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Abstract 

We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution 
methods for the discrete ordinates approximation of the within‐group neutron transport 
equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations 
(SI) scheme in favor of constructing stored operators that account for the direct coupling factors 
among all the cells’ fluxes and between the cells’ and boundary surfaces’ fluxes. The main goals 
of this work are to develop the algorithms that construct these operators and employ them in 
the solution process, determine the most suitable way to parallelize the entire procedure, and 
evaluate the behavior and parallel performance of the developed methods with increasing 
number of processes, P. The fastest observed parallel solution method, Parallel Gauss‐Seidel 
(PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the 
source iteration (SI) scheme parallelized with the Koch‐Baker‐Alcouffe (KBA) method. Compared 
to the state‐of‐the‐art SI‐KBA with diffusion synthetic acceleration (DSA), this new method—
even without acceleration/preconditioning—is competitive for optically thick problems as P is 
increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced 
execution time by an approximate factor of three for problems with more than 130 million 
computational cells on P = 32,768. Moreover, the SI-DSA execution time’s trend rises generally 
more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms 
SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method 
outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by 
a factor of ten or more for all problems considered with more than 2 million computational cells 
on P = 4,096.  

1. Introduction 

Solving the neutron transport equation is a computationally difficult task, thus providing very 
challenging and rewarding research opportunities. Furthermore, the advent of massively parallel 
computing environments has made the application of efficient schemes to solve the transport 
equation in parallel a high priority. The rapid growth in computing platforms is creating a 
demand for computational methods that can fully utilize new architectures’ resources in an 
efficient, scalable manner. Researchers seek to balance the work load across all participating 
processors while not altering the serial algorithm in a manner that tends to diminish the 
benefits of dividing the computational load over multiple processors.  

The parallelization of the transport equation has been researched intensively for over two 
decades. Early algorithms dealt with the decomposition of the energy [1] and angular [2],[3],[4] 
domains across processes. Yet distributing work based on energy or angular variable 
decomposition alone is inadequate when tens of thousands of processing elements (PEs) are 
available. This inadequacy is driven by the practical bounds to which the energy and angular 
variables are commonly refined. Nevertheless, extensive literature is available on these subjects, 
and the listed references serve as introductory sources for interested readers. 

Alternatively, problems with ever-increasing numbers of spatial cells are highly desired to 
analyze physically larger regions and/or to employ finer spatial meshes. Therefore, spatial 
domain decompositions have been developed to use the greater number of unknowns to 
achieve high scalability on increasingly large computing clusters. Focus has rightly shifted to 
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decomposition in multiple variables [5],[6],[7] with spatial domain decomposition [7],[8],[9], 
[10],[11],[12] of the within-group equations receiving the most attention. 

For first-order, discrete ordinates neutron transport solvers on a structured spatial mesh, the 
Koch-Baker-Alcouffe (KBA) [10],[11], or wavefront, method has become a common choice for 
spatial domain decomposition of the within-group equations. For an n-dimensional (n=2, 3) 
system, the domain is mapped to an n−1 processor topology. Mesh sweeps are performed in 
parallel over individual sub-domains by communicating angular fluxes on sub-domain 
boundaries to downstream neighbors, and advancing along diagonal planes. The KBA method 
has been shown to be highly efficient and suffer small execution time penalty for 
communication. Further, it suffers small load imbalances to maintain synchronous behavior 
compared to serially performed mesh sweeps.  In a synchronous algorithm, all independent 
processes simultaneously perform the same instructions as the serial version of the algorithm, 
but on different data. The work is reordered only in the sense that it is distributed for faster 
execution. The aggregate of all processes’ instructions is equivalent to the serial algorithm, 
hence the all intermediate and final numerical values resulting from the computation match to 
within numerical precision. The KBA method has been implemented with traditional source 
iterations (SI) in the PARTISN transport code [13], and more recently it has been used as an 
efficient way to describe the action of the inverted transport operator necessary for a 
GMRES(m) scheme in Denovo [14]. Each code’s iterative solution method is augmented with a 
separately parallelized diffusion synthetic acceleration (DSA) routine: as a true acceleration step 
in PARTISN and as a preconditioner for the GMRES wrapper in Denovo. 

Conversely in an asynchronous algorithm, the instructions undergo reordering to achieve 
parallelism, causing intermediate and final results from the parallel computation to differ from 
their serial counterparts beyond numerical precision; hence the total number of operations 
performed can change with the number of participating processes. The parallel block Jacobi 
(PBJ) method [7],[8],[9]  is an alternative spatial domain decomposition. A global domain is 
decomposed into smaller sub-domains. The solution of the transport equation is performed 
concurrently over each sub-domain and interface angular fluxes are shared between adjacent 
sub-domains. The exchanged angular fluxes serve as new boundary conditions for the 
independent sub-domain problems. The process is repeated until the global solution is 
adequately converged. The incoming fluxes into each sub-domain on internal interfaces lag by 
one iteration. Hence the method’s PBJ pedigree. This algorithm is clearly asynchronous as 
solving the global problem would not divide the work into determining intermediate solutions 
over the sub-domains. An important point to recognize for PBJ is that the local solution method 
for each sub-domain is not restricted to SI [7], and could be replaced by a Krylov-based solver 
[12]. 

This project has focused on the development of a novel kernel for handling the local problem 
within the PBJ framework of the global problem based on the Integral Transport Matrix Method 
(ITMM). The ITMM seeks operators that act directly on the cells’ scalar flux and incoming 
angular fluxes on the boundaries of the sub-domains. Such an approach abandons repetitive 
mesh sweeps and other expensive iterative routines. Considerable computational burden is 
shifted from the repetitive local iterations to up-front, highly concurrent operator construction. 
Formulating and storing the operators can become prohibitively costly in terms of 
computational resources. For a large problem, the global domain is thus spatially decomposed 
into sub-domains and solved with PBJ per the aforementioned description. 
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Significant improvement is attained when this method is slightly altered by further decomposing 
sub-domains into smaller ones, assigning multiple sub-domains to the same PE, and employing a 
parallel red-black Gauss-Seidel (PGS) iterative strategy to the global solution. The method and 
measured performance of this new approach constitute the bulk of this report. 

2. Objective 

The overall objective of this project is to devise a novel parallel algorithm suitable for solving the 
discrete ordinates approximation of the transport equation on massively parallel platforms. We 
achieved this goal by abandoning the mesh sweep algorithm that is at the core of traditional 
solution schemes, in favor of an equivalent formulation that naturally decomposes the spatial 
domain into sub-domains coupled only on subdomain interfaces. However, unlike earlier efforts, 
the solution of the transport equation within each sub-domain is not based on a mesh sweep 
but rather on direct or iterative solution of a matrix equation resulting from an equivalent 
integral formulation of the discretized transport operator. 

Investigation of parallel algorithms for solving the discrete ordinates equations so far has 
focused on adapting traditional sequential solution schemes to multiprocessor environments. 
This was accomplished via: (a) energy domain decomposition of the outer iterations [1]; (b) 
angular domain decomposition of the inner iterations [2],[3],[4]; (c) spatial domain 
decomposition of the mesh sweep[7],[9],[10],[11],[14]; and (d) hybrid methods that combine 
some or all of the above [5],[6]. 

While these earlier efforts have achieved a measurable level of success for certain classes of 
problems and multiprocessor platforms, efficient solution of large transport problems, 
especially on massively parallel platforms, remain a formidable challenge. Using parallel 
performance models it was illustrated that transport computations are still computation-, not 
communication-bound [11] and [15]. In other words, refining and improving communication 
strategies, while undoubtedly beneficial, does not reduce execution time significantly because 
grind time still comprises a large fraction of the total computational burden. 

It has been suggested before that mesh sweep-based solution algorithms, while ideal on serial 
platforms, are not adequate for multiprocessors, especially massively parallel architectures. [4] 
An alternative recursive algorithm based on constructing the exact transport matrix that 
operates on the scalar flux (or angular moments of the flux) in the same sense as the integral 
transport operator has been proposed earlier for multidimensional configurations, and has been 
illustrated on serial computers. [16] This operator comprises a full (dense) matrix, in contrast to 
the lower triangular matrix representing the mesh sweep, that when inverted on the first-
collision source immediately produces the fully-collided scalar flux without the need for inner 
iterations. The matrix formulation is mathematically equivalent to the inner iteration scheme in 
that the two algorithms produce the same solution to within arithmetic precision and the mesh 
sweep convergence criterion. 

Both storing a large matrix and solving its system serially are computationally prohibitive in large 
applications. Consequently, this technique generally is not competitive for serial implementation 
compared to traditional algorithms. However, within the scope of this project we considered 
two novel approaches for solving this matrix equation for the scalar flux (and more generally 
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flux angular moments) on multiprocessor computers with the objective of reducing execution 
time and per processor memory requirement. 

Ultimately, our new approaches seek to be competitive with mesh sweep-based solution 
algorithms by replacing inner iterations with more efficient subspace iterative schemes, by 
reformulating the solution algorithm to reduce the effective grind time, and by eliminating the 
sequential bottleneck embodied in the mesh sweep algorithm. We succeeded in achieving this 
essential objective of the project, but we have also discovered new phenomena in the iterative 
behavior connected to our new algorithm that have not been reported, and perhaps never 
observed before. These pose new challenges that deserve further exploration without 
diminishing the magnitude of the accomplishments of this project.  

3. Detailed Report on Project Tasks 

In this section we provide a detailed description of the accomplishment of each task using the 
same numbering sequence as in the awarded proposal. Note that for practical reasons not 
foreseen at the time of composing the awarded proposal the tasks described below were not 
completed in the same sequential order as listed here. 

3.1 Task 1 – Construct & Verify the Exact Matrix Operators 
This research entails replacing the traditional inner source iterations to solve the within group 
transport equation with the construction of the integral discrete ordinates transport matrix and 
subsequent solution of the resulting system of equations. The construction stage relies on a 
single mesh sweep, which has been termed the differential mesh sweep for reasons that will 
become evident shortly. 

3.1.1 Reformulating the Source Iteration Scheme 

The starting point for this method is the within-group, fully discretized balance equation with 
𝐼 × 𝐽 × 𝐾 spatial cells and 𝑁𝑡 angular directions. After rearranging, the balance equation for 
each cell may be written with the known values on the RHS, [16] 

𝜀𝑛𝑛𝑛𝑛𝑥 𝜓𝑛,𝑖𝑜𝑜𝑜,𝑗,𝑘 + 𝜀𝑛𝑛𝑛𝑛
𝑦 𝜓𝑛,𝑖,𝑗𝑜𝑜𝑜,𝑘 + 𝜀𝑛𝑛𝑛𝑛𝑧 𝜓𝑛,𝑖,𝑗,𝑘𝑜𝑜𝑜 + 𝜓𝑛𝑛𝑛𝑛

= 𝑐𝑖𝑖𝑖𝜙𝑖𝑖𝑖 + 𝜎𝑡𝑡𝑡𝑡−1 𝑞𝑖𝑗𝑗 + 𝜀𝑛𝑛𝑛𝑛𝑥 𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘 + 𝜀𝑛𝑛𝑛𝑛
𝑦 𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘

+ 𝜀𝑛𝑛𝑛𝑛𝑧 𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖 , 

(3.1.1) 

 
Where we used standard notation and defined the reciprocal of the computational cell’s size in 
the 𝑥-direction, 
 

𝜀𝑛𝑛𝑛𝑛𝑥 ≡
|𝜇𝑛|

𝜎𝑡𝑡𝑡𝑡∆𝑥𝑖
 (3.1.2) 

 
with analogous definitions for the 𝑦- and 𝑧-directions. The distributed source is assumed 
isotropic and the angular subscript 𝑛 is accordingly dropped from the q term. The balance 
equation is augmented by the diamond difference relations in each of the three directions, 



 7 

 

𝜓𝑛𝑛𝑛𝑛 =
1
2 �
𝜓𝑛,𝑖𝑜𝑜𝑜,𝑗,𝑘 − 𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘�, (3.1.3) 

 
with analogous expressions for the 𝑦- and 𝑧-directions. The four equations for each cell can be 
arranged into a matrix system of equations by using the coefficients of the known quantities 
(RHS) and of the unknowns (LHS):  
 

�

1 𝜀𝑛𝑛𝑛𝑛𝑧 𝜀𝑛𝑛𝑛𝑛
𝑦 𝜀𝑛𝑛𝑛𝑛𝑥

1 −0.5 0 0
1 0 −0.5 0
1 0 0 −0.5

�

⎣
⎢
⎢
⎢
⎡
𝜓𝑛𝑛𝑛𝑛

𝜓𝑛,𝑖,𝑗,𝑘𝑜𝑜𝑜
𝜓𝑛,𝑖,𝑗𝑜𝑜𝑜,𝑘
𝜓𝑛,𝑖𝑜𝑜𝑜,𝑗,𝑘⎦

⎥
⎥
⎥
⎤

= �

1 𝜀𝑛𝑛𝑛𝑛𝑧 𝜀𝑛𝑛𝑛𝑛
𝑦 𝜀𝑛𝑛𝑛𝑛𝑥

0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

�

⎣
⎢
⎢
⎢
⎡𝑐𝑖𝑖𝑖𝜙𝑖𝑖𝑖

𝑝 + 𝜎𝑡𝑡𝑡𝑡−1 𝑞𝑖𝑖𝑖
𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖
𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘
𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘 ⎦

⎥
⎥
⎥
⎤
. (3.1.4) 

 
The scalar flux is given the superscript 𝑝 to denote it as an iterate in the SI scheme to determine 
a new scalar flux solution from its previous iterate. 

In the transport sweep, such a system typically is not constructed and solved, instead the DD 
equations are substituted into the balance equation, the cell average flux is computed, and the 
three outgoing edge fluxes are computed. However, in this work we abandon that approach and 
the recurring SI mesh sweeps necessary to converge a flux distribution consistent with the self-
scattering source. 

The vector of fluxes on the LHS of Eq. (3.1.4) is the desired solution in the SI scheme for each 
cell; the angular fluxes on the outgoing faces of the cell are used as incoming fluxes to the 
neighboring downwind cells. The coefficient matrix on the LHS of Eq. (3.1.4) is inverted and left-
multiplied on both sides of the equation. Using Mathematica [17], this is accomplished 
analytically, yielding formulas in terms of the 𝜀 factors for the matrix elements. A single 
coefficient matrix remains: 

[𝜓 𝜓𝑘𝑜𝑜𝑜 𝜓𝑗𝑜𝑜𝑜 𝜓𝑖𝑜𝑜𝑜]𝑛𝑛𝑛𝑛𝑇 = 𝜞𝑛𝑛𝑛𝑛�𝑐𝜙𝑝 + 𝜎𝑡−1𝑞 𝜓𝑘𝑖𝑖 𝜓𝑗𝑖𝑖 𝜓𝑖𝑖𝑖�𝑛𝑛𝑛𝑛
𝑇 , 

𝜞𝑛𝑛𝑛𝑛 ≡ �

𝛾𝑎𝑎 𝛾𝑎𝑎𝑎 𝛾𝑎𝑎𝑎 𝛾𝑎𝑎𝑎
𝛾𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥
𝛾𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥
𝛾𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑦

�

𝑛𝑛𝑛𝑛

. 
(3.1.5) 

 
The superscripts notation of the 16 matrix elements in Eq. (3.1.5) has two parts. The first part 
describes the component to which the element is contributing in the vector of unknowns, and 
the second part describes the component it is multiplying in the vector of known quantities. The 
partial superscript 𝑎 refers to the cell average flux and scattering and fixed source terms. The 
partial superscript 𝑥𝑦 refers to the outgoing/incoming edge flux averaged over an 𝑥𝑦 face, i.e., 
𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and the superscripts for the other faces are interpreted analogously. 



 8 

3.1.2 The Definition of Integral Discrete Ordinates Transport Matrix 

With the mesh sweep the SI scheme solves for the LHS angular flux of Eq. (3.1.4) for all 
computational cells and all angles and uses the angular quadrature to determine a new scalar 
flux, [16] 
 

𝝓𝜐 = 𝑨(𝑪𝝓𝑝 + 𝜮𝑡−1𝒒), (3.1.6) 

 
where 𝝓𝜐 is the new scalar flux iterate, 𝝓𝑝 is the previous flux iterate, and 𝒒 is the distributed 
source, all vectors of length equal to the number of cells. 𝑪 is the scattering ratio diagonal 
matrix and 𝜮𝑡−1 is the reciprocal of the total interaction cross section diagonal matrix; each has 
as its dimension the number of cells, and 𝑪 is the product of the diagonal matrices 𝜮𝑠𝜮𝑡−1. 𝑨 is a 
coefficient matrix whose elements are constructed from the elements of the 𝜞 matrix in the 
discretized transport equation (3.1.5). By assuming vacuum boundary conditions for the 
problem domain, incoming boundary flux that would otherwise appear on the RHS are 
neglected.  

The 𝑨 matrix is given by the iteration Jacobian of Eq. (3.1.6): 
 

𝜕𝜙𝑖,𝑗,𝑘
𝜐

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝 = 𝑎(𝑖,𝑗,𝑘)�𝑖′,𝑗′,𝑘′�𝑐𝑖′,𝑗′,𝑘′ ≡ 𝑗𝜙(𝑖,𝑗,𝑘)�𝑖′,𝑗′,𝑘′� (3.1.7.a) 

 
and 
 

𝜕𝝓𝜐

𝜕𝝓𝑝 = 𝑨𝑨 ≡ 𝑱𝜙. (3.1.7.b) 

 
By substitution, Eq. (3.1.6) can now be rewritten as: 
 

𝝓𝜐 = 𝑱𝜙(𝝓𝑝 + 𝜮𝑠−1𝒒). (3.1.8) 

 
[Note: division by the scattering cross section must be specially treated in cases of void or purely 
scattering regions.] Upon iterative convergence of Eq. (3.1.8), successive iterates of the scalar 
flux are equal in the iterative limit, i.e. the solution 𝝓∞ satisfies the following relation [16], 
 

𝝓∞ = �𝑰 − 𝑱𝜙�
−1𝑱𝜙𝜮𝑠−1𝒒. (3.1.9) 

 
where 𝑰 is the identity matrix. As in the case of 𝜞 for the per cell basis, in the SI scheme 𝑱𝜙 is 
never constructed, and the solution is computed from successive mesh sweeps instead of 
solving the system of equations in (3.1.9). �𝑰 − 𝑱𝜙� is called the integral transport matrix [18] 
because it represents an accumulation of coupling factors among all cells, in all directions. The 
same name is applied to the rest of the method because the remaining ITMM operators also are 
constructed with this explicit coupling among cells and domain boundaries. 
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3.1.3 The Differential Mesh Sweep 

The impetus to the integral discrete ordinates approach begins with the construction of 𝑱𝜙, 
followed by explicitly solving the system of equations in (3.1.9). One must perform a single mesh 
sweep along all discrete ordinates in the angular quadrature to construct 𝑱𝜙. Instead of 
computing the cell average (center) and outward angular fluxes given the incoming fluxes, the 
cell average angular flux of one node is coupled to the cell average scalar flux in all upstream 
cells for a specific discrete ordinate. Ultimately, with the summation by the angular quadrature, 
the scalar flux in any given cell will be related to the scalar flux in all other cells, making the 
system fully coupled. 

By differentiating the balance and DD system of equations (3.1.5) with respect to 𝝓𝑝, one can 
demonstrate the aforementioned coupling [16]: 

𝜕𝜓𝑛,𝑖,𝑗,𝑘

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝 = 𝛾𝑛𝑛𝑛𝑛𝑎𝑎 𝑐𝑖𝑖𝑖

𝜕𝜙𝑖,𝑗,𝑘
𝑝

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝 + 𝛾𝑛𝑛𝑛𝑛

𝑎𝑎𝑎 𝜕𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖
𝜕𝜙𝑖′,𝑗′,𝑘′

𝑝 + 𝛾𝑛𝑛𝑛𝑛𝑎𝑎𝑎 𝜕𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝 + 𝛾𝑛𝑛𝑛𝑛

𝑎𝑎𝑎 𝜕𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝  (3.1.10.a) 

 
and 
 

𝜕𝜓𝑛,𝑖,𝑗,𝑘𝑜𝑜𝑜
𝜕𝜙𝑖′,𝑗′,𝑘′

𝑝 = 𝛾𝑛𝑛𝑛𝑛
𝑥𝑥𝑥𝑐𝑖𝑖𝑖

𝜕𝜙𝑖,𝑗,𝑘
𝑝

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝 + 𝛾𝑛𝑛𝑛𝑛

𝑥𝑥𝑥𝑥 𝜕𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖
𝜕𝜙𝑖′,𝑗′,𝑘′

𝑝 + 𝛾𝑛𝑛𝑛𝑛
𝑥𝑥𝑥𝑥 𝜕𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝

+ 𝛾𝑛𝑛𝑛𝑛
𝑥𝑥𝑥𝑥 𝜕𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘

𝜕𝜙𝑖′,𝑗′,𝑘′
𝑝 . 

(3.1.10.b) 

 
The 𝑦- and 𝑥-direction equations are written analogously to Eq. (3.1.10.b). The first term in each 
expression equals zero unless 𝑠, 𝑗,𝑘 = 𝑠′, 𝑗′,𝑘′ because no formulaic relation exists among all 
cells’ previous iterate of the scalar flux, just a relation individually per cell. On the other hand, 
the incoming angular fluxes at the faces of a given cell are equal to the outgoing angular fluxes 
from the three adjacent upstream cells. Thus the three incoming angular flux terms in each 
equation must be evaluated for the cell’s upstream neighbors. Given Eqs. (3.1.10.a) and 
(3.1.10.b), it becomes clear why this type of mesh sweep is termed the differential mesh sweep, 
to be distinguished from the SI mesh sweep.  

The algorithm implemented to construct the 𝑱𝜙 matrix using the differential mesh sweep is 
tedious but straightforward, hence it is not replicated here but its details are reported in [19].  

3.1.4 Properties Affecting Jϕ 

Given a problem configuration one can use SI or alternatively solve Eq. (3.1.9) with the 
factorization of �𝑰 − 𝑱𝜙� or with conjugate gradient iterations to obtain the group scalar flux 
distribution. Several expected relations between serial execution time and variable problem 
parameters have been confirmed by the research and are briefly highlighted and compared to 
similar tests for SI. 

The matrix 𝑱𝜙 is large and dense; it is a square matrix with dimension 𝑁 = 𝐼 × 𝐽 × 𝐾. Refining 
the spatial mesh for a sample problem increases 𝑁 while keeping fixed the overall physical 
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dimensions of the problem. SI execution time grows linearly with 𝑁, but conjugate gradient 
execution time per iteration grows like 𝑁2 because of the larger matrix and inner products. 
Additional cells require an additional row and column in 𝑱𝜙, and matrix construction and direct 
solution times thus grow like 𝑁2 and 𝑁3, respectively. 

Raising the angular quadrature order for the problem also has straightforward consequences. 
The number of source iterations is insensitive to increasing the total number of discrete 
ordinates 𝑁𝑡, but the SI execution time per iteration grows linearly with 𝑁𝑡. Construction time 
for 𝑱𝜙  also grows linearly with 𝑁𝑡 . However, conjugate gradient iteration time and direct 
solution time are unaffected since the matrix size does not change with 𝑁𝑡. 

The scattering ratio 𝑐 of a material is adjusted by changing the scattering cross section while 
keeping the total cross section fixed. This will not affect the size of 𝑱𝜙, the direct solution time, 
or the per iteration time for SI or conjugate gradient. As the domain is made optically thicker, 
the spectral radius of SI goes to 𝑐. Thus, the SI scheme displays a markedly slow convergence 
rate in highly scattering media that feature little leakage, as expected. The conjugate gradient 
method also requires a greater number of iterations when the scattering ratio of the host 
material increases and approaches unity, but the effect is considerably weaker, indicating better 
convergence properties than SI. 

3.1.5 Nonzero Boundary Conditions 

In the previous section we introduced the primary operator of the integral discrete ordinates 
transport method. Once 𝑱𝜙 is constructed, solving the system of equations produces the scalar 
flux solution that would result from the fully converged SI. However, 𝑱𝜙 is limited to vacuum 
boundary conditions. Given an incoming angular flux at the boundaries of the system, one needs 
an additional matrix operator to compute the consequent scalar flux distribution within the 
domain. Returning to Eq. (3.1.8), one can add another term to the RHS to account for nonzero 
boundary conditions: 
 

𝝓𝜐 = 𝑱𝜙(𝝓𝑝 + 𝜮𝑠−1𝒒) + 𝑲𝜙𝝍𝑖𝑖. (3.1.11) 

 
The new term is the product of a matrix 𝑲𝜙, whose construction is to be determined, and the 
vector 𝝍𝑛𝑛 . The vector 𝝍𝑛𝑛  has the dimension of the number of cell boundary surfaces, 
2(𝐼𝐽 + 𝐼𝐾 + 𝐽𝐾), multiplied by the number of incoming ordinates to each surface, 𝑁𝑡 2⁄ . 𝑲𝜙 is 
not necessarily a square matrix; its row dimension matches length of the 𝝓𝜐 vector, and its 
column dimension matches length of the 𝝍𝑛𝑛 vector. With the additional term on the RHS is: 

 
𝝓∞ = �𝑰 − 𝑱𝜙�

−1𝑱𝜙𝜮𝑠−1𝒒+ �𝑰 − 𝑱𝜙�
−1𝑲𝜙𝝍𝑖𝑖. (3.1.12) 

 
It is important to note that the differentiation with respect to 𝝓𝑝 in Eq. (3.1.11) leads to the 
same definition of 𝑱𝜙 as before due to the lack of dependence on 𝝓𝜐 in the new term. 

Writing out Eq. (3.1.5) elucidates the needed information to derive a construction scheme for 
𝑲𝜙:  
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𝜓𝑛𝑛𝑛𝑛 = 𝛾𝑛𝑛𝑛𝑛𝑎𝑎 �𝑐𝑖𝑖𝑖𝜙𝑖𝑖𝑖

𝑝 + 𝜎𝑡𝑡𝑡𝑡−1 𝑞𝑖𝑖𝑖� + 𝛾𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖 + 𝛾𝑛𝑛𝑛𝑛𝑎𝑎𝑎 𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘

+ 𝛾𝑛𝑖𝑖𝑖
𝑎𝑎𝑎𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘 

(3.1.13.a) 

 
and 
 

𝜓𝑛,𝑖,𝑗,𝑘𝑜𝑜𝑜 = 𝛾𝑛𝑛𝑛𝑛
𝑥𝑥𝑥�𝑐𝑖𝑖𝑖𝜙𝑖𝑖𝑖

𝑝 + 𝜎𝑡𝑡𝑡𝑡−1 𝑞𝑖𝑖𝑖�+ 𝛾𝑛𝑛𝑛𝑛
𝑥𝑥𝑥𝑥𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖 + 𝛾𝑛𝑛𝑛𝑛

𝑥𝑥𝑥𝑥𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘

+ 𝛾𝑛𝑛𝑛𝑛
𝑥𝑥𝑥𝑥𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘 . 

(3.1.13.b) 

 
The equations for outward fluxes in the 𝑥- and 𝑦-directions are analogous to (3.1.13.b). Unlike 
𝑱𝜙, differentiation with respect to the scalar flux is not used here. Instead we treat the boundary 
conditions as constants. Implicit boundary conditions, e.g., reflective or periodic, are handled 
iteratively: outgoing fluxes are directed back into the region and operated on by 𝑲𝜙. 

Because in the SI scheme the iteration Jacobian 𝑱𝜙 will ultimately determine the scalar flux 
solution from the previous iterate of the scattering source and the fixed distributed source, the 
matrix 𝑲𝜙 is constructed using only the last three terms on the RHS in Eqs. (3.1.13.a), (3.1.13.b), 
and their 𝑥- and 𝑦-analogues. During the differential mesh sweep used to construct 𝑱𝜙, the 
same 𝜞 matrix is used to compute and update elements of 𝑲𝜙. 

Equation (3.1.13.b) and analogous directional counterparts compute the outgoing angular flux 
of the given cell. Outgoing fluxes become the incoming fluxes for the three neighboring 
downwind cells. Therefore for any cell in the system, Eq. (3.1.13.b) can be used to recursively 
relate the cell’s outgoing boundary fluxes for a given direction to the system’s fixed boundary 
condition at all upstream cell boundary surfaces via its own incoming fluxes. Furthermore, as a 
sweep progresses the average angular flux in a cell also becomes coupled to the upstream 
system boundary conditions via the incoming fluxes at its own faces, indicated by Eq. (3.1.13.a). 

Again, details of the construction algorithm for the 𝑲𝜙 matrix are provided in [19]. 

3.1.6 Solving for Outgoing Angular Flux at the Boundaries 

Outgoing angular fluxes are needed for the parallelization of the algorithm as described later. 
Therefore, operators to compute the outgoing angular flux due to contributions from the 
distributed fixed source, incoming angular flux boundary conditions, and scattering based on the 
scalar flux solution are derived. Observing Eq. (3.1.5), the desired form of the operators satisfies: 
 

𝝍𝑜𝑜𝑜 = 𝑱𝜓(𝝓 + 𝜮𝑠−1𝒒) +𝑲𝜓𝝍𝑖𝑖. (3.1.14) 

 
The construction of the 𝑱𝜓 operator is a straightforward extension of the construction of 𝑱𝜙, and 
it has the transposed dimensions and index ordering of 𝑲𝜙. 

𝑲𝜓  attenuates the angular flux for each direction individually without coupling to other 
directions. Allocating a matrix that has row and column dimensions equal to the length of the 
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𝝍𝑜𝑜𝑡 and 𝝍𝑛𝑛 vectors would be unnecessarily large because the vast majority of elements, 
where Ω�𝑜𝑜𝑡 ≠ Ω�𝑛𝑛, would be zero. Thus, 𝑲𝜓 is grouped into 𝑁𝑡 square sub-matrices, each of 
which has dimension equal to the number of incoming/outgoing boundary surfaces for a single 
direction, 𝐼𝐽 + 𝐼𝐾 + 𝐽𝐾. This grouping implies that only elements of 𝑲𝜓 that are stored are 
those that map incoming angular fluxes of a certain direction to outgoing angular fluxes of the 
same direction,  Ω�𝑜𝑜𝑡 = Ω�𝑛𝑛. 

3.1.7 Additional Developments  

3.1.7.1 Transposed Operators 

Evident from their descriptions, each ITMM operator’s row index corresponds to the current 
cell’s order in the differential mesh sweep, and ITMM’s column index corresponds to all 
upstream cells’ indices. Constructing the operators in this manner is consistent with the 
equations as derived. However, constructing and using the transposed operators can yield a 
significant improvement in computational efficiency. Namely, codes programmed in the Fortran 
programming language have column-wise ordering in memory, i.e., the first (row) index varies 
faster than the second (column). Therefore, looping over elements of a matrix in this manner is 
more computationally efficient than the reverse order. Unfortunately this reverse order is more 
consistent with the ITMM equations as they are written. Taking the transpose of the ITMM 
equations allows the more efficient array index ordering to be utilized. This change does not 
affect how all the vectors are stored or used—the programmed code does not know the 
difference between a row vector and a column vector. Using transposed ITMM operators has 
been found to be a useful mechanism for reducing the execution time of the differential mesh 
sweep. 

3.1.7.2 Extension to AHOT-N 

The ITMM can be posed for any spatial discretization of the first-order form of the transport 
equation. First-order forms may be presented with various spatial discretizations, but 
traditionally they all involve source iterations manifested in the mesh sweep (with more recent 
implementations increasingly employing Krylov subspace iterations). To demonstrate this fact, 
with its broader implication that our new algorithm is far-reaching, an alternative spatial 
discretization, the Arbitrarily High Order Transport methods of the Nodal type (AHOT-N) spatial 
discretization was employed in an analogous derivation of the DD’s ITMM operators. 

