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Development of Subspace-Based Hybrid Monte Carlo Deterministic Algorithms 

for Reactor Physics Calculations 

Qiong Zhang and Hany S. Abdel-Khalik 

ABSTRACT 

The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, 

taking place over the past few decades, have primarily focused on shielding and 

detection applications where the analysis requires a small number of responses, i.e., at 

the detector location(s). This work further develops a recently introduced global 

variance reduction approach, denoted by the SUBSPACE approach, and extends its 

application to realistic reactor analysis problems, where responses are required 

everywhere in the phase space. The SUBSPACE approach is designed to allow the 

use of MC simulation, currently limited to benchmarking calculations, for routine 

engineering calculations. By way of demonstration, the SUBSPACE approach is 

applied to assembly level calculations used to generate the few-group homogenized 

cross-sections. These models are typically expensive and need to be executed in the 

order of 103-105 times to properly characterize the few-group cross-sections for 

downstream core-wide calculations. Applicability to k-eigenvalue core-wide models 

is also demonstrated in this work. Given the favorable results obtained in this work, 

we believe the applicability of the MC method for reactor analysis calculations could 

be realized in the near future. 
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I.       INTRODUCTION 

Monte Carlo (MC) methods have been applied in computing the fundamental 

mode eigen-function of critical systems since the 1950s [1-4]. The use of Monte Carlo 

simulation in reactor design and analysis calculations has been promoted in recent 

years to preclude the need for the simplifying assumptions of deterministic methods 

[5]. To enable the use of MC instead of deterministic models in the standard reactor 

physics methodology [6], one must rely on global variance reduction (GVR) 

techniques to accelerate MC convergence. This follows as in the existing reactor 

physics methodology, the neutronic solver must be executed many times which 

renders MC simulation an impractical approach for routine calculations. To 

demonstrate this situation, a short overview of the existing reactor physics 

methodology is given next.  

The reactor core is divided up into smaller regions, often chosen to represent 

full or parts of a fuel assembly taken at different axial levels. Lattice physics (or 

assembly) calculations are used to analyze these regions in more detail, often done 

with many energy groups and fine spatial and angular mesh. The flux solution from 

lattice physics calculations is used to generate cross-sections that are homogenized 

over coarser energy groups and spatially over each region in a manner that preserves 

reaction rates over the various regions. The few-group cross-sections are then used in 

core-wide simulation where the geometrical, energy, and spatial details of the regions 

are now smeared which reduces the effective dimensionality of the core-wide 

problem. Given the reliance of the flux solution from lattice physics calculations on 



the isotopic concentration, the fuel temperature, the coolant temperature and/or 

voiding, presence of poison in the coolant, amount of control rod insertion, etc., the 

few-group cross-sections must be generated at a matrix of different conditions to 

enable one interpolate the correct value for core-wide simulation. This is a formidable 

task as for typical LWR models the number of these conditions is overwhelmingly 

large. Take for example a BWR model, one typically has in the order of 30 lattice 

designs, each depleted using lattice physics calculations to end of life with about 50 

depletion steps. This is often repeated with 3 different voiding histories, e.g. no 

voiding, medium voiding, and high voiding. This is important as the increased 

voiding affects the spectrum and subsequently the depletion characteristics. At each 

depletion step, about 5 different branch calculations are executed. In each branch 

calculation, one parameter, e.g. fuel temperature increase or decrease, control rod 

insertion, etc., is changed and another flux solution is obtained. The total number of 

flux solutions for a typical BWR is 30 x 50 x 3 x 5 = 22500. If each flux solution 

takes in the order of few seconds, which is possible with highly customized 

commercial codes, these calculations can be completed over a short period of time. 

With MC models however, unless one has a reasonably fast convergence scheme, the 

use of MC would be infeasible for routine reactor physics calculations. 

