

LA-UR-14-25697

Approved for public release; distribution is unlimited.

Title: Verification of the MCNP6 FMESH Tally

Author(s):
Swift, Alicia L.
McKigney, Edward Allen
Schirato, Richard C.
Temple, Brian Allen
Robinson, Alex Philip

Intended for: 2014 LANL Student Symposium

Issued: 2014-09-10 (rev.1)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

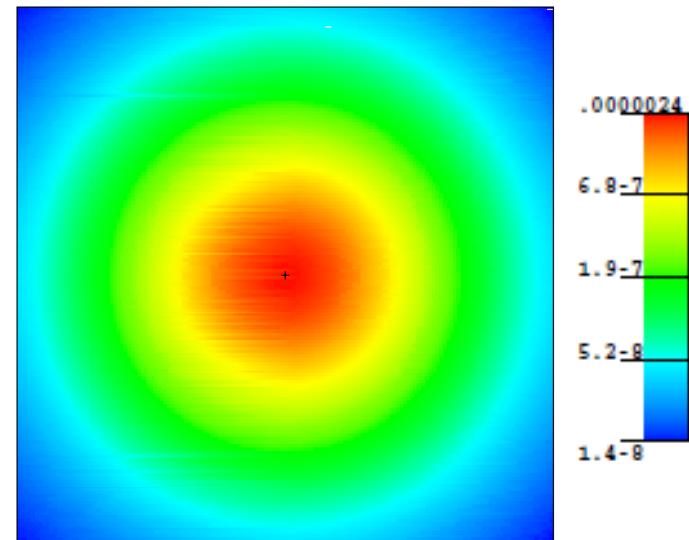
Verification of the MCNP6 FMESH Tally

Alicia L. Swift, Edward A. McKigney,
Richard C. Schirato, Alex P. Robinson,
Brian A. Temple

LANL Student Symposium

August 5-6, 2014

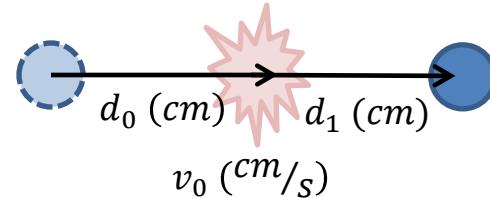
What is MCNP6?



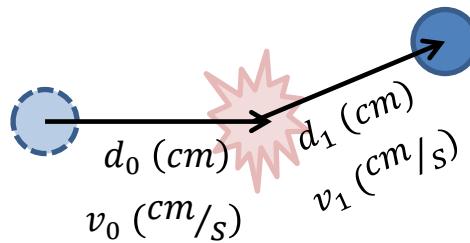
- “Monte Carlo N-Particle”
- Monte Carlo physics code
 - Conducts statistical sampling of simulated particles (neutrons, photons, electrons, and combination of all three)
 - Tallies: Surface current & flux, volume flux, mesh tallies, heating, etc.
 - Applications vary from criticality calculations to radiation shielding design to radiography

mcnp

What is an FMESH Tally?