In AHOT-N the spatial distribution of the flux over a computational cell is computed as a series 
of Legendre polynomials. The unknowns that are determined numerically as the solution of the 
discretized system of equations are the Legendre spatial moments of the angular flux within and 
on the faces of the cell. The spatial moment of the flux within the cell is defined by the 
integration over the volume of the cell of the spatially dependent angular flux multiplied by the 
Legendre polynomials in the three dimensions. The moments on the faces involve similar 
integrations over the transverse directions to the direction of interest for neutron transport. 
With these formal extensions the underlying discrete-variable equations constituting AHOT-N 
are analogous in structure, but with higher vector dimensionality than the DD equations. The 
steps comprising the derivation (and implementation) of the ITMM operators is thus a direct 
extension of the above described derivation that is fully detailed in [19].  
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3.1.8 Verification of ITMM Operators 

Two approaches were identified early on for using the ITMM solution strategy. The approach we 
used for preliminary verification purposes is based on constructing the 𝑱𝜙 matrix for problem 
configurations with vacuum boundary conditions then solving the resulting algebraic problem 
directly with parallel solvers. This can be accomplished in several ways, including the Block 
Jacobi (BJ) and parallel CG [20][21] methods. 

3.1.8.1 The parallel Block Jacobi method 

In BJ each process is assigned a block of the matrix whose order is determined by the total 
number of equations divided by the selected number of blocks, requiring the quotient to be 
integer. Moreover, the processes are assigned the corresponding block-size portions of the 
solution and right hand side (RHS) vectors. Each process inverts its owned diagonal block only 
once and stores the result. In parallel each process multiplies an off-diagonal block by its owned 
solution sub-vector and passes it to the next process. Repeating this step and combining the 
sub-vectors P−1 times, where P is the number of processes, leaves each process with the sub-
vector needed to complete its own RHS update. Once the RHS sub-vector is multiplied by the 
saved inverted diagonal block, each process will have computed its portion of the new scalar 
flux iterate. Clearly BJ is an asynchronous parallelization of the serial solution. 

3.1.8.2 The parallel conjugate gradient method 

The parallel CG solution follows the same sequence of steps as a serial CG solution, except 
matrix-vector multiplications and inner products are performed concurrently to reduce 
execution time. To compute the scaling factors for the search direction and solution vectors, the 
inner product of the residual with itself is performed in parallel and the results are reduced, 
summed, and broadcast to all participating processes. At the end of a given iteration, the search 
direction sub-vectors owned by individual processes are broadcast to the set of participating 
processors in a ring topology so that each process has the full search direction for the next 
iteration. CG parallelization is synchronous, hence it has the benefit of not degrading the 
iterative convergence rate of serial calculations with increasing P. The parallelization penalty 
comprises communication of the residuals’ inner products and the search direction sub-vectors 
to other processes, but this is balanced with the benefits from reduced execution time due to 
concurrency. 

3.1.8.3 Numerical Results 

In this section measured performance via numerical experiments is presented, related to solving 
the system of equations with the BJ and CG schemes. The goal of these experiments is to verify 
the parallel algorithms and identify challenges to achieving good parallel performance. The 
message passing interface (MPI) is used to implement all parallel instructions. 

Test runs were performed on the LION-XO distributed memory cluster at Penn State University 
[22]. LION-XO does not run in dedicated mode, and resource contention has been observed to 
adversely impact performance. Users running parallel jobs compete for bandwidth over the 
network and through the switches and for memory and access to the memory. LION-XO is 
comprised of 132 computing nodes. 40 compute nodes are dual AMD Opteron processors rated 
at 2.4 GHz. The other 92 nodes are quad AMD processors rated at 2.6 GHz. All nodes are 
connected by a gigabit Ethernet switch and an Infiniband network. MPI jobs on LION-XO are 
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limited to 16 nodes and 2 processors per node. We used only the dual processor machines to 
reduce the number of network communications and thereby the total communication time. 
These nodes have 8 GB of memory. 

AMD Opteron machines have non-uniform memory access (NUMA) designs. For nodes with two 
processors, each processor has its own memory controller and a directly connected physical 
memory set. Communication with other memory sets is performed over a HyperTransport link. 
There is no policy on LION-XO for how the memory of a particular job is allocated to the physical 
memory space. 

Numerical experiments’ results are provided for four one-group test cases of AHOT-N order 
zero, Λ=0, employing the parallel BJ and CG methods. All problems use a 20×20×24 Cartesian 
mesh, two materials, and a fixed source distribution. Table I provides further information about 
the cross section data and the fully symmetric angular quadrature orders. Therefore the 
memory requirement for matrix 𝑱𝜙  alone is 96002 double precision words, or 703 MB. 
Additional memory is necessary for the other variables. However, these are much smaller and 
add relatively little burden to the system compared to 𝑱𝜙. In the case of SI calculations, memory 
requirements are of the order of the number of spatial cells for cell data such as the material 
and source maps. SI memory is less than 1 MB for the employed test cases. 

 

 

Table I. Parameters for four test cases 
 

Case σt
1 σt

2 σs
1 σs

2 SN 

1 0.75 0.50 0.45 0.30 8 

2 1.00 2.00 0.80 1.50 12 

3 2.00 3.00 1.80 2.00 12 

4 4.00 3.00 4.00 3.00 16 

 

 

The parallel solution results are reported as relative speedup, SP, and efficiency, EP, using the 
execution times with a single process T1 and with P processes TP. 

 1 ,P P

P P

S T T
E S P

=
=

 

Generally, a program must handle two potential bottlenecks while running on a non-dedicated 
system such as LION-XO. First, all users performing parallel calculations compete for time on the 
network and through the switches for message communication. During heavy system load, this 
can cause significant variance in execution time of parallel jobs. Second, each program on a 
node contends with others for access to the physical memory space as opposed to virtual 
memory on disk. Moreover, even when our program is occupying both processors on a single 
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node, the memory intensive algorithm requires more communication between the cache and 
memory. On LION-XO MPI jobs on a single node are treated as shared memory. Combined with 
the NUMA architecture of AMD Opterons, these two features create the potential problem that 
two memory controllers of a node must communicate more frequently, adversely affecting 
performance. We have encountered these problems with the new algorithm, but serial SI 
calculations that require much less memory have been relatively immune.  

Results of the BJ experiments on the LION-XO system are given in Figs. 3.1.1 and 3.1.2. The 
speedup and efficiency are based on the P=2 case because the case with a single block is 
equivalent to direct solution. All four cases show the same trend in efficiency: decreasing for 
small P, increasing briefly, then leveling off for large P. With large blocks the program must cope 
with the problems described for the message communication and the cache. As more processes 
are introduced, the memory requirement per process drops like 1/P. Furthermore, the 
reduction in the size of the blocks results in fewer operations necessary to invert the diagonal 
block, asymptotically at a cubic rate for increasing P.  

 

 

 
 

Fig. 3.1.1. BJ test cases’ parallel speedup Fig. 3.1.2. BJ test cases’ parallel efficiency 
 

 

The BJ method is hindered by the increasing number of iterations with increasing P shown in 
Table 3.1.II. When divided into smaller blocks, the scheme consumes more iterations. However, 
the average time spent per iteration decreases. The competing effects are evident in Fig. 3.1.2. 
Cases 1 and 2 both need less than 30 iterations to converge even at P=32, and the iteration time 
has decreased so much that the parallel efficiency is approximately 100%. Cases 3 and 4 do not 
benefit from the same recovery; the growth rate of the number of iterations dominates the 
decreasing iteration time. 

Parallel CG results on LION-XO are given in Figs. 3.1.3 and 3.1.4. The results presented are a 
reduction from several repetitive runs for each case and number of processors intended to 
reduce variance in the measured execution time due to runtime conditions. The data was 
reduced to what we believe is best representative of typical LION-XO performance. In many 
cases, particularly for a larger number of processes, very little execution time variance was 
encountered in contrast to runs with fewer processes. One potential explanation for this is the 
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aforementioned cache-memory communication bottleneck. Increasing the number of processes 
reduces the amount of data handled by each process. Consequently the cache needs fewer 
exchanges with memory, which should both improve performance and make the execution time 
more predictable. 

 

Table 3.1.II. Parallel BJ number of iterations 
 

Case 
Number of Processes 

2 4 6 8 10 12 16 20 24 30 32 

1 11 12 13 14 15 16 18 19 20 20 20 

2 15 15 16 17 19 20 24 27 28 29 29 

3 30 33 36 43 52 57 75 90 100 103 105 

4 62 83 111 141 177 199 266 324 367 383 384 
 

 

 

 
 

Fig. 3.1.3. CG test cases’ parallel speedup Fig. 3.1.4. CG test cases’ parallel efficiency 
 

The results exhibit the expected general trends—an increase in speedup and decrease in 
efficiency with increasing number of processes. Although these results are relative only to serial 
CG solution, important lessons can be learned. First, because the parallel CG method is 
synchronous, the number of iterations does not increase as it did in the case of BJ. As seen in 
both Figs. 3.1.3 and 3.1.4, the curves assume an asymptotic trend. The decrease in efficiency is 
expected with parallel grain refinement. However, reaching an asymptotic regime indicates the 
potential for high scalability. Second, from the earlier argument, we know that CG does not 
suffer the same, or as severe of consequences from varying typical problem parameters 
including the number of discrete ordinates or increasing the scattering ratio. 

The numerical tests summarized in this section delineated the limitations of the direct solution 
approach treating the entire problem domain undivided in the computation of the 𝑱𝜙 matrix 
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and decomposing the matrix itself among participating processes in conducting the algebra of 
the solution process. The fact that the same converged solution was obtained with the new 
approach as with SI (to within iterative convergence) establishes correctness of the new 
algorithm and of the underlying 𝑱𝜙 matrix. A more comprehensive verification of all ITMM 
operators is achieved in subsequent work where the domain decomposition was applied to the 
spatial extent of the test problems. 

3.2 Task 2 – Examine Dependence of Convergence Rate on Spatial 
Decomposition 

Observations of the iteration history for various cases attempted in the completion of this task 
revealed unexpected trends. In particular, the reduction in the iterative residual in the angular 
flux never settled into the monotonically decreasing profile characteristic of the asymptotic 
regime. After checking the code for potential bugs we decided to seek a justification for the 
observed behavior using spectral analysis tools. Dr. Dmitriy Anistratov and an undergraduate 
student summer-intern were recruited to conduct this research and their report on this task is 
attached as a separate PDF file. 

3.3 Task 3 – Construct a preliminary parallel performance model 

It is often valuable to predict the approximate execution time based on the size of the problem, 
the number of processes being deployed, and architectural specifications of the computing 
platform utilized. To achieve this predictive ability for an iterative algorithm, one must have 
knowledge of two items: 1) the anticipated number of iterations based on relevant problem 
parameters, and 2) a reliable estimate of the execution time per iteration given the workload 
assigned to each Processing Element (PE). The first item was to be completed within the scope 
of Task 2 but as reported above progress on that task was hampered by unexpected iterative 
convergence behavior in spite of the achieved progress on the ITMM spectral analysis reported 
in the attached PDF. The second item is the focus of this task, and completing it involves more 
thorough timing of individual sections of the code to determine how the number of cells per 
sub-domain, the number of angles, and the number of processes affect the execution time on a 
per iteration basis. The PIDOTS code utilized in the time measurements is described in the next 
section in the context of Task 4. 

3.3.1 Detailed Execution Timing  

The primary goal of decomposing the total execution time into several components is to 
determine which sections of the code consume the most amount of time and how the execution 
time for these sections is impacted by the size of the problem and the number of participating 
processes. Such detailed execution timing was sought from a fairly macroscopic perspective. 
That is, while perhaps possible to attain timing data for individual matrix-vector operations or 
point-to-point communications, the goal of this work was to observe the execution times of 
larger sections of the code that comprised many individual operations. Such divisions to isolate 
these portions were made based on the logical division of labor in the code (i.e., sub-routines), 
similarity of operations involved, and ability to reduce the number of variables on which that 
portion’s execution time is dependent. That said, it was determined that execution could be 
divided into six components: construction of the ITMM operators; solution setup and 
factorization of the �𝑰 − 𝑱𝜙� matrix; computation of 𝝓 using the factorized, stored integral 
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transport matrix and source function; matrix-vector multiplications of 𝑲𝜙𝝍𝑛𝑛  and 𝑱𝜓(𝝓+
𝜮𝑠−1𝒒); matrix-vector multiplication of 𝑲𝜓𝝍𝑛𝑛; and global reduction of maximum iterative error 
and communication of interfacial angular fluxes, 𝝍𝑜𝑜𝑡 → 𝝍𝑛𝑛 . These will be denoted 
respectively as 𝜏𝑐𝑜𝑛, 𝜏𝑛𝑡𝑖, 𝜏𝜙, 𝜏𝜓𝜙, 𝜏𝜓𝜓, and 𝜏𝑐𝑜𝑖𝑖. The remainder of this section documents 
the efforts to establish functional forms for these six components on the JPF system described in 
Sec. 3.4 below. The results were subsequently used to predict performance on the JPF system of 
PIDOTS for problems not used in constructing the performance model. 

3.3.1.1 ITMM operator construction timing 

The construction of the ITMM operators—𝑱𝜙 , 𝑲𝜙 , 𝑱𝜓 , and 𝑲𝜓—is accomplished via the 
differential mesh sweep over all discrete ordinates. At each cell during the mesh sweep along a 
single angle, each of the four operators is updated according to data accumulated from all 
upstream cells. That is, the operators are constructed in an element-wise fashion and share the 
same loops that comprise the sweep. Moreover, 𝑱𝜙 and 𝑱𝜓 share data accumulated in the 𝑿, 𝒀, 
and 𝒁 matrices. Likewise, 𝑲𝜙 and 𝑲𝜓 share the 𝑿𝑩𝑪*, 𝒀𝑩𝑪*, and 𝒁𝑩𝑪* matrices’ data. Details 
on these intermediate matrices were reported in [19]. Because the operators share many 
instructions and pieces of data, it would be complicated to separate their construction into 
individual elements. Hence, a single construction time is measured for all operators. From 
matrix-dimensionality arguments it should be clear that the 𝑱𝜙 matrix grows the fastest with 
increasing number of cells, like 𝑁2 (not to be confused with ‘N’ in SN; N = I J K), but for many 
problems the 𝑲𝜙 and 𝑱𝜓 operators are largest due to their sizes’ dependence on the number of 
incoming boundary surfaces, 𝑁𝑏 = 𝐼𝐽 + 𝐼𝐾 + 𝐽𝐾, and the total number of angles, 𝑁𝑡. 

The standard PIDOTS-PBJ code was modified to eliminate the solution portions and to 
repetitively, i.e. in a redundant loop, perform the differential mesh sweep in all directions. That 
is, the ITMM operators were constructed many times in an effort to reduce the variance in the 
computed average operator-construction time. This was especially important for faster 
executing problems, where timing a single cycle could be very close to the timer’s resolution. 
Executions were performed multiple times on eight PEs (one node) of the JPF system, based on 
the fact that in the standard code these operators are constructed individually per sub-domain 
by the assigned process. Although operator-construction is a concurrent task across the 
processes, the construction time curves frequently exhibit a slow increase with increasing P. This 
is likely driven by contention of access to main memory by several PEs sharing a single memory 
controller. In an effort to model that effect, all executions were performed on eight PEs (one 
node) of the JPF system. The PEs performed the same differential mesh sweep. The 
measurements presented herein should capture the contention penalty of multiple PEs 
accessing the memory. 

The construction time was measured for a set of cases by varying N and 𝑁𝑡. Table 3.3.I provides 
the problem size parameters considered and the number of redundant cycles the ITMM 
operators were constructed per case. Note that the N = 2,048 and 4,096 problems were limited 
by memory to lower-order quadrature sets. Further, fewer construction cycles were performed 
for the N ≥ 512 problems to reduce execution time. Lastly, the values of the cross sections, cell 
dimensions, and number of materials have no effect on construction time of the operators.  
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Table 3.3.I Cases considered for measuring ITMM operator-construction time. 

N 𝑁𝑡 Cycles 
1 8, 24, 48, 80, 168, 288  100 
8 8, 24, 48, 80, 168, 288  100 
64 8, 24, 48, 80, 168, 288  100 
128 8, 24, 48, 80, 168, 288  100 
256 8, 24, 48, 80, 168, 288  100 
512 8, 24, 48, 80, 168, 288  10 
1,024 8, 24, 48, 80, 168, 288  10 
2,048 8, 24, 48, 80 10 
4,096 8, 24 10 

 

Because the construction time has multiple dependencies that are difficult to separate, the 
measured timing results have been plotted against increasing N and increasing 𝑁𝑡. All results are 
based on one construction cycle—i.e., an average from multiple cycles actually measured. 

The execution time of the sweep should depend on the number of cells and the number of 
angles. It is known from previous arguments that the size of 𝑱𝜙 varies like 𝑁2, the sizes of 𝑲𝜙 
and 𝑱𝜓  vary like 𝑁5 3⁄ , and the size of 𝑲𝜓  varies like 𝑁4 3⁄ . However, whereas the data 
accumulated over 𝑁𝑡 sweeps is summed according to the quadrature to form 𝑱𝜙, the other 
three operators instead combine the data to make a larger matrix. Therefore, the timed 
computational data for measuring the sweep time has been assumed to fit the polynomial 
function 

 ( )2 5/3 4/3
1 2 3con tN N N Nt α α α= + +  (3.3.1) 

The constant coefficients denoted by 𝛼i , i = 1,2,3, are timing constants that represent the 
execution time required to compute the contribution to each element of the corresponding 
operator, and these will change with the computer system on which the code is tested. Noting 
the linear dependence on angle, the timing data accumulated according to the executions 
described by Table 3.3.I were normalized to a per angle basis. That is, construction times were 
divided by the corresponding 𝑁𝑡. The result was execution times that were only dependent on 
the number of spatial cells N. This data set was fit using the linear least squares approach to the 
parenthetical term in Eq. (3.3.1) to determine the timing constants. After reintroducing the 
angular dependence we obtain, 

 

( )8 2 8 5/3 7 4/32.15 10 3.38 10 1.29 10 .con tN N N Nt − − −= × + × + ×  (3.3.2) 

 

Note that positivity of all coefficients is expected; the construction time is the sum of three 
lengths of time relating to different phases of the construction algorithm. A “goodness of fit” is 
desired to quantify the deviation or closeness of the fit and the actual measured data. The R2 
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value provides such measure in many applications. data. Using the data accumulated for all N 
and 𝑁𝑡  with the fit the ITMM operators’ construction portion of execution time yields 

2 0.9970conR = . 
 
The JPF construction timing model of Eq. (3.3.2) is plotted versus the contributing raw data, i.e. 
measured execution time per cycle, for cases of fixed 𝑁𝑡 and varying N and for cases of fixed N 
and varying 𝑁𝑡. Figure 3.3.1 shows how the construction time varies as the operators are made 
larger by increasing N. The markers represent the measured times and the lines represent the 
fitted trends. All curves demonstrate the aforementioned superlinear behavior with N. Because 
the operators involve different powers of N, the cumulative behavior of this super-linearity is a 
combination of all. The fits are not perfect, but do increasingly well for large N. Deviations from 
the model by the raw data may be a result of the cache-memory communication costs, which 
are very small when the operators consume little memory, but increase with N. This is 
expected because the power-laws apply in an asymptotic sense, i.e., as N →∞ . In 
Figure 3.3.2, the construction time curves are plotted versus 𝑁𝑡. The data agrees very well with 
the model of a linear relationship with 𝑁𝑡. The plot also shows more clearly how the model 
under-predicts construction time for small N. 

 

 
Fig. 3.3.1 ITMM Operators Construction Time vs. N, measured JPF data & Eq. (3.3.2) fit. 
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It must be noted that these relations can be applied in predicting the construction time for a 
given problem whether in strong and weak scaling senses. In weak scaling, the construction time 
computed from the selected formula is the estimate across all nodes, and in strong scaling, one 
need only determine how the increase in P affects N—e.g., doubling P halves N, that is 
substituted in Eq. (3.3.1). 

3.3.1.2 Integral Transport Matrix setup and factorization timing 

After 𝑱𝜙 is constructed, several steps are performed before the iterative solution process begins. 
First, the product 𝑱𝜙𝜮𝑠−1𝒒 is computed and stored. Second, the integral transport matrix 
�𝑰 − 𝑱𝜙� is formed. Third, and most expensively, �𝑰 − 𝑱𝜙� is factorized and stored. In the case of 
isotropic scattering �𝑰 − 𝑱𝜙� is an N×N matrix, independent of 𝑁𝑡, so it is further assumed that 
the number of computations comprising the LU factorization grows like 𝑁3. In a small test code, 
a dummy 𝑱𝜙  matrix of different sizes N was manipulated and factorized repeatedly. The 
factorization process was timed to determine a proper relation of factorization execution time 
versus N. Using the same values of N as shown in Table 3.3.I, all but the N = 4,096 problem were 
executed three times with 100 redundant cycles per execution. The N = 4,096 problem was also 
executed three times but performed only 5 cycles per execution. Moreover, as in the case of the 
construction time, an attempt was made to capture memory-contention effects by repeating 
the operations on eight PEs of a single JPF node simultaneously. 

The data was averaged for a single cycle and fit to the model 

 

Fig. 3.3.2 ITMM Operators Construction Time vs. Nt, measured JPF data & Eq. (3.3.2) fit. 
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𝜏𝑖𝑖𝑖 = 𝛽1𝑁3 + 𝛽2𝑁2 + 𝛽3𝑁. (3.3.3) 

 
Again using linear least squares, the timing constants 𝛽 were determined, and the JPF-specific 
model was developed: 

 
 11 3 9 2 78.42 10 9.91 10 2.14 10 .itm N N Nt − − −= × + × + ×  (3.3.4) 

 

 

 
 
The goodness of fit for this section of the code was computed to be 2 0.9999itmR = . Figure 3.3.3 
displays the factorization timing results, comparing the measured times to the model. The 
model fit does not do a good job of predicting the time for small values of N, but improves 
greatly for larger N. As N increases, the factorization time dominates this portion of the PIDOTS 
execution, and the second two terms of Eq. (3.3.4) are small fractions of the first term. The 
model does well at capturing this effect as N increases. 

Again note that the model can be applied in weak and strong scaling studies. In weak scaling, N 
is typically fixed with increasing P, and in strong scaling studies with PBJ, N decreases as the 
reciprocal of increasing P. 

3.3.1.3 Solving for scalar flux timing 

The scalar flux solution 𝝓 is computed per Eq. (3.1.12) with the factorized �𝑰 − 𝑱𝜙� matrix. 
Solving this system with the factorized matrix should grow in number of operations like 𝑁2. 

Fig. 3.3.3 Integral Transport Matrix Factorization Time vs. N, JPF data & Eq. (3.3.4) fit. 
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Therefore, even though the solution process is repeated per global PBJ iteration due to the 
updated RHS vector, the factorization time—performed only once but growing like N3—can still 
play a larger role in the total execution time if N is large. 

A test code has been developed to measure the time associated with solving a dummy system of 
equations with a Gaussian elimination subroutine of LAPACK. Given the 𝑁2 dependence, the 
presumed model equation is 

𝜏𝜙 = 𝛾𝑁2. (3.3.5) 

 
The code was executed on eight PEs (one node) of the JPF system three times. As in the case of 
the integral transport matrix setup/factorization timing, problems of sub-domain sizes N = 1, 8, 
64, 128, 256, 512, 1,024, and 2,048 were executed three times with 100 cycles per execution, 
and the N = 4,096 problem was executed three times with 5 cycles per execution. The results 
were averaged for a single cycle, and the linear least squares technique fit the data yielded the 
following expression with 2 0.9835Rφ = , 

𝜏𝜙 = 4.13 × 10−9𝑁2. (3.3.6) 

 

 

 
 
In Fig. 3.3.4, the execution time for solving the local algebraic system for 𝝓 is shown.  The fit is 
slightly over-predicting the time to complete the solution of the linear system, but the 
difference is very small in a practical sense—i.e., small fractions of a second. It is suspected here 
that when N is small, the operator fits more efficiently in cache and is more efficiently pipelined 

Fig. 3.3.4 Scalar Flux Solution Time vs. N, JPF data & Eq. (3.3.6) fit. 
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with optimized instructions for the processor. As N increases, these benefits decline and the 
curve more closely resembles the expected, quadratic form. 

Like the expression for 𝜏𝑛𝑡𝑖, this expression can be applied in strong and weak scaling 
studies by either decreasing N in inverse-proportion with P (strong) or by holding N constant 
(weak). 

3.3.1.4 Matrix-Vector multiplications involving angular flux timing 

The iterative update process is comprised of four parts. The solution for the scalar flux with the 
factorized �𝑰 − 𝑱𝜙�  matrix has just been discussed. Additionally, three matrix-vector 
multiplications are performed every iteration. The first multiplication, 𝑲𝜙𝝍𝑛𝑛, completes the 
update to the RHS of the 𝝓-related system of equations. Once 𝝓 is updated in each iteration, 
𝝍𝑜𝑜𝑡 is computed using two matrix-vector multiplications: 𝑱𝜓(𝝓+ 𝜮𝑠−1𝒒) and 𝑲𝜓𝝍𝑛𝑛. Due to 
the fact that 𝑲𝜙 and 𝑱𝜓 have transposed dimensions, the matrix-vector multiplications involving 
these operators both consume 𝑁𝑁𝑏𝑁𝑡 operations. Meanwhile, the 𝑲𝜓𝝍𝑛𝑛 operation consumes 
𝑁𝑏2𝑁𝑡  multiplications. The previously used (in modeling construction time) asymptotic 
approximation 𝑁𝑏 ≈ 𝑁2 3⁄  was re-employed. The timing of these three multiplications has been 
divided into two components. The first two multiplications are grouped and timed together and 
are plotted versus the increasing size of the 𝑲𝜙  and 𝑱𝜓  operators, 𝑁5 3⁄ 𝑁𝑡 , and are 
consequently modeled with  
 

𝜏𝜓𝜓 = 𝛿𝑁5 3⁄ 𝑁𝑡. (3.3.7) 

 
The third multiplication is timed separately, plotted versus the size of the Kψ operator, N4 3⁄ Nt, 
and modeled as 
 

𝜏𝜓𝜓 = 𝜖𝑁4 3⁄ 𝑁𝑡. (3.3.8) 

 
A test code was written to perform the above multiplications repeatedly, 1000 redundant 
cycles, for the different values of N and Nt given by Table 3.3.I. The code was executed three 
times on the JPF system, using eight PEs to, again, include the possible effects of memory 
contention. After averaging the data, the timing constants in Eqs. (3.3.7) and (3.3.8) were 
computed from a linear least squares fit. The τψϕ and τψψ execution times are respectively 
modeled as 
 

𝜏𝜓𝜓 = 2.54 × 10−8𝑁5 3⁄ 𝑁𝑡  , 2 0.9991Rψφ = . (3.3.9) 

 
and 
 

𝜏𝜓𝜓 = 4.28 × 10−8𝑁4 3⁄ 𝑁𝑡  , 2 0.9982Rψψ = . (3.3.10) 
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Fig. 3.3.5 shows the execution time for the Kϕψin  and Jψ(ϕ + Σs−1q) multiplications, τψϕ, 
versus N5 3⁄ Nt. Note that the fit lines up well with the data for larger systems. However, at some 
points, the execution time is significantly over-predicted by the model compared to the 
observed behavior. This is possibly a result of optimized operations when the system is very 
small—e.g., enhanced impact of pipelining instructions on the processor relative to larger 
problems. 

The execution times of the Kψψin multiplications are plotted in Fig. 3.3.6 versus N4 3⁄ Nt. When 
the sub-domains are small, this multiplication will consume more time than the corresponding 
Kϕ and Jψ ones because of the large number of boundary surfaces relative to the number of 
cells in the sub-domain. As the operators increase in size the Kϕ and Jψ multiplications tend to 
dominate the execution time per iteration. The fit again does better at accurately predicting JPF 
execution time when the problem is larger, showing greater deviation as N4 3⁄ Nt decreases. 

 

 

 
 

Fig. 3.3.5 K𝜙 and J𝜓 Matrix-Vector Multiplications Time vs. N5/3Nb, JPF data & Eq. (3.3.9) fit. 
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As has been described before, weak scaling studies where P does not alter N should allow for a 
single estimate of these multiplication times that is independent of P. However, in strong 
scaling, the number of cells decreases reciprocally with increasing P and the number of 
boundary surfaces behaves like P2 3⁄ . 
 

3.3.1.5 Communication timing 

For all the preceding components, the dependence of timing on P has been implied by how P 
changes N and 𝑁𝑏. In fact, all measured timing results are taken from serial executions of test 
codes. However, the communication time is explicitly dependent on the number of processes 
because of the increasing cost of global communication when the process environment is 
enlarged and because of the increasing potential for contention over common network 
resources when more PEs are participating and sending more messages. 

A final test code has been written to measure the communication time sending dummy 
messages in the same manner as in the PIDOTS-PBJ code. Vectors of lengths equal to those of 
the vectors of outgoing angular flux are sent to adjacent processes in a virtual Cartesian 
topology. Further, a global communication is used to reduce a dummy value of the largest 
iterative error per sub-domain to the maximum value among all processes and broadcast the 
result to all participating processes. These communication operations are repeated 1000 times 
per execution to reduce the potential noise in the timing of an individual cycle that can be 
attributed to contention for network resources. Test cases were performed on the JPF system in 
a weak scaling sense up to P = 4,096 for problems with N = 1, 8, 64, and 512 and S4, S8, S16 

Fig. 3.3.6 K𝜓 Matrix-Vector Multiplication Time vs. N4/3Nb, JPF data & Eq. (3.3.10) fit. 
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quadrature sets. All cases were executed three times and the results are presented as an 
average of those runs. 

Figure 3.3.7 shows the communication time curves for the 12 cases considered versus P for a 
single cycle—i.e., averaged results were divided by 1000. Note that all the curves show the 
general trend of increasing communication time with increasing P. Many cases exhibit a large 
jump in communication time when P increases from 8 to 16. This is expected because it marks 
the transition from communications being entirely intra-nodal (8 PEs per node) to relying on 
inter-nodal, thus requiring data transfer over the slower interconnection network. Cases with 
larger N and Nt do not demonstrate this effect with the same severity, if at all. This seems to 
indicate that longer vectors require significant transfer time even when being transmitted on a 
single node. Assuming I = J = K, the vectors being sent are of length Nb

3
Nt
2

, and Fig. 3.3.7 indicates 
almost entirely consistently that an increase in NbNt leads to a longer communication time. 
Instances of deviation from this expectation are likely caused by the potential noisiness of the 
timing data, which depends partially on system load at run time. Nevertheless, it must be noted 
that the communication time up to P = 4,096 appears to be a fairly small component of the 
execution time per PBJ iteration compared to the results of the preceding sections, especially 
τψϕ. 

 

 

 
 
The results in Fig. 3.3.7 do not lend themselves to a simple fit dependent on P that could be 
readily used to estimate the communication time per PBJ iteration. Alternatively, Table 3.3.II 
tabulates the data from the execution of all cases. To estimate the communication time per 
iteration from Table 3.3.II one can directly read from the table the value if NbNt and P are equal 

Fig. 3.3.7 PBJ Weak Scaling Communication Time per Iteration vs. P, varying I=J=K, SN. 
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to values in the rows and columns of the Table, respectively. Linear interpolation should provide 
a decent estimate of communication time per iteration when the desired value of NbNt or P is 
not listed. 

 
Table 3.3.II Communication timing τcomm data tabulated versus P and NbNt/6 (message length). 

