as proteobacteria and to find phyla that were not even detectable in the total DNA,
such as euryarchaeota (Fig. 2). In addition we performed co-occurrence network analysis of the bacterial
community. An example, Fig. 3 shows the network for proteobacteria present in both the BrdU and non-
labeled metagenome.

In addition, the use of the active metagenome as a new database on the same metaproteomics
shotgun data (via 2d-LC-MS/MS on an LTQ Velos mass spectrometer) allowed us to identify 10 times
more proteins per sample, reaching 1,235 protein identified—one of the highest protein yields for soil to
date. We screened the metagenome and metaproteome data for specific functions involved in C cycling.
These data show, for example, that when the soil was amended with acetate, specific cell transporters
for acetate can be detected and identified in the metaproteome data.

In order to improve functional screening of the metagenome data, we built a comprehensive
functional database manually curated into categories called FOAM (Functional Ontology Assignments for
Metagenomes), where smallest chosen unit of the database was KOs (KEGG Orthology groups). KOs
were retrieved to fit within the corresponding hierarchical organization for a specific function (such as
denitrification, methanogenesis, etc.). In addition, to improve upon the speed and sensitivity of
conventional BLAST searches versus FOAM, we turned each KOs set of sequences into Hidden Markov
Models by fetching their corresponding pfam profiles and exploring the diversity of each KOs by
retrieving the sequences of all entire genome data available in IMG for each orthology (Fig. 4). The
resulting product is the first soil-specific HMM database of 35,781 HMMs for 2,870 unique KOs, allowing
us to screen increasingly large “omics” datasets such as metagenomes, metatranscriptomes, and
metaproteomes from soil samples with greater accuracy and speed. The details of this database have
been published (Prestat et al., in press). All the annotation methods developed in this project will be
made available for the scientific community at http://portal.nersc.gov/project/m1317/FOAM/.
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Figure 3. Co-occurrence network of proteobacteria based on a linear-linear model (attraction and repulsion, proportional to the
distance between the nodes). The model was chosen as an intermediate position between Noack’s LinLog and the algorithm of
Fruchterman and Rheingold.

Task 1.2-Optimize metatranscriptomics protocol. Soil metatranscriptomics can inform
mechanisms that drive microbially-mediated biogeochemical processes, by identifying the functional
gene transcripts, or mRNAs, present under defined variations in environmental conditions. However, the
pool of total RNA molecules in direct extraction preparations is dominated by ribosomal RNA (rRNA),
which is not functionally informative. Therefore, a number of approaches exist to remove ribosomes
from the total RNA pool to enrich the amount of mRNA sequence before preparation for sequencing.
Although mRNA enrichment creates transcriptomic datasets with more functionally informative
information, the manipulation of molecular composition may cause bias in the distribution of mRNAs
sequenced, which could lead to inaccurate interpretations of experimental results. Therefore a simple
experiment was used to evaluate the efficacy and bias in soil transcriptomes prepared using two
straightforward mRNA enrichment protocols (rRNA removal via reverse hybridization (MICROBExpress
Bacterial mRNA enrichment kit, Ambion/Life Technologies, Carlsbad, CA, USA) and physical removal of
rRNA from total RNA via gel extraction) compared to total RNA preparation of metatranscriptomic
libraries. To identify whether mRNA enrichment method affects the relative abundance of transcripts
detected, we added log-phase Pseudomonas putida KT2440 cells (reference genome) to sterile Konza
prairie soil, allowed the cells to metabolize soil-derived organic matter for 6 h, harvested total RNA from
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Figure 4. HMM building pipeline: example with KO:K16157 (methane monooxygenase). Step 1- find Pfam(s) combination
assigned to the KO of interest (a) and (b) check for redundancy. Step 2- fetch IMG peptide sequences which hit the retrieved
Pfam(s). Step 3- fetch from Pfam-A database the HMM of interest. Step 4-alignment (hmmalign) and filter each Pfam from
extra sequences obtained in IMG. Step 5- stitch filtered alignments. Step 6- draw a Maximum Likelihood tree (fasttree). Step 7-
find clusters in tree with same KO. Step 8- split alignment (step 5 output) by cluster (step 7 output) and build HMM for each,
and process the “Trusted Cutoff” computation.

soil, then compared transcriptomes prepared with different ribosome removal (MRNA enrichment)
methods. Results show that the relative abundance of recruitment of mRNA transcripts to the P. putida
KT2440 genome was positively correlated between the total RNA and gel-enriched mRNA libraries, but
not correlated between the total RNA and reverse-hybridized mRNA libraries (Fig. 5). Thus, soil
transcriptome library preparation via gel-enrichment was determined to provide a more accurate
snapshot of mMRNA relative abundance within the total RNA pool than reverse hybridization library
preparation.