To address this challenge, variance reduction techniques have been developed 

to accelerate MC convergence. The idea is that if one has an approximate idea about 

the solution, one can use that knowledge to bias MC particles. For adjoint-based 

variance reduction techniques, which represent our current interest, a simplified 



deterministic model is used to calculate an adjoint flux for the response of interest, 

say a detector response placed somewhere in the reactor core. Given that the adjoint 

flux can be shown mathematically to describe the importance of particles at different 

points in the phase space, one can design weight window maps based on the adjoint 

information to bias MC particles. This is done by splitting particles that are important 

and playing Russian roulette with particles that are less important. The idea has been 

successfully demonstrated in the FW-CADIS methodology [6], which generalizes the 

idea of variance reduction to problems with global responses, i.e., that is when 

responses are desired everywhere in the phase space. This is done by employing an 

additional deterministic forward flux solution to assign more weight to regions with 

low flux and less weight to regions with high flux which renders a uniform variance 

reduction over all responses of interest. An assembly model represents such an 

example where the flux is required everywhere in the assembly to properly 

homogenize the cross-sections. 

Over the past couple of years, a new approach, denoted by the SUBSPACE 

approach [7], was introduced to perform GVR with three primary advantages over 

existing FW-CADIS methodology. First, the forward flux solution is not required, 

which results in considerable time savings especially for eigenvalue problem with 

dominance ratio close to unity. Second, via the use of the so-called pseudo responses, 

representing random linear combinations of the original responses, the number of MC 

particles required to reach a given level of variance reduction is significantly reduced. 

Finally, the approach allows one to split the total number of MC particles over 



multiple trains of MC simulation, which improves the efficiency of the methods by 

allowing one to take advantage of parallel computing environment.  

In previous work, the figure of merit (FOM) of the SUBSPACE approach is 

calculated, which was found to be in the range of 2-10 times faster than the FW-

CADIS approach [7]. The lower range for the gain is for source-driven problems with 

small dimensionality in terms of the responses and the complexity of the geometry 

and energy details. The gain increases as the dimensionality of the model increases 

and reaches its maximum for eigenvalue core-wide problems. 

 

II. SUBSPACE APPROACH-BASED IMPLEMENTATION 
 

In its standard form, the k-eigenvalue transport equation is written as: 
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where the standard notations are used. The k-eigenvalue problem can conveniently be 

written in operator notation as: 
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The problem above is amenable to solution by Deterministic, analog Monte-

Carlo and hybrid Deterministic Monte-Carlo methods. Typically the user is interested 

in a set of responses given by the inner product of the forward flux solution   and a 

response function   of the form: 
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                                                             (3) 



If only one response is sought, it is straight-forward to tailor an adjoint function to this 

response. The adjoint function assigns importance values to different points in phase 

space based on their contribution to the response of interest: 

* * i
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 ,                                                 (4) 

where *L  is the adjoint transport operator and *  is the importance map associated 

with response. When applying the weight-window, a permissible range of weights can 

then be assigned to various regions in phase space based on this adjoint function: If 

the particle weight is below the specified range, it is Russian-rouletted and if it is 

above the range, it is split into multiple particles. In GVR problems, responses are 

desired everywhere, i.e. 

, ,  and 1, ...,
i i

u i I  
 

,                                      (5) 

where I is the total number of responses, often representing the flux or reaction rates 

calculated at many regions in the phase space.  

To ensure a uniform reduction of variances over the phase space, one needs to 

develop an adjoint function that helps bias MC particles towards all responses of 

interest [8]. In FW-CADIS, the adjoint source is formulated as a weighted sum of the 

individual responses’ adjoint sources, weighted by the inverse of the forward flux [9], 

i.e. the following forward and adjoint problems are solved: 
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This approach is based on a sound engineering intuition in which more 

particles are sent to regions in the phase space where the flux is expected to be low 

and less particles to high flux regions. This helps render uniform variance reduction 

over all responses of interest. 

In contrast, the SUBSPACE approach is based on a mathematical approach 

that takes advantage of the correlation between the various responses [7]. This helps 

reduce the effective number of responses for which weight-windows are to be 

tailored. This is achieved by generating adjoint functions for the so-called pseudo-

responses which are random linear combinations of the original responses: 

 

,
1

I

j i j i
i
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(where I
j 

R  is a randomly generated vector). Although, they lack physical 

meaning, these pseudo responses allow one identify the minimum number of effective 

responses and their associated weight windows required to achieve the same level of 

variance reduction that would be achieved if all single-response weight window maps 

are employed to reduce variances for all responses one at a time (see Ref. [7] for 

details). The key reason for their success lies in the use of random numbers, which 

have been shown by nuclear researchers [21] and independently by mathematicians to 

help identify correlations/patterns in large data sets. Using the definition for iu  from 

Eq. (4), one can write: 
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In our context, the responses of interest are the few-group homogenized cross-

sections given by the general form: 

                                              ,
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where x denotes the reaction type (x=fission, capture, scattering).  