Msg. 
Length Number of Processes, P 

𝑁𝑏𝑁𝑡 6⁄  2 4 8 16 32 64 
12 4.000E-06 8.000E-06 1.433E-05 2.317E-04 7.093E-04 9.500E-04 
40 4.000E-06 9.000E-06 1.500E-05 2.317E-04 7.840E-04 8.860E-04 
48 6.000E-06 1.200E-05 2.100E-05 2.380E-04 7.200E-04 8.967E-04 

144 7.000E-06 1.300E-05 2.300E-05 2.390E-04 7.360E-04 9.573E-04 
160 7.000E-06 1.300E-05 2.300E-05 2.417E-04 7.353E-04 9.007E-04 
192 7.000E-06 1.400E-05 2.400E-05 2.410E-04 7.333E-04 9.213E-04 
576 1.000E-05 2.100E-05 3.633E-05 3.137E-04 7.783E-04 1.050E-03 
640 1.100E-05 2.233E-05 3.833E-05 2.767E-04 8.160E-04 1.101E-03 
768 1.200E-05 2.500E-05 4.300E-05 2.873E-04 8.433E-04 1.128E-03 

2304 2.600E-05 5.400E-05 1.023E-04 3.617E-04 1.013E-03 1.367E-03 
2560 2.800E-05 5.900E-05 1.120E-04 3.740E-04 1.032E-03 1.533E-03 
9216 9.000E-05 1.940E-04 3.890E-04 7.100E-04 1.837E-03 2.844E-03 

       Msg. 
Length Number of Processes, P 

𝑁𝑏𝑁𝑡 6⁄  128 256 512 1024 2048 4096 
12 9.613E-04 1.223E-03 1.668E-03 1.911E-03 1.939E-03 2.174E-03 
40 9.140E-04 1.093E-03 1.835E-03 1.771E-03 2.080E-03 2.409E-03 
48 9.683E-04 1.230E-03 1.788E-03 1.672E-03 1.736E-03 2.994E-03 

144 9.587E-04 1.150E-03 1.959E-03 2.421E-03 2.777E-03 3.647E-03 
160 9.760E-04 1.217E-03 2.306E-03 2.337E-03 3.354E-03 4.216E-03 
192 9.283E-04 1.227E-03 2.364E-03 2.423E-03 2.998E-03 3.799E-03 
576 1.169E-03 1.930E-03 3.157E-03 3.346E-03 4.087E-03 5.564E-03 
640 1.226E-03 1.843E-03 3.022E-03 3.303E-03 4.043E-03 6.326E-03 
768 1.205E-03 2.406E-03 3.368E-03 3.520E-03 4.890E-03 6.625E-03 

2304 1.634E-03 2.777E-03 4.950E-03 5.538E-03 6.682E-03 8.999E-03 
2560 1.939E-03 4.032E-03 5.254E-03 5.578E-03 6.533E-03 8.835E-03 
9216 3.434E-03 6.979E-03 9.343E-03 1.044E-02 1.247E-02 1.496E-02 

 
 

3.3.2 Parallel Performance Model 

Using the results of the previous section, a predictive parallel performance model can be 
formulated for estimating the execution time on the JPF system. The total predicted time τtot is 
the sum of all the components of the ITMM-PBJ solution detailed above, 
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𝜏𝑡𝑡𝑡 = 𝜏𝑐𝑐𝑐 + 𝜏𝑖𝑖𝑖 + �𝜏𝜙 + 𝜏𝜓𝜓 + 𝜏𝜓𝜓 + 𝜏𝑐𝑐𝑐𝑐�𝑁𝑖𝑖𝑖, (3.3.11) 

 
where the τcon and τfac components are performed once during construction and the remaining 
components are performed Nits times, the number of PBJ iterations. Note that none of the 
terms are presently given dependencies on N, Nb, Nt, or P. These are dependencies are included 
when considering whether the model is to be applied in a weak or strong scaling sense. In weak 
scaling, the first five terms are independent of P, and only depend on the problem size 
parameters: 

 
𝜏𝑤𝑤 = 𝜏𝑐𝑐𝑐(𝑁,𝑁𝑏 ,𝑁𝑡) + 𝜏𝑓𝑓𝑓(𝑁)

+ �𝜏𝜙(𝑁) + 𝜏𝜓𝜓(𝑁,𝑁𝑏 ,𝑁𝑡) + 𝜏𝜓𝜓(𝑁𝑏 ,𝑁𝑡)

+ 𝜏𝑐𝑐𝑐𝑐(𝑁𝑏 ,𝑁𝑡 ,𝑃)�𝑁𝑖𝑖𝑖. 

(3.3.12) 

 
These dependencies have been further simplified by the equations in the preceding sections 
that accompany the power fit trend lines. The model is adjusted in strong scaling, and the first 
five terms are additionally dependent on P, which scales the global problem size N.  

 
𝜏𝑤𝑤 = 𝜏𝑐𝑐𝑐(𝑁,𝑁𝑏 ,𝑁𝑡 ,𝑃) + 𝜏𝑓𝑓𝑓(𝑁,𝑃)

+ �𝜏𝜙(𝑁,𝑃) + 𝜏𝜓𝜓(𝑁,𝑁𝑏 ,𝑁𝑡 ,𝑃) + 𝜏𝜓𝜓(𝑁𝑏 ,𝑁𝑡 ,𝑃)

+ 𝜏𝑐𝑐𝑐𝑐(𝑁𝑏 ,𝑁𝑡 ,𝑃)�𝑁𝑖𝑖𝑖. 

(3.3.13) 

 
The value of P has no effect on 𝑁𝑡, but it has an implied effect on N and 𝑁𝑏, where the number 
of cells decreases like 1 𝑃⁄ , and the number of boundary surfaces decreases like 1 𝑃2 3⁄⁄ . 

This model currently does not estimate the number of PBJ iterations. 𝑁𝑛𝑡𝑠 could be estimated 
from semi-analytic formulas based on empirical data. Alternatively, a more accurate prediction 
of the iterative behavior for varying problem parameters like c and h would likely be derived 
from a spectral analysis of the PBJ method. For our purposes known iteration counts from 
previously executed cases will be used to compare actual data with the model-estimated 
construction time and iterative solution time. 

3.3.2.1 Weak Scaling Time Predictions 

Using the weak scaling model defined by Eq. (3.3.12), the estimated execution times have been 
computed for the JPF weak scaling experiments. This study involved an 8×8×8 S16 base model. 
The h = 1.0 cm, c = 0.9 and 0.99 cases are chosen as examples to compare the estimated time 
based on the model versus the actual, observed execution times. Individual components of the 
model use the JPF-specific timing constants in Eqs. (3.3.2), (3.3.4), (3.3.6), (3.3.9), and (3.3.10) 
and use Table 3.3.II to determine the correct communication time. 
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Fig. 3.3.8 Weak Scaling Exec. Time vs. P prediction, 8×8×8 base, S16, c = 0.9, h = 1.0 cm. 

Fig. 3.3.9 Weak Scaling Exec. Time vs. P prediction, 8×8×8 base, S16, c = 0.99, h = 1.0 cm. 
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Figure 3.3.8 shows the comparison for the h = 1.0 cm, c = 0.9 case up to P = 1,024. Likewise, the 
comparison for the c = 0.99 case is shown in Fig. 3.3.9. The construction time, τcon + τitm, for 
both is the same, as c and h do not have an effect on these components of the code. 
Unfortunately, it is clear in both figures that the model currently devised under-predicts the 
construction time. This may be caused by not fully capturing the effect of memory contention or 
a deficiency in the model. In contrast, the execution time per iteration seems to be over-
predicted by the model, leading to a noticeable difference when P is small. Yet as P increases, 
this over-prediction negates the construction time model’s deficiency such that the total 
execution time computed from the performance model predicts the total execution time 
observed very well. 

3.3.2.2 Strong Scaling Time Predictions 

Using the strong scaling model defined by Eq. (3.3.7), the estimated execution times have been 
computed for the JPF strong scaling experiments. This study involved a 16×16×16 S8 base model. 
The estimated execution time from the model is again compared to experimentally measured 
timing data from the h = 1.0 cm, c = 0.9 and 0.99 cases. Individual components of the model use 
the JPF-specific timing constants in Eqs. (3.3.2), (3.3.4), (3.3.6), (3.3.9), and (3.3.10). Table 3.3.II 
is used to determine the communication time, either by directly reading or by interpolating 
between points. 

Figure 3.3.10 shows the results from the c = 0.9 case, and Fig. 3.3.11 shows the results from the 
c = 0.99 case. The performance model of Eq. (3.3.13) estimates execution times for strong 
scaling studies reasonably well. It is clear from both figures that the model over-predicts 
execution times for smaller values of P, the largest difference occurring at P = 1, where the 
construction time was most largely overestimated. The benefit of strong scaling studies is that 
the increase in P reduces the memory burden per PE. This seems to help the predictive model 
more accurately resemble reality and consequently the predicted construction times deviate 
less from the actual, observed construction times, and the total execution time is accurately 
predicted. Note that the measured execution time is rounded up to 0.001 s when P is very small 
due to a coded output limit to the clock’s precision when such executions were originally 
performed; hence the curve assumes a flat line. 

3.3.3 Remarks 

By breaking up the PIDOTS-PBJ code into sections, a predictive parallel performance model was 
formulated for weak and strong scaling studies. All components, but the communication time, 
are only indirectly affected by changing P. Therefore, fits were based on the factor that most 
dominates the operations of that component. Communication timing is estimated using 
tabulated data that covers a wide range of vector lengths and P. 

The results indicate that the current models predict total execution time in both weak and 
strong scaling studies sufficiently well. The model tends to under-predict construction time and 
over-predict iterative solution time, and the deviation with the data can be noticeable for small 
P. However, as P increases the model does a very good job at estimating the execution time, 
given the number of iterations the problem will consume.  Further testing may reveal that no 
effects related to runtime conditions are being insufficiently captured by the model to explain 
the differences, especially in the construction time. In that case a deficiency in the model(s) 
must be sought to improve the predictions. 
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Fig. 3.3.10 Strong Scaling Exec. Time vs. P prediction, 16×16×16 base, S8, c = 0.9, h = 1.0 cm. 

Fig. 3.3.11 Strong Scaling Exec. Time vs. P prediction, 16×16×16 base, S8, c = 0.99, h = 1.0 cm. 
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3.4 Task 4 – Parallel implementation of the new algorithms 

A computer code, the Parallel Integral Discrete Ordinates Transport Solver (PIDOTS), was written 
in the Fortran 90/95 standard to implement the ITMM and various parallel global solution 
techniques. It uses the Message Passing Interface (MPI) instruction set for parallelization. 
Multiple versions of PIDOTS were developed to test the various solution techniques. Specifically, 
in the PSD framework, [19] PBJ, PGS, and PGRMES (restarted) have been implemented in 
PIDOTS. Standard compiler optimization settings were utilized for improved performance, 
namely in the vectorization of matrix-vector operations. A flowchart describing the PIDOTS code 
is depicted in Fig. 3.4.1. 

The primary concern of this project has been to develop a new neutron transport code and 
analyze its scalability to the massively parallel computing regime. Therefore computational test 
results related to the strong and weak scaling of the various parallel methods introduced in the 
previous chapter are presented first. Execution times will be broken down into ITMM operator 
construction time and global iterative solution time; the sum of the two times add up to the 
total execution time. 

3.4.1 Supercomputing Platforms 

The timing results presented in this report were gathered from executions on three computer 
clusters of increasing size. All computing systems were distributed memory, MIMD [23] 
architectures. Among other features, they varied in the number of nodes, number of processors 
per node, processor speed, available memory, and interconnect network. 

To establish terminology, a node refers to a blade server which is connected to other nodes via 
the network. All three supercomputers are homogeneous, meaning all nodes share the same 
design (processor speed, memory, processor design, etc.) Moreover, all nodes are 
multiprocessors. All three systems’ nodes had two or more sockets, one processing chip per 
socket. Chips are multicore, i.e., they feature two or more central processing units (CPUs). Cores 
of the same socket share some levels of cache and also own at least a single small, fast level of 
cache for dedicated use. 

Codes that employ MPI for parallelization are said to be decomposed into P independent 
processes. In our work, every processor, i.e., CPU, is assigned exactly one MPI process. However, 
to avoid confusion with other documents that may equate a processor with a socket, this report 
will use the term processing element (PE) to refer to a single CPU. Therefore, for any given 
problem P can equivalently refer to the number of deployed processes or the number of 
participating PEs, and effort will be made to distinguish the two when making a comment about 
the code (processes) versus a comment about the hardware (PEs). 

Small tests on up to P = 256 were performed on the Yellowrail (YR) system at Los Alamos 
National Laboratory (LANL). YR is a distributed memory cluster of 139 nodes with 8 PEs and 16 
gigabytes (GB) of memory per node; however, an administrative limit of 256 PEs per user-run is 
imposed. Nodes are organized into a single Connected Unit (CU), whereby a single, large switch 
connects all the nodes. The nodes are AMD Opteron blades. AMD Opteron machines have 
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NUMA designs. For nodes with two or more sockets, each chip has its own memory controller 
and a directly-connected physical memory set. Intranode communication is performed over a 
HyperTransport link. 

 

Fig. 3.4.1 PIDOTS Flowchart. 
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With initial observations from YR, larger weak scaling tests were performed on LANL’s Redtail 
(RT) system on up P = 1,024. RT is composed of 14 CUs of similar design to YR. Each CU has 131 
AMD Opteron nodes. Each node has 8 PEs and 32 GB of memory. The maximum number of PEs 
per user-run is administratively limited to 1,024. The CUs are connected by a second stage 
InfiniBand interconnect of eight additional switches. Both YR and RT were predecessors to the 
better-known Roadrunner cluster, which features the Cell processors for enhanced, 
heterogeneous computing. 

Due to limitations in the permitted number of PEs per user per job, highly massively parallel 
tests were not possible to perform on the YR and RT platforms. For access to thousands of PEs 
to test the code, the Cray XT5 JaguarPF (JPF) cluster at Oak Ridge National Laboratory (ORNL) 
was employed. JPF is composed of 18,688 nodes, each with 12 PEs and 16 GB of memory. The 
interconnection is static—a 3-D torus topology [24]. To handle the traffic of incoming/outgoing 
messages, each node is equipped with a SeaStar 2+ router. To fit the problems considered on 
the nodes, in terms of memory, runs were restricted to 8 PEs per node instead of using all 12 
PEs. 

Resource contention affects the timing results and can occur at intra- and inter-node levels. All 
systems ran programs in dedicated mode, restricting other users from issuing instructions to 
allocated nodes. However, within a single node, the most common resource contention occurs 
when multiple PEs compete both for space and access to shared cache and memory. At the 
network level, communications must either be passed among nodes, via routers, or through 
switches. During periods of heavy user load, message traffic on the network can affect 
performance. Due to these issues, all test cases were executed multiple times and average times 
are reported for a more accurate estimate of typical system performance, i.e. execution time. 

3.4.2 The Base Model Problem 

Consider a single sub-domain per PE—a PBJ-type problem. A generic model geometry has been 
created. Cell dimension h and material scattering ratio c are varied to investigate respectively 
the effects these parameters have on the ITMM’s parallel solution strategies. For the purposes 
of this report, optical thickness refers to a measure of the probability of interaction between the 
neutron and the host medium. Fixing either h or 𝜎𝑡 and increasing the other is said to make the 
medium more optically thick. Moreover, the product of these two quantities results in the 
number of mean free paths, mfp = h𝜎𝑡 (unitless), that a neutron traverses across one edge of a 
cell. A large number of mfp corresponds to more interactions within a cell, and greater optical 
thickness. This definition of optical thickness is a departure from the more formal definition 
provided in Refs. [25] and [26], but it is consistent with terminology used in PBJ-related 
references and is valuable for the ensuing analysis.  

The base model domain is a cube with side length L and four materials, as shown in Fig. 3.4.2, 
having no symmetries that may influence the iterative rate of convergence. The domain is 
discretized via a uniform mesh of cubic cells, and the number of cells in the base model is scaled 
to change the size of the ITMM operators. The diamond difference scheme is prone to negative 
fluxes when the spatial cells are too large given the total interaction cross section. To avoid the 
problem of negative flux solutions, each spatial cell was assigned a volumetric source q. The 
source strength was varied among the five regions, shown in Fig. 3.4.2. This base model is 
employed for strong and weak scaling studies with various parallel solution methods. For all 
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tests, a single angular quadrature order is chosen and used for all variations of c, h, and P. 
Vacuum boundary conditions were always employed. 

 

 
 
In strong scaling studies the number of computational cells is fixed. However, one should note 
that studies of this kind in fact are not strong scaling per the most accurate definition; strong 
scaling studies represent a fixed number of unknowns or degrees of freedom which are 
distributed among the increasing number of participating processes. For strong scaling studies 
presented herein, even if the global domain size is fixed, the number of degrees of freedom 
increases with P as more boundary cells’ angular fluxes are introduced as unknowns. 
Nevertheless, the strong scaling designation is maintained because the problem does reach a 
fixed amount of decomposition. Namely, the number of parallel processes is limited by the total 
number of cells, yielding 1×1×1 (-cell) sub-domains. 

In weak scaling studies, the problem size grows with increasing P. For the purposes of this 
research, the number of unknowns per P was held constant while P was increased. Therefore, 
computational load related to construction and application of the ITMM operators does not 
change with P. In contrast, network load does increase, because the increase in P necessitates 
additional point-to-point messages between PEs and more effort to transmit global messages 
among all PEs. For weak scaling tests, additional processes are added to the 3-D virtual topology 
and the global domain is divided into sub-domains of equal size. The sub-domains are not 
periodic repetitions of the base model; instead, the base model domain is stretched in the 
dimension(s) that receives additional PEs and divided into cubic sub-domains. 

Now consider cases where each PE is assigned multiple sub-domains—PGS-type problems. The 
base model itself is divided into equally sized cubic sub-domains, half red and half black 
arranged in a 3D-analogue of the checker-board pattern, all assigned to a single processor. As 
the problem is scaled to more PEs, the base model is distorted in the same manner described 
above: each additional PE gets a cubic region, which it divides into equally sized cubic sub-
domains. Each PE must be assigned at least two sub-domains—one red, one black—to avoid 

Figure 3.4.2 Test cases’ base model of four materials and four source strengths. 
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processor idleness. However, for programming purposes, assigning each PE at least two sub-
domain divisions in each dimension (minimum of eight sub-domains per PE) was easier because 
all PEs can use the same loops to determine which sub-domains are colored red and which are 
colored black. Therefore, all the PGS tests performed for this project employed a minimum of 
eight sub-domains per PE. 

The base model has been employed for many test cases presented in the ensuing sections with 
varying number of cells in the base model and varying angular quadrature order. All angular 
quadrature sets SN correspond to the LQN quadrature set, [25] a level (fully) symmetric 
quadrature with 𝑁𝑡 = 𝑁(𝑁 + 2) 8⁄  discrete ordinates per octant. The large size of the ITMM 
operators and vectors make these methods limited by available memory. Therefore, problems 
with a large number of cells in the base model, e.g., 16×16×16, may be paired with the smaller 
S4 and S8 quadrature sets, and a smaller base model, e.g., 8×8×8, is paired with a higher S12 or 
S16 quadrature. 

3.4.3 PBJ Scaling Results 

Test cases with the PBJ global solution method have been developed to analyze strong and weak 
scalability. Moreover, throughout this section, PBJ results will frequently be used as a reference 
point against which all global solution methods with the ITMM will be compared. 

3.4.3.1 Strong Scaling 

Strong scaling studies have previously been performed for a different model on the YR system 
up to P = 256. [27] The results of that study indicated that the PBJ model performed well against 
serial SI (as implemented in PIDOTS) when the sub-domains were small—four cells—and when 
the optical thickness and scattering ratio were high. Strong scaling efficiencies relative to the 
corresponding serial SI executions were greater than 100%. The conclusion that PBJ is 
competitive with SI for high scattering and thick cells is not expected to change with a different 
model. However, gaining insight into the optimal size of the sub-domains for a larger problem is 
valuable. 

A larger strong scaling study was performed on the JPF system with up to P = 4,096. The base 
model of Fig. 3.4.2 was used, where the entire system was a cube with 16 cells in each direction. 
The 16×16×16 model was parallelized by factors of two—in the cyclic order of doubling the 
process topology in the 𝑧-dimension first, then 𝑦, then 𝑥 (𝑧→𝑦→𝑥)—until 4,096 PEs were 
employed, each owning a single 1×1×1 cell. The cell dimensions were varied as h = 0.1 cm, 1.0 
cm, and 10.0 cm. The scattering ratio was varied as c = 0.9 and 0.99. 

In Fig. 3.4.3 the iteration counts for varying h and c = 0.9 are presented. Although the iteration 
counts between the methods do not compare equally in terms of number of operations, they do 
reveal trends with varying problem parameters. For optically thin systems like the h = 0.1 cm 
case, the number of PBJ iterations quickly eclipses SI. Problems with larger optical thickness 
involve more interactions before particles can escape, and the SI iteration count increases. 
Starting with a zero-flux initial guess, the nth iterate of the SI scheme corresponds to the flux of 
neutrons that has undergone n collisions and has not been destroyed via absorption or leakage. 
[25] Hence the lower the probability of a neutron to leak or be absorbed, the larger the nth 
iterate and thus the slower the convergence of SI. 
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In contrast, convergence of the PBJ method involves resolving the coupling among sub-domains 
via incoming/outgoing interface angular flux, and coupling between sub-domains and the global 
boundary conditions, i.e., the impact of angular fluxes exterior to the domain. Iterations are not 
physically related to the number of interactions a neutron undergoes. Rather they are tied to 
how much a change in the flux distribution in one sub-domain impacts the flux distribution in all 
others. PBJ sub-domains become increasingly decoupled with increasing h—their effects are 
more localized and convergence occurs faster—so long as P is large. When P is small, sub-
domains are more tightly coupled to the fixed vacuum boundary conditions, and optically thin 
sub-domains allow for more rapid conveyance of those effects. Therefore, up to P = 32, the h = 
0.1 cm case uses the fewest PBJ iterations. For P > 128, the number of iterations seems to be 
driven by the transport effects among sub-domains more than the effects from the boundary 
conditions. When h is large enough, the PBJ number of iterations approaches the SI count with 
increasing P. 

 

 
 

The iteration counts for the c = 0.99 case are shown in Fig. 3.4.4. Similar trends as for the c = 0.9 
case are apparent, but the steeper PBJ curves indicate that diminishing the absorption 
mechanism results in more tightly coupled sub-domains. Likewise, more source iterations are 
needed for convergence as neutrons undergo more interactions before removal from the 
system. Interestingly, the increase in number of iterations is much more prominent for the two 
thicker cases, than the thin, h = 0.1 cm case, possibly indicating that boundary conditions are 
still playing a prominent role in the convergence of the interface-flux iterates. A promising result 
for future tests is the flattening of the h = 10.0 cm curve compared to the optically thinner 
cases. Because the scalability of the parallel algorithm depends on the iteration counts, flatter 
growth is expected to yield better parallel performance. 

Fig. 3.4.3 PBJ strong scaling study, Iterations vs. P, 16×16×16 model, c=0.9, varying h. 
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The iterations of the two methods require a different set and number of operations. Therefore 
to have a complete discussion of the performance, execution time must be observed. In Fig. 
3.4.5 the c = 0.9 strong scaling cases immediately demonstrate the cost operator construction 
time imposes on the PBJ method. Because varying c and h does not affect the operators’ sizes 
and construction times, a single curve, averaged over all cases’ runs, is presented. For small P, 
hence larger operators, the ITMM construction time is greater than the serial SI execution time, 
thus making it impossible for PBJ to do better regardless of the number of iterations. However, 
as P increases, construction time expectedly decreases super-linearly per the arguments made 
earlier. By P = 16, the iterative solution time dominates the PBJ total time, but the decreasing 
size of the operators continues to drive the total time downward. Unfortunately, the increasing 
PBJ iterations create a competing effect, tending to increase the execution time. At P = 128—32 
cells per sub-domain—the effect of the iterations overcomes reduced operator size and the 
execution time increases. Interestingly, for this larger problem the optimal sub-domain sizes 
were noticeably larger than previous YR results in Reference [27]. 

  

Fig. 3.4.4. PBJ strong scaling study, Iterations vs. P, 16×16×16 model, c=0.99, varying h. 
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Parallel performance results are quantified via speedup 𝑆𝑃 and efficiency 𝐸𝑃, 
 

Fig. 3.4.5 PBJ strong scaling study, Execution Time vs. P, 16×16×16 model, c=0.9, varying h. 

Fig. 3.4.6 PBJ strong scaling study, Execution Time vs. P, 16×16×16 model, c=0.99, varying h. 
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𝑆𝑃 ≡ 𝑇1 𝑇𝑃⁄     𝑎𝑎𝑎    𝐸𝑃 ≡ 𝑆𝑃 𝑃⁄ , (3.4.1) 

 
using execution times with a single process, 𝑇1 (from SI in these cases), and with P processes, 𝑇𝑃. 
In most cases, with enough processors the PBJ algorithm could complete its execution faster 
than the serial SI cases. Generally, the PBJ plots in Figs. 3.4.5 and 3.4.6 show that optically thick 
and highly scattering problems have the best comparative features with their serial SI 
counterparts. In Figs 3.4.7 and 3.4.8 it is evident that only the most optically thick cases come 
close to ideal linear speedup. Although such a speedup is not achieved for this model, all runs 
demonstrate steady gains in speedup up to P = 128. When execution time begins to re-increase 
for the PBJ cases, the speedup begins to decrease. 

 

 

 
 
Figure 3.4.9 clearly shows the weakness of the PBJ algorithm for fixed size problems. When c = 
0.9, the optically thick cases have parallel efficiencies near 10%, which is small, and drop 
dramatically after P = 128 when the execution time begins to increase due to the increased 
iteration count. The optically thin case is much worse, only approaching 2% efficiency. For the 
highly scattering cases with c = 0.99, as long as the optical thickness is high, parallel efficiencies 
greater than 50% can be attained with up to P = 128, as shown in Fig. 3.4.10. However, 
decreasing the thickness leads to the same poor relative performance. 

The above results indicate that for problems of fixed size, i.e. number of cells, each case has an 
optimal number of processors that balances the competing effects of super-linear decrease in 
ITMM operator sizes and increase in the PBJ iteration count. Approaching the balance is 

Fig. 3.4.7 PBJ speedup relative to respective SI cases, c=0.9, varying h. 
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accompanied by steady speedup in the algorithm. However, after this balance has passed the 
efficiency of the method decreases significantly. 

 

 
 

 

 

Fig. 3.4.8 PBJ speedup relative to respective SI cases, c=0.99, varying h. 

Fig. 3.4.9 PBJ efficiency relative to respective SI cases, c=0.9, varying h. 
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3.4.3.2 Weak Scaling 

Strong scaling studies, while beneficial to understanding parallel performance, are not the only 
way to gauge a new method’s scalability compared to current state-of-the-art. In weak scaling 
studies the problem size grows with the number of PEs. Weak scaling is designed such that the 
size of the sub-domain assigned to each PE does not change; therefore, operator construction 
time is approximately a fixed cost as P is increased. Increases in execution time will be driven by 
increased communication and increasing number of global iterations. If the number of iterations 
grows slowly, the scalability of the PBJ algorithm will make it an attractive choice in massively 
parallel regimes.  

Initial weak scaling tests were performed on the YR system with up to P = 256. The 16×16×16  
(4,096 cells) base model was used with the S4 angular quadrature set; with increasing P each 
additional PE is assigned an additional 16×16×16-cell sub-domain. As previously stated, the base 
model is stretched in the direction of additional PEs in the virtual topology. Additional PEs are 
added in one dimension at a time, cycling through the dimensions 𝑧→𝑦→𝑥 to maintain a low 
global domain surface-to-volume ratio. The scattering ratio and cell dimensions were varied 
again as c = 0.9 and 0.99 and h = 0.1 cm, 1.0 cm, and 10.0 cm, respectively. Neither serial nor 
parallel SI runs were performed for this study, reserving a comparison for the next section 
between SI with KBA parallelization and the PGS method, primarily because PGS performs better 
than PBJ hence is the more likely approach for production level implementation. 

When the scattering ratio is 0.9, the number of iterations, shown in Fig. 3.4.11, grows very 
slowly for the optically thicker—h = 1.0 and 10.0 cm—cases because sub-domain effects are 
highly localized. The large optical thickness means that neutrons are more likely to spend their 

Fig. 3.4.10 PBJ efficiency relative to respective SI cases, c=0.99, varying h. 
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entire lifetimes within the sub-domain where they are born or in a nearby sub-domain. When P 
is small, leakage out of the system dominates the problem and the h = 0.1 cm case uses the 
fewest iterations. Yet this iteration count grows much more quickly and shows very little change 
in slope from P = 2 to P = 256. 

Figure 3.4.12 shows that increasing the scattering ratio to 0.99 shifts all curves upward relative 
to the c = 0.9 cases. The optically thinnest case has a steeper slope for P > 2 than the others and 
a steeper slope than its c = 0.9 counterpart, but for P in the range between 1 and ~64 the h = 0.1 
cm case uses fewer iterations than the h = 1.0 cm and 10.0 cm cases. The latter behavior seems 
to be caused by the fact that the increase in c shifts the optically thicker curves more than the 
optically thinnest case. As the problem becomes less influenced by the boundary conditions 
with increasing P, the dominating effect is how tightly sub-domains are coupled via interfacial 
exchange of neutrons comprising interface angular fluxes. The high scattering ratio results in 
less localized transport effects, but the optically thin case seems to benefit from small physical 
dimensions and increased effect from boundary conditions—leakage—when P is small. 
Nevertheless, large optical thickness also results in more neutron absorption within sub-
domains, thus decoupling them, and the iteration counts grow slowly with increasing P. 

The iteration count curves for h = 1.0 and 10.0 cm cases have the desired trait of slow growth 
that leads to slowly growing execution time. In Fig. 3.4.13 the execution time (“Tot”) for the c = 
0.9 cases is decomposed into the iterative solution (“Sol”) time and the operator construction 
(“Con”) time. The “Sol” curves follow the same trend as the iteration count curves in Fig. 3.4.11 
as expected. The serial PBJ case is solved with a single iteration (in the case of all vacuum 
boundary conditions) and therefore represents an absence of iterations and communication. As 
in the case of strong scaling studies, varying c and h does not affect construction time, so the 
single plot is an average from all runs. This curve is nearly flat because all PEs have the same size 
sub-domain as P increases. However, it is clear that operator construction time dominates the 
total execution. This result poses the immediate challenge of reducing ITMM operator 
construction time while maintaining the slow growth in iteration count. 

In Fig. 3.4.14, the larger number of iterations due to the increased scattering ratio, c = 0.99, 
leads to the iterative solution time playing a larger role in the total execution time. In fact, 
dividing the “Sol” data points by the corresponding number of iterations shows that the PBJ 
algorithm is using ~0.6–0.7 s per iteration for this model. Moreover this time tends to increase 
with P, likely due to the need to communicate through the YR switch when P > 8 and increased 
contention as P increases and more messages are sent. However, the matrix-vector operations 
performed per iteration are the dominating factor in per iteration time. Therefore, the second 
challenge becomes reducing the matrix-vector multiplication times—namely, in the form of 
smaller operators—without greatly increasing the number of iterations or at least not changing 
the slopes of those curves for high P. The increasing number of iterations and necessary 
communication tends to increase the execution time versus P. These factors tend to harm 
parallel scalability, but a measure is helpful to know by how much the algorithm is affected 
relative to some reference. The definitions given in Eq. (3.4.1) are no longer suitable, because 
the size of the problem is not fixed, requiring less work per PE as P is increased. Rather, now the 
number of operations per iteration is fixed for all P. Running larger problems in serial is not 
possible due to insufficient memory, but the P = 1 execution time does represent optimal 
performance for the algorithm because it lacks iterations and communication. Reference [28] 
provides a definition for weak scaling efficiency: 
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Fig. 3.4.11 YR PBJ weak scaling study, Iterations vs. P, 16×16×16 model, c=0.9, varying h. 

Fig. 3.4.12 YR PBJ weak scaling study, Iterations vs. P, 16×16×16 model, c=0.99, varying h. 
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Fig. 3.4.13 YR PBJ weak scaling, Execution Time vs. P, 16×16×16 model, c=0.9, varying h. 

Fig. 3.4.14 YR PBJ weak scaling, Execution Time vs. P, 16×16×16 model, c=0.99, varying h. 
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𝜖𝑃 ≡
𝜏𝑟𝑟𝑟
𝜏𝑃

�
𝐷𝐷𝐷𝑃
𝐷𝐷𝐷𝑟𝑟𝑟

� ,   𝜏 = 𝑇 × 𝑃. (3.4.2) 

 
DOF is the number of degrees of freedom (number of unknowns) for parallel runs on P PEs; the 
“ref” problem run is typically a problem run with P = 1. The wall-clock time is denoted with T. 
For the purposes of all the weak scaling studies performed for this project, the number of 
unknowns scales linearly with P. Employing the P = 1 runs as the reference case, Eq. (3.4.2) 
simplifies, and weak scaling efficiency can be defined as 

𝜖𝑃 ≡
𝑇1
𝑇𝑃

. (3.4.3) 

 
This formula appears the same as strong scaling speedup. However, their respective 
implementations are very different. 