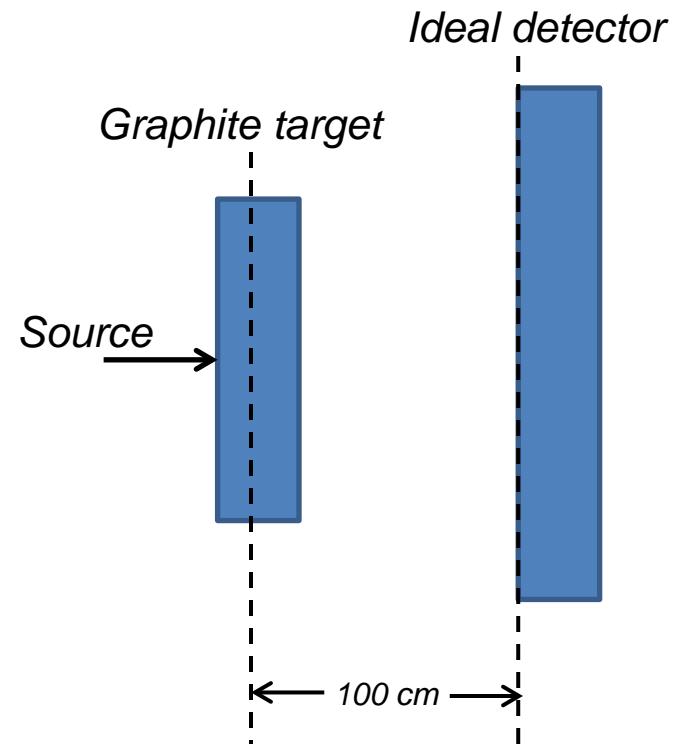

- FMESH tally places mesh over a geometry and tallies volumetric flux in each voxel
 - Useful for imaging applications (e.g. radiography, medical imaging)
 - Can be binned in time, energy, or both
 - Volumetric flux = Total particle track length divided by voxel volume
- Has fewer statistical checks than other MCNP6 tallies
 - Verification work important to ensure proper physics, statistics

Overview of Verification of FMESH Tally

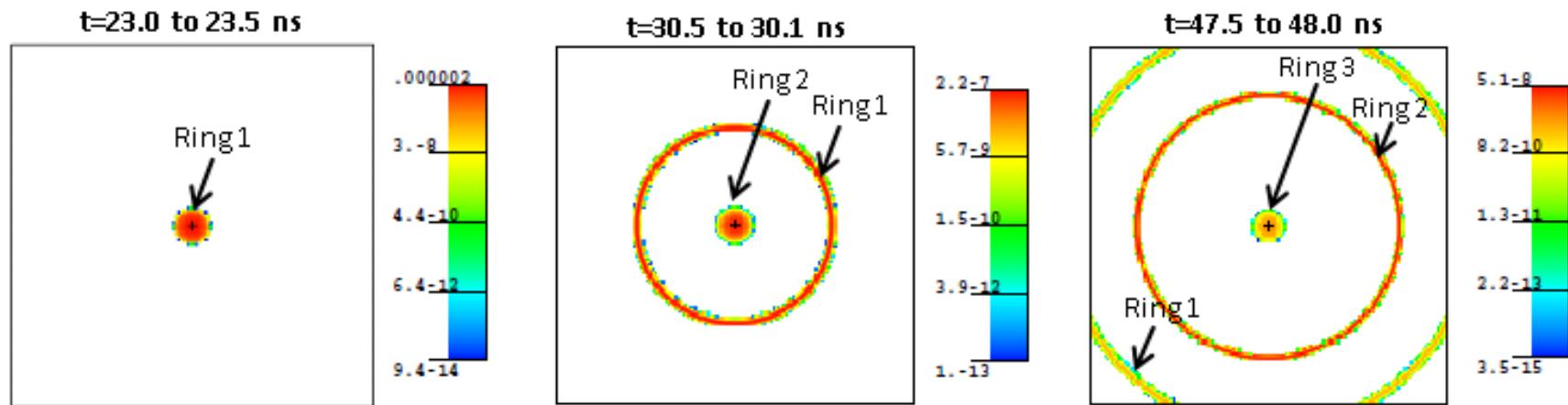

- FMESH tally binned in time to simulate neutron time of flight (TOF) for single scatters
- For verification, compare FMESH results to:
 - Analytic calculations of neutron time of flight (TOF)
 - Checks physics
 - F4 tally results
 - Calculates flux in same way as FMESH tally
 - Checks statistics