The pseudo response would correspondingly be described as: 
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where x now stands for x=fission, capture, scattering and flux and ,x gw  represents the 

weighting factor. 

The adjoint source is constructed as: 
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Therefore, given the desired problem-specific cross section as the response of 

interest, the pseudo response is constructed as a linear combination of weighted 

original cross section responses from given libraries. For the SUBSPACE approach, 

the weighting factors are sampled from a statistical distribution and an algorithm is 

introduced to obtain the optimized number of correlations between given responses. 



For the FW-CADIS approach, the weighting factors are obtained from a forward 

calculation and calculated as the inverse of the response, in this case: the reaction rate. 

The algorithm to implement the SUBSPACE approach is described as follows: 

Requirements:  

- A general methodology that employs an importance map *
i  to bias Monte 

Carlo particles towards a given response iu . 

- The capability to calculate an importance map *
j  for a pseudo response 

defined as a random linear combination of the original I responses as defined 

in Eq. (11).  

 

Objective:  

- Identify r pseudo response, and employ them to reduce variance for all I 

responses. 

 
Algorithm: 

a) Estimate the rank r. If no prior knowledge about the rank is available, pick a small 

value, e.g. 5 20r  , and execute step b. Calculate the SVD of the matrix 

containing the importance maps for the r pseudo responses: 1 2 ... r    
     . If 

the singular values do not significantly decline, increase the estimate for r.  

b) PARALLEL DO 1,...,j r   

1. Generate a random vector I
j 

�  

2. Form a pseudo response ,
1

I

j i j i
i

u u


   

3. Calculate the importance map *
i  associated with ju   



4. Bias Monte Carlo particles based on the *
i  

5. Tally the original I responses until number of histories is exhausted 

6. Record the responses ,i ju  and their standard deviations ,i ju  

 END DO 

c) COMBINE the responses and their standard deviations from the r runs as follows: 
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End Result:  

- The iu and iu  are the mean and standard deviation for the ith response 

calculated by the SUBSPACE method. 

 

This algorithm is composed of three steps. Step (a) requires an estimate of the 

rank r. Step (b) represents an execution of an existing variance reduction method with 

a special choice for the pseudo response. Since the importance function is often 

calculated using an adjoint model, this should be fairly easy to implement for most 

codes via simple manipulation of the right hand side of the adjoint equation. Next 

section provides more details on this step for incorporating the SUBSPACE method 

into the FW-CADIS framework. Step (c) combines the results from the r executions, 

each with N independent histories, under the assumption that they are statistically 

independent [7].  

The adjoint flux map utilized for the SUBSPACE approach is generated using 

the three-dimensional discrete ordinates code DENOVO [8]. Similar to the FW-

CADIS approach, the optimization objective of the SUBSPACE approach is the 



group-wise fluxes in fissionable regions [9]. In contrast to the FW-CADIS eigenvalue 

implementation which requires the solution of a forward eigenvalue problem [10], the 

SUBSPACE approach solves a single adjoint fixed source problem with the adjoint 

source being determined as derivatives of the pseudo responses with respect to the 

adjoint function [7]. From the adjoint function the upper and lower weight window 

bounds are computed and subsequently the weight window map is written in a format 

suitable for MCNP [10]. The Monte-Carlo computations are all performed using 

MCNP.   

 
 

III. EIGENVALUE PROBLEM STUDY 
 

A three-dimensional quarter core PWR model is employed to compare the 

performance of the FW-CADIS and the SUBSPACE approaches. The PWR quarter 

core model features a generic three-dimensional layout. The x-y-z dimensions are 

204.25x204.25x335.28cm. The model consists of 48¼ 17x17 fuel assemblies, with 

264 fuel rods per assembly each of which features a 3wt% U235/U uniform fuel 

enrichment. The adjoint fixed-source DENOVO calculations use an S4 level 

symmetric quadrature and a 461 × 461 × 10 spatial grid resolving the unit-cells. The 

27 neutron and 19 photon energy group libraries included in the SCALE package are 

employed for generating the adjoint flux maps. For the flux and reaction rate 

responses, the first 14 neutron groups (10.678eV<E<20MeV) define the fast group 

and the last 13 groups (E<3.059eV) are thermal. A cross sectional view of the model 



is presented in Fig. 1, where green represents moderator and reflector (water) and red 

the fuel pins. 