Weak scaling efficiency for varying h relative to respective single sub-domain PBJ runs is plotted 
versus P for the c = 0.9 cases in Fig. 3.4.15. If all parallel runs used a single iteration and no 
communication, the efficiency would be unity independent of P. However, the efficiency drops 
with increasing P as the problem requires more iterations to converge and communication costs 
are incurred. The two thicker cases have flatter iteration curves, and consequently their parallel 
efficiency according to Eq. (3.4.3) drops slowly reaching about 60% for P = 256. Looking at the c 
= 0.99 efficiencies in Fig. 3.4.16, the thick cases still have flat efficiency curves for high P, but 
they now settle at approximately 40% relative to the serial cases. In both figures the h = 0.1 cm 
case’s efficiency slope is more steeply negative and does not change much with increasing P. 
Viewing the data in this manner highlights the importance of accelerating iterative convergence 
such that fewer iterations are necessary and parallel efficiency can be improved. 

This weak scaling study was repeated on the JPF system with up to P = 1,024. Knowing that the 
16×16×16 base model problem makes the ITMM operator construction time a more dominating 
component of total execution, the base model was adjusted to 8×8×8 sub-domains. The S8 
quadrature set was selected to refine the angular mesh and to utilize more of the available 
memory. Varying c and h in the same manner as before provides insight into how the different 
architecture and model size (number of cells and angles) affects weak scaling. However, it is 
expected that the general conclusions will remain the same. That is, the efficiency of a given 
case may be altered due to the new problem parameters and computing platform, but relative 
to the other cases of c and h, the efficiency will exhibit the same behavior observed with the PBJ 
method. 

The iteration count curves are plotted in Fig. 3.4.17 for all six cases of varying c and h—same 
values as the study performed on the YR system. The trends are largely the same as those in 
Figs. 3.4.11 and 3.4.12. Most importantly, these include the flattening of the curves for optically 
thick cases while the thinnest case has steep growth in iterations up to P = 1,024 and that 
increasing the scattering ratio increases the number of iterations by reducing neutron removal 
by absorption, thus tightening the coupling among sub-domains. The larger P compared to the 
YR study does not yield a flattening of the optically thin cases’ iteration curves. Such a result 
would have been desirable to suggest that those cases may perform in more massively parallel 
regimes—i.e., thousands of PEs. The most important difference compared to the study on the 
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YR system involves the c = 0.99, h = 1.0 cm case. It can be observed in Fig. 3.4.12 that this curve 
has a slight upward slope. That slope is much more pronounced for this study. The smaller 
8×8×8 sub-domains are the likely cause. Because the sub-domains are physically smaller in this 
model, they demonstrate tighter sub-domain coupling just as thinner cells produce a similar 
effect. Nevertheless, this problem does not appear for the c = 0.9, h = 1.0 cm case, where the 
greater absorption counters the effect from reduced sub-domain size. 

 

 
 

Figure 3.4.18 shows the execution time for the six cases. As in the YR study, the iterative 
solution curves follow the corresponding iteration count curves. Even though the angular 
quadrature order was increased, the large drop in number of cells per sub-domain—4,096 to 
512—resulted in a very significant decrease in the ITMM operator construction time. The 
reduced relative contribution to total execution time means the solution time dominates, and 
construction time is insignificant for the longest running calculations—c = 0.99 cases, P > 256. 
For P = 1 cases, the construction time consumes nearly the entirety of the execution time 
because the time for a single iteration is less than 0.2 s. For larger P, this time increases to ~0.3 
s. The slowest growing execution times are expected to have the best scalability for P > 1,024, 
and these cases remain the optically thick ones due to the decoupling of sub-domains. 

Given that the construction time dominates the P = 1 calculations but becomes a small 
contributor at high P, reduced relative efficiency is an expected consequence. The parallel 
efficiency curves relative to the serial PBJ runs are shown in Fig. 3.4.19. Very steep drops in 
relative efficiency are followed by much flatter trends for thicker cases. At ~16%, the c = 0.9, h = 
10.0 cm case displays the best efficiency. The thinner cases’ efficiencies continue to drop with P. 
Nevertheless, these results are acceptable. The curves display the same characteristics as 

Fig. 3.4.15 YR PBJ weak scaling efficiency relative to serial PBJ runs, c=0.9, varying h. 
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before, but the construction time is much smaller. The method is by design supposed to shift 
computational burden to the independent task of building ITMM operators while seeking a slow 
growth in the number of iterations. If the construction time is small compared to the iterative 
solution time, this will skew the efficiency relative to the serial case that converges in a single 
iteration. 

 

 

 
 

Fig. 3.4.16 YR PBJ weak scaling efficiency relative to serial PBJ runs, c=0.99, varying h. 
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Fig. 3.4.17 JPF PBJ weak scaling study, Iterations vs. P, 8×8×8 model, varying c, h. 

Fig. 3.4.18 JPF PBJ weak scaling, Execution Time vs. P, 8×8×8 model, varying c, h. 
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3.4.4 PGS Scaling Results 

The PGS method is expected to have the advantage of reducing construction time, and assuming 
the number of sub-domains per PE is not too high, it should maintain a slow growth in the 
number of global iterations. In this section, the weak scaling studies of the previous section are 
repeated with a single level of sub-domain division (i.e., two sub-domains per dimension, eight 
total) on each PE. Then the PGS method is compared to parallel SI via KBA sweeps to show the 
performance relative to the state-of-the-art. Also the impact of further divisions of sub-domains 
is investigated with highly massively parallel calculations. Lastly we examine the performance in 
cases where material heterogeneity plays a significant role in SI iterative convergence. 

3.4.4.1 Comparing PBJ and PGS performance 

Comparing the PGS and PBJ methods involves evaluating the relative performance amid 
competing effects. The superlinear reduction in operator sizes leads to smaller memory 
requirement per PE, faster ITMM construction time, and faster matrix-vector operations for PGS 
in spite of the fact that each PE handles multiple sub-domains. Conversely, per the results of the 
strong scaling studies, it is known that for a fixed problem, increasing the number of sub-
domains will induce an increase in the number of iterations for convergence. Moreover, the 
increase in the number sub-domains per PE requires an increase in the number of 
communications to other PEs as well as substantial copying of arrays among sub-domains on the 
same PE to transfer data. 

Weak scaling studies were performed on the JPF system with an 8×8×8, S16 base model. The PGS 
runs correspond to eight 4×4×4 sub-domains per PE. For this brief comparison, the scattering 

Fig. 3.4.19 JPF PBJ weak scaling efficiency relative to serial PBJ runs, varying c, h. 
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ratio was held constant for all materials while the optical thickness of each cubic cell was varied 
by setting h = 0.1, 1.0, and 10.0 cm (and holding 𝜎𝑡 constant).  

The iteration counts for c = 0.9 cases are shown in Fig. 3.4.20. As expected, optically thicker 
cases have flatter iteration count curves. When sub‐domains are optically thick, their effects 
tend to become more localized. This reduces the iteration count because the sub‐domains 
decouple, and the influence of the flux iterate in one sub‐domain on the flux in other sub‐
domains quickly diminishes below the specified convergence criterion. The fact that the PGS 
method demonstrates this behavior as well as PBJ is significant, because it indicates that the 
PGS method also obeys the decoupling trend that had been previously established for PBJ [7] 
and [8]. Furthermore, the number of PGS iterations remains below the PBJ counterpart cases 
indicating, at least for these cases, that the PGS convergence rate is the more dominant effect in 
comparison with the trend of increasing iteration counts with increasing number of sub‐
domains.  

 

Fig. 3.4.20 JPF PBJ-PGS weak scaling comparison, Iterations vs. P, c=0.90, varying h. 

 
The corresponding execution time plots for these cases are presented in Fig. 3.4.21. The savings 
in the operator construction time is immediately evident (from the two curves with the “Con” 
label). The superlinear relationship of operator sizes to number of cells clearly outweighs the 
cost of having to loop over the linear increase in number of sub-domains. The ITMM operator 
construction time is essentially constant because the number of sub-domains per PE and the 
sub-domain sizes (number of cells) are constant with increasing P. The remaining curves 
represent the total execution time. One can deduce from the plots that savings are also realized 
in the iterative section of the code for these cases. Figure 3.4.21 also shows that the optically 
thicker PGS cases are still approximately 3–4 times faster than PBJ at P = 1,024. Yet the two 
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optically thicker PGS cases are trending closer toward PBJ execution times because of the slight 
increase in iteration counts. The results also reinforce the decoupling trend observed in the 
iteration count curves: namely that optically thick sub-domains have a slow growth in execution 
time with increasing P, and optically thinner sub-domains have a steeper growth. 

 

 
Fig. 3.4.21 PBJ-PGS weak scaling comparison, Execution Time vs. P, c=0.90, varying h. 

 

Up to P = 1,024, the PGS method exhibits improved performance trends versus PBJ due to 
reduced operator construction times and matrix-vector arithmetic instructions execution times. 
Although the results presented thus far show a decrease in the number of PGS iterations from 
PBJ iterations and consistent trends, it remains to be seen if this behavior continues with 
increasing number of red/black sub-domain divisions. Further divisions of the sub-domains for 
the PGS approach will lead to higher iteration counts, and the tradeoff between the decreasing 
work per iteration and the increasing number of iterations is examined via numerical tests 
presented next. 

3.4.4.2 Comparing Levels of PGS Sub-Domain Division in the Very Massively Parallel Regime 

Evident in the previous section, PGS offers significant advantages over PBJ, demonstrating 
comparable scaling trends with reduced execution time. The next task is to examine how 
increasing the number of red and black sub-domains affects the iteration count and execution 
time curves vs P. Increasing the level of PGS sub-domain division is achieved by successive 
division of a single sub-domain on a PE (PBJ) into smaller sub-domains. The results in the 
previous section considered a single division in each dimension to yield eight sub-domains per 
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processor. The base model is modified to a 16×16×16 cells per PBJ subdomain, S8 problem. For 
PGS successive divisions are considered such that each PE is assigned eight 8×8×8 (R/B-02), 64 
4×4×4 (R/B-04), 512 2×2×2 (R/B-08), and 4,096 1×1×1 (R/B-16) sub-domains. Test cases were 
performed for a varying scattering ratio, c = 0.90 and 0.99, and varying cell size, h = 0.1 and 1.0 
cm. Results are presented for three (c, h) pairs to highlight the effects of increasing scattering 
ratio and optical thickness: (0.90, 0.1 cm), (0.90, 1.0 cm), and (0.99, 1.0 cm). Computations were 
performed up to P = 32,768. 

The iteration count results for the (0.90, 0.1 cm) case are presented in Fig. 3.4.22. All four levels 
of PGS division follow the same trend of increasing number of iterations. The curves are shifted 
upward for increasing number of sub-domains as expected. The execution times for these cases 
are presented in Fig. 3.4.23. The total execution time (“Tot”) is the sum of the iterative solution 
time (“Sol”) and the operator construction time (“Con”). The total execution time for low P 
shows that the smaller sub-domains perform better, likely caused by the faster operations 
performed per iteration and the reduced time for ITMM operators’ construction. However, for 
large problems, the construction time becomes increasingly negligible in the total execution 
time. The larger number of iterations burdens the communication network and the R/B-08 case 
eclipses R/B-04 and R/B-02 in execution time. The R/B-04 execution time steadily remains below 
the R/B-02 execution time. These two cases show similar curves with R/B-04 having a slightly 
faster growth than R/B-02, especially as P is increased to thousands of PEs. 

 
Fig. 3.4.22 JPF R/B division scaling, Iterations vs. P, c=0.90, h=0.1 cm. 
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Fig. 3.4.23 JPF R/B division scaling, Execution Time vs. P, c=0.90, h=0.1 cm. 

 

Increasing the optical thickness to(0.90, 1.0 cm), the iteration count curves in Fig. 3.4.24, exhibit 
a less steep slope than their counterparts in Fig. 3.4.22. This is expected due to the decoupling 
nature of thicker sub-domains. Moreover, Fig. 3.4.24 reveals that increasing optical thickness 
does not affect the relation among the increasing PGS divisions. The curves all follow the same 
general trend, albeit with less smooth increases, and the curves do not intersect. In Fig. 3.4.25, 
the execution time plots are shifted downward due to the decrease in the iteration counts 
compared to the optically thin case. However, many of the same trends persist, specifically that 
as P is increased to the thousands, R/B-04 executes fastest, and that R/B-08 and R/B-16 have 
steeper growth in execution time even though the iteration count curves have similar slope to 
the coarser PGS division. 

Increasing the scattering ratio for the (0.99, 1.0 cm) case has the effect of re-tightening the 
coupling among the sub-domains. As shown in Fig. 3.4.26, the iteration curves are shifted 
upward, and the higher scattering ratio exhibits faster growth in the number of iterations. 
However, as in the case of increasing optical thickness, increasing scattering ratio does not 
impact the behavior that all divisions have very similar iteration count curves, shifted upward 
with increasing PGS division. In Fig. 3.4.27, R/B-04 remains the fastest PGS division and has an 
execution time that closely follows the iteration count curve as P is increased beyond 1,000. 
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Fig. 3.4.24 JPF R/B division scaling, Iterations vs. P, c=0.90, h=1.0 cm. 

 

 
Fig. 3.4.25 JPF R/B division scaling, Execution Time vs. P, c=0.90, h=1.0 cm. 
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Fig. 3.4.26 JPF R/B division scaling, Iterations vs. P, c=0.99, h=1.0 cm. 

 

 
Fig. 3.4.27 JPF R/B division scaling, Execution Time vs. P, c=0.99, h=1.0 cm. 
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The results presented in this section clearly indicate that the R/B-02 and R/B-04 cases scale very 
similarly. The fact that R/B-04’s execution time does not rapidly climb with increasing P, like R/B-
08 and R/B-16, makes it a very good choice beyond P = 32,768. More generally, the results 
suggest a single division in each dimension, like R/B-02, is not necessarily the most efficient 
approach, even if it does mean similar or fewer global iterations than PBJ. Moreover, the 
number of iterations and the burden it places on the system for fast communications is probably 
the most influential factor in the fast growth of R/B-08 and R/B-16 execution times. If a method 
is developed to accelerate the ITMM with PGS iterations, more, smaller sub-domains may 
constitute a more attractive choice because of the faster operator construction time and per 
iteration matrix-vector operations time. 

3.4.4.3 Comparing PGS and KBA performance 

Evident from the results above, PGS is a more attractive solution method than PBJ, at least for a 
modest number of sub-domains per PE. Therefore, the PGS method with the R/B-04 division was 
selected for a comparison of the parallel ITMM approach against the traditional KBA method for 
mesh sweep parallelization. The same test configuration as in Sec. 3.4.2 was used with PARTISN 
and its KBA method and a set of six tests were performed, varying c = 0.90 and 0.99 and h = 0.1 
cm, 1.0 cm, and 10.0 cm.  

PARTISN solves the within-group equations with the SI scheme and uses DSA (SI DSA) to improve 
the iterative convergence rate. The ITMM code, PIDOTS, currently does not include acceleration 
or preconditioning of the global problem, and this remains an open challenge for improving 
these methods. For KBA in PARTISN, additional PEs are added in the 𝑧- and 𝑦-directions before 
the 𝑥-direction to maximize parallel efficiency—i.e., the 2-D spatial decomposition for KBA is 
done in the 𝑦-𝑧 plane. [10] This order is consistent with the above tests. Moreover, tests for 
negative flux fixup were not activated in PARTISN runs to be consistent with PIDOTS, which does 
not have negative flux fixup. However, every cell is assigned a fixed distributed source to reduce 
the potential for incurring negative fluxes. 

Figures 3.4.28 and 3.4.29 show the iteration and execution time plots, respectively, for the (0.9, 
0.1 cm) case. It must be noted that the work per iteration is very different for the three methods 
presented: PGS, SI, and SI DSA. These plots of iteration counts are used to observe trends in the 
amount of work to be performed per PE per method. For the present case the PGS and SI cases 
show a modestly fast growth in the number of iterations with increasing P. Yet SI DSA 
convergence is unsurprisingly rapid and the curve is flat, except for a jump at very high P; the 
acceleration scheme quickly kills diffusive error modes and the small optical thickness makes for 
a so-called “leaky” system, handled well by the transport sweeps. [19] Up to P ~ 400 the ITMM 
construction time is longer than the entire SI DSA solution time. Moreover, for low P, SI and SI 
DSA exhibit significantly faster execution time than PGS. However, both these curves grow much 
steeper than the PGS one, needing to perform a mesh sweep every iteration. Additionally, every 
time the domain is expanded in the 𝑥-direction, the efficiency of the KBA method is diminished, 
as indicated most noticeably by a change in the slope of the SI execution time curve from P = 
2,048 to 4,096. At P ~ 10,000 the SI execution time eclipses that of PGS. However, even at the 
highest P tested, the acceleration by DSA is still effective enough to execute faster than PGS. 
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Fig. 3.4.28 JPF PGS-KBA weak scaling comparison, Iterations vs. P, c=0.90, h=0.1 cm. 

 

 
Fig. 3.4.28 JPF PGS-KBA weak scaling comparison, Execution Time vs. P, c=0.90, h=0.1 cm. 
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The results for the (0.9, 1.0 cm) case are given in Figs. 3.4.30 and 3.4.31—iteration counts and 
execution times, respectively. Now the number of iterations remains relatively flat for SI and SI 
DSA, but has increased slightly from the h = 0.1 case, whereas the number of PGS iterations has 
decreased from the optically thin case, as expected. The PGS R/B-04 method has a steady 
growth in iteration count, indicating that the sub-domains are not yet fully decoupled, and some 
effects are not completely localized. The increasing size of the system has little effect on the 
necessary number of source iterations for convergence when P > 1,000. Nonetheless, the 
decrease in number of PGS iterations compared to the h = 0.1 case reduces its execution time. 
The PGS execution time curve grows more slowly than SI and SI DSA, intersecting the SI time 
curve at a smaller value of P than the optically thin case. At P = 32,768, the SI DSA execution 
time is only a few seconds shorter than PGS, but has a much steeper up-slope. 

Increasing the cell thickness to 10.0 cm has little effect on the PGS iterations, shown in Fig. 
3.4.32, maintaining a pretty similar trend to the h = 1.0 cm case. Interestingly, the SI curve is 
essentially unaffected by the increased thickness. However, the SI DSA curve is shifted sharply 
upward. Although SI DSA is insensitive to P (domain size) for this case, the method clearly 
performs worse for optically thick media. The consequence is easily identifiable in the execution 
time plots of Fig. 3.4.33. The PGS and SI curves have moved little compared to the h = 1.0 cm 
case, but the SI DSA curve is much closer to SI, evidence of DSA’s reduced effectiveness for these 
problems. Most importantly, beyond P ~ 2,000 the PGS method with R/B-04 division executes 
faster than SI DSA. This indicates the type of problem where PGS is most competitive with 
accelerated SI and KBA sweeps: optically thick cases where PGS can take advantage of sub-
domain decoupling and avoid the repetitive mesh sweeps. 

Increasing the scattering ratio is expected to increase the number of iterations for all the 
methods as neutron removal by absorption is weakened. Starting with the (0.99, 0.1 cm) case, 
the numbers of iterations versus P are plotted in Fig. 3.4.34. The PGS and SI cases show a quickly 
growing number of iterations; with the high scattering ratio, cells and sub-domains are tightly 
coupled. SI DSA convergence is again much more rapid, and the iteration count only begins to 
grow for P > 256. The execution time plots, Fig. 3.4.35, show that for this case the SI method 
consumes more time than PGS starting at P ~ 3,000. Furthermore, although the SI DSA time is 
nearly 100 times faster than PGS at low P, the significantly faster growth in  SI DSA execution 
time cuts this difference down to approximately a factor of two at P = 32,768. If the ITMM 
method is to be competitive with SI DSA for optically thin problems, it is clear that reducing the 
execution time per iteration will likely be insufficient for most practical problems and some 
acceleration method to improve the convergence rate is necessary. 
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Fig. 3.4.30 JPF PGS-KBA weak scaling comparison, Iterations vs. P, c=0.90, h=1.0 cm. 

 

 
Fig. 3.4.31 JPF PGS-KBA weak scaling comparison, Execution Time vs. P, c=0.90, h=1.0 cm. 
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Compared to the case with a lower scattering ratio, the (0.99, 1.0 cm) case has a large jump, 
approximately a factor of ten for SI and a factor of 5 for PGS, in the number of iterations, shown 
in Fig. 3.4.36. PGS also exhibits a trend of steady growth in the number of iterations, while SI 
and SI DSA are flat for high P. The higher scattering ratio is keeping sub-domains more tightly 
coupled in the PGS method, and the resulting increase in interactions before absorption slows 
the convergence of the scattering source in SI. SI DSA handles this case well, as the number of 
iterations has barely increased compared to the c = 0.9 case. In Fig. 3.4.37, the execution time 
plots underscore this observation. The SI DSA time remains much lower than PGS, albeit with a 
faster rate of growth. The increased scattering ratio does appear to impact SI more negatively 
than PGS. After KBA efficiency decreases at P = 512, the SI execution time is greater than PGS. 

 
Fig. 3.4.32 JPF PGS-KBA weak scaling comparison, Iterations vs. P, c=0.90, h=10.0 cm. 

 

The (0.99, 10.0 cm) case is the most difficult one considered for SI. Increasing optical thickness 
improves the PGS method’s parallel performance because the sub-domains become weakly 
coupled—transport effects are more localized and fewer iterations are needed. However, the 
low absorption and high probability of interaction decrease the SI method’s ability to quickly 
converge on the scattering source. Although the SI and SI DSA iteration curves shown in Fig. 
3.4.38 are flat, they are both higher than the previous cases considered. The number of PGS 
iterations is below SI and SI DSA, but the greater amount of work per iteration still results in 
longer execution times compared to SI DSA until P = 2,048. Above this point, the increasing long 
sweeps and high iteration count for SI DSA grow its execution time longer. The SI and SI DSA 
time curves continue to grow at a relatively fast rate, whereas the decoupling effect shows 
excellent scalability for PGS with R/B-04. The execution time plots for this case are depicted in 
Fig. 3.4.39. 
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Fig. 3.4.33 JPF PGS-KBA weak scaling comparison, Execution Time vs. P, c=0.90, h=10.0 cm. 

 
Fig. 3.4.34 JPF PGS-KBA weak scaling comparison, Iterations vs. P, c=0.99, h=0.1 cm. 
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Fig. 3.4.35 JPF PGS-KBA weak scaling comparison, Execution Time vs. P, c=0.99, h=0.1 cm. 

 
Fig. 3.4.36 JPF PGS-KBA weak scaling comparison, Iterations vs. P, c=0.99, h=1.0 cm. 
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Fig. 3.4.37 JPF PGS-KBA weak scaling comparison, Execution Time vs. P, c=0.99, h=1.0 cm. 

 
Fig. 3.4.38 JPF PGS-KBA weak scaling comparison, Iterations vs. P, c=0.99, h=10.0 cm. 
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Fig. 3.4.39 JPF PGS-KBA weak scaling comparison, Execution Time vs. P, c=0.99, h=10.0 cm. 

 

The results thus far delineate circumstances in which the ITMM with PGS are competitive with SI 
and SI DSA. Namely, problems with large optical thickness undergo sub-domain decoupling 
effects that provide PGS an advantage to converge faster. Furthermore, as the problem is scaled 
to a greater number of cells, the sweeps become increasingly expensive, whereas the ITMM 
sub-domain sizes remain constant and work per iteration does not change. The parallel solution 
times of SI and SI DSA continue to grow even when the iteration curves are flat because the size 
of the domain to be swept continues to grow. However, the large differences that do exist 
between PGS and SI DSA execution times, especially for optically thin problems, suggest that 
PGS global convergence must be accelerated to benefit the method in a similar manner as DSA 
does for SI. 

3.4.4.4 Weak scaling studies with the Periodic Heterogeneous Layers configuration 

Previous research [29] and [30] has identified that DSA loses its effectiveness to accelerate 
problems with sharp material discontinuities. Specifically, when a domain is divided into 
alternating regions with increasingly heterogeneous nuclear properties—i.e., very large and very 
small optical thicknesses—diffusion-based acceleration techniques fail. This is a significant 
shortcoming of DSA, but not a completely unexpected one. Azmy [29] noted for this class of 
problems, the alternating heterogeneity of the system induces highly anisotropic angular flux, 
and the diffusion approximation, given its assumption of linearly anisotropic angular 
dependence, is known to break down in such regimes.  
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A sequence of tests was performed to test the impact that Periodic Heterogeneous Layers (PHL) 
have on the ITMM global iterations compared to SI and SI DSA. The base model depicted in Fig. 
3.4.2 no longer applies to these tests. The base model is now an S16, 8×8×8-cell domain with 
each cell assigned one of two materials. All cubic-cell dimensions are set to h = 1.0 cm and the 
total cross section is used to scale the optical thickness of the media. The scattering ratio of c = 
0.9 was set for all materials. The material is homogeneous in the 𝑥-𝑦 plane but there are eight 
layers in the 𝑧-direction: 𝛼-layers 1, 3, 5, and 7 are optically thick, and 𝛽-layers 2, 4, 6, and 8 are 
optically thin. Table 3.4.I lists the total interaction cross sections for the 𝛼- and 𝛽-layers for the 
three cases considered. Namely, thickness and thinness are each increased by a factor of a away 
from unity, the homogeneous case. 

 
Table 3.4.I YR PHL total cross sections (or equivalently mfp given h=1.0 cm). 

Case, a 𝜎𝑡,𝛼 (cm−1) 𝜎𝑡,𝛽 (cm−1) 
10 10 0.1 

100 100 0.01 
1000 1000 0.001 

 
The R/B-2 PGS method (i.e. eight 4×4×4 sub-domains per PE) was employed to solve the parallel 
ITMM problem for comparison with PARTISN’s KBA-based parallel SI and SI DSA schemes. It 
should be clear that the sub-domains are composed of both 𝛼 and 𝛽 materials. The ITMM has 
the distinct advantage of computing explicit coupling among cells within a sub-domain, 
providing it with a competitive edge in problems with sharp material discontinuities. 

Cases were run in parallel on JPF up to P = 4,096. Due to time constraints, cases with higher P 
were impractical to be performed for inclusion in this report. The scaling trends for higher P are 
still highly desired, but the presented results do provide a good indication of the comparative 
performance between PGS and SI. Unlike the previous tests, where the base model was 
stretched as the problem grew, now additional sub‐domains are periodic repetitions of the 
base. A virtual process Cartesian topology is created as before, and PEs are added to this 
topology one dimension at a time, cycling through the dimensions. Subdomains are added in the 
direction of additional PEs. Therefore, only when the number of z‐processes is increased are 
additional PHL layers modeled. The cyclic order is still 𝑧→𝑦→𝑥. Vacuum boundary conditions 
were applied on all external boundaries, and every cell is supplied a unit volumetric source. 

Starting with a = 10, the iteration curves versus P, shown in Fig. 3.4.40, illustrate that for this 
level of heterogeneity the PGS, and SI iteration counts remain largely unchanged. However, the 
SI DSA method undergoes a large jump in the number of iterations from P = 16 to 32. This 
corresponds to an increase in the 𝑦-dimension, possibly indicating a significant decrease in the 
impact that the boundary conditions have on the DSA algorithm. The execution times are 
plotted in Fig. 3.4.41. The SI DSA method starts out much faster than the other methods but its 
execution time increases rapidly to consume approximately the same amount of time as SI. Even 
though SI DSA iteration counts are less than SI, the two methods use the same amount of time 
approximately, because SI DSA iterations are more expensive. The PGS method meanwhile 
exhibits good scaling properties and no discernable problems caused by the material 
heterogeneity. It outperforms the parallelized SI on as few as 32 processes. 
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Fig. 3.4.40 JPF PHL scaling study, Iterations vs. P, c=0.90, a=10. 

 

 
Fig. 3.4.41 JPF PHL scaling study, Execution Time vs. P, c=0.90, a=10. 
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The a = 100 case demonstrates the impact of increasing the heterogeneity. In Fig. 3.4.42, the 
PGS iteration curve grows much steeper, indicating the difficulty in resolving the interface 
angular flux solution with the increased heterogeneity. The SI and SI DSA curves are shifted 
upward as well, but it is clear that SI DSA is ineffective in accelerating SI. DSA turns itself off due 
to negative source terms caused by the large optical thicknesses and the disabling of negative 
flux fixup. While simple tests suggest for some cases that enabling negative flux fixup can help 
reduce the number of iterations, it comes at a very high cost, potentially outweighing the 
benefits. The need for fixup was avoided in this study from the outset to reduce differences 
among the compared algorithms since it is difficult to incorporate in ITMM-type methods that 
are based on scalar flux variables. Observing the execution time plots in Fig. 3.4.43, it is clear 
that SI does not scale as well as PGS in the presence of sharp material discontinuities. 
Additionally, the ITMM parallel solution method continues to be less affected by the anisotropic 
effects resulting from the nature of the PHL configuration. 

The iteration curves for the a = 1,000 case are given in Fig. 3.4.44. Again DSA turns itself off 
hence the SI and SI DSA iteration curves are identical. Interestingly, increasing a from 100 to 
1,000 has little impact on the iteration curves for all methods. Perhaps the anisotropic effects 
are already strongly present for a = 100 and further increases do little to impact how the 
methods perform. For both values of a, the SI curves do not grow monotonically. The more 
complex nature of the problem (i.e., the heterogeneities and the influence of the boundary 
conditions for different regions) seems to impact the iteration counts in somewhat unexpected 
ways. The same conclusions can be drawn for the execution time curves, shown in Fig. 3.4.45. 
Again, the PGS method shows considerably better scaling properties compared to SI. 

Most real-world nuclear engineering problems encountered are models of nuclear systems 
where sharp, periodic material heterogeneity is not present, and DSA effectively annihilates 
diffusive error modes of the SI scheme. However, for more complicated problems where 
diffusive error modes are not dominant, the DSA does little to accelerate SI, which itself is 
observed to be a poorer solution strategy than PGS for growing PHL problem size and P. On the 
other hand, the ITMM seems to resolve more quickly the highly anisotropic nature of the flux via 
explicit coupling between very different materials within each sub-domain. Moreover, the PGS 
iterative global solution method does not introduce difficulties that would hinder convergence. 
Although these problems are encountered far less frequently in neutronics, this study has 
revealed a class of problems where the ITMM has definite advantages. Moreover, applied to 
thermal radiative transport problems, where material opacity discontinuities are larger and 
isotropic scattering is more prevalent, the ITMM may be found to be more beneficially 
applicable so long as its scaling properties are similar to those observed here. 
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Fig. 3.4.42 JPF PHL scaling study, Iterations vs. P, c=0.90, a=100. 

 

 
Fig. 3.4.43 JPF PHL scaling study, Execution Time vs. P, c=0.90, a=100. 
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Fig. 3.4.44 JPF PHL scaling study, Iterations vs. P, c=0.90, a=1000. 

 

 
Fig. 3.4.45 JPF PHL scaling study, Execution Time vs. P, c=0.90, a=1000. 
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3.5 Task 5 – Evaluate options for solving local system 

In the PSD approach [19] the overall region is divided into several sub-domains, as shown in Fig. 
3.5.1. Each sub-domain is treated as an independent problem; each has its own set of ITMM 
operators and boundary conditions. The scalar flux is computed for all cells in the sub-domain 
according to Eq. (3.1.12) with methods described in greater detail in the following section. Using 
this information and the boundary conditions, all the outgoing angular fluxes are computed at 
the boundaries of the sub-domain with Eq. (3.1.14). The outgoing angular flux is passed 
between adjacent sub-domains in an iterative fashion. The exchanged data package is a set of 
boundary conditions for a new calculation to compute the updated scalar flux distribution 
within the sub-domain. An iterative process takes place until convergence of the scalar flux in all 
sub-domains is achieved. 
 

 
 
This iterative procedure is not an inner iteration scheme because it does not iterate on the 
scattering source. The critical aspect of this iterative method is that the quantities being iterated 
on are the angular fluxes at sub-domain boundaries, not the scalar fluxes within the sub-
domain. The scalar fluxes serve as a computationally inexpensive intermediate step in the 
computation of updated outgoing boundary angular fluxes and as a convenient tool for 
evaluating the convergence of the global system. By substituting Eq. (3.1.12) into Eq. (3.1.14) 
one can remove the scalar flux from the solution process entirely, only computing it when 
necessary for reaction rate computations. However, the large expenses of inverting the �𝑰 − 𝑱𝜙� 
matrix, 𝑁3, and performing matrix-matrix multiplications with 𝑲𝜙 and 𝑱𝜙, 𝑁11 3⁄ , make the 
retention of the scalar flux computation during the iterative procedure a computationally 
efficient option. 