Direct Neutron TOF

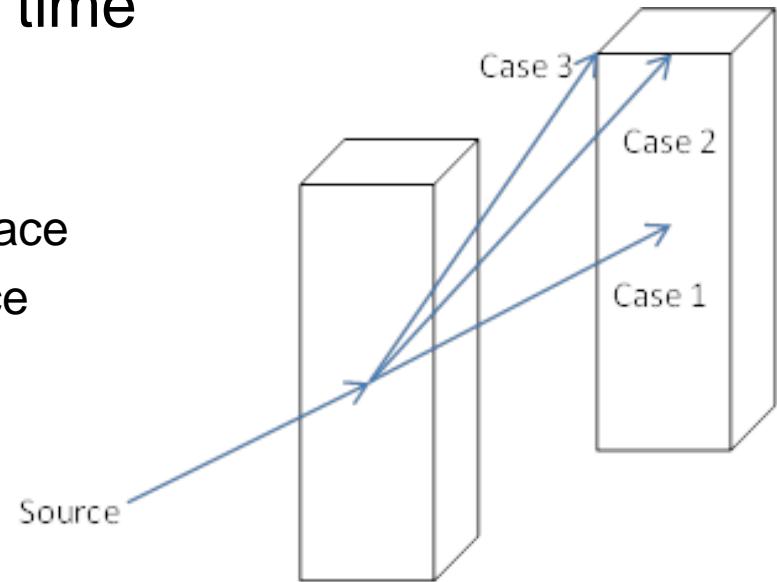
$$TOF (s) = \frac{d_0 + d_1}{v_0}$$


Scattered Neutron TOF

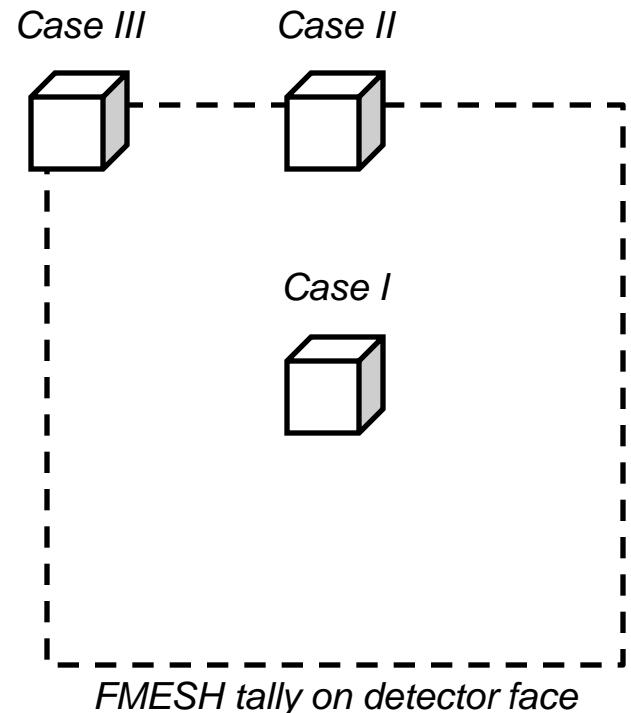
$$TOF (s) = \frac{d_0}{v_0} + \frac{d_1}{v_1}$$


Overview of MCNP6 FMESH Tally

- Generic geometry modeled in MCNP6
 - Monoenergetic pencil beam neutron source ($E=10.2$ MeV, NPS= 1×10^9)
 - Graphite target (100 x 100 x 5 cc)
 - Ideal detector (150 x 150 x 5 cc)
- FMESH tally on detector face
 - 5 x 2 x 2 cc voxel volume
 - Time bins of 0.5 ns
 - Provide time behavior of neutrons undergoing single scatter in graphite target


Simulated Physics for FMESH Verification

- Rings appear at 3 different times on detector face
 - Slower neutrons have a greater scattering angle, arrive later in time
 - Ring shape is a result of geometry symmetry
 - Ring 1 = direct neutrons, Ring 2,3 = scattered neutrons
- Will serve as basis of verification


Overview of Analytic Calculations

- Three locations on detector face chosen to characterize growth in time of rings
 - Case 1: Center of detector face
 - Case 2: Center of top edge of detector face
 - Case 3: Upper left corner of detector face
- Two locations of single scatter
 - Front face of target
 - Back face of target
- Two types of non-relativistic scatter
 - Elastic
 - Inelastic