Continuous-energy MCNP5 simulations are conducted using 50,000 

histories/cycle, 2500 active cycles with 500 inactive cycles starting from an initially 

uniform fission source. FW-CADIS and the SUBSPACE approaches are applied 

respectively and a thermal flux energy bin from 0.15 to 0.275ev (to be consistent with 

the response selected by the FW-CADIS work, see Ref [9]) is selected to compare the 

performance of two approaches. The obtained results of the relative uncertainty 

associated with the thermal flux are illustrated along the z-dimension for the middle 

layer (-16.674cm) in the model as shown in Fig. 2. The color bar identifies the 

percentage of relative uncertainty. 

The distribution of relative uncertainties associated with the thermal flux mesh 

tally (three-dimensional Cartesian array of tallies) in the given energy bin is plotted in 

Fig. 3 at the mid axial section of the core. Only the cells within the reactor core (i.e. 

excluding the reflector) are taken into account. The distribution of uncertainties 

obtained with the FW-CADIS and SUBSPACE approaches are similar demonstrating 

that for the same number of histories both methods obtain results featuring about the 

same level of confidence. The standard deviation and the mean value of the 

distribution of variances obtained with FW-CADIS and SUBSPACE approaches are 

presented in Table 1.  For reference, the analog results are also provided. When 

applying the SUBSPACE approach, the obtained mean value of variance is 0.0181; 

while the mean value of variance obtained by performing FW-CADIS approach is 



0.0346. Furthermore, the SUBSPACE approach generates a standard deviation of the 

variance distribution that is 33% lower compared to the same quantity generated by 

FW-CADIS, which implies a more uniform distribution of variances, which is a 

desirable feature of variance reduction techniques. 

In order to compare the efficiency, the global FOMs of the two approaches are 

calculated and presented in Table 2. It is important to note that the execution time of 

DENOVO when applying the SUBSPACE approach is 1/30 compared to the 

execution time required by FW-CADIS. The primary reason for this is that the FW-

CADIS approach requires a forward eigenvalue flux solution [9] while the 

SUBSPACE approach only requires a source-driven solution. In most realistic core-

wide problems, the eigenvalue solution is very expensive because the dominance ratio 

is very close to 1.0. As a secondary reason, the parallelization associated with the 

SUBSPACE approach improves the computational efficiency by distributing the work 

load evenly on multiple processors. 

The global FOM is calculated as the inverse product of the mean value of 

variance distribution and total execution time, which, in this case study, is the sum of 

the DENOVO execution time and the MCNP execution time. The global FOM is 

defined as:  

1

( )
FOM

v t t
DENOVO MCNP


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For the analog MC simulation, the total time equals to the MCNP execution 

time. As shown in Table 2, the global FOM obtained from applying the SUBSPACE 



approach is 0.0649 while the global FOM of the FW-CADIS approach is 0.0071. 

Meanwhile, the analog MC simulation has a global FOM value of 0.000698. These 

results demonstrate that the SUBSPACE approach shows a 9 times speedup over FW-

CADIS, which has been reported previously to show 6-10 speed up over analog MC. 

Finally, the SUBSPACE approach shows a speed-up of 93 over the analog. 

 

IV. CROSS SECTION FUNCTIONALIZATION STUDY  

A peach-bottom 7*7 BWR assembly model is employed and rebuilt in this 

section [7]. The assembly model represents the southeast assembly of a typical 2x2 

BWR control cell which contains four assemblies and a cruciform control blade that is 

not modeled within the scope of this work. The specifications of the BWR assembly 

are listed in Table 3. The assembly contains 49 fuel rods in a regular 7x7 fuel rod 

array. Each fuel pin is assigned with a unique fuel composition. The moderator 

around the fuel pin is separated into unit cells. The 49 unit cells are tallied and 

homogenized independently as shown in the Fig. 4. 

 The BWR model is implemented in the MCNP and NEWT computer codes. 

Both codes compute an identical Keff demonstrating consistency of the two models. 