All four integral transport matrix operators are necessary for this approach. Constructing the 
ITMM operators per sub-domain is computationally intensive. However, because the involved 
operators are completely uncoupled across sub-domains and are pre-computed only once, their 
construction is highly concurrent. Effectively, the goal of the new algorithm is to shift the 
computational burden from the solution stage that is sequential in the mesh sweep algorithm to 
the fully parallel computation of the ITMM operators for each sub-domain. Moreover, because 
the operations per iteration are much simpler than the mesh sweep, the grind time may 

Fig. 3.5.1 Spatial decomposition of a global domain into multiple sub-domains. 
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potentially decrease, addressing the primary obstacle to drastically improving parallel 
performance of solution algorithms for transport methods. 

To compute the scalar flux distribution for the sub-domain, one must account for the 
dependence of the fixed (isotropic) source and the expectedly anisotropic boundary conditions, 
Eq. (3.1.12). The top half of Fig. 3.5.2 illustrates the computation of the scalar flux. The bottom 
half illustrates the computation of the outgoing angular flux on the faces of the boundary cells 
from the computed scalar flux spatial moments, source, and boundary conditions, Eq. (3.1.14). 
Depending on the size of the sub-domains, the operators may still involve large matrices. But 
due to the rapid growth of the operators with respect to increasing number of cells, sub-
domains’ cumulative storage demand may be less than the requirement for a single domain, 
depending on the competing effects: fewer overall cells and increasing number of sub-domain 
boundary cells. 

 

 
 

3.5.1 Global Solution Methods 

The global solution process described above is representative of an iterative approach to invert 
a large, blocked, sparse matrix system of linear equations. The right hand side is composed of 
fixed source and boundary condition terms; the solution vector is composed of the cell average 
scalar fluxes and outgoing angular fluxes at sub-domain boundaries; and the coefficient matrix is 
composed of the ITMM operators. Because the problem is decomposed, the matrix and vectors 
are blocked, grouped by sub-domain. 

As an illustration, consider the 1-D problem in Fig. 3.5.3. Two sub-domains share a single 
interface and have fixed boundary conditions on opposing sides. The solution vector is 
composed of the scalar flux sub-vectors and the outgoing/incoming angular fluxes exchanged on 
the common interface. The terms are colored to illustrate the distributed ownership, and the 
superscripts “+” and “−” refer to the particle flow in the positive and negative directions, 

Fig. 3.5.2 Schematic of the PSD algorithm. 
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respectively. Note the similar superscripts applied to the ITMM operators in Eq. (3.5.1), 
indicating direction-specific portions of the full matrix. 

 

 

 
 
The system of equations can then be written for the global problem, 
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⎢
⎢
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⎥
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, (3.5.1) 

 
where the subscript “BC” refers to the fixed, non-iterated, boundary condition. The parallel 
solution of the system relies on the exchange of angular flux at the shared boundary, i.e. 𝝍𝑜𝑜𝑡,1

+  
and 𝝍𝑜𝑜𝑡,2

− . After the exchange of information, outgoing angular fluxes become incoming 
angular fluxes to be operated on by 𝑲𝜙, 𝑱𝜓, and 𝑲𝜓. 

Viewing the global problem in this more formal manner allows us to consider efficient means of 
solving it. Due to the large size of the global coefficient matrix, direct solution techniques have 
not been considered. Iterative methods are far more suitable for the global solution. Three 
methods have been employed and tested for this project: parallel block Jacobi, parallel block 
red-black Gauss-Seidel, and parallel generalized minimal residual with restarts. All three 
methods are asynchronous, changing the amount and order of work with varying decomposition 
of the global domain. 

The parallel block Jacobi (PBJ) solution algorithm is the direct implementation of the method 
already outlined. Knowing the previous iterate of the solution vector, the global coefficient 
matrix acts on the values of the outgoing (incoming, once communicated) angular flux and 
scalar flux. Because the global matrix is sparse, each processor has the necessary matrix 
elements—the ITMM operators—and via communication with neighboring sub-domains 
receives the needed sub-vectors of the total solution vector. Thus, the operator action is 
represented by Eqs. (3.1.12) and (3.1.14). Furthermore, because all processes use information 
only from the previous iterate of 𝝓 and 𝝍𝑜𝑜𝑡 to compute a new iterate the process is a block 
Jacobi fixed-point iteration. 

Fig. 3.5.3 Example problem to illustrate the global problem’s system of equations. 

ϕ1 

1 2 

ϕ2 

q1 q2 

ψ+
BC,1 

ψ−
out,1 ψ−

BC,2 

ψ+
out,1 ψ+

out,2 

ψ−
out,2 



 75 

The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel 
iterative method, wherein one uses the most current information when computing new values. 
This partially occurs in the PBJ algorithm when sub-domains use the new scalar flux value in the 
computation of outgoing angular fluxes. However, the global problem is solved with iterations 
on the angular flux; the scalar flux merely serves as a convenient, intermediate variable. In the 
PBJ algorithm the angular flux always lags because no improved information exists until 
communication occurs. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the 
number of iterations by applying an alternating red-black color-set to the sub-domains. During a 
PGS iteration, the red sub-domains solve for 𝝓 and 𝝍𝑜𝑜𝑡 using information from the previous 
black iteration. This first half of the iteration is followed by sending outgoing angular fluxes to 
black sub-domains. The PGS iteration is completed when black sub-domains use the new 
incoming angular flux to compute their own 𝝓 and 𝝍𝑜𝑜𝑡. 

A clear drawback to direct implementation of PGS is processor idleness. By limiting one sub-
domain per processor, the PGS algorithm will have half the processors idle during the entirety of 
the solution phase as black (red) processors wait for red (black) processors to individually 
evaluate Eqs. (3.1.12) and (3.1.14). To avoid this problem we give processors ownership of 
multiple sub-domains, as illustrated for 2D configurations in Fig. 3.5.4. In the figure the global 
problem is bound by the blue box and each processor has two red and two black sub-domains. 
Angular fluxes at sub-domain boundaries are exchanged either via message-passing within the 
blue box or via vector copying within individual processor boxes. Processors are assigned at least 
two sub-domains per dimension to eliminate idleness when alternating between red and black 
halves of the iteration. 

 

 

 
 
For a given problem size, implementing the PGS strategy requires splitting a single sub-domain 
into multiple ones. To start the problem each processor loops over all the sub-domains they 
own to construct ITMM operators for each. During the solution phase, processors loop over red 
sub-domains to solve for 𝝓 and 𝝍𝑜𝑜𝑡, send (or copy) 𝝍𝑜𝑜𝑡 to neighboring processors in the 
topology (or to owned black sub-domains), receive incoming angular fluxes for the black sub-
domains, and compute 𝝓 and 𝝍𝑜𝑜𝑡 for black sub-domains. 

Fortunately the effect of additional matrix operations involved in looping over all sub-domains 
during construction and per iteration is compensated by the super-linear reduction in size of the 
ITMM operators as discussed before. Because the operators’ sizes decrease at a faster rate than 

Figure 3.5.4 2D Illustration of the red-black color set used when assigning multiple sub-domains 
per processor in the PGS scheme. 
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sub-domains can be added, dividing a sub-domain of fixed size (number of cells) into 
progressively smaller sub-domains will result in shorter computational time devoted to 
constructing all the ITMM operators and performing the matrix-vector multiplications 
associated with computing 𝝓 and 𝝍𝑜𝑜𝑡 per iteration.  

On the other hand, numerical tests indicate that increasing the number of sub-domains for a 
given problem is often accompanied by an increase in the number of iterations to reach 
convergence, and at best does not require more iterations. Because the Gauss-Seidel method 
has approximately twice the convergence rate as the Jacobi method, the PGS algorithm 
mitigates the effect of increasing number of iterations—i.e. compared to having the same 
number of sub-domains and employing PBJ. In general assigning multiple sub-domains per 
processor involves competing effects on the total execution time: reduced cumulative work 
during construction and per iteration and additional work due to increased number of 
iterations. The PGS algorithm is the most readily available technique to take advantage of the 
former while addressing the consequences of the latter. Moreover, the optimal number of sub-
domains per processor is problem-dependent as these tradeoffs are affected by all elements 
that influence the number of iterations, including the number of processors, problem size, 
optical thickness, and scattering ratio. 

The multiple sub-domains per processor scheme can be further improved by accelerating the 
PGS algorithm with a parallel block successive over-relaxation (PSOR) algorithm. However, 
because any changes to the number of sub-domains results in a new problem, a generic SOR 
weight cannot be assigned that is optimal for all problems or even guarantees improved spectral 
properties compared to PGS. Analysis necessary to develop a formula that specifies the optimal 
SOR weight as a function of relevant problem parameters has not been completed in this 
project. Therefore, the PSOR algorithm has not been fully tested and used for rigorous 
comparison with parallel SI as PBJ and PGS have. 

Solving the set of equations representing the global problem—exemplified by Eq. (3.5.1)—is not 
limited to the stationary iterative methods just described; a Krylov subspace solver should be 
applicable to these problems. Absent the necessary analysis, the global system of equations 
cannot be generically characterized as positive definite. Furthermore, an algorithm to make the 
coefficient matrix symmetric has not been identified. As a result the most adequate Krylov 
solver for general problems is the GMRES algorithm.  Although full description and analysis of 
the GMRES algorithm is outside the scope of this project, a brief description of GMRES and its 
parallel implementation for the global problem shall be provided. Commented pseudocode for 
the GMRES method is provided in Algorithm 3.5.1. The reader may also wish to consult 
References [21] and [31] for complete derivation, description, and convergence analysis of 
GMRES. 

Consider a linear system of equations with a coefficient matrix 𝑨, solution 𝒙, RHS 𝒃, and residual 
𝒓: 

 
𝑨𝑨 = 𝒃, 

𝒓 = 𝒃 − 𝑨𝑨. 
(3.5.2) 
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The GMRES method begins with an initial guess 𝒙(0) and corresponding residual 𝒓(0). Often, a 
suitable initial guess of the solution is simply zero, making the residual equal to 𝒃.  

The GMRES method employs the Arnoldi method (lines 4–14 of the algorithm) to build a basis 𝑽𝑙 
with 𝑙 orthonormal columns and a corresponding Hessenberg matrix 𝑯�𝑙 for the Krylov subspace 
span�𝒓(0),𝑨𝒓(0),𝑨2𝒓(0), … ,𝑨𝑙−1𝒓(0)� and results in the relation 

 
𝑨𝑽𝑙 = 𝑽𝑙+1𝑯�𝑙 . (3.5.3) 

Krylov subspace methods are a broad class of projection methods that seek solutions of the 
form  

 Algorithm 3.5.1 GMRES(m) method with classical Gram-Schmidt orthogonalization. 

 1. 𝒙(0) ≡ 𝒙0 = initial guess 
2. 𝒓 = 𝒃 − 𝑨𝒙0 
3. for 𝑘 = 0, 1, … do 
4. 𝒗1 = 𝒓 ‖𝒓‖2⁄  {first column of basis} 
5. 𝐬̅ = ‖𝒓‖2 𝒆1 {map norm to basis vector} 
6. for 𝑙 = 1, 2, … do 
7. for 𝑗 = 1, 2, … , 𝑙 do {Gram-Schmidt orthogonalization} 
8. ℎ𝑗𝑗 = 〈𝑨𝒗𝑙 ,𝒗𝑗〉 {inner product} 
9. end for 
10. for 𝑗 = 1, 2, … , 𝑙 do 
11. 𝒘 = 𝑨𝒗𝑙 − ℎ𝑗𝑗𝒗𝑗 
12. end for 
13. ℎ𝑙+1,𝑙 = ‖𝒘‖2 {sub-diagonal element results 
14. 𝒗𝑙+1 = 𝒘 ℎ𝑙+1,𝑙⁄  in Hessenberg matrix} 
15. Use Givens rotation to annihilate sub-diagonal element of 𝒉𝑙  
16. Apply rotation to 𝒔� {Transform least 
17. |𝑠𝑙+1| is equivalent to ‖𝒓‖2 squares problem} 
18. if |𝑠𝑙+1| ≤ convergence criterion 
19. Neglect row 𝑙 + 1 of 𝑯�  and 𝒔� → 𝑯 and 𝒔 
20. Solve upper triangular 𝑯𝑯 = 𝒔 {𝒚 that minimizes ‖𝒓‖2} 
21. 𝒙(𝑘𝑘+𝑙) = 𝒙(𝑘𝑘) + 𝑦1𝒗1 + ⋯+ 𝑦𝑙𝒗𝑙 
22. exit 
23. end if 
24. end for 
25. if |𝑠𝑚+1| ≤ convergence criterion: exit 
26. Neglect row 𝑚 + 1 of 𝑯�  and 𝒔� → 𝑯 and 𝒔  
27. Solve upper triangular 𝑯𝑯 = 𝒔 
28. 𝒙�(𝑘+1)𝑚� = 𝒙(𝑘𝑘) + 𝑦1𝒗1 +⋯+ 𝑦𝑚𝒗𝑚 
29. 𝒓 = 𝒃 − 𝑨𝒙�(𝑘+1)𝑚�  
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𝒙(𝑙) = 𝒙(0) + 𝑦1𝒗1 + ⋯+ 𝑦𝑙𝒗𝑙 , (3.5.4) 

 
where the subscript is an index of an element of a yet undefined 𝑙-vector 𝒚 or of a column of 𝑽𝑙. 
Accordingly, at line 4 of Algorithm 3.5.1, the first column of the basis is simply set to the 
normalized residual vector. Using Eqs. (3.5.3) and (3.5.4), one can re-express the residual, 
 

𝒃 − 𝑨𝒙(𝑙) = 𝒃 − 𝑨�𝒙(0) + 𝑽𝑙𝒚� 

       = 𝒓(0) − 𝑨𝑽𝑙𝒚 

                    = ‖𝒓‖2𝒗1 − 𝑽𝑙+1𝑯�𝑙𝒚 

                         = 𝑽𝑙+1(‖𝒓‖2𝒆1 − 𝑯�𝑙𝒚). 

(3.5.5) 

 
At line 5 of Algorithm 3.5.1, the first parenthetical term of the final relation is stored in the 
vector 𝒔�.  

Orthogonalization techniques for the Arnoldi method include classical Gram-Schmidt, modified 
Gram-Schmidt, and Householder transformations. Although classical Gram-Schmidt 
orthogonalization is known to be prone to cancellation errors in finite arithmetic, it has 
favorable properties related to parallelism. Moreover, test cases have not shown problems 
arising from cancellation, which would typically require a costly reorthogonalization. Therefore 
the Arnoldi process in Algorithm 3.5.1 is classical Gram-Schmidt without reorthogonalization.  

Evident from Eq. (3.5.5) 𝒚 should be chosen in a manner that minimizes ‖𝒔� − 𝑯�𝑙𝑯‖2, thereby 
also minimizing ‖𝒓‖2. Because 𝑯�𝑙 is a Hessenberg matrix, the minimization of ‖𝒔� − 𝑯�𝑙𝑯‖2 with 
𝒚 is a least-squares problem. To solve the least-squares problem, Givens rotations are used to 
annihilate the 𝑯�𝑙 sub-diagonal, modifying 𝒔� in the process. Ignoring the last row leaves an upper 
triangular system of equations 𝑯𝑯 = 𝒔 to be solved with backward substitution. However, most 
importantly, as shown in Reference [21] the last element of 𝒔 is equivalent to the residual norm, 
and therefore it is used to check convergence before the solution is updated. This process 
accounts for lines 15–20 of Algorithm 3.5.1. 

Krylov-subspace methods are known to produce the exact solution, assuming exact arithmetic, 
in 𝑛 steps, where 𝑛 is the length of 𝒙. However, sufficiently accurate approximate solutions are 
often computed in far fewer steps. A convergence criterion is applied to determine a solution’s 
adequacy, and as a result the GMRES algorithm serves as an efficient iterative solution method. 
Moreover, because storing all basis vectors 𝒗𝑙  can become prohibitively large, the algorithm is 
typically restarted every 𝑚 steps. Evident in Algorithm 3.5.1, the restarted algorithm, 
GMRES(𝑚), begins building a new basis every 𝑚 steps, beginning with the current 𝒓. 

The GMRES(𝑚) method was parallelized and applied to the global problem previously described 
and illustrated simply by Figure 3.5.3 and Eq. (3.5.1). The solution process is outlined in 
Algorithm 3.5.2. The full global coefficient matrix 𝑨 is not constructed, but its nonzero entries 
are sub-matrices distributed among all the participating processes, i.e. the ITMM operators. 
Further, the solution vector 𝒙 is divided into sub-vectors and distributed as 𝝓 and 𝝍𝑜𝑜𝑡. 



 79 

 
 
The parallel GMRES(𝑚) method, PGMRES(𝑚), relies on the distributed nature of the ITMM 
operators and flux vectors to perform the matrix-vector multiplications. Because of this data 
distribution, the columns of 𝑽 and the vector 𝒘 will similarly be distributed. In Algorithm 3.5.2 
the initial guess is set to zero, which was the only guess employed in test problems. Because the 
residual is distributed, computing the 2-norm is a two-step process: first each process computes 
the local contribution and, second a global all-reduction is used to sum all the pieces and 
broadcast the result to all processors (lines 3–4). The matrix-vector multiplication of line 10 

 Algorithm 3.5.2 PGMRES(m) method for solving the ITMM global problem. 

1. Set local 𝒙(0) ≡ 𝒙0 = initial guess 
2. Compute local 𝒓 = 𝒃 − 𝑨𝒙0 
3. Compute local ‖𝒓‖2 
4. all_reduce_sum of ‖𝒓‖2 {parallel reduction and broadcast} 
5. for 𝑘 = 0, 1, … do 
6. 𝒗1 = 𝒓 ‖𝒓‖2⁄  {𝑽 is distributed} 
7. 𝐬̅ = ‖𝒓‖2 𝒆1 {each process has full 𝒔�} 
8. for 𝑙 = 1, 2, … do 
9. communicate 𝒗𝑙,𝜓,𝑜𝑜𝑜 → 𝒗𝑙,𝜓,𝑖𝑖 {send/receive vector} 
10. Compute local 𝑨𝒗𝑙 → 𝒘 {ITMM operators × flux vectors} 
11. for 𝑗 = 1, 2, … , 𝑙 do {𝒘 is distributed} 
12. ℎ𝑗𝑗 = 〈𝒘,𝒗𝑗〉 {inner product} 
13. end for 
14. all_reduce_sum of 𝒉𝑙  {All processes will have full 𝑯� } 
15. for 𝑗 = 1, 2, … , 𝑙 do 
16. 𝒘 = 𝒘− ℎ𝑗𝑗𝒗𝑗 
17. end for 
18. Compute local ‖𝒘‖2 
19. all_reduce_sum of ‖𝒘‖2 
20. ℎ𝑙+1,𝑙 = ‖𝒘‖2 
21. 𝒗𝑙+1 = 𝒘 ℎ𝑙+1,𝑙⁄  
22. Every process has full 𝑯� ; all apply Givens rotations 
23. Apply rotations to 𝒔� 
24. |𝑠𝑙+1| is equivalent to ‖𝒓‖2 {all processes have same value} 
25. if |𝑠𝑙+1| ≤ convergence criterion 
26. Neglect row 𝑙 + 1 of 𝑯�  and 𝒔� → 𝑯 and 𝒔 
27. Solve upper triangular 𝑯𝑯 = 𝒔 {𝒚 that minimizes ‖𝒓‖2} 
28. Compute local 𝒙(𝑘𝑘+𝑙) = 𝒙(𝑘𝑘) + 𝑦1𝒗1 +⋯+ 𝑦𝑙𝒗𝑙  
29. exit 
30. end if 
31. end for 
32. if |𝑠𝑚+1| ≤ convergence criterion: exit 
33. Neglect row 𝑚 + 1 of 𝑯�  and 𝒔� → 𝑯 and 𝒔  
34. Solve upper triangular 𝑯𝑯 = 𝒔 
35. Compute local 𝒙�(𝑘+1)𝑚� = 𝒙(𝑘𝑘) + 𝑦1𝒗1 + ⋯+ 𝑦𝑚𝒗𝑚 
36. communicate 𝝍𝑜𝑜𝑜 → 𝝍𝑖𝑖 
37. Compute local 𝒓 = 𝒃 − 𝑨𝒙�(𝑘+1)𝑚�  
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requires the incoming data at the boundaries, i.e. the outgoing data from adjacent sub-domains. 
Therefore, at line 9 sub-vectors of the current 𝑽 column are exchanged just as angular flux 
vectors were exchanged in the stationary methods.  

The Arnoldi process, lines 10–21, is performed in parallel with several global communications 
necessary for completion. With locally owned sub-vectors of 𝒘 and 𝒗𝑙  each process can 
compute its own contribution to elements of 𝑯� . Another global all-reduction sums/broadcasts 
the elements of the column vector 𝒉𝑙. Sub-vectors of 𝒘 are updated locally and another global 
all-reduction is needed to compute its 2-norm and subsequently ℎ𝑙+1 , and 𝒗𝑙+1 . 
Orthogonalization with the modified Gram-Schmidt technique has also been implemented but 
requires costly global all-reductions for each individual element of 𝑯� , making it unsuitable for 
problems meant for massively parallel architectures. Classical Gram-Schmidt orthogonalization 
allows for a less expensive all-reduction of a vector. The benefit of giving each processor the 
entire 𝑯�  matrix becomes apparent when solving the least squares problem, lines 22–27. Each 
process can simultaneously check the global residual norm for convergence, solve for 𝒚, and 
update its part of 𝒙 without communication. Alternative algorithms have been developed for 
parallelizing the Arnoldi process and solving the least squares problem. However, the method in 
Algorithm 3.5.2 is a straightforward approach that introduces a modest number of additional 
global communications compared to the stationary iterative approaches.  

A more dominant factor in the performance of the PGMRES(𝑚) method is implementation and 
effectiveness of a preconditioner. Preconditioners are designed to improve the spectral 
properties of 𝑨, making the system converge in fewer iterations. A preconditioner applied to 
Algorithm 3.5.2 would appear in lines 2, 10, and 37, where in each case the inverse of the 
preconditioner would be (left) multiplied with the RHS shown in the algorithm. The only 
preconditioner investigated for this work was the inverse diagonal block preconditioner: a 
diagonal block matrix where each block is the inverse of the corresponding diagonal block of 𝑨. 
Examining Eq. 3.5.1, in the case of the ITMM global problem, this preconditioner is the inverse 
of 𝑱𝜙 for the scalar flux equations and the identity matrix 𝑰 for the angular flux equations. 
Additional costs associated with computing and storing the inverse of 𝑱𝜙 are considerable but 
provide a simple improvement to the method. Less costly and/or more effective preconditioners 
may exist but have not been explored so far. 

3.5.2 Local Solution Methods 

Solving the global problem involves iterating on the sub-domains’ boundary angular fluxes. 
Solving the local problem involves computing these angular flux values along outgoing directions 
on each of the subdomain boundaries. Because the scalar flux is a useful value that aides the 
computational process, it is additionally computed locally as an intermediate variable during 
each global iteration. Considering Eq. (3.1.14), solving for an updated outward angular flux at a 
sub-domain’s boundaries comprises a set of matrix-vector multiplications involving a previous 
iterate of the cell-averaged scalar fluxes, distributed source, and incoming angular flux at the 
sub-domain’s boundaries. Programming techniques that seek to optimize these necessary 
multiplication operations have been evaluated.  

In contrast computing a new iterate of the scalar flux per Eq. (3.1.12) requires the solution of a 
system of equations for which many methods are available. Consequently, this section is 
dedicated primarily to the discussion of computing new iterates of the scalar flux. Specifically, 
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each local system of scalar flux equations may be solved with direct inversion of �𝑰 − 𝑱𝜙�, with 
factorization of �𝑰 − 𝑱𝜙�, or with stationary or non-stationary iterative methods. 

Direct inversion of �𝑰 − 𝑱𝜙�, and repeated reuse of the inverse operator in all global iterations, 
is the most straightforward approach to solving Eq. (3.1.12). It shifts a large fraction of 
computational burden from work performed per global iteration to work performed during 
ITMM operator construction. Recall that the �𝑰 − 𝑱𝜙� is an 𝑁×𝑁 matrix, where 𝑁 is the number 
of computational cells. The act of inverting this matrix requires computational effort of order 𝑁3. 
To further reduce the work per iteration, after inversion the product �𝑰 − 𝑱𝜙�

−1𝑲𝜙 is computed 
and stored in 𝑲𝜙. Because the dimensions of 𝑲𝜙 depend on 𝑁 and 𝑁𝑡, the number of angles, 
the matrix multiplications are performed at a cost that grows like 𝑁8 3⁄  and  like 𝑁𝑡. About an 
additional 𝑁2 multiplications and additions are performed per global iteration to compute the 
first RHS term of Eq. (3.1.12). Similarly computing the second RHS term has costs that grow like 
𝑁5 3⁄  and 𝑁𝑡 operations. Due to the size of the vectors and the dense nature of the matrices, the 
work per iteration cannot be reduced. However, the prohibitively large costs associated with 
computing �𝑰 − 𝑱𝜙�

−1
 and �𝑰 − 𝑱𝜙�

−1𝑲𝜙 make this method a poor choice for solving for the 
scalar flux within each subdomain per global iteration. 

Alternatively the �𝑰 − 𝑱𝜙� matrix can be factorized at a considerable reduction in ITMM 
operator construction time compared to direct inversion. Decomposing a matrix 𝑨 into lower 𝑳 
and upper 𝑼 components (𝑨 ≡ 𝑳𝑼) can be done via Gaussian elimination at approximately one-
third the cost to invert it. Cholesky (𝑳𝑳𝑇) factorization can be applied with half the amount of 
work as 𝑳𝑼 factorization if the matrix is symmetric—or is made symmetric as discussed in [19]—
and positive definite. Although the cost of factorizing �𝑰 − 𝑱𝜙� grows rapidly with 𝑁, sub-
domain sizes are typically kept small due to limitations on available memory, and this method 
avoids the more costly �𝑰 − 𝑱𝜙�

−1𝑲𝜙 multiplication. The work to solve the factorized system is 
similar to that of the inverted matrix system. In Eq. (3.1.12) a RHS source term can be computed 
from the distributed source and incoming boundary angular fluxes (known after 
communication), leaving �𝑰 − 𝑱𝜙� operating on the solution vector on the LHS of the relation. 

Stationary iterative methods are also applicable to the solution of the local scalar flux. Again 
�𝑰 − 𝑱𝜙� is a LHS coefficient matrix and a RHS source vector is computed from known quantities. 
The Jacobi, Gauss-Seidel, and SOR iterative methods [21] and [32] can be used to solve the 
linear system. Without an analytic formula to determine the optimum SOR weight the method 
relies on relaxation weights chosen empirically. Because each sub-domain is different, one 
should not expect the optimal relaxation weight to be identical for all sub-domains. However, as 
currently implemented, all sub-domains are given the same SOR weight for local solution. 

Recall that �𝑰 − 𝑱𝜙� can be made symmetric easily using readily available factors: cell volume, 
𝜎𝑠, 𝜆 (AHOT-N order), and 𝑙 (anisotropic scattering order). Moreover assume that �𝑰 − 𝑱𝜙� is 
positive definite. These two characteristics imply that the conjugate gradient (CG) method can 
be used to solve Eq. (3.1.12). The CG method can be derived from the Lanczos method for 
symmetric matrices. Like the Arnoldi method, the Lanczos method builds an orthogonal basis for 
the Krylov subspace of a matrix 𝑨. Whereas the Arnoldi method requires all previous columns of 
the basis 𝑽, the Lanczos method builds the basis with a three-term recurrence. Complete 
derivations of the Lanczos and CG methods are provided in Reference [21]. 
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For a generic 𝑨𝒙 = 𝒃 system the CG method is outlined in Algorithm 3.5.3. The method is posed 
as an iterative procedure, although the system is solved exactly in 𝑛 steps, where 𝑛 is the length 
of 𝒙, similar to GMRES. The Krylov subspace in the algorithm is built by the vectors 𝒑. The 𝒑-
vectors are called search directions. The algorithm begins by initializing the solution, residual, 
and current search direction (lines 1–3). A scalar search parameter 𝛼 is computed at line 5 that 
ensures orthogonality among residual vectors. Using this parameter and the current search 
direction, 𝒙 and 𝒓 are updated (lines 6–7). A second scalar parameter 𝛽, related to the three-
term recurrence of the 𝒑-vectors, is computed and subsequently used to compute the new 
search direction (lines 8–9). 

 

 
 
The iterative convergence speed of CG method is improved via the application of a 
preconditioner. In Algorithm 3.5.3 a preconditioner is employed at lines 3 and 9, multiplying 
with the residual vector. For this project only preconditioners based on the stationary iterative 
methods were investigated because they increase the storage requirement only by a relatively 
small amount—a single vector of equal length to each sub-domain’s scalar flux vector—and 
because they pose a relatively low cost to compute during ITMM operator construction and to 
apply in each CG iteration. Because �𝑰 − 𝑱𝜙� is made symmetric, it can be decomposed into 
 

𝑰 − 𝑱𝜙 = 𝑫 + 𝑳 + 𝑳𝑇 . (3.5.6) 

 
Three preconditioners 𝑴 based on this decomposition are the Jacobi (𝑗𝑎𝑐), symmetric Gauss-
Seidel (𝑠𝑔𝑠), and symmetric SOR (𝑠𝑜𝑟) preconditioners: 
 

𝑴𝑗𝑗𝑗 = 𝑫,                                                                       

𝑴𝑠𝑠𝑠 = (𝑫 + 𝑳)𝑫−1(𝑫+ 𝑳)𝑇 ,𝑎𝑎𝑎                         

𝑴𝑠𝑠𝑠 =
1

2 −𝜔
�

1
𝜔
𝑫 + 𝑳� �

1
𝜔
𝑫�

−1
�

1
𝜔
𝑫 + 𝑳�

𝑇
. 

(3.5.7) 

 
An expression to compute an optimal SOR weight factor ω per sub-domain has not been 
formulated to date. 

 Algorithm 3.5.3 Conjugate Gradient Method. 

1. 𝒙(0) ≡ 𝒙0 = initial guess 
2. 𝒓(0) = 𝒃 − 𝑨𝒙0 
3. 𝒑0 = 𝒓(0) 
4. for 𝑙 = 0, 1, … do 
5. 𝛼𝑙 = 〈𝒓(𝑙),𝒓(𝑙)〉 〈𝑨𝒑𝑙 ,𝒑𝑙〉⁄  
6. 𝒙(𝑙+1) = 𝒙(𝑙) + 𝛼𝑙𝒑𝑙 
7. 𝒓(𝑙+1) = 𝒓(𝑙) + 𝛼𝑙𝑨𝒑𝑙 
8. 𝛽𝑙 = 〈𝒓(𝑙+1),𝒓(𝑙+1)〉 〈𝒓(𝑙),𝒓(𝑙)〉⁄  
9. 𝒑𝑙+1 = 𝒓(𝑙+1) + 𝛽𝑙𝒑𝑙 
10. end for 



 83 

The number of operations to solve for the local scalar flux solution per local iteration were 
comparable to the cost to solve the pre-factorized system of equations, growing like 𝑁2. 
Because the �𝑰 − 𝑱𝜙� matrix is generally full, operations cannot be spared as they may be if the 
matrix was sparse. As a result the direct method with stored factorization of �𝑰 − 𝑱𝜙� is 
competitive in the measure of execution time per global iteration. 

For all iterative methods described, computing the local scalar flux to within the convergence 
criterion may not be necessary. In fact computing locally converged scalar flux with poor 
estimates of the correct local boundary conditions, especially for early global iterations, can be 
an expensive waste of computer resources. Fortunately, the number of local iterations per 
global iteration is easily controlled. However, fixing the number of local iterations has been 
found to increase the total number of global iterations in many cases. This is a consequence of 
using poorer approximations of the scalar flux when computing new iterates of the outgoing 
angular flux. The direct solution methods produce the exact solution scalar flux according to the 
current global iterate of the incoming angular flux boundary conditions, thus providing a floor 
for the number of global iterations. Ultimately the goal of fixing the number of local iterations is 
to minimize the cumulative number of local iterations consumed over all global iterations. 