A second laboratory incubation was set up to refine our methods for extracting RNA and protein
from soil. We used a model bacterium that has been genome sequenced, Arthrobacter chlorophenolicus,
as an inoculum. The model strain was inoculated into sterile and non-sterile Kansas prairie soil, and
acetate and 4-chlorophenol were added as general and specific C substrates, respectively. The same
substrates were added to the soil without inoculum to assess the response of the indigenous microbes
in the soil. We extracted RNA using a phenol:chloroform extraction and PEG precipitation protocol
followed by a Qiagen kit DNA/RNA separation and DNAse cleanup. Key target genes were quantified by
guantitative PCR and RT-QPCR. A first set of genes, 16S rRNA and gfp (encoding the green fluorescence
protein that was stably inserted in the chromosome of the A. chlorophenolicus strain used) were chosen
to estimate the A. chlorophenolicus cell number. Two other genes, ICL (isocitrate lyase, part of the 2-C
bypass of the TCA cycle), and sucAB (succinyl CoA synthetase, an enzyme of the main TCA cycle) were
used to track the pathways used by the microorganisms with different substrates. The gfp transcript
could be detected in all soil samples and was thus a good estimator of the cell activity and abundance
over the incubation course: gfp expression was highest in acetate incubations, which also showed the
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Figure 5. Correlation between relative abundance of recruitment of transcripts to model bacterium genome: (a) total RNA vs.
gel-enriched mRNA, (b) total RNA vs. reverse-hybridization enriched mRNA.

highest level of substrate respiration and total RNA and DNA extracted from the soil. Sequencing of RNA
libraries from soil with A. chlorophenolicus added was performed using the lllumina HiSeq 2000. These
transcriptomes showed that different metabolic pathways were more predominantly expressed
depending on the substrates and incubation conditions used (for example, a suite of genes that move
acetate through the A. chlorophenolicus pyruvate/citric acid cycle for cellular energy generation were
expressed in the acetate treatment), and these results mirrored the proteomic results, showing that the
most expressed genes were also translated into active proteins. These data and observations highlight
the cohesion and complementarity of the different meta-omics tools that we employed to answer our
primary research questions.

RNA library data from the complex soil community showed that: (1) The relative abundance of
transcripts from functional subsystems differed significantly between soil incubated with and without
acetate. Soil with acetate added had a higher abundance of transcripts of genes involved in DNA, RNA,
protein, sulfur, and phosphorus metabolism and in cell division and the cell cycle, consistent will growth.
Soil with no acetate added had a higher abundance of transcripts of genes involved in basic nitrogen and
carbohydrate metabolism, and in dormancy and sporulation. (2) The ribosomal abundance of certain
microorganisms was significantly higher than the abundance of rRNA genes in the metagenomic library,
implying that these groups of microbes were active, not dormant, in the soil habitat. In the soil with no
acetate added, these “active” microbial groups included the Acidobacteria, Cytophaga, Fibrobacteres,
Verrucomicrobia and various unclassified Bacteria, and the Agaricomycetes, Dothideomycetes,
Eurotiomycetes and additional unclassified Ascomycota and Fungi. These are taxonomic groups typically
associated with slow growth and complex organic matter decomposition, making them likely to be
active in a soil habitat but difficult to isolate or grow in a lab culture. Overall, transcriptomic data
generated from a complex soil matrix have successfully identified both active microbial metabolic and
taxonomic differences between soils with different available C sources.