NEWT is a multigroup, discrete-ordinates radiation transport code that could be used 

to prepare collapsed weighted cross sections and perform fixed-source and eigenvalue 

calculations [11]. NEWT allows plenty flexibility in defining boundary conditions 

[11]. The 44-group SCALE library is employed and collapsed into thermal group and 

fast group. The thermal group ranges from 0 through 0.625eV and the fast group 



comprises the energy range above 0.625eV [8]. Collapsed cross sections for each 

energy group are obtained from the 44-group library. An importance map is created 

based on a NEWT adjoint fixed-source calculation where the sources are constructed 

from the numerical values of the collapsed 44-group cross section library. The 

importance map is consequently used in the MCNP calculation and for each material 

in the assembly the desired responses: functionalized cross sections are obtained.   

The material representing unit cell 1 in the assembly serves as an example to 

compare the performance of different hybrid methods. The analog Monte Carlo 

simulation completes 2000 active cycles, 20000 histories per cycle in 351.02 minutes. 

When applying the SUBSPACE approach, the same number of histories is completed 

in 131.14 minutes and applying FW-CADIS it is completed in 99.72 minutes.  

Three different cross section quantities are employed as examples to compare 

the performance: fission, capture and scattering. The relative uncertainties of the 

obtained numerical results are shown in Table 4 for thermal and fast energy groups. 

The SUBSPACE approach obtains an average uncertainty level that is 2~3 times 

lower compared to the analog for the fast group and 4~5 times lower for the thermal 

group. Meanwhile, the SUBSPACE approach also shows a much better performance 

in reducing uncertainty compared to the FW-CADIS approach particularly for the 

thermal group, where a 50% decrease in term of relative uncertainty is obtained. This 

is due to the fact that the mean free path for the neutron in a thermal reactor is short 

which correlates each pin’s responses to its nearest neighboring pins. Fast neutrons 

however have longer mean free path and they are able to visit the entire assembly 



from their birth to their death, hence the assembly features are more smeared for fast 

neutrons than they are for thermal neutrons. Since the thermal responses have more 

significant meaning compared to the fast flux in reactor physics, therefore, the 

SUBSPACE approach is particularly meaningful in realistic reactor analysis 

problems.  

The results of the global FOM are shown in Table 5. The global FOM is 
calculated as: 

log
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It is shown that for the thermal group, the SUBSPACE approach obtains a 

speedup between 32~38 over the analog and for the fast group a speedup between 

9~16 over the analog. On the other hand, FW-CADIS approach obtains a speedup 

over the analog that is between 19~22 for the thermal group and a speed up between 

6~11 for the fast group. Fig. 5 and Fig. 6 plot the GVR methods’ speedup for fast and 

thermal group for fission, capture and scattering independently. The blue bar and the 

red bar respectively identify the speedup over the analog of the SUBSPACE approach 

and the FW-CADIS approach. For all the three quantities plotted in both plots, the 

blue bar shows a more significant increase than the red bar, which shows that the 

SUBSPACE approach is more efficient than the FW-CADIS approach in accelerating 

the analog MC procedure for both fast and thermal responses. 

 



V. DEPLETION STUDY 

The 7x7 BWR assembly model described in Section IV is employed in this 

section for demonstrating the feasibility of the SUBSPACE approach in depletion 

calculation. The depletion calculation is conducted by TRITON [8]. The 44 group 

energy library from SCALE, as introduced in Section IV, is employed and collapsed 

into thermal 0~0.625eV and fast 0.625ev~20MeV groups. The 49 fuel pins are 

divided into 8 groups based on the different composition for depletion purpose as 

shown in Fig. 7. The assembly model is simulated under hot condition with a pellet 

temperature of 900K and a moderator temperature fixed at 600K. A constant power 

level of 45.220MW/MTU is maintained during the depletion which is split over 5 

depletion cycles, each spanning a 100 day period. Throughout the depletion cycles, 

the computed multiplication factor decreases from 1.08682 to 0.92166. The Burnup 

level increases from 1.13 GWd/MTU to 19.2 GWd/MTU. 