Lastly local source iterations can be performed per group by sweeping across each sub-domain 
in all directions in the quadrature set using the group distributed source and incoming angular 
flux at the sub-domain boundaries from the previous global iteration. This method has been 
applied by Yavuz and Larsen [7] and Warsa, et al. [12]. Like other iterative methods, the number 
of source iterations performed per global iteration can be limited. This method does not require 
the ITMM operators, resorting to mesh sweeps whose evasion was a motivating factor for this 
project. Therefore, this local solution method is noted for completeness but has not been 
employed in test cases. 

3.5.3 Remarks 

Research on the PSD approach involved investigation of both local and global solutions. First, 
within the PBJ global framework, the different local methods were tested on a series of 
problems to measure the computational costs—execution time and memory. Numerical testing 
summarized in this report established the fact that solving for the local scalar flux was generally 
performed most efficiently via the stored factorization technique. When the sub-domains are 
small in terms of number of cells, the cost to factorize �𝑰 − 𝑱𝜙� is small and is overcome by 
faster per iteration execution time. Second, the various global solution methods were 
considered. The goals of the varying methods were to reduce, relative to PBJ base cases, the 
ITMM operator construction time, the solution time per iteration, and the number of iterations. 

3.6 Task 6 – Extend operators to anisotropic scattering 

Thus far only isotropic scattering has been considered, although most real-world problems must 
account for some degree of anisotropy in the scattering source. The ITMM formalism has been 
extended to permit anisotropic scattering. Additional terms will be added to the RHS of Eq. 
(3.1.4) that correspond to angular moments of the flux accompanying a polynomial expansion of 
the scattering cross section. The flow of the differential mesh sweep will not change, but the 
ITMM operators and the 𝝓 solution vector will become larger to account for the additional 
unknowns. 
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In this section, the ITMM operators first will be extended to anisotropic scattering for the 
general 3-D case to demonstrate how the expansion affects the system of equations per cell and 
thus the construction of the ITMM operators. This expansion will be performed with the 
standard spherical harmonics approach. The equations defining the anisotropic scattering 
source for 1-D and 2-D geometries are simplifications of the 3-D case.  Subsequently, the new 
scattering source will be substituted into the per-cell system of equations such that a new 𝜞 
matrix can be formed and utilized in the differential mesh sweep. Then parallel performance 
results for test cases with anisotropic scattering will be presented. 

3.6.1 The General Three-Dimensional Case 

To begin the derivation of the 3-D within-group equations with anisotropic scattering, first 
reconsider the expansion, 
 

𝑞𝑠�𝛺�� = �
(2𝑙 + 1)

4𝜋

∞

𝑙=0

𝜎𝑠𝑠 � 𝑑𝛺�′
4𝜋

𝑃𝑙�Ω�′ ∙ Ω��𝜓�Ω�′�. (3.6.1) 

 
The temporal variable is neglected for the steady-state case and the spatial and energy variables 
are suppressed for brevity. The 𝑃𝑙�Ω�′ ∙ Ω�� function can be rewritten in terms use of the polar 
directional cosine 𝜇 and the azimuthal angle 𝜔, [25] 
 

𝑃𝑙�Ω�′ ∙ Ω�� = 𝑃𝑙(𝜇)𝑃𝑙(𝜇′) + 2 �
(𝑙 − 𝑚)!
(𝑙 +𝑚)!

𝑙

𝑚=1

𝑃𝑙𝑚(𝜇)𝑃𝑙𝑚(𝜇′) 𝑐𝑐𝑐[𝑚(𝜔 − 𝜔′)]. (3.6.2) 

 
𝑃𝑙𝑖(𝜇) is known as the associated Legendre function; expressions for the first several (integer) 
values of 𝑙 and 𝑚 are readily available, and recursive relationships are available for higher 
orders. The cosine term in Eq. (3.6.2) is easily modified using the trigonometric identity, 
 

𝑐𝑐𝑐(𝑚𝑚 −𝑚𝜔′) = 𝑐𝑐𝑐(𝑚𝑚) 𝑐𝑐𝑐(𝑚𝜔′) + 𝑠𝑠𝑠(𝑚𝑚) 𝑠𝑠𝑠(𝑚𝜔′). (3.6.3) 

 
When Eqs. (3.6.2) and (3.6.3) are substituted into Eq. (3.6.1) and the angular integral is 
decomposed into a double integral form, the scattering source becomes, [25] 
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(3.6.4) 
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Next, the equivalence between Legendre polynomials and associated Legendre functions for 
𝑚 = 0—𝑃𝑙 = 𝑃𝑙0—is applied. The leading factors of the summations are split into two square 
root factors and moved next to the Legendre functions: 
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(3.6.5) 

 
The constants 𝐶𝑙𝑖 are defined as 
 

𝐶𝑙𝑙 ≡
(2𝑙 + 1)(𝑙 − 𝑚)!

4𝜋(𝑙 + 𝑚)!
. (3.6.6) 

 
A useful approach is to define even and odd angular moments from even and odd spherical 
harmonics. Observing the terms in Eq. (3.6.5) and using Eq. (3.6.6), even (𝑒) and odd (𝑜) 
spherical harmonics are, respectively, [25] 
 

𝑌𝑙𝑙𝑒 �𝛺�� = 𝑌𝑙𝑙𝑒 (𝜇,𝜔) = �𝐶𝑙𝑙𝑃𝑙𝑚(𝜇) 𝑐𝑐𝑐(𝑚𝑚) (3.6.7.a) 

 
and 
 

𝑌𝑙𝑙𝑜 �𝛺�� = 𝑌𝑙𝑙𝑜 (𝜇,𝜔) = �𝐶𝑙𝑙𝑃𝑙𝑚(𝜇) 𝑠𝑠𝑠(𝑚𝑚). (3.6.7.b) 

 
Even angular moments of the flux are defined with Eq. (3.6.7.a), 
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and odd angular moments are defined with Eq. (3.6.7.b), 
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0
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Substituting the definitions given by Eqs. (3.6.7) and (3.6.8) into Eq. (3.6.5) finally yields a more 
compact form for the anisotropic scattering source: 
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With a slight rearrangement and expanding the m summation to include 0, the source is written 
in the more compact form, which will be employed in formulating the ITMM operators, 
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Note, the infinite series in l is typically truncated to some small, finite value L. The anisotropic 
scattering source expressed by Eq. (3.6.10) applies to 3-D geometries. The anisotropic scattering 
source of 2-D geometries can be expressed, due to symmetry, with only the even angular 
moments of the flux. The term is simplified even further for 1-D geometries, where only an 
expansion in Legendre polynomials is necessary. 

3.6.2 Anisotropic Scattering in the ITMM 

With Eq. (3.6.10), the system of equations to solve per cell can be reposed as:  
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𝑌00𝑒 𝑌10𝑒 2𝑌11𝑒 2𝑌11𝑜 ⋯ 2𝑌𝐿𝐿𝑜 |𝜉𝑛| ∆𝑧𝑘⁄ |𝜂𝑛| ∆𝑦𝑗⁄ |𝜇𝑛| ∆𝑥𝑖⁄
0 0 0 0 ⋯ 0 0.5 0 0
0 0 0 0 ⋯ 0 0 0.5 0
0 0 0 0 ⋯ 0 0 0 0.5

�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝑠𝑠𝜑0

0 + 𝑞00𝑒

𝜎𝑠1𝜑10 + 𝑞10𝑒

𝜎𝑠1𝜑11 + 𝑞11𝑒

𝜎𝑠1𝜗11 + 𝑞11𝑜
⋮

𝜎𝑠𝑠𝜗𝐿𝐿 + 𝑞𝐿𝐿𝑜
𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖
𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘
𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

(3.6.11) 

 
The fixed source is brought into the anisotropic summations with even/odd definitions similar to 
those presented for the flux.  For many problems, distributed sources are frequently assumed 
isotropic—that is only the 𝑞00𝑟  moment is nonzero. However, for multigroup problems, 
anisotropic downscattering sources will be accumulated at higher energy groups and used as 
fixed sources for lower energy groups, making such treatment convenient.  

The LHS coefficient matrix of Eq. (3.6.11) is always a four-by-four matrix, independent of the 
order of anisotropy 𝐿 considered. Therefore, it can be inverted analytically, and the expressions 
for the sixteen elements can be implemented directly, saving computational time associated 
with costly matrix inversion. The RHS coefficient matrix is dependent on the order of anisotropy; 
its size is 4 × [(𝐿 + 1)2 + 3]. Moreover, inverting the LHS matrix and left-multiplying the inverse 
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with the RHS matrix, results in the anisotropic scattering operator 𝜞, also of size 4 ×
[(𝐿 + 1)2 + 3]: 

 

⎣
⎢
⎢
⎢
⎡
𝜓𝑛𝑛𝑛𝑛

𝜓𝑛,𝑖,𝑗,𝑘𝑜𝑜𝑜
𝜓𝑛,𝑖,𝑗𝑜𝑜𝑜,𝑘
𝜓𝑛,𝑖𝑜𝑜𝑜,𝑗,𝑘⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 𝛾

𝑎00𝑒 ⋯ 𝛾𝑎𝑎𝑎𝑎 𝛾𝑎𝑎𝑎 𝛾𝑎𝑎𝑎 𝛾𝑎𝑎𝑎

𝛾𝑥𝑥00𝑒 ⋯ 𝛾𝑥𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥

𝛾𝑥𝑥00𝑒 ⋯ 𝛾𝑥𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑥

𝛾𝑦𝑦00𝑒 ⋯ 𝛾𝑦𝑦𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑦⎦
⎥
⎥
⎥
⎤

𝑛𝑛𝑛𝑛
⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝑠𝑠𝜑0

0 + 𝑞00𝑒
⋮

𝜎𝑠𝑠𝜗𝐿𝐿 + 𝑞𝐿𝐿𝑜
𝜓𝑛,𝑖,𝑗,𝑘𝑖𝑖
𝜓𝑛,𝑖,𝑗𝑖𝑖,𝑘
𝜓𝑛,𝑖𝑖𝑖,𝑗,𝑘 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (3.6.12) 

 
The operator equations that define the ITMM operators in the differential mesh sweep and the 
earlier description of that sweep do not change with the inclusion of anisotropic scattering. 
Instead, the differential mesh sweep is performed in the same way as the isotropic case, except 
that coupling involves (𝐿 + 1)2 angular moments 𝜙𝑙𝑖 (decomposed into 𝜑𝑙𝑖𝑟  and 𝜗𝑙𝑖𝑜 ) instead 
of just the scalar flux 𝜙, 
 

𝜕𝜙𝑖,𝑗,𝑘,𝑙,𝑚
𝜐

𝜕𝜙𝑖′,𝑗′,𝑘′,𝑙′,𝑚′
𝑝 = 𝑎(𝑖,𝑗,𝑘,𝑙,𝑚)�𝑖′,𝑗′,𝑘′,𝑙′,𝑚′�𝑐𝑖′,𝑗′,𝑘′,𝑙′ ≡ 𝑗𝜙(𝑖,𝑗,𝑘,𝑙,𝑚)�𝑖′,𝑗′,𝑘′,𝑙′,𝑚′�. (3.6.13) 

 
The scattering ratio 𝑐𝑛′,𝑛′,𝑛′,𝑙′ has a dependence on the anisotropic order because scattering 
cross sections are defined for the range of moments l’ in 0 to 𝐿. In the presence of anisotropic 
scattering, 𝑱𝜙 is a 𝐼𝐽𝐾(𝐿 + 1)2 × 𝐼𝐽𝐾(𝐿 + 1)2 square matrix.  

The self-coupling expression is no longer a scalar. It is represented by the (𝐿 + 1)2-vector, 

 
𝜕𝜓𝑛,𝑖,𝑗,𝑘

𝜕𝜙𝑖′,𝑗′,𝑘′,𝑙′,𝑚′
𝑝 = 𝑐𝑖𝑖𝑖𝑖𝛾𝑛𝑛𝑛𝑛𝑎𝑎𝑎 , (3.6.14) 

 
Even and odd moments again have been combined for brevity, including in 𝛾 elements. 

The summation over the angular quadrature must be modified per Eqs. (3.6.8.a) and (3.6.8.b). 
Modification will result in derivatives of even and odd angular moments of the flux instead of 
the scalar flux only. The angular quadrature does not change in the presence of the anisotropic 
treatment, so elements of 𝑱𝜙 can be computed in a straightforward way for the even order 
components 
 

𝑗𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝑒 = �𝑤𝑛

𝑁𝑡

𝑛=1

𝑌𝑙𝑙𝑒 (𝜇𝑛,𝜔𝑛)
𝜕𝜓𝑛,𝑖,𝑗,𝑘

𝜕𝜑𝑖′,𝑗′,𝑘′,𝑙′,𝑚′
𝑝  (3.6.15.a) 

 
and the odd moment components 
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𝑗𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝑜 = �𝑤𝑛

𝑁𝑡

𝑛=1

𝑌𝑙𝑙𝑜 (𝜇𝑛,𝜔𝑛)
𝜕𝜓𝑛,𝑖,𝑗,𝑘

𝜕𝜗𝑖′,𝑗′,𝑘′,𝑙′,𝑚′
𝑝  (3.6.15.b) 

  
The order of the moments per cell is consistent with the order of terms in the system of 
equations, Eq. (3.6.11). 

Additional details on the construction of the ITMM operators in the presence of anisotropic 
scattering are provided in [19]. Ultimately these operators are used according to Eqs. (3.1.12) 
and (3.1.14) to solve for the angular moments of the flux and the outgoing angular flux at 
system boundaries, respectively. 

3.6.3 Parallel Performance with Anisotropic Scattering 

The anisotropic scattering formalism described above has been implemented in a special version 
of PIDOTS, using the PBJ global solution method. The DD spatial discretization is still used, 
meaning that the flux is expanded in a series of angular moments only (no higher spatial 
moments utilized). The results in the remainder of this section serve two purposes: 1) to 
demonstrate the proof of principle that the ITMM can be implemented with anisotropic 
scattering and 2) to determine if such implementation has a significant effect on the conclusions 
drawn from the results of isotropic scattering tests. Serial SI runs were performed for 
comparison and to ensure that the ITMM produces the correct converged solution; no 
mismatches outside the convergence criterion were observed between PBJ and SI. 

Strong and weak scaling studies with L = 0, 1, and 3 were performed on the JPF system up to P = 
1,024. The base model described in Sec. 3.4.2 has been used for all numerical experiments, 
featuring four different materials and four source strengths. However, to properly model a 
problem with anisotropic scattering, the model must be updated to account for all angular 
moments of the flux. First, the source strengths listed in Fig. 3.4.2 are assigned to the zero-th 
angular moment, i.e., the source is isotropic. Fixed sources of higher angular moments were not 
considered. Second, the scattering cross section input was augmented to account for higher 
scattering moments, 𝜎𝑠𝑙, being considered. Only a single set of cross sections were used for 
these experiments. Scattering cross section moments were restricted in two ways: 𝜎𝑠0 ≤ 𝜎𝑡 and 
∑ 𝜎𝑠𝑙𝐿
𝑙=1 ≤ 𝜎𝑠0. Table 3.6.I shows all materials’ cross sections used for these tests. Note that the 

total cross sections have not changed from the values employed in the isotropic scattering 
cases. Lastly, all cell dimensions were set to h = 0.1 cm in order to examine the method’s 
behavior with the more challenging, optically thin setting. 

 
Table 3.6.I Anisotropic scattering scaling studies’ cross section data. 

Material 
𝜎𝑡  (cm−1) 𝜎𝑠0 

(cm−1) 
𝜎𝑠1 

(cm−1) 
𝜎𝑠2 

(cm−1) 
𝜎𝑠3 

(cm−1) 
1 2.000 1.800 0.600 0.100 0.200 
2 1.000 0.900 0.300 0.050 0.100 
3 0.500 0.450 0.150 0.025 0.050 
4 1.500 1.350 0.450 0.075 0.150 
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3.6.3.1 Strong Scaling 

Strong scaling studies with anisotropic scattering were performed up to P = 1,024. An 8×8×16 
base model was formed by taking the cubic base model of Fig. 3.4.2 and doubling/stretching it in 
the 𝑧-direction. Additional processes were added to the topology one dimension at a time in the 
𝑧→𝑦→𝑥 order used previously. For L = 0 and 1 cases, the S8 angular quadrature set was 
selected. To conserve memory, the L = 3 case was provided only an S4 quadrature. 

The iteration counts for all three values of L are shown in Fig. 3.6.1. The sloping curves 
correspond to the PBJ results, and the flat curves correspond to serial SI results. Note the SI 
iteration counts are exactly the same, 17, for the L = 1 and 3 cases and 18 for the L = 0, isotropic 
case. Likewise, the order of anisotropy has little effect on the iteration count curves of the PBJ 
method. Because the problem is optically thin, all PBJ iteration curves climb steadily as sub-
domains remain tightly coupled. 

 

 

 
 
The execution times for the L = 0 case are given in Fig. 3.6.2. Total (Tot) execution time is the 
sum of the iterative PBJ solution (Sol) time and the ITMM operator construction (Con) time. The 
anisotropic scattering has little influence on how the ITMM with PBJ behaves in strong scaling. 
Namely, for small P, operator construction dominates the execution, and when P is large, this 
time decreases and the execution time is almost entirely spent in the iterative solution phase. 
Moreover, the optimal sub-domain size occurs at 16 cells per sub-domain (P = 64). The test 
problem counts as a small, leaky system, and serial SI completes execution in a very short time. 

Fig. 3.6.1 JPF Anisotropic scattering, strong scaling, Iterations vs. P, h=0.1 cm, varying L. 
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The execution times for the L = 1 case, shown in Fig. 3.6.3, reveal a stronger shift upward for SI 
than PBJ. This is not surprising, because the computation of the higher order scattering source is 
required every iteration. This penalty has a smaller impact on the ITMM, which performs only a 
single mesh sweep and subsequently needs only fast matrix-vector operations per global 
iteration. When the PBJ method’s execution time reaches a minimum at P = 128, it is 
approximately 7.5 times faster than the serial SI method. 

Lastly, the execution times for the L = 3 case are given in Fig. 3.6.4. The shift upward by 
increasing the order of anisotropy from L = 1 is much smaller than the transition from L = 0 to L = 
1. The time consumed per iteration has increased by a factor only slightly greater than one. 
Instead, the much larger construction time of the ITMM operators unequivocally indicates the 
weakness of the ITMM with anisotropic scattering for small P. However, the PBJ execution time 
drops quickly and reaches a minimum at P = 128 and is nearly a full decade faster than serial SI. 

 

 

 
 

These strong scaling results are mostly consistent with the isotropic scattering results reported 
above. As the order of anisotropy is increased, the execution time per iteration increases 
slightly. However, the increase in construction time is much larger, which is expected due to the 
increase in operators’ sizes. The results seem to show that sub-domains of either 8 or 16 cells 
provide the optimal blend of shortest construction time and fewest iteration count. 

 

Fig. 3.6.2 JPF Anisotropic scattering, strong scaling, Execution Time vs. P, h=0.1 cm, L=0. 
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Fig. 3.6.3 JPF Anisotropic scattering, strong scaling, Execution Time vs. P, h=0.1 cm, L=1. 

Fig. 3.6.4 JPF Anisotropic scattering, strong scaling, Execution Time vs. P, h=0.1 cm, L=3. 
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3.6.3.2 Weak Scaling 

The weak scaling studies were performed up to P = 1,024 using the 8×8×8 base model of Fig. 
3.4.2. Additional processes were added to the topology one dimension at a time in the 𝑧→𝑦→𝑥 
order and the base model domain was stretched in the affected direction. The S8 quadrature set 
was used for the L = 0 and 1 cases, and the S4 quadrature set was used for the L = 3 case. Again, 
all cell dimensions were set to h = 0.1 cm. No comparisons with SI were made for these cases. 
Results are meant to purely illustrate the impact anisotropic scattering has on the ITMM with 
PBJ. 

The iteration counts for the three values of L are shown in Fig. 3.6.5. The trend from strong 
scaling results seems to persist here too: increasing order of anisotropy has minimal effect on 
the PBJ iteration counts. In fact, the L = 1 and L = 3 curves nearly exactly match and consume 
fewer iterations at each value of P than the isotropic scattering case. All curves steadily rise with 
increasing P, because the cells are optically thin, and the sub-domains are not sufficiently 
decoupled. 

 

 

 
 
The execution times for the L = 0 case are presented in Fig. 3.6.6. This plot is similar to the PBJ 
weak scaling figures with isotropic scattering for the optically thin cases. As the iteration counts 
increase with larger problem size, the iterative solution consumes more time. 

Execution times are all shifted upward in Fig. 3.6.7 for the L = 1 case. Although the iterations 
decreased in Fig. 3.6.5, the operators and vectors are larger to account for the first angular 
moment of the flux. The construction time has increased by about a factor of three from the 

Fig. 3.6.5 JPF Anisotropic scattering, weak scaling, Iterations vs. P, h=0.1 cm, varying L. 
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isotropic case. This results in the iterative solution time remaining the dominant consumer of 
execution time. 

 

 
 

 

 

Fig. 3.6.6 JPF Anisotropic scattering, weak scaling, Execution Time vs. P, h=0.1 cm, L=0. 

Fig. 3.6.7 JPF Anisotropic scattering, weak scaling, Execution Time vs. P, h=0.1 cm, L=1. 
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Increasing the anisotropy order to L = 3 drastically increases the construction time. In Fig. 3.6.8, 
it is evident that the construction time dominates total execution up to ~256 processes. 
Nevertheless, as P continues to increase, the iterative solution time will eventually dominate, as 
evident for P = 1,024, because of the growing number of iterations. 
 

 

 

3.7 Task 7 – Investigate pre-conditioners 

The above results have demonstrated the importance of minimizing the ITMM operators’ 
construction time and the time per iteration. This is done most effectively by simply reducing 
the size of the operators and assigning each PE multiple sub-domains, i.e., the PGS approach. 
However, sub-domain sizes are bounded from below by a single-cell size, and increasing the 
number of sub-domains results in increasing number of global iterations, and consequently 
longer execution times. 

The next challenge is to reduce the number of iterations till convergence. That is, 
assuming the operator construction time and time per iteration has been effectively minimized, 
the only way to improve the performance and scalability of the ITMM is to improve the 
convergence rate. Evident in the above results, the problems with large optical thickness tend to 
flatten in number of iterations and execution time grows rather slowly. Sub-domain decoupling 
does not manifest itself in the optically thin regime and execution time grows much more 
rapidly, making the method both poorly scalable and uncompetitive with KBA-based 
parallelization. 

In this task a spatial multigrid method (SMG) is presented as an attempt to accelerate PBJ 
iterations. PBJ was selected instead of PGS or PGMRES (as a preconditioner) because it is the 

Fig. 3.6.8 JPF Anisotropic scattering, weak scaling, Execution Time vs. P, h=0.1 cm, L=3. 
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simplest method to consider and was assumed to be less likely to introduce programming 
challenges (e.g., indexing sub-domains of different grids) to SMG development. Moreover, it was 
presumed that if an effective and robust SMG method was not possible to develop for PBJ, then 
one would not be possible to develop for the other global solution methods. Correctness of this 
presumption has not been verified, and applying SMG to the other methods remains a potential 
topic for future research. Test results indicate the strengths and weaknesses of SMG relative to 
PBJ, and conclusions are drawn, albeit absent formal spectral analysis. Such analysis, which is a 
key goal of future work, will clearly indicate how the optical thickness and scattering ratio affect 
convergence rates and hopefully indicate means to improve the SMG method beyond its current 
status. 

3.7.1 Parallel Spatial Multigrid with the ITMM 

The ITMM with the PBJ global solution has been modified to incorporate a spatial multigrid V-
cycle scheme. Within a sub-domain the ITMM operators couple all cells to one another and to 
the sub-domain’s boundaries. PBJ iterations carry information about particle spatial distribution 
across the global domain, coupling cells in different sub-domains. An SMG method is intended 
to accelerate this process by combining sub-domains, thus permitting an explicit expression for 
the coupling among cells in different sub-domains on the finest grid, albeit with the additional 
approximation of larger spatial cells. 

The starting point for this description is a homogeneous domain with vacuum boundary 
conditions. Moreover, uniform grid spacing is assumed, although variable mesh dimensions do 
not force a deviation from the remainder of this discussion. The scheme has been developed 
with weak scaling in mind; comments regarding the SMG method applied to strong scaling are 
reserved for the conclusions at the end of the chapter. A homogeneous domain is selected to 
avoid the problem of mixing cross sections of different materials assigned to multiple cells in the 
fine mesh that comprise a single cell in the coarse mesh, a process known as homogenization. 
When multiple materials are homogenized, nuclear data must be combined in a manner that 
best preserves the response to be expected from the heterogeneous system. Typically, 
weighting cross sections by cells’ scalar flux and volume (flux-volume weighting) is done to 
capture the effects each material has on the distribution. Unfortunately in the V-cycle SMG 
scheme the flux is different each time the grid is re-evaluated, and the homogenization would 
have to be repeated. Moreover, volume weighting alone was not considered because it is not 
believed to be accurate enough. Rather, the scheme is as yet unprepared to model 
heterogeneous domains unless the varying materials are never combined together into a single 
cell during the coarsening process. That is, the coarsest grid can have multiple materials, 
assuming that the preceding coarsening steps were always performed over homogeneous 
regions of the domain. Reflective boundary conditions create an additional iterative burden in 
the PBJ-SMG and are avoided to focus on the comparative convergence between PBJ and PBJ 
with SMG.  

The global problem is decomposed into P sub-domains on P PEs. Coarsening each sub-domain 
individually will not provide significant benefit to convergence. A simple example has been 
designed to illustrate this point. A homogeneous problem with the scattering ratio c = 0.99 and 
on fixed P = 64 PEs has been run with cubic cell dimension varied as h = 0.1 cm, 1.0 cm, and 10.0 
cm. The base case of 8×8×8 cells per sub-domain was coarsened to 4×4×4, 2×2×2, and 1×1×1 
cells per sub-domain; each time the sub-domain is coarsened, cell volume increases by a factor 
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of eight. Table 3.7.I shows the change in the number of PBJ iterations. For optically thin domains 
coarsening the sub-domain has essentially no effect on convergence. Coarsening a sub-domain 
to a single cell does lead to fewer iterations in the optically thick case, h = 10.0 cm, but the gain 
is not significant enough to outweigh the expected benefits of coarsening over sub-domain 
boundaries immediately. 

 
Table 3.7.I Number of PBJ iterations during coarsening for homogeneous, c = 0.99 test problem. 

Case 
h (cm) 

0.1 1.0 10.0 
8×8×8 71 124 90 
4×4×4 70 122 84 
2×2×2 70 119 91 
1×1×1 69 108 73 

 
With Table 3.7.I in mind, it is assumed that real improvement in convergence will come as a 
result of coarsening across sub-domain boundaries. This is not surprising because it explicitly 
couples regions of the global domain that previously were not directly coupled but shared 
information via iteration on the interfacial angular fluxes. Therefore, the SMG scheme’s 
coarsening parameter, denoted 𝜅, refers to the number of sub-domains across which to coarsen 
in each direction.  

In the PBJ framework, the number of sub-domains is equivalent to the number of processes, and 
more specifically, the sub-domain mesh coincides with the virtual mesh process topology, 
P𝑥×P𝑦×P𝑧. Starting at the finest grid, P𝑥, P𝑦, and P𝑧 are successively coarsened by the coarsening 
parameter 𝜅. Using P𝑥 as an example, at the finest grid, 𝜅 𝑥-direction sub-domains (over 𝜅 
processes) are combined into a single sub-domain, leaving P𝑥 /𝜅 → P𝑥 sub-domains remaining in 
the coarser grid’s 𝑥-direction. Analogous treatment is applied to the 𝑦- and 𝑧-directions. 𝜅 will 
necessarily change as grids become coarser because fewer processes are left in each dimension 
over which to coarsen. Ultimately, the sub-domains (and processes) are reduced from a 
P𝑥×P𝑦×P𝑧 mesh to a 1×1×1 mesh. Different values for 𝜅 were tested for their impact on the SMG 
scheme before settling on a maximum value of 𝜅 = 8. That is, so long as P𝑥, P𝑦, or P𝑧 equals 8 or 
more, then 𝜅 = 8. As grids become coarser, the sizes of P𝑥, P𝑦, and P𝑧 decrease. The test 
problems employed in this task are specifically designed to always have the number of sub-
domains in each direction equal to a power of two. Thus, when either P𝑥, P𝑦, or P𝑧 is less than 8, 
𝜅 equals 4 or 2 or 1, depending on the value of P𝑥, P𝑦, or P𝑧.  

The SMG scheme was designed to keep the sub-domains at the same size (number of cells) at all 
grid refinement levels. This allows for greater predictability in the amount of memory needed at 
each grid and in the execution time of ITMM operator construction and matrix-vector 
operations at each grid. The cells in each sub-domain are also arranged in a Cartesian mesh, 
sized I×J×K. The values of I, J, and K relative to 𝜅 have implications on the coarsening at each 
grid. Using the x-direction as an example again, when I = 𝜅, the 𝜅 sub-domains in the 𝑥-direction 
are each coarsened to a single cell within a new sub-domain of I cells. If I > 𝜅, the 𝜅 sub-domains 
are each reduced to I/𝜅 cells. If I < 𝜅, multiple sub-domains must be coarsened together to form 
a single cell on the coarser grid. This lattermost case creates additional complications during 
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restriction and interpolation and was consequently avoided during formal testing of the SMG 
scheme. 

To help illustrate the preceding description, Fig. 3.7.1 shows a 2-D example of coarsening over a 
2×2 sub-domain mesh (solid lines), where each sub-domain has 2×2 cells (dashed lines). In the 
illustration, 𝜅 = 2. The fine grid on the left is coarsened and results in the coarse grid depicted on 
the right, which maintains the physical size of the fine grid, but does so with only a single sub-
domain. Depicted in Fig. 3.7.1, each sub-domain’s space on the fine grid has been coarsened and 
is modeled by a single cell on the coarse grid, and the coarse grid’s sub-domain is the same size, 
in terms of number of cells, as all four sub-domains on the fine grid. 

 

 

 
 
Figure 3.7.1 also shows the process topology numbering on the fine grid and the coarse grid. 
The important feature to notice is that the coarse grid uses the same processes as the fine grid. 
Alternatively, a new virtual process topology could have been formed for each grid modeled 
during the V-cycle. However, for this work, SMG was implemented by using a single topology 
and assigning successively coarser grids to PEs already participating at the fine grid level. 
Eventually, a single process has the coarsest (sub-)domain that it solves directly. 

Following standard multi-grid notation, the scalar flux solution vector for each grid a is stored in 
the array 𝝓𝑎ℎ, which has been indexed to account for all the grids. Likewise, 𝝍𝑜𝑜𝑡

𝑎ℎ  represents 
the angular flux solution vector for each grid. At the finest-level grid, 𝝓ℎ and 𝝍𝑜𝑜𝑡

ℎ  comprise the 
actual solution. At the coarsened grids, 𝝓𝑎ℎ and 𝝍𝑜𝑜𝑡

𝑎ℎ  comprise solutions of the recursively 
formed residual equations.  

During the flow of a single V-cycle, the residual must be restricted. The easiest method—and the 
one selected here—is to average the combined residual elements. If the total problem solution 
on a grid a is comprised of the vectors 𝝓𝑎ℎ and 𝝍𝑜𝑜𝑡

𝑎ℎ , then the residual is best expressed as 𝒓𝜙𝑎ℎ 
and 𝒓𝜓𝑎ℎ. The 𝒓𝜙𝑎ℎ and 𝒓𝜓𝑎ℎ vectors are computed after multiple PBJ iterations. The 𝒓𝜙𝑎ℎ vector is 

Fig. 3.7.1 2-D Illustration of PBJ-SMG coarsening with 4 processes and 4 cells per process. 



 98 

restricted by computing the average value from the elements that correspond to cells that are 
being coarsened together. For example, the bottom, left four cells in the fine grid of Fig. 3.7.1 
are coarsened together to form the single bottom, left cell of the coarse grid. Therefore, the 
residuals corresponding to those four cells are averaged together during restriction. Likewise, 
the 𝒓𝜓𝑎ℎ vector is restricted by computing the average value from the elements that correspond 
to faces (3-D) that are being coarsened together. The processes that will continue to the next 
coarser grid receive a message containing these average values from each of the processes of 
the current grid. The receiving process reorders the data for use as the source function of the 
system of equations representing the coarse grid.  