Task 1.3-Optimize metaproteomics protocol. One of the major hurdles to shotgun proteomics
in soil is the effective extraction of protein molecules from the soil matrix. This is greatly aggravated by
the presence of humic acids in high organic soils, such as the Konza prairie. We first applied protocols
previously established in our consortium for low organic soils. These include a direct extraction with
SDS/TCA and an indirect extraction based on differential centrifugation to first extract bacterial cells
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shotgun metaproteomics via 2d-LC-MS/MS on an LTQ Velos mass spectrometer. Differential protein
expression patterns were observed (Fig. 6). For example, several proteins involved in response to stress
(thioredoxin, chaperonin, cold-shock proteins, etc.) were expressed. We also detected high levels of
flagellin proteins (FliC and FIgE) in the soil simultaneously with 24 genes responsible for flagella
assembly in the transcriptome. A. chlorophenolicus proteins expressed in the rhizosphere showed
several similarities to the proteome found in the soil amended with acetate. In addition, the expression
of 114 genes involved in plant hormone responses were upregulated in the rhizosphere. We also
confirmed that for the different conditions the proteome and the transcriptome matched well. Finally, a
comparison of A. chlorophenolicus protein yields from sterile and non-sterile soil showed the impact of
high background soil diversity on complicating the proteomic results, with more than 632 IDs identified
in the sterile soil.

Objective 2. Determine the impacts of long-term climatic changes (precipitation) on soil C cycling using
an existing long-term field manipulation.

Two field campaigns were completed at the Rainfall Manipulation Plots (RaMPs) at the Konza
Prairie Long-Term Ecological Research site in north-eastern Kansas, USA. RaMPs is a replicated field
manipulation of the timing and magnitude of natural precipitation that was established in 1998. This
experiment does not modify the total amount of growing season rainfall; it imposes extended dry
periods and larger, less frequent rainfall events. We collected soil before, during and after rainfall events
in both Ambient and Altered precipitation interval (more “droughty”) treatments and measured
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microbial growth, respiration and potential organic matter degradation responses. We sampled rainfall
events in June and September 2011. At each sampling we collected soil immediately prior to a 1” rainfall
event and at one and five days following the rainfall. Soil samples were divided and sent to the various
research laboratories for analyses of soil microbial activities, microbial community composition,
metatranscriptomes, and metaproteomes.

All activity measurements have been completed and published in Zeglin et al. (2013). A short
summary of notable findings include: (1) Equivalent rainfall events caused equivalent microbial
respiration responses (+1.77 in moist conditions and +0.95 mg CO,-C kg™ dry soil h™ in dry conditions) in
Ambient and Altered treatment soils, but biomass increased significantly after the rainfall in Altered
treatment soils only (+171 and 147 mg C kg™ dry soil). (2) Microbial biomass pools were also larger in
Altered than Ambient treatment soils (911 > 814 mg C kg™* dry soil, respectively). This implies that
microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 £ 0.03 vs. 0.46 £
0.10). CUE was also higher in dry (September) soils. (3) Carbon-acquiring enzyme activities (B-
glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry
(September) soils. (4) Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower
soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil
water contents, and microbial community composition also differed following wet-up and between
seasons and treatments. In summary, microbial activity may directly (C respiration) and indirectly
(enzyme potential) reduce soil organic matter pools less in drier soils, and soil C sequestration potential
(CUE) may be higher in soils with a history of extended dry periods between rainfall events. The
implications include that soil C loss may be reduced or compensated for via different mechanisms at
varying time scales, and that microbial taxa with better stress tolerance or growth efficiency may be
associated with these functional shifts.

These results lead to hypotheses regarding microbial physiological adaptation to drought stress
in prairie soils. Molecular data (454 sequencing and QPCR of bacterial 16S rRNA and fungal ribosomal
genes and transcripts, full transcriptomes, and proteomes) were collected to test these hypotheses:
(H1a) Microbial taxa that respond quickly to increased water availability after drought are more active in
soil with an altered precipitation regime history. (H1b) Transcripts and proteins from COGs indicative of
growth, not maintenance, will be more abundant after rainfall in the “droughty” plots. (H2a) In soils with
low water contents, transcripts and proteins driving trehalose (or other compatible solute) production
will be more abundant. (H2b) In soils with low water contents, fungal cells will be more abundant. (H3)
Expression of extracellular (soil organic matter degrading) enzymes will be highest in moist soils after
rainfall events. The following summarizes our findings to date with respect to gene and protein
expression.