The Monte Carlo calculations are performed using MCNP5. The SUBSPACE 

approach is implemented for representing GVR methodology. Since the assembly 

level homogenized cross sections are chosen as the response of interest, the pseudo 

responses are constructed as a linear combination of weighted original cross section 

responses from the SCALE library. The analog Monte Carlo is performed 

independently for comparison. For all depletion cycles, 20000 histories/cycle and 

2000 active cycles are completed in the MCNP simulation. As demonstrated in [12], a 

single weight window in Monte Carlo simulation proves as accurate as multiple 

specified weight windows for all the depletion cycles. Therefore to guarantee the 



maximum efficiency, in this work a single averaged weight window is constructed for 

all the depletion cycles employing the SUBSPACE approach. The number densities of 

nuclides are obtained for each depletion cycle from the TRITON calculation and 

different depletion scenarios are built.  

 For each depletion scenario, an adjoint fixed-source problem, with the 

SUBSPACE pseudo response constructed by linearly combining original cross section 

data from the SCALE library, is solved and the corresponding importance map is 

obtained. Multiple importance maps (3~5 per depletion cycle) are generated 

employing the SUBSPACE approach to represent the complete depletion process. All 

the importance maps are then linearly combined into one single importance map, 

based on which an “average” weight window is constructed for subsequent Monte 

Carlo simulations. To compare the performance of the SUBSPACE approach versus 

analog Monte Carlo, the figure of merits for group fluxes and reaction rates (fission, 

capture, scattering) at each depletion level are calculated as: 
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For the SUBSPACE approach, the total time is computed as the sum of the 

deterministic calculation time from the adjoint fixed-source run by NEWT and the 

Monte Carlo calculation time from the MCNP simulation. For the analog, the total 

time is the Monte Carlo calculation time by MCNP. The final execution times of 

SUBSPACE and analog are listed in Table 6. The average time for all depletion runs 



is 451.84 minutes for the analog calculation and 149.14 minutes while applying the 

SUBSPACE approach.  

In this study, flux and fission are employed as the two most important 

quantities to demonstrate the performance of the SUBSPACE approach. The 

corresponding FOM results are presented in Table 7 and Table 8. The speedups 

obtained by applying the SUBSPACE approach are plotted in Fig. 8 and Fig. 9 to 

show how the FOM speedups evolve throughout all the depletion cycles. For both 

flux and fission throughout all depletion cycles, the FOMs obtained by the 

SUBSPACE approach gain speedups that are between 40~50 for the thermal group 

and between 10~20 for the fast group when compared to the analog FOMs. Therefore, 

the SUBSPACE approach shows a more prominent performance regarding thermal 

responses as stated in Section 3 that the SUBSPACE approach is particularly efficient 

in accelerating thermal response calculations. In Fig. 8 and Fig. 9, it is shown that the 

speedups distribute evenly through the complete depletion process instead of showing 

an explicit increasing or decreasing trend. This well demonstrates the consistency of 

the performance of the single average weight window for all the depletion scenarios 

which is desirable.  

 

VI. CONCLUSION 

This work focuses on devising a procedure that enables the use of MC 

simulation to generate all few-group cross-sections required for core-wide 

calculations. In particular, we investigate on the generation of the few-group cross-

sections, and the impact of depletion on the biasing procedure. Results indicate that 



the SUBSPACE approach obtains 8-10 times speedup for fast group and 40-50 times 

speedup for thermal group over the analog, and the average weight window optimized 

to address all depletion cycles results in a consistent and effective speedup. In future 

work, we propose to extend this idea to investigate the impact of other core conditions 

on the weight windows, such as fuel temperature, coolant temperature and voiding, 

control rod insertion. If all these changes result in insignificant loss of the speedup, 

the SUBSPACE approach will be extended to account for all core condition 

variations.  

Furthermore, we will investigate on the use of the GPT-free methodology to 

reduce the computational cost required to generate all the depletion and branch cases. 

Based on recent results of applying GPT-free to a realistic assembly models, we 

expect another two orders of magnitude speed up, since the GPT-free methodology 

allows one to directly calculate the change in the few-group cross-sections due to 

changes in core parameters without having to re-execute the MC model. 
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Fig.1.   A Section View of 3-D PWR Quarter Core Model 

 



 

 
 
Fig. 2.  Relative Uncertainties Computed Using MCNP 5 with FW-CADIS and SUBSPACE Approaches 

for Tallied Thermal Flux. Colorbar identifies the percentage of relative uncertainty. 