The SMG scheme is currently implemented to compute an approximation of the error of 𝝓𝑎ℎ 
only to correct the solution, not the 𝝍𝑜𝑜𝑡

𝑎ℎ  error. The 𝝍𝑛𝑛
𝑎ℎ vector is saved at the completion of 

the iterations of each grid. After the system is solved exactly at the coarsest grid X, 𝝓𝑋ℎ is 
corrected for the next finest grid a without performing a full computation of 𝝓𝑎ℎ according to 
the residual equation form of Eq. (3.1.12). Using the corrected 𝝓𝑎ℎ and the saved 𝝍𝑛𝑛

𝑎ℎ, a new 
𝝍𝑜𝑜𝑡
𝑎ℎ  is computed and the iterations continue. This process is performed for each grid until the 

finest grid is reached, whereby the actual solutions are being updated, and 𝝓ℎ can be checked 
for convergence. 

Considering that only 𝝓𝑎ℎ is corrected, the interpolation must only account for that vector. The 
easiest way to interpolate is to apply the correction from the coarse grid’s cells to the 
appropriate fine grid cells equally, without bias for the actual flux distribution. This approach has 
been found to be ineffective. Instead, after the elements of 𝒓𝜙𝑎ℎ  are averaged over cells 
coarsened together, the elements of 𝝓𝑎ℎ are also averaged. Then each element of 𝝓𝑎ℎ that 
contributes to the average value of the coarse cell is divided by the average and the ratio is 
stored. During interpolation, the coarse-cell correction value is multiplied by this ratio for each 
fine-cell comprising the coarse-cell, thus weighting the correction according to which finer cells 
have the highest flux and contribute most to the coarse cell’s flux value. This interpolation by 
weighted-average of 𝝓𝑎ℎ has been found to improve the SMG scheme significantly compared to 
no weighting or instead weighting by 𝒓𝜙𝑎ℎ. 

The SMG algorithm requires a new coefficient matrix for each grid refinement level in the V-
cycle. Per the description provided in this report for PBJ, the coefficient matrix is in fact a large, 
sparse, block matrix whose elements are the ITMM operators. Given its size and the complex 
nature of the restriction and interpolation operators above, the Galerkin condition was not 
deemed applicable as the method by which to compute the coarse grids’ coefficient matrices. 
Alternatively, this coefficient matrix is recomposed for each grid by performing a new 
differential mesh sweep over the coarsened system. Processes that advance to a coarser grid 
sweep over the coarsened system and construct the ITMM operators for the physically larger 
cells. The ITMM operators are indexed by grid. 

The overall goal of this SMG scheme is to transmit information about transport effects more 
quickly over the entire domain. The typical PBJ method transfers information each iteration, 
coupling highly separated sub-domains and cells via interfacial angular fluxes. However, this 
SMG scheme couples cells from different sub-domains together explicitly through one or more 
stages of grid coarsening. This has the potential of introducing harmful truncation errors that 
will not accelerate the convergence or, even worse, that make the entire system diverge. Yet, if 
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successful the method will allow for the direct computation of an approximation of the scalar 
flux error that can be used to improve the solution at lower wall-clock execution times. 

Two disadvantages of this SMG scheme should be noted. First, because only certain processes 
advance to coarser grids, most processes will suffer significant times of idleness, and all but the 
root process will suffer some time of zero workload. Furthermore, the processes assigned to 
multiple grids will necessarily have a greater memory burden. This drawback was accounted for 
when sizing problems for numerical experimentation by determining the maximum number of 
grids to which a single PE would be assigned and multiplying this number with an estimate of 
the sizes of the ITMM operators. 

3.7.2 SMG Numerical Tests and Results 

Numerical experiments have been performed using the V-cycle SMG scheme described in the 
previous section. All test problems have a homogeneous material map, a unit volumetric source 
in every cell, and a uniform mesh of cubic cells with varying edge-length h. Weak scaling tests 
were performed on the JPF system up to P = 4,096 with c = 0.9 and 0.99 and h = 0.1 cm, 1.0 cm, 
and 10.0 cm. The S8 quadrature set was used. Table 3.7.II presents the process topology of the 
weak scaling problems. The 𝑧→𝑦→𝑥 order was used for expanding the domain. Following the 
aforementioned description of the coarsening factor 𝜅, Table 3.7.II also lists the number of grids 
modeled. Note that when the number of processes in some dimension 𝑑, P𝑑, is 8 or more, 𝜅 = 8; 
when P𝑑 = 4, 𝜅 = 4; when P𝑑 = 2, 𝜅 = 2; and when P𝑑 = 1, 𝜅 = 1 (i.e., there is no further coarsening 
to be performed). As has been the case with previous testing, execution timing results are 
presented as an average from multiple runs that are assumed to exhibit typical system 
performance. 
 

Table 3.7.II PBJ-SMG testing process topology and number of V-cycle grids. 

P𝑥 P𝑦 P𝑧 Maximum 𝜅 
Number  of 

Grids 
1 1 1 1 1 
1 1 2 2 2 
1 2 2 2 2 
2 2 2 2 2 
2 2 4 4 2 
2 4 4 4 2 
4 4 4 4 2 
4 8 8 8 2 
8 8 8 8 2 
8 8 16 8 3 
8 16 16 8 3 

16 16 16 8 3 
 
Preliminary testing showed benefits of minimizing the work performed at the coarse grid. Most 
of the computational burden is spent at the fine grid with periodic V-cycle multigrid corrections 
performed to improve the scalar flux solution. The test results presented below are from 
executions that perform the following steps: 
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1) Three pre-correction PBJ iterations at the finest grid, 
2) One pre-correction PBJ iteration at intermediate coarse grids, 
3) Exact solution of the coarsest grid’s system of equations, 
4) One post-correction PBJ iteration at intermediate coarse grids, and 
5) Two post-correction PBJ iterations at the finest grid. 

Note that this essentially means one V-cycle is performed for every five fine-grid PBJ iterations. 
A single pre-correction coarse-grid iteration on intermediate coarse grids is constituted by 
solving the residual equation assuming 𝝍𝑛𝑛

𝑎ℎ = 0 because no information about this term is 
available until 𝝍𝑜𝑜𝑡

𝑎ℎ  is computed. However, little to no benefit was found by performing full 
iterations over these grids for these test problems. Furthermore, a single post-correction 
iteration on intermediate coarse grids is constituted by correcting 𝝓𝑎ℎ only. A coarser grid’s 
𝝓𝑎ℎ is interpolated and the result is added to the current grid’s solution. No further work is 
performed on that grid. The next finest grid continues the process by interpolating the solution 
and updating. These traits considered, the pre- and post-correction iterations form a scheme 
that successively restricts the solution vector from the finest grid to a coarse grid that has only 
one (sub-)domain and is solved directly for a correction to the fine-grid solution. This coarse-grid 
solution is interpolated at the intermediate grids until it is ultimately summed with the current 
iterate of the fine-grid scalar flux. Note from Table 3.7.II, that only the P = 1,024; 2,048; and 
4,096 executions have an intermediate coarse stage. 

Comparisons have been made with the PBJ method. The SMG solutions have been checked for 
correctness of the converged solution. The goal of these experiments is to determine under 
which circumstances the PBJ-SMG method successfully converges to the correct solution and 
does so at a reduced cost of wall-clock execution time. As will be seen shortly, the PBJ-SMG 
method will in some cases not converge to the correct solution, either stagnating in the 
reduction of error or completely diverging. These deficiencies in the algorithm must be 
addressed before wide-spread application of the method for this purpose, and they represent a 
topic for future research. 

The numbers of iterations for the c = 0.9 cases are presented in Figs. 3.7.2–3.7.4. The +-marked, 
solid, black lines represent the reference PBJ solutions (PBJ-Ref); the dashed, blue lines 
represent the number of V-cycles being consumed in PBJ-SMG executions (SMG-Vcyc); the 
dotted lines represent the total numbers of iterations performed on all grid levels of PBJ-SMG 
executions per the above description of the type/number of iterations at each grid level (SMG-
All); and the solid, blue lines represent the number of PBJ-SMG iterations that are performed at 
the finest grid (SMG-Fine). To be clear, the PBJ-SMG iterations do not represent equal amounts 
of work at different grid refinement levels or between pre- and post-correction steps. However, 
all these curves help to identify trends that describe the behavior of the iterative process, 
especially relative to changing c and h. Because iterations at the finest grid are regular PBJ 
iterations, the SMG-Fine curves are shown for comparison. If at any P the value of this curve is 
less than the reference PBJ iteration count, then SMG is successfully helping the PBJ method. 
Otherwise, the SMG method distracts the PBJ method’s convergence properties. 
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Fig. 3.7.2 JPF SMG weak scaling, Iterations vs. P, c=0.9, h=0.1 cm. 

Fig. 3.7.3 JPF SMG weak scaling, Iterations vs. P, c=0.9, h=1.0 cm. 
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The iteration count curves for the c = 0.9, h = 0.1 cm case are shown in Fig. 3.7.2. The reference 
solution follows the trend anticipated from the previous results. The SMG method follows a 
similar trend of steadily growing iteration count no matter how those iterations are counted: V-
cycles, all grids’ iterations, or fine-grid iterations. Note that as P increases, the number of fine-
grid iterations stays below the reference curve, suggesting that the SMG method is helping, 
albeit in a fairly small way. The iterations from all grids has a slight jump from P = 512 to 1,024 
when the number of grids increases from two to three; the same jump is observed in the h = 1.0 
and 10.0 cm experiments discussed below. At this point, the SMG transitions from a two-grid 
scheme to a three-grid scheme and each V-cycle performs pre- and post-correction iterations on 
the intermediate grid. These results are generally favorable, because the PBJ method is being 
aided by SMG. 

Increasing the cell dimension to h = 1.0 cm eliminates the effectiveness of the SMG scheme. The 
iteration count curves shown in Fig. 3.7.3 for the c = 0.9, h = 1.0 cm case reveal that the SMG 
scheme is consuming an equal number of fine-grid iterations as the PBJ reference. The 
additional iterations performed on the coarse grids will only add to the SMG execution time and 
invariably make the scheme more expensive than the reference PBJ case. The fortunate result of 
this experiment is that the SMG scheme follows a consistent trend with the PBJ reference in that 
the curves are all flat and are essentially insensitive to P, the domain size. 

When the optical thickness is increased again by making h = 10.0 cm, the SMG method again 
retains the feature of flat growth in number of iterations with increasing P. The number of 
iterations at the fine grid for SMG executions is a few iterations less than the reference 
executions. The increase in the number of grids and an increase in the number of V-cycles leads 
to a noticeable jump in the total number of iterations. 

Fig. 3.7.4 JPF SMG weak scaling, Iterations vs. P, c=0.9, h=10.0 cm. 
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Learning from the previous figures that the SMG iteration trends are consistent with the PBJ 
reference is a positive sign in the development of this acceleration scheme. However, the 
arguably more important measure is the execution time. The execution time per coarse-grid 
iteration is anticipated to be less than the execution time per iteration on the fine grid. This is 
because the specific implementation does not feature communication of 𝝍𝑜𝑜𝑡

𝑎ℎ  data during those 
iterations, saving time. However, when the number of SMG fine-grid iterations is approximately 
the same or greater than the reference number of PBJ iterations, one can be certain the total 
execution time will be greater due to the additional labor on coarse grids. Moreover, the 
execution time will increase due to the additional time spent constructing the coarse-grid ITMM 
operators. 

The execution time curves for the c = 0.9, h = 0.1 cm case are given in Fig. 3.7.5. The solid blue 
line is the total execution time of the SMG method. It is the sum of the iterative solution time 
(dashed line) and the total ITMM operators construction time summed over all grid refinement 
levels (dotted line). The construction time has two increases as the number of grids increases 
and a PE is responsible for constructing a new set of ITMM operators. Interestingly, the second 
jump is larger, potentially because the memory burden per PE is larger and data fits into cache 
less efficiently. Nevertheless, the construction time is a fairly small contributor to execution 
time. With the total number of SMG iterations from all grid levels approximately equal to the 
number of reference PBJ iterations, it is evident that the SMG method reduces the total 
execution time only slightly. However, the gain is insignificant and indicates that SMG does not 
accelerate the PBJ method with the same success that DSA does for SI. 

 

 
 

Fig. 3.7.5 JPF SMG weak scaling, Execution Time vs. P, c=0.9, h=0.1 cm. 
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In Fig. 3.7.6 the execution time plots for the c = 0.9, h = 1.0 cm case are given. Because the 
number of SMG fine-grid iterations is equal to the number of reference PBJ iterations in Fig. 
3.7.3, the result that SMG consumes more execution time is not surprising. A benefit of the 
small number of operations performed per iteration on the coarse grids is that they add a 
relatively small amount of execution time to the iterative solution. That is, the relative 
difference between the SMG-All and PBJ-Ref iteration counts in Fig. 3.7.3 for the highest values 
of P is greater than the difference for the respective total execution times in Fig. 3.7.6. 

 

 

 
The execution time plots for c = 0.9, h = 10.0 cm are given in Fig. 3.7.7. Whereas it was 
anticipated that the SMG method would consume more execution time for the c = 0.9, h = 1.0 
cm case given the iteration trends, this case uses fewer fine-grid iterations but more iterations 
over all grids. The question is whether the expectedly faster coarse-grid iterations would be 
small enough to result in a faster overall execution. They do not; the SMG method consumes 
slightly more wall-clock execution time.  

These results clearly indicate that while the number of SMG iterations over all grids can increase 
slightly from the reference PBJ number of iterations, it must be a small difference if any gain is 
to be attained in the execution time. Further, as Fig. 3.7.5 shows, this gain is very small. 
However, fortunately for these c = 0.9 cases, the SMG method converges to the same answer as 
PBJ and does so following essentially the same trends in iteration count curves and total 
execution time. The next challenge was to increase the scattering ratio and determine the 
impact on the SMG scheme relative to its already documented impact on the PBJ method.  

The iteration count curves for the c = 0.99, h = 0.1 cm case are shown in Fig. 3.7.8. Two 
important points must be highlighted from these results. The first point is the SMG method is 

Fig. 3.7.6 JPF SMG weak scaling, Execution Time vs. P, c=0.9, h=1.0 cm. 
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using a significantly smaller number of iterations, even over all grid refinement levels, than the 
PBJ reference calculations. Moreover, it is achieving this success by slightly bending the iteration 
curve, evident from the fact that the curves do not share a slope and the SMG method’s curves 
are flattening with increasing P. However, the second point is that the SMG method failed to 
converge for the P = 4,096 job. Observing the relative error from the output of this execution, 
the SMG iterations are diverging from the correct solution, but the cause of this failure has not 
been identified. 
 

 

 
 
The issue of diverging solutions worsens when the optical thickness is increased to h = 1.0 cm as 
shown in Fig. 3.7.9. Up to P = 512, the SMG method consumes fewer total iterations over all 
grids than the PBJ solution method, but the SMG curves are steeper than the PBJ curve. 
Unfortunately, the SMG method begins diverging once the number of stages increases to three. 
Similarly, the job that failed for the h = 0.1 cm case also had three stages. However, the fact that 
some jobs work for three stages and others do not is a likely indication that the SMG is 
fundamentally flawed for those problems, and the cause of the diverging iterations is not a 
coding error. 

Interestingly, the c = 0.99, h = 10.0 cm case converges at all P, shown by the iteration count 
curves in Fig. 3.7.10. This is a benefit because it allows for improvement by modification of the 
SMG method (e.g., 𝜅 and the number of pre- and post-correction iterations), whereas the two 
optically thinner cases have not been confirmed to converge at all. Yet it is clear that the SMG 
method is interrupting the typical convergence path of PBJ as more fine-grid iterations are 
necessary in the SMG scheme than PBJ. 

Fig. 3.7.7 JPF SMG weak scaling, Execution Time vs. P, c=0.9, h=10.0 cm. 
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Fig. 3.7.8 JPF SMG weak scaling, Iterations vs. P, c=0.99, h=0.1 cm. 

Fig. 3.7.9 JPF SMG weak scaling, Iterations vs. P, c=0.99, h=1.0 cm. 
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The execution time plots are given for the c = 0.99 cases in Figs. 3.7.11–3.7.13. Most 
impressively, the h = 0.1 cm case shown in Fig. 3.7.11 has an execution time at P = 2,048 that is 
over 50% faster than the PBJ solution. This is a better relative improvement over PBJ than was 
observed with red-black PGS. Moreover, it is a very favorable result because the SMG method is 
bending the total execution time curve to a flatter slope and achieving better scaling properties 
in the process. This is the most challenging system for the PBJ method because the sub-domains 
tend to stay tightly coupled even for problems with a large number of cells.  The h = 1.0 cm, Fig. 
3.7.12, exhibits a smaller gain in execution time up to P = 512 with the SMG method. Whether 
this case would continue to outperform PBJ if the problem correctly converged is of course 
unknown. Yet it is undeniable that for those problem sizes that do converge, the SMG method is 
benefiting the unaccelerated PBJ solution when the problem is optically thin. The h = 10.0 cm 
case, Fig. 3.7.13, consumes more wall-clock execution time with SMG than with straight PBJ but 
does converge at all values of P. Whether this case can be improved by modifying the SMG 
parameters requires further exploration outside the scope of this project. 

3.7.3 Remarks 

The PBJ method’s parallel performance may potentially be improved with a spatial multigrid 
scheme similar to the one described and analyzed in this section. Some modifications may 
improve upon the presented results. For example, more extensive testing is necessary to 
determine if the parallel performance for optically thick problems could be improved by 
reducing the coarsening factor 𝜅. The coarsening parameter utilized here may be too large, 
leading to cells that are also too large yielding poor approximations of the errors that are 
interpolated and used to correct the fine-grid solution. Moreover, further testing may reveal the 
cause of the divergent behavior observed for some of the c = 0.99, h = 0.1 cm and 1.0 cm cases. 

Fig. 3.7.10 JPF SMG weak scaling, Iterations vs. P, c=0.99, h=10.0 cm. 
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Fig. 3.7.11 JPF SMG weak scaling, Execution Time vs. P, c=0.99, h=0.1 cm. 

Figure 8.12 JPF SMG weak scaling, Execution Time vs. P, c=0.99, h=1.0 cm. 
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If testing does not significantly improve the method, other considerations must be made. First, 
the restriction and interpolation operations may be poorly conceived and could benefit from a 
new approach. Alternatively, composing coarse-grid operators simply from new differential 
mesh sweeps may be ill-conceived. However, no research has been performed into how the 
coarse grid operators would be otherwise composed. 

When the scattering ratio was high and the cells were optically thin, the SMG method did 
produce a significant improvement in the convergence rate and the overall execution time when 
the system properly converged. Moreover, the gains are mostly revealed when P is large, 
greater than 100. Such problems are ultimately the primary target of acceleration schemes 
developed for the ITMM, because these problems have the slowest convergence rate. 
Therefore, looking forward it must be determined why the method diverged for the c = 0.99, h = 
0.1 and 1.0 cm cases and whether problems with larger domains would suffer similar challenges. 

The SMG method must also be examined for strong scaling problems. It is currently unknown 
how the method will perform when the problem size is fixed. However, logistically the PBJ 
method is applicable to such studies, and it is anticipated that the method will be more 
successful at improving upon PBJ execution times for a large number of sub-domains as most of 
the results in this section also suggest. 

The SMG method is currently applicable to heterogeneous domains, but the heterogeneities 
must be isolated in a manner that does not introduce the problem of mixing cells with different 
materials. Common homogenization procedures employ flux-volume weighting. In the case of 
the ITMM, using flux-volume weighting to alter nuclear data would require a new differential 

Fig. 3.7.13 JPF SMG weak scaling, Execution Time vs. P, c=0.99, h=10.0 cm. 
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mesh sweep every V-cycle to properly update the operators. Volume-only weighting has not 
been tested as an alternative, but it could be considered. Nevertheless, improving the handling 
of heterogeneous domains is of lower priority than improving the method for more general 
problem parameters, namely lower values of c and large problem sizes in terms of number of 
cells and sub-domains. 

Lastly, the SMG method could be applicable to the PGS and PGMRES methods. It should act as 
an acceleration tool for the PGS method. A test code has been developed for applying this SMG 
scheme to PGS but is still being tested. Preliminary results revealed an increase in the number of 
fine-grid iterations compared to the PGS method, possibly indicating a bug or a fundamental 
flaw in the SMG method. Moreover, the SMG method could act as a preconditioner for the 
PGMRES method in a manner similar to strategies described in the literature This approach has 
not been considered to date. 

The SMG method described in this section shows promise for some cases and raises many new 
questions that could provide interesting research topics. Furthermore, other acceleration 
schemes based on multigrid methods—chiefly angular multigrid—may be developed that 
outperform the current implantation. Physical intuition suggests that SMG, if implemented in an 
optimized way, could improve the PBJ method by replacing indirect coupling via interfacial 
angular fluxes with direct coupling of coarsened regions. Yet a complete spectral analysis of 
these iterative methods would be necessary to verify this conjecture and thus constitutes a 
major objective for future work regarding the ITMM with parallel iterative solution techniques. 

3.8 Task 8 – Contingency Tasks 

Work completed under this contingency task was possible because of availability of funds for 
the student who was assigned to this work and who won a Computational Science Graduate 
Fellowship. His research comprised the development, implementation, verification, and testing 
of a new, highly efficient algorithm for constructing the ITMM operators. He also compared his 
new algorithm’s performance to that of the differential sweep construction algorithm described 
in this report via straight numerical testing and a comprehensive performance model. He found 
his new algorithm to be substantially efficient over a significant range of problem sizes. 
Additionally, the new algorithm is far more amenable to extension to unstructured meshes 
where mesh sweeps are notorious for computational inefficiency.  

The student earned his MS degree for this work and he published it in a paper presented at the 
Topical Meeting of the American Nuclear Society’s Mathematics and Computation Division held 
in Sun Valley, Idaho, May 2013; see item 6 listed under the List of Publications from the Project 
section. The paper in PDF format is attached to this report and its Abstract is replicated below: 

The Integral Transport Matrix Method (ITMM) has been shown to be an effective 
method for solving the neutron transport equation in large domains on massively 
parallel architectures. In the limit of very large number of processors, the speed of the 
algorithm, and its suitability for unstructured meshes, i.e. other than an ordered 
Cartesian grid, is limited by the construction of four matrix operators required for 
obtaining the solution in each sub-domain. The existing algorithm used for construction 
of these matrix operators, termed the differential mesh sweep, is computationally 
expensive and was developed for a structured grid. This work proposes the use of a new 
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algorithm for construction of these operators based on the construction of a single, 
fundamental matrix representing the transport of a particle along every possible path 
throughout the sub-domain mesh. Each of the operators is constructed by multiplying an 
element of this fundamental matrix by two factors dependent only upon the operator 
being constructed and on properties of the emitting and incident cells. The ITMM matrix 
operator construction time for the new algorithm is demonstrated to be shorter than the 
existing algorithm in all tested cases with both isotropic and anisotropic scattering 
considered. While also being a more efficient algorithm on a structured Cartesian grid, 
the new algorithm is promising in its geometric robustness and potential for being 
applied to an unstructured mesh, with the ultimate goal of application to an 
unstructured tetrahedral mesh on a massively parallel architecture.  
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ABSTRACT

The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving
the neutron transport equation in large domains on massively parallel architectures. In the limit of very
large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e.
other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for
obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix
operators, termed the differential mesh sweep, is computationally expensive and was developed for a
structured grid. This work proposes the use of a new algorithm for construction of these operators based
on the construction of a single, fundamental matrix representing the transport of a particle along every
possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an
element of this fundamental matrix by two factors dependent only upon the operator being constructed
and on properties of the emitting and incident cells. The ITMM matrix operator construction time for
the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both
isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a
structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for
being applied to an unstructured mesh, with the ultimate goal of application to an unstructured
tetrahedral mesh on a massively parallel architecture.

Key Words: Neutron Transport, Matrix Operator, ITMM

1. INTRODUCTION

The foundations of the Integral Transport Matrix Method (ITMM) were first developed in 1992 by
Hanebutte and Lewis [1], who first proposed using a “response matrix algorithm” to iteratively solve the
transport equation. However, this method was limited to the response of a single cell sub-domain. As such,
the method lacked the ability to be applied to sub-domains comprised of multiple cells due to the enormous
number of iterations that would be required to achieve convergence on a solution.
As such, the method was not further developed until 1997 by Azmy [2], who first proposed a method for
using full-domain operators, rather than single cell operators, to allow for a solution to the transport
equation without the need for repetitive mesh sweeps that continue to dominate deterministic method
solution algorithms. Azmy [3] continued to evolve the method in 1999 with the development of a specific
algorithm for construction of the matrix operators required by this method.
Rosa, Azmy, and Morel [4] continued this work in 2009, examining spectral properties of the operators and
further developing the algorithm for construction of the matrix operators on configurations with vacuum
boundary conditions. Zerr [5] completed this work in 2011 by finishing the construction algorithm (termed
the Differential Mesh Sweep) for all four matrix operators of the ITMM that are necessary to account for
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non-trivial incoming angular flux. Zerr also developed a code for parallel implementation of this algorithm
in constructing the operators and iteratively solving the transport equation across sub-domains.

The work presented here is motivated by the desire to implement the ITMM on other geometries, e.g.
unstructured grids. Zerr’s complete algorithm was developed solely for a Cartesian mesh. The rise of
unstructured tetrahedral mesh transport methods and codes as a means to a more accurate representation of
geometric configurations typical of radiation transport problems requires adaptations of the ITMM for the
application of this method to such a mesh. The Differential Mesh Sweep, although effective for
constructing the matrix operators on a Cartesian grid, is computationally expensive and requires orderly
mesh structure to perform well. As such, the need for a method of constructing the ITMM matrix operators
that is both more computationally efficient and geometrically robust is evident.

The algorithm presented in this paper, although still for a Cartesian mesh at this stage, is promising in that
it has demonstrated significantly faster matrix operator construction times and has the potential to be
applied with relative ease to an unstructured tetrahedral mesh. This algorithm derives its efficiency from
the fact that all transport of particles through a mesh, whether originating from a source or an incoming
angular flux, follows the same paths from the emergent cell to the incident cell. This principle allows for
the creation of a fundamental matrix for cell-to-cell transport, from which each of the matrix operators
required for the ITMM can be constructed. It will therefore be termed the Fundamental Matrix Method
(FMM). The derivation of this method first requires a quick review of the ITMM.

2 The Integral Transport Matrix Method

The basis of the ITMM lies in the neutron balance equation for a single cell in three dimensions [6]:

εxn,i,j,kψn,iout,j,k + εyn,i,j,kψn,i,jout,k + εzn,i,j,kψn,i,j,kout + ψn,i,j,k

= ci,j,kφi,j,k + σ−1t,i,j,kqi,j,k + εxn,i,j,kψn,iin,j,k + εyn,i,j,kψn,i,jin,k + εzn,i,j,kψn,i,j,kin (1)

where,

εxn,i,j,k =
|µn|

σt,i,j,k∆xi
,AFyz (2)

AFyz stands for “analogously for y and z”, and, by the discrete ordinates approximation with quadrature
weights wn and total number of angles D,

φi,j,k =
D∑
n=1

wnψn,i,j,k (3)

In the above equations, µn is the angular cosine with respect to the x-axis of the direction of particle travel
along the nth discrete ordinate. σt,i,j,k is the macroscopic total interaction cross section of the material in
cell i, j, k. ∆xi is the width of the cell in the x direction. ci,j,k is the scattering ratio, σs,i,j,kσt,i,j,k

, of the material
in cell i, j, k , where σs,i,j,k is the macroscopic scattering cross section in the same cell. qi,j,k is the
distributed source in cell i, j, k. ψn,iout,j,k is the angular flux along the nth discrete ordinate leaving cell
i, j, k out of the x = constant face, with analogous definitions for angular flux leaving at the
y = constant and z = constant faces. ψn,iin,j,k is the angular flux traveling along the nth discrete
ordinate entering cell i, j, k in the x = constant face, with analogous definitions for angular flux entering
at the y = constant and z = constant faces. Finally, ψn,i,j,k is the cell averaged angular flux in cell i, j, k
of neutrons traveling along the nth discrete ordinate. The diamond difference relation in all three directions
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is used to establish a closed matrix system of equations for the unknown fluxes on the left hand side of
equation 1 [6],

ψn,i,j,k =
1

2
(ψn,iin,j,k + ψn,iout,j,k),AFyz, (4)

resulting in [5] 
ψn,i,j,k
ψn,i,j,kout
ψn,i,jout,k
ψn,iout,j,k

 = Γn


ci,j,kφ

p
i,j,k + σ−1t,i,j,kqi,j,k
ψn,i,j,kin
ψn,i,jin,k
ψn,iin,j,k

 , (5)

where

Γn =


jφ kφ,z kφ,y kφ,x
jψ,z kψ,z→z kψ,y→z kψ,x→z
jψ,y kψ,z→y kψ,y→y kψ,x→y
jψ,x kψ,z→x kψ,y→x kψ,x→x

 . (6)

The Γ matrix is then a set of coupling factors (named here according to their function, which will be
clarified later) between the distributed (fixed and scattering) source, incoming angular fluxes, and outgoing
angular fluxes.

All of the previous equations provide the relationships between the incoming and outgoing angular flux and
the scalar flux for only a single cell. When considering a multi-cell sub-domain, the relationship between
the cells is simply an extrapolation of

ψn,i+1in,j,k = ψn,iout,j,k,AFyz. (7)

Considering a multi-cell domain with vacuum boundary conditions in a source iteration scheme, the system
reduces to [5]

φv = A(Cφp + Σ−1
t q). (8)

The vectors φv and φp are the new and previous iterates of the scalar flux, respectively. The vector q is the
fixed source. C is the scattering ratio diagonal matrix and Σ−1

t is the inverse total cross section diagonal
matrix. A is then a coefficient matrix constructed from elements of Γ which relates the previous scalar flux
iterate to the new scalar flux iterate. Partially differentiating equation 8 with respect to φp yields the
iteration Jacobian Matrix,

∂φv

∂φp
= AC. (9)

AC was denoted by Zerr [5] as Jφ. Further manipulation, considering the effect of incoming angular
fluxes at the boundaries of the sub-domain, and setting φv = φp = φ∞, where the superscript∞ indicates
the converged solution, results in [5],

φ∞ = (I − Jφ)−1JφΣ
−1
s q + (I − Jφ)−1Kφψ

∞
in , (10)

where ψ∞in is a vector containing all incoming angular fluxes to the sub-domain andKφ is a matrix
operator constructed from the elements of Γ which defines the effect of the incoming angular flux on the
scalar flux in each cell of the sub-domain. The dimension of ψ∞in is then the number of faces comprising
part of the exterior of the sub-domain multiplied by the number of incoming ordinates to each surface. Kφ

has the same number of columns as the dimension of ψ∞in and the number of rows is equal to the number
of cells in the sub-domain. The construction ofKφ will be described in the next section.

Both the effect of a fixed source (Jφ) and of an incoming angular flux (Kφ) on the scalar flux in each cell
in the sub-domain have now been accounted for. The next consideration, therefore, is the calculation of the
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outgoing angular flux from a sub-domain consisting of two components: Upon convergence, the outgoing
angular flux satisfies [5],

ψ∞out = Jψφ
∞ +Kψψ

∞
in (11)

where ψin∞ and φ∞ have been previously defined, Jψ is a matrix operator constructed from the elements
of Γ with dimensions that are the transpose of the previously defined matrix operator,Kφ, andKψ is a
square matrix operator (assuming the typical reflective symmetry of discrete ordinates) constructed from
the elements of Γ with a dimension equal to the dimension of the vector ψ∞in .

As the construction of each matrix operator can become intractable, it is useful to summarize their
definitions, shown in Table I, below.