Although, bacterial and fungal metabolic activities (as inferred from indigenous exo-enzyme
activities and soil respiration) and their biomass (PLFA and gPCR assays) were quick to respond to the
precipitation pulse, their richness community composition were stable through the pulse and did not
differ strongly among the Ambient or Altered precipitation interval treatments. However, we were able
to decipher clear functional responses. Transcriptome libraries reflected a dynamic pool of genes
expressed in the context of soil wetting and drying via both seasonal drought and individual rainfall
events (Fig. 7). Despite this variability, there was no clear relationship between the taxonomic or
functional gene expression in soils subject to long-term alteration of precipitation timing and soils
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responding to short-term responses to soil
water content, so there was no support for
hypothesis Hla. However, finer-scale
annotation and analysis of transcript data may
identify patterns that did not emerge with high-
level (i.e. phylum-level taxonomic or coarsest
functional categorization) evaluation of gene
expression in response to water availability at
different time scales.

Hypothesis H1lb was supported in that
the relative abundance of oxidative
phosphorylation (R) transcripts increased and
decreased concurrent with the pulse of total
microbial respiration following individual
rainfall events, while the combined relative
abundance of gluconeogenesis and saccharide
synthesis (G) transcripts increased and
remained elevated following rainfall (Fig. 8). In
addition, soils in the Altered had significantly
higher ratios of G:R transcripts across all
timepoints than ambient soils (0.75 + 0.33 >
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Figure 7. Functional (a; KO via FOAM categorization) and
taxonomic (b; MG-RAST M5NR) annotation of mRNA libraries from
field soil water experiments.

0.20 £ 0.07). The expression of trehalose or compatible solute production genes was not correlated with
soil water content, in contrast to expectations (hypothesis H2b); however, the sum of transcripts

categorized as “cellular responses to stress-tolerance” (including oxidative stress, osmotic stress and
general stress response, KO annotated) declined with soil water content (Fig. 9). Finally, hypothesis H3
could not be evaluated directly, because the expression rates of extracellular enzyme genes were
relatively low; this could mean that either transcript libraries were not sequenced deeply enough to
detect expression of certain genes (including extracellular enzymes), or that new enzyme production

was minimal and changes in bulk soil enzyme potential activity was primarily driven by stabilized
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Figure 8. Mean relative abundance of growth (in blue) and

respiration (in red) transcripts in field soils before and after

rainfall events.

enzymes. A related link between soil water
variability, soil organic matter (SOM) decomposition
and microbial C utilization was apparent, however,
in the concurrent increase in 3-glucosidase potential
activity and cellobiose transport following the June
rainfall event, both indicating an increase in
cellobiose (the dimer that comprises cellulose, a
major component of SOM) availability for microbial
utilization (Fig. 10). In summary, mRNA library data
provided mechanistic insights into soil microbial
carbon dynamics under changing soil water
conditions in this field experiment. Still,
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trypsin and analyzed with a high performance LTQ-Orbitrap-Elite mass spectrometer at ORNL. Of the
total 24 samples, 16 of them had dense total ion chromatograms (TIC) and base-peak chromatograms,
suggesting that these had sufficient high quality peptide mass spectra for extensive proteome coverage.
We suspect that the remaining 8 poor quality runs might be due to either insufficient microbial biomass
or the presence of an extracted, interfering component from the soil samples. The raw mass spectra
were searched against predicted protein database constructed from various metagenomic assemblies of
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degradation (Fig. 12). The dissolved

organic C and phenol/peroxidase activities make sense, as small organics are needed as part of the lignin
degradation activity. In addition, lignin degradation seems to be inversely related to N availability. The
positive association of the two fungal taxa and biomass C, but negative to biomass N, might fit with fungi
having a higher C:N ratio. The fungi presented here, Ascomycota, include numerous taxa that are known
as secondary decomposers, colonizing dead plant material already colonized by other microfungi, and
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scavenging on small carbohydrates, which could explain its association with dissolved organic C. In
addition, it makes biological sense that fungi would be associated with phenol oxidase and peroxidases,
as they are primarily involved in lignin degradation. Finally, the idea that lignin degradation is inversely
related to N availability is represented in this network. The positive association of the two fungal taxa
and biomass C, but negative to biomass N, might fit with fungi having a higher C:N ratio as suggested in
Zeglin et al. (2013).

Objective 3. Conduct laboratory experiments of specific environmental variables (moisture, C inputs) to
confirm field observations of the linkages between microbial communities and C cycling processes.

A laboratory experiment is underway to follow-up on the observation of greater CUE in drier
soils in the field experiment. Two soils of different textures were adjusted to different water stress by
varying water content (affects water potential and substrate transport) and additions of polyethylene
glycol (affects water potential but not substrate transport). Work is underway to determine CUE using
13C_labeled substrates that mimic root exudates and/or plant litter.
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