 

   



 
 

Fig. 3. Relative Uncertainty Distribution for Tallied Thermal Flux using FW-CADIS and 
SUBSPACE Approaches 

 

 

 
Fig.4.   BWR Assembly Model 

 



 

Fig.5.   GVR Calculation Speedup for Fast Group 

 

 

Fig.6.   GVR Calculation Speedup for Thermal Group 

 



   

 

Fig.7.   Depletion Pattern of BWR Assembly Model 
 
 

 
 

Fig.8.   FOM Speedup of Flux through Depletion  

 



 

Fig.9.   FOM Speedup of Fission through Depletion  

 



Table 1:   Standard Deviation and Mean Value of the Variance Distribution 

 Stdev of variance Mean of variance 
FW-CADIS 0.1503 0.0346 
SUBSPACE 0.1017 0.0181 

Analog 0.2145 0.0588 
 



Table 2:    Execution Time and Global FOM 
 

Execution Time (mins) FOM 
 Denovo MCNP Total 

SUBSPACE 90.83 761.76 852.59 0.0649 
FW-CADIS 2883.05 1208.91 4091.96 0.0071 

Analog N/A 24364.05 24364.05 0.000698 
 



Table 3:    BWR Model Specification 

Assembly Pitch (cm) 15.24 

Fuel Pitch (cm) 1.8745 

Fuel Rod Diameter (cm) 1.2116 

Cladding Thickness(cm) 0.1092 

Canning Thickness (cm) 0.2032 

Material Temperature (K) 552.833

 



Table 4:  Relative Uncertainty of Homogenized Cross Sections  

 Fast Group (%) Thermal Group (%) 

 Analog SUBSPACE FW-CADIS Analog SUBSPACE FW-CADIS

Fission 0.103 0.050 0.072 0.106 0.028 0.042 

Capture 0.206 0.085 0.117 0.106 0.028 0.042 

Scattering 0.078 0.042 0.057 0.099 0.028 0.042 

 

Table 5: Global FOM of Homogenized Cross Sections  

 Fast Group 

 Analog SUBSPACE Speed-up Analog FW-CADIS Speed-up

Fission 2.68E+03 3.05E+04 11.35 2.68E+03 1.92E+04 7.18 

Capture 6.70E+02 1.04E+04 15.58 6.70E+02 7.31E+03 10.92 

Scattering 4.67E+03 4.23E+04 9.07 4.67E+03 3.13E+04 6.71 

 Thermal Group 

 Analog SUBSPACE Speed-up Analog FW-CADIS Speed-up

Fission 2.52E+03 9.53E+04 37.81 2.52E+03 5.57E+04 22.10 

Capture 2.52E+03 9.53E+04 37.81 2.52E+03 5.57E+04 22.10 

Scattering 2.90E+03 9.53E+04 32.79 2.90E+03 5.57E+04 19.16 

 
 



Table 6: Total Execution Time of Depletion Calculations 

 

Depletion Cycle

Total Execution Time (mins)

Analog SUBSPACE 

1 402.6 120.3 

2 421.6 135.2 

3 441.8 146.1 

4 472.1 165.2 

5 521.1 178.9 

 



Table 7: The FOM Comparison of Flux 

 

Depletion 

Cycle 

FOM SUBSPACE Speedup

Analog SUBSPACE Fast Thermal 

Fast Thermal Fast Thermal

No depletion 9934.2 5068.5 92304.0 207684.0 9.3 41.0 

1 9934.2 5068.5 82161.1 207684.0 8.3 41.0 

2 6287.0 6287.0 76059.9 207684.0 12.1 33.0 

3 5883.0 5883.0 67257.2 207684.0 11.4 35.3 

4 5329.8 5329.8 62092.1 207684.0 11.7 39.0 

5 5115.8 5115.8 59307.5 207684.0 11.6 40.6 

 

Table 8: The FOM Comparison of Fission  

 

Depletion Cycle 

FOM SUBSPACE Speedup

Analog SUBSPACE Fast Thermal 

Fast Thermal Fast Thermal

No depletion 3066.1 3880.5 33229.4 207684.0 10.8 53.5 

1 3066.1 5068.5 29578.0 207684.0 9.6 41.0 

2 2794.2 4619.0 27381.6 207684.0 9.8 45.0 

3 2614.7 4322.2 16814.3 207684.0 6.4 48.1 

4 1918.7 5329.8 15523.0 207684.0 8.1 39.0 

5 1841.7 5115.8 14826.9 207684.0 8.1 40.6 
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