Overview of MCNP6 F4 Tally

- Like the FMESH tally, the F4 tally calculates volumetric fluence
 - Additional verification of FMESH tally
 - Fluence in cells (vs. FMESH voxels)
- Three F4 cell tallies similar to the FMESH tally:
 - Cell volume (5 x 2 x 2 cc)
 - Location (Case I, II, and III)
 - Time binning (0.5 ns bin width)
 - Particles immediately killed
 - 30×10^9 number of neutrons simulated

Comparison of FMESH Simulations and Analytic Results

<u>RING 1</u>	Location	Analytic TOF (ns)	FMESH TOF (ns)	Percent Error
Front of target scatter	Case I	23.2	23.0 to 23.5	—
	Case II	42.7	42.5 to 43.0	—
	Case III	54.4	55.5 to 56.0	+2.0%
Back of target scatter	Case I	23.2	23.0 to 23.5	—
	Case II	43.3	42.5 to 43.0	-0.7%
	Case III	55.1	55.5 to 56.0	+0.7%

Comparison of FMESH Simulations and Analytic Results (cont'd.)

<u>RING 2</u>	Location	Analytic TOF (ns)	FMESH TOF (ns)	Percent Error
Front of target scatter	Case I	31.1	30.5 to 31.0	-0.3%
	Case II	58.0	57.5 to 58.0	—
	Case III	73.4	75.5 to 76.0	+2.9%
Back of target scatter	Case I	30.7	30.5 to 31.0	—
	Case II	58.3	57.5 to 58.0	-0.5%
	Case III	73.9	75.5 to 76.0	+2.1%

Comparison of FMESH Simulations and Analytic Results (cont'd.)

<u>RING 3</u>	Location	Analytic TOF (ns)	FMESH TOF (ns)	Percent Error
Front of target scatter	Case I	49.1	47.5 to 48.0	-2.3%
	Case II	94.8	87.0 to 87.5	-7.7%
	Case III	117.9	113.5 to 114.0	-3.3%
Back of target scatter	Case I	47.8	47.5 to 48.0	–
	Case II	94.8	87.0 to 87.5	-7.7%
	Case III	118.1	113.5 to 114.0	-3.5%

Comparison of FMESH Simulations and F4 Simulations

	Location	F4 TOF (ns)	FMESH TOF (ns)	Percent Error
Ring 1	Case I	23.0 to 23.5	23.0 to 23.5	—
	Case II	42.5 to 43.0	42.5 to 43.0	—
	Case III	55.5 to 56.0	55.5 to 56.0	—
Ring 2	Case I	30.5 to 31.0	30.5 to 31.0	—
	Case II	57.5 to 58.0	57.5 to 58.0	—
	Case III	75.5 to 76.0	75.5 to 76.0	—
Ring 3	Case I	47.5 to 48.0	47.5 to 48.0	—
	Case II	86.5 to 87.0	87.0 to 87.5	+0.6%
	Case III	112.5 to 113.0	113.5 to 114.0	+0.9%

Comparison of FMESH Simulations and F4 Simulations

	Location	F4 Rel. Error (%)	FMESH Rel. Error (%)
Ring 1	Case I	0.07	0.07
	Case II	1.72	1.59
	Case III	24.32	12.14
Ring 2	Case I	0.44	0.19
	Case II	1.29	0.95
	Case III	10.84	4.99
Ring 3	Case I	4.67	0.92
	Case II	67.20	100.0
	Case III	78.76	100.0

Conclusions

- Very good agreement between FMESH tally results and F4 tally results
 - Maximum error of 0.9%
- FMESH tally results and analytic results do not match as well
 - Maximum error of 7.7%
 - Error increases as ring number increases (Ring 1 < Ring 2 < Ring 3)
- Overall, FMESH seems to be operating properly

Ongoing and Future Work

- Ongoing work to reduce error and improve agreement between results:
 - Improve MCNP statistics
 - Simulate more particles
 - Change geometry (thinner target, smaller detector)
 - Perhaps variance reduction?
 - Calculate relativistic TOF
- Future work can be expanded to include:
 - Additional particle types
 - Additional interactions, such as (n,f)
 - More complicated geometries

Questions?