Table I: Matrix Operator Definitions

Matrix Operator Definition

Jφ The effect of the cell averaged distributed source in each cell
on the cell averaged uncollided scalar flux in all cells

Jψ The effect of the cell averaged distributed source in each cell
on the outgoing angular flux on all external faces

Kφ The effect of the incoming angular flux on each external face
on the cell averaged uncollided scalar flux in all cells

Kψ The effect of the incoming angular flux on each external face
on the outgoing angular flux on all external faces

2.1 Consideration of Anisotropic Scattering

Consideration of anisotropic scattering in equations 10 and 11 does not alter the equations. It does,
however, significantly alter the contents of the vectors φ∞ and ψin and therefore the construction of the
four matrix operators which correspond to those vectors. A lengthy derivation by Zerr [5], avoided here for
brevity, provides that the scattering source is given by:

qs =

L∑
l=0

l∑
m=0

σsl(2− δm0)[Y
e
lm(Ω̂)ϕml + Y o

lm(Ω̂)ϑml ]. (12)

In the case of isotropic scattering (i.e. L = 0), it can be seen that the scattering source reduces to

qs = σs,0φ
o
0 (13)

as expected. The formation of the scattering source in the anisotropic manner, however, requires significant
alterations to the matrix equation 5.
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
ψn,i,j,k
ψn,i,j,kout
ψn,i,jout,k
ψn,iout,j,k

 = Γanis



σs0ϕ
0
0 + qe00

σs1ϕ
0
1 + qe10

σs1ϕ
1
1 + qe11

σs1ϑ
1
1 + qo11
...

σsLϑ
L
L + qoLL

ψn,i,j,kin
ψn,i,jin,k
ψn,iin,j,k


. (14)

The Γanis matrix has dimensions 4 x ((L+ 1)2 + 3) and is a set of coupling factors between each angular
moment of the scattering plus fixed source, incoming fluxes to the cell, and outgoing face angular fluxes.
The effect of including anisotropic scattering on the dimensions of each matrix operator and, ultimately, the
effect on construction algorithm performance will be examined in section 4.
An algorithm for the construction of the four matrix operators, Jφ, Jψ,Kφ, and ,Kψ, was developed by
Zerr [5] and termed the differential mesh sweep. The algorithm developed in this work is intended to
improve upon the differential mesh sweep by accomplishing two goals: Be more geometrically robust and
less computationally expensive. In consideration of these goals, this algorithm was developed on the
foundation of the matrix equation 5.

3 The Fundamental Matrix Method

Beginning with equation 5, partial derivatives are taken with respect to each incoming angular flux
component and the cell averaged scalar flux.
First, partially differentiating equation 5 with respect to the cell averaged scalar flux:

∂ψn,i,j,k

∂φpi,j,k
∂ψn,i,j,kout

∂φpi,j,k
∂ψn,i,jout,k

∂φpi,j,k
∂ψn,iout,j,k

∂φpi,j,k


=


jφi,j,kci,j,k
jψ,zi,j,kci,j,k
jψ,yi,j,kci,j,k
jψ,xi,j,kci,j,k

 . (15)

Partially differentiating equation 5 with respect to the incoming angular flux in the x direction and
analogously in the y and z directions:

∂ψn,i,j,k

∂ψn,iin,j,k

∂ψn,i,j,kout
∂ψn,iin,j,k

∂ψn,i,jout,k

∂ψn,iin,j,k

∂ψn,iout,j,k

∂ψn,iin,j,k

 =


kφ,xi,j,k
kψ,x→zi,j,k
kψ,x→yi,j,k
kψ,x→xi,j,k

 ,AFyz. (16)

To create a general framework for the response of the angular flux in one cell of a domain to another cell,
only the bottom three equations of matrix equation 16 and the analogous equations in the y and z directions
are used. As such, only the transport of the angular flux is being considered. These equations, however,
also only consider a single cell system. To consider an entire domain, these single cell operators need to be
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accumulated along every possible path of particles from the starting to destination cells. This accumulation
of values representing the response of the angular flux in one cell of a domain to another cell is termed the
fundamental transport matrix and denoted by F . The elements of F are represented by

Fn(i,j,k)(i′,j′,k′),di,df =
P∑
p=1

M∏
m=1

kψ,d1m,p→d2m,p,n,m,p, (17)

where p is a possible path from cell i′, j′, k′ to cell i, j, k and di and df are the incident and emergent
constant faces (x, y, or z) of the element of F . The total number of possible paths is P , a value which
depends on the geometry of the domain, and the total number of cells along each respective path is M . The
subscripts of kψ, d1m,p and d2m,p are either x, y, or z depending on which constant face the particle is
incident on and emergent at, respectively, for cell m of path p. For the first cell of path p, d11,p = di, and
for the last cell of path p, d2M,p = df . kψ,d1m,p→d2m,p,n,m,p is then the value of kψ from face d1 to face d2
in cell m along path p for the nth discrete ordinate.

For an angular flux emergent from the face of one cell and incident on the face of another cell in a three
dimensional system, there are nine distinct elements of F resulting from three possible emergent faces and
three possible incident faces. To accumulate values into each ITMM operator, the only remaining
calculation (after the calculation of the appropriate element of F ) is to multiply Fn(i,j,k)(i′,j′,k′),di,df by the
respective values it is required to represent for the emergent and incident cells. Recalling that the emergent
cell is i′, j′, k′ and the incident cell is i, j, k, the respective operators require multiplication of
Fn(i,j,k)(i′,j′,k′),di,df by the single cell operators in the manner shown in Table II.

Table II: Emergent and Incident Multipliers of Fn(i,j,k)(i′,j′,k′),di,df for Construction of ITMM Opera-
tors

Operator Emergent Cell Multiplier Incident Cell Multiplier

Jφ jψ,di,i′,j′,k′ci′,j′,k′ kφ,df,i,j,k

Jψ jψ,di,i′,j′,k′ci′,j′,k′ kψ,d1→df,i,j,k

Kφ kψ,d1→di,i′,j′,k′ kφ,df,i,j,k

Kψ kψ,d1→di,i′,j′,k′ kψ,d1→df,i,j,k

The matrix operator Jφ, of dimensions (I x J x K) x (I x J x K), is constructed as

Jφ =

 jφ,1,1,1c1,1,1 · · · jψ,I,J,KcI,J,KFn(1,1,1)(I,J,K)kφ,1,1,1
...

. . .
...

jψ,1,1,1c1,1,1Fn(I,J,K)(1,1,1)kφ,I,J,K · · · jφ,I,J,KcI,J,K

 , (18)

6/13



Advanced Algorithm for Construction of Integral Transport Matrix Method Operators

where

jψ,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′)kφ,(i,j,k) = jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,xkφ,x,(i,j,k)+

jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,ykφ,y,(i,j,k) + jψ,x,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),x,zkφ,z,(i,j,k)+

jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,xkφ,x,(i,j,k) + jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,ykφ,y,(i,j,k)+

jψ,y,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),y,zkφ,z,(i,j,k) + jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,xkφ,x,(i,j,k)+

jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,ykφ,y,(i,j,k) + jψ,z,(i′,j′,k′)ci′,j′,k′Fn(i,j,k)(i′,j′,k′),z,zkφ,z,(i,j,k). (19)

The matrix operators Jψ,Kφ, andKψ are constructed analogously. It is important to note that diagonal
elements of Jφ do not use an element of F in their construction. This is because the diagonal elements
represent the effect of the cell averaged distributed source in a cell on the cell averaged scalar flux in the
same cell. Since there is no transport to account for between cells, no element of F is used and the single
cell operator jφ is used instead of jψ on the diagonal elements.

In essence, we have consolidated the expensive, recursive calculations required to compute the four ITMM
operators into the computation of Fn(i,j,k)(i′,j′,k′), followed by a straightforward and computationally cheap
pre-fix and post-fix operations indicated in equation 18 and the analogous relations.

In comparison to the to the FMM, the Differential Mesh Sweep (DMS) requires twelve intermediate
matrices in order to populate the four ITMM matrix operators. These are the three matrices with values
representing the outgoing angular flux from every cell in the x, y, and z directions and the nine matrices
representing the effect of incoming angular flux in each direction on the outgoing angular flux in each
direction. These values are then used to create the four ITMM matrix operators. The FMM uses only a
single intermediate matrix, F , from which all the elements of the four ITMM matrix operators are created
in a relatively simple manner.

The main reason that this difference is important is the time required for memory access. As each element
of F is created, it is promptly operated on to create the corresponding elements of the four ITMM matrix
operators, allowing for the element of F to remain in the memory cache for the necessary operations and
then be discarded without another access. The DMS, however, creates the necessary twelve intermediate
matrices and places them into memory, requiring that they be accessed at a later time to create the four
ITMM matrix operators.

Another advantage of the FMM compared to the DMS is the nature of the mesh sweep. The DMS uses a
single mesh sweep (per angle) to calculate the the required values to populate the aforementioned twelve
matrices. In comparison, the FMM conducts a sweep from each cell of the mesh to all other cells. While
seemingly a disadvantage for the FMM due to the quantity of sweeps required, the calculations are more
simple in nature because only elements of F are being created in the sweep. The FMM, in this manner, is
also more geometrically robust in that only knowledge of the spatial relation to the adjacent cells is
required to create the elements of F .

4 Results and Performance Model

4.1 Performance Model

It is useful to be able to predict run times for scaling purposes. As such, a performance model has been
developed to serve this purpose. The performance of the construction algorithm in terms of computational
time is dependent upon three variables: The number of cells in the sub-domain, N , the order of anisotropy,
L, and the number of angles, D. The performance model was determined based on analysis of the operator
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construction subroutines, particularly the number of calculations required to build each operator.

First, consider the construction of the fundamental matrix F . As previously demonstrated, all the ITMM
operators are constructed through multiplications to elements of F . F must therefore contain the basis of
every possible element of each of the operators. The performance model of the construction of F involves
three terms: The construction of elements of F along a row or a column intersecting the starting cell
(3a1DN4/3), along planes intersecting the starting cell (3a2D(N5/3 −N4/3)), and through the entire
sub-domain from the starting cell (a3D(N2 − 3N5/3 − 3N4/3)), where ai (i = 1, 2, 3, ...) are measures of
the time consumed in completing a single instance of the corresponding instructions listed above. These
terms are added together to create the performance model for constructing the fundamental matrix.

tF = 3a1DN
4/3 + 3a2D(N5/3 −N4/3) + a3D(N2 − 3N5/3 − 3N4/3) (20)

The number of calculations for each of the matrix operators is a function of the number of cells involved in
the operator construction, the number of angles, and the number of angular moments. The number of
angular moments, represented here as H , is calculated by H = (L+ 1)2. While the number of calculations
for each operator requires a multiplication by D to account for the number of angles, the use of H differs
between the operators. Kψ is the only operator completely independent of the scalar flux in any cell and,
using Table I as a reference for the number of cells involved in the calculation, the performance model for
Kψ is

tKψ = a4DN
4/3. (21)

Jψ andKφ both involve the cell averaged scalar flux on one end of the calculation. As such, the number of
calculations required for these operators is multiplied by H , resulting in

tJψ+Kφ = a5DN
5/3H . (22)

Jφ requires consideration of the scalar flux in both the initial cell and the final cell. Therefore, the number
of calculations is multiplied by H2. In the algorithm, several calculations are conducted in a single moment
loop to improve computational efficiency. Hence the need for another term multiplied by only H but the
same number of cells, N2. These terms comprise the performance model for the calculation of Jφ,

tJφ = a6DN
2H + a7DN

2H2. (23)

The total construction time for the operators is then

ttotal = tF + tKψ + tJψ+Kφ + tJφ . (24)

Substituting the previously defined terms results in

ttotal = 3a1DN
4/3 + 3a2D(N5/3 −N4/3) + a3D(N2 − 3N5/3 − 3N4/3)

+ a4DN
4/3 + a5DN

5/3H + a6DN
2H + a7DN

2H2. (25)

In order to determine the values of the constants in equation 25, timed runs of the code with varying
number of cells, number of angles, and order of anisotropy were conducted.

4.2 Timing Results

The following tables (III for L=0, IV for L=1, V for L=3) show the measured execution times of these
trials. Each time shown is the average measured execution time across ten runs of the code on a 3.7 GHz
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processor. “FMM” designates the Fundamental Matrix Method of constructing the matrix operators,
outlined in this work, and “DMS” designates the Differential Mesh Sweep method developed by Zerr [5].
As can be seen in each of these tables, the Fundamental Matrix Method significantly outperforms the
Differential Mesh Sweep in all tested cases.

Table III: Matrix Operator Construction Time (s) for L=0 (isotropic)

Method N S4 S8 S12 S16

FMM 64 .0088 .0148 .0268 .0384
DMS 64 .0156 .0356 .0624 .1016

FMM 216 .0416 .0876 .1688 .2768
DMS 216 .0596 .1844 .3820 .6572

FMM 512 .1952 .4764 .9408 1.780
DMS 512 .2468 .8149 1.711 2.925

FMM 1000 .6588 1.507 3.961 6.722
DMS 1000 .8213 2.735 5.651 9.849

Table IV: Matrix Operator Construction Time (s) for L=1

Method N S4 S8 S12 S16

FMM 64 .0140 .0260 .0528 .0868
DMS 64 .0212 .0576 .1116 .1920

FMM 216 .0736 .1892 .4040 .7388
DMS 216 .1296 .4076 .8493 1.467

FMM 512 .4048 1.192 2.871 5.118
DMS 512 .6880 2.273 4.836 8.263

FMM 1000 1.245 4.085 9.172 16.22
DMS 1000 2.242 7.455 15.60 27.04

Table V: Matrix Operator Construction Time (s) for L=3

Method N S4 S8 S12 S16

FMM 64 .0396 .1148 .2528 .4668
DMS 64 .1036 .3704 .6608 1.110

FMM 216 .3136 1.045 2.193 4.332
DMS 216 .5936 1.965 4.078 6.970

FMM 512 1.944 6.961 13.62 28.63
DMS 512 9.815 30.65 66.90 113.7

FMM 1000 7.394 25.01 45.05 79.77
DMS 1000 12.16 40.46 85.16 147.8
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In order to determine the values of the model constants of equation 25, a fitting function was applied to the
timing data for the Fundamental Matrix Method in Tables III - V. This function uses a least squares
algorithm to determine the minimal residual among all the data points by converging on an optimal value
of the constants. This procedure results in the values shown in Table VI for the constants, applied to
equation 25. These constants are accurate for the measured data points on a 3.7 GHz processor. Any
change in the system running the code will change the constants, but the model will remain accurate.

Table VI: Least Squares Fit Constant Values for Equation 25

Constant Value

a1 3.259 x 10−10

a2 6.361 x 10−9

a3 2.693 x 10−8

a4 7.411 x 10−10

a5 2.751 x 10−9

a6 5.024 x 10−9

a7 6.813 x 10−10

This is now the complete performance model of the FMM algorithm. Figures 1 through 3 show the
performance model plotted against the measured data points.
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Figure 1: Performance Model (lines) and Measured Matrix Operator Construction Times (triangles)
for L=0 (isotropic)
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Figure 3: Performance Model (lines) and Measured Matrix Operator Construction Times (triangles)
for L=3

Errors in the fit of the performance model to the data points can be attributed to several causes. First among
these is the general fit to the entire data set for the determination of the constants. Any data point that could
be considered somewhat aberrant can damage the overall fit and compound errors in conforming to
individual data sets. Second would be the effect on execution time from the frequency of memory cache
hits and misses. Each miss can increase the overall time while each hit can reduce it. Given the sheer
number of memory accesses required for the FMM algorithm, any such problem could cause significant
variation in the data points. The last source of error would be background processes on the system. While
each data point is an average of ten code executions, the averaging does not account for background
processes which may slow the performance of the algorithm. Considering these sources of error, the
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performance model trends, if not exactly predicts, the execution time of the FMM algorithm. The major
error visible in the plots above is that the model consistently under-predicts the execution time for small N .
This result is both understandable and expected given that equation 25 is the full accounting of time that
establishes the N2 asymptotic trend. The model will therefore more accurately predict execution times in
the asymptotic regime of large N .

The timing results shown here are limited by the memory requirements of the ITMM. The size of the
matrix operators necessarily grows with increased size, number of angles, and anisotropic order. This
constraint is significant as memory requirements of the matrix operators (specifically Jφ) quickly exceed
system memory limits when any of these variables are augmented beyond the examples shown in this work
(e.g., for a 12x12x12 sub-domain, S16 quadrature, and L = 5, memory requirements exceed 30 GB),
requiring the use of smaller sub-domains and therefore an increased number of iterations. Also, previous
parallel applications of the ITMM have found that 4x4x4 sub-domains perform optimally [5].

5. CONCLUSIONS

In this work, a new algorithm that provides for faster construction of the ITMM matrix operators has been
described. This algorithm, the FMM, is based on the construction of a single, fundamental matrix, F ,
representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of
the operators is constructed by multiplying an element of this fundamental matrix by two values dependent
only upon the operator being constructed. The elements of F are face-based, meaning that they represent
the transport of a particle along the aforementioned path from the emergent face of one cell to the incident
face of another cell. By being a face-based quantity, the elements of F can then be used to relate one face
to another face, a face to a cell, or a cell to a cell, dependent on the single cell coupling factors by which
they are multiplied.

It can be seen from the results presented here that the FMM significantly outperforms the DMS in terms of
matrix operator construction time for the ITMM. It should be noted that the time required for the solution
algorithm, which was not detailed in this work, is significantly greater than the operator construction time.
The FMM gains significance, however, when considering a calculation requiring multiple energy groups,
time steps, or depletion steps, where repeated evaluations of the ITMM operators must be performed. In
this situation, the time savings gained when using the FMM versus the DMS is multiplied by the number of
time steps and/or the number of groups. As such, the FMM algorithm becomes more critical to the
computational cost of the ITMM as the complexity of the target problem grows [7].

Although the FMM as shown here was developed for a structured Cartesian grid, an advantage of the FMM
is its applicability to an unstructured mesh. The geometric simplicity of the FMM algorithm lies in that it
does not require an orderly mesh sweep, but rather can be applied to any grouping of cells as long as their
spatial relation to each other is known. Although the challenge of an unstructured tetrahedral mesh is to
manage the bookkeeping of how the cells (and in the planned parallel environment, the sub-domains) fit
together, this algorithm has demonstrated its potential to overcome this challenge of spatial domain
decomposition, thus paving the way for an effective massively parallel method of solving the neutron
transport equation on an unstructured tetrahedral mesh.
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3.2 Fourier Analysis of the Integral Transport Matrix Method for the Dia-
mond Difference Scheme

We performed Fourier analysis of the Integral Transport Matrix Method (ITMM) for the Diamond Difference
(DD) scheme in various geometries. The ITMM is a spatial domain decomposition method for solving the
discretized particle transport equation. We consider one-group transport problems with isotropic scattering
and source. In the presented studies, it is assumed that there is one cell per subdomain. For each
geometry, the equations for iterative errors of the ITMM are derived in a general form. A detailed analysis
is carried out for S2 quadrature set. The analysis of the ITMM in 1D slab geometry showed that the spectral
radius ρ1D ≤ 1 and it depends on value of total cross section σt, the scattering ration c, and mesh size.
The results of Fourier analysis in 2D and 3D Cartesian geometries demonstrated that the spectral radius
ρ2D = ρ3D = 1 without regard to values of σt, c and mesh cell sizes. The iterative properties of the ITMM
in 2D and 3D are similar. We study in details features of eigenvalues and associated eigenvectors in 2D
geometry.

3.2.1 1D Slab Geometry

3.2.1.1 Formulation of the Computational Method

In this section we consider transport problems in 1D slab geometry. The DD method is given by

µm(ψm,i+1/2 − ψm,i−1/2) + σt∆xψm,i =
1

2

(
σs∆xφi + qi

)
, (3.2.1)

ψm,i =
1

2
(ψm,i+1/2 + ψm,i−1/2) , (3.2.2)

φi =
M∑
m=1

ψm,iwm . (3.2.3)

We use standard notations. Equations (3.2.1)-(3.2.3) can be cast in the following general form:

νm(ψ+
m,i − ψ

−
m,i) + ψm,i =

1

2

(
cφi +

qi
σt

)
, (3.2.4)

ψm,i =
1

2
(ψ+

m,i + ψ−m,i) , (3.2.5)

φi =

M∑
m=1

ψm,iwm , (3.2.6)

νm =
|µm|
σt∆x

, c =
σs
σt
, (3.2.7)

ψ−m,i = ψm,i∓1/2 for µm ≷ 0 , (3.2.8)

ψ+
m,i = ψm,i±1/2 for µm ≷ 0 . (3.2.9)

The iteration scheme of ITMM can be formulated as follows:

νm
(
ψ

+(s)
m,i − ψ

−(s−1)
m,i

)
+ ψ

(s)
m,i =

1

2

(
cφ

(s)
i +

qi
σt

)
, (3.2.10)

ψ
(s)
m,i =

1

2

(
ψ

+(s)
m,i + ψ

−(s−1)
m,i

)
, (3.2.11)

1



φ
(s)
i =

M∑
m=1

ψ(s)
m wm . (3.2.12)

The equations for the error in the s-th iterate

δψ(s) = ψ − ψ(s) , δφ(s) = φ− φ(s) (3.2.13)

are given by

νm
(
δψ

+(s)
m,i − δψ

−(s−1)
m,i

)
+ δψ

(s)
m,i =

1

2
cδφ

(s)
i , (3.2.14a)

δψ
(s)
m,i =

1

2

(
δψ

+(s)
m,i + δψ

−(s−1)
m,i

)
, (3.2.14b)

δφ
(s)
i =

M∑
m=1

δψ(s)
m wm . (3.2.14c)

3.2.1.2 Fourier Analysis of Equations for Cell-Edge Angular Fluxes in S2 Case

We now consider S2 case:

M = 2 , wm = 1 , |µm| =
1√
3
. (3.2.15)

The equations for errors in the cell-edge angular fluxes are the following:

(2ν + 1− 0.5c)δψ
(s)
1,i−1/2 − 0.5cδψ

(s)
2,i+1/2 = (2ν − 1 + 0.5c)δψ

(s−1)
1,i+1/2 + 0.5cδψ

(s−1)
2,i−1/2 , (3.2.16a)

(2ν + 1− 0.5c)δψ
(s)
2,i+1/2 − 0.5cδψ

(s)
1,i−1/2 = (2ν − 1 + 0.5c)δψ

(s−1)
2,i−1/2 + 0.5cδψ

(s−1)
1,i+1/2 , (3.2.16b)

where

ν =
1√

3σt∆x
. (3.2.17)

The equations (3.2.16) can be written as

p+δψ
(s)
1,i−1/2 − 0.5cδψ

(s)
2,i+1/2 = p−δψ

(s−1)
1,i+1/2 + 0.5cδψ

(s−1)
2,i−1/2 , (3.2.18a)

p+δψ
(s)
2,i+1/2 − 0.5cδψ

(s)
1,i−1/2 = p−δψ

(s−1)
2,i−1/2 + 0.5cδψ

(s−1)
1,i+1/2 , (3.2.18b)

where
p± = 2ν ± 1∓ 0.5c . (3.2.19)

The equations (3.2.18) can be presented in a matrix form as

A1Dδ ~ψ
+(s) = B1Dδ ~ψ

−(s−1) , (3.2.20)

δ ~ψ+ = (δψ1,i−1/2, δψ2,i+1/2)T , δ ~ψ− = (δψ1,i+1/2, δψ2,i−1/2)T , (3.2.21)

where

A1D =

(
p+ −0.5c
−0.5c p+

)
, B1D =

(
p− 0.5c

0.5c p−

)
. (3.2.22)

Hence, the iteration process is defined by

δ ~ψ+(s) = T1Dδ ~ψ
−(s−1) , (3.2.23)
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where
T1D = A−1

1DB1D . (3.2.24)

To perform the Fourier analysis we consider a single Fourier error mode with arbitrary λ and introduce
the following ansatz:

δψ
(s)
m,i+1/2 = αmω

s(λ)eiλσtxi+1/2 , i =
√
−1 . (3.2.25)

We apply (3.2.25) to Eqs. (3.2.18) to get

(p+ω − p−eiλ̃)α1 − 0.5c(1 + ωeiλ̃)α2 = 0 , (3.2.26)

−0.5c(ω + eiλ̃)α1 + (p+ωeiλ̃ − p−)α2 = 0 , (3.2.27)

where
λ̃ = λσt∆x . (3.2.28)

The resulting equation for the eigenvalue ω(λ)(
(p+)2 − 1

4
c2

)
ω2 − 2 cos λ̃

(
p+p− +

1

4
c2

)
ω + (p−)2 − 1

4
c2 = 0 . (3.2.29)

There are two eigenvalues for each value of the wave number λ.
We note that Eq. (3.2.29) give rise to

ω2 − cos λ̃ ω + 1 = 0 as σt∆x→ 0 , (3.2.30)

and
ω2 + cos λ̃ ω + 1 = 0 as σt∆x→∞ . (3.2.31)

Thus the eigenvalues do not depend of the scattering ratio c and

ω = e±iλ̃ as σt∆x→ 0 , (3.2.32)

ω = −e±iλ̃ as σt∆x→∞ . (3.2.33)

As a result, we have
|ω| → 1 ∀λ̃ as σt∆x→∞ or σt∆x→ 0 . (3.2.34)

Thus,
ρ1D → 1 ∀c as σt∆x→∞ or σt∆x→ 0. (3.2.35)

Figures 3.2.1-3.2.5 show the eigenvalues as functions of λ̃ (Eq. (3.2.28)) for c = 0.9 and selected
values of σt∆x. These results demonstrate typical behaviour of ω. We note that ω is complex in general.
The values of spectral radii ρ = supλ |ω(λ)| for some range of c and σt∆x are listed in Table 3.2.1. These
results show that for a given c spectral radius has minimum around σt∆x = 1. It tends to 1 as σt∆x tends
to 0 and∞.
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Figure 3.2.1: ω(λ̃) for 1D, c = 0.9, σt∆x=10−3
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Figure 3.2.2: ω(λ̃) for 1D, c = 0.9, σt∆x=0.1
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Figure 3.2.3: ω(λ̃) for 1D, c = 0.9, σt∆x=1
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Figure 3.2.4: ω(λ̃) for 1D, c = 0.9, σt∆x=10
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Figure 3.2.5: ω(λ̃) for 1D, c = 0.9, σt∆x=103

Table 3.2.1: Theoretical estimation of spectral radii ρ1D

σt∆x
c 0.001 0.01 0.1 0.25 0.5 0.75 1 2 2.5 3 5 10 100 1000

0.1 0.998 0.984 0.855 0.674 0.439 0.262 0.124 0.268 0.368 0.444 0.625 0.793 0.977 0.998
0.5 0.999 0.991 0.917 0.805 0.644 0.51 0.396 0.268 0.368 0.444 0.625 0.793 0.977 0.998
0.7 0.999 0.995 0.949 0.878 0.77 0.674 0.588 0.316 0.368 0.444 0.625 0.793 0.977 0.998
0.9 0.999 0.998 0.983 0.958 0.917 0.878 0.841 0.705 0.644 0.588 0.625 0.793 0.977 0.998
0.99 0.999 0.999 0.998 0.996 0.991 0.987 0.983 0.966 0.958 0.949 0.917 0.841 0.977 0.998
0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.997 0.996 0.995 0.991 0.983 0.977 0.998

3.2.1.3 Fourier Analysis of Equations for Complete Set of Unknowns in S2 Case

We now perform analysis of the iteration process that involves explicitly complete set of unknowns, namely,
the cell-edge and cell-average angular fluxes. It is defined by Eqs. (3.2.14). The equations for iterative
errors in S2 case are the following:

(2ν + 1− 0.5c)δψ
(s)
1,i − 0.5cδψ

(s)
2,i − 2νδψ

(s−1)
1,i+1/2 = 0 , (3.2.36a)

(2ν + 1− 0.5c)δψ
(s)
2,i − 0.5cδψ

(s)
1,i − 2νδψ

(s−1)
2,i−1/2 = 0 , (3.2.36b)

2δψ
(s)
1,i − δψ

(s)
1,i−1/2 − δψ

(s−1)
1,i+1/2 = 0 , (3.2.36c)

2δψ
(s)
2,i − δψ

(s)
2,i+1/2 − δψ

(s−1)
2,i−1/2 = 0 . (3.2.36d)

We introduce the following ansatz:

δψ
(s)
m,i+1/2 = αmω

s(λ)eiλσtxi+1/2 , (3.2.37)
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δψ
(s)
m,i = γmω

s(λ)eiλσtxi . (3.2.38)

Using (3.2.37) and (3.2.38) in Eqs. (3.2.36) we get

ω
(
p+γ1 − 0.5cγ2

)
− 2νeizα1 = 0 , (3.2.39a)

ω
(
−0.5cγ1 + p+γ2

)
− 2νe−izα2 = 0 , (3.2.39b)

2ωγ1 −
(
ωe−iz + eiz

)
α1 = 0 , (3.2.39c)

2ωγ2 −
(
e−iz + ωeiz

)
α2 = 0 , (3.2.39d)

where

z =
1

2
λ̃ =

1

2
λσt∆x . (3.2.40)

The matrix form of Eqs. (3.2.39) is given by
p+ω −0.5cω −2νeiz 0
−0.5cω p+ω 0 −2νe−iz

2ω 0 −(ωe−iz + eiz) 0
0 2ω 0 −(e−iz + ωeiz)



γ1

γ2

α1

α2

 = 0 , (3.2.41)

It reduces to
C1D

~f = 0 , (3.2.42)

where

C1D =


2ω 0 −(ωe−iz + eiz) 0
0 2ω 0 −(e−iz + ωeiz)
0 0 0.5(p+ωe−iz − p−eiz) −0.25c(e−iz + ωeiz)
0 0 −0.25c(ωe−iz + eiz) 0.5(p+ωeiz − p−e−iz)

 (3.2.43)

and
~f =

(
γ1, γ2, α1, α2

)T
. (3.2.44)

The determinant of C1D has the following form:

det C1D = 4ω2

[(
p+ω − p−ei2z

)(
p+ωei2z − p−

)
− 1

4
c2(ω + ei2z)(1 + ωei2z)

]
. (3.2.45)

Thus ω=0 is the eigenvalue of multiplicity 2 without regard to parameters of the transport problem and
spatial interval width. The equation for the rest two eigenvalues is given by Eq. (3.2.29).

3.2.1.4 Summary

The main results of the analysis of ITMM in 1D slab geometry are the following:

1. The spectral radius of ITTM
ρ1D = sup

λ
|ω(λ)| ≤ 1 ,

It depends on values of c on ∆x.

2. The convergence of ITMM slows down with increase in optical thickness of mesh intervals as well as
with its decrease. We showed that

|ω| → 1 ∀λ as σt∆x→∞ or σt∆x→ 0 (3.2.46)

without regard to the value of c. Thus,

ρ1D → 1 ∀c as σt∆x→∞ or σt∆x→ 0. (3.2.47)
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3.2.2 2D Cartesian Geometry

3.2.2.1 Formulation of the Computational Method

In this section we consider one-group transport problems in 2D Cartesian geometry with isotropic scattering
and source. The DD method is defined by the following set of equations:

νx,m(ψx,+m,i,j − ψ
x,−
m,i,j) + νy,m(ψy,+m,i,j − ψ

y,−
m,i,j) + ψm,i,j =

1

4π

(
cφi,j +

q

σt

)
, (3.2.48a)

ψm,i,j =
1

2

(
ψx,+m,i,j + ψx,−m,i,j

)
, (3.2.48b)

ψm,i,j =
1

2

(
ψy,+m,i,j + ψy,−m,i,j

)
, (3.2.48c)

φi,j =

M∑
m=1

ψm,i,jwm , (3.2.48d)

νx,m =
|Ωx,m|
σt∆x

, νy,m =
|Ωy,m|
σt∆y

, c =
σs
σt
, (3.2.49)

ψx,±m,i,j = ψm,i±1/2,j , ψy,±m,i,j = ψm,i,j±1/2 , for Ωx,m > 0 , Ωy,m > 0 , (3.2.50a)

ψx,±m,i,j = ψm,i∓1/2,j , ψy,±m,i,j = ψm,i,j±1/2 , for Ωx,m < 0 , Ωy,m > 0 , (3.2.50b)

ψx,±m,i,j = ψm,i∓1/2,j , ψy,±m,i,j = ψm,i,j∓1/2 , for Ωx,m < 0 , Ωy,m < 0 , (3.2.50c)

ψx,±m,i,j = ψm,i±1/2,j , ψy,±m,i,j = ψm,i,j∓1/2 , for Ωx,m > 0 , Ωy,m < 0 . (3.2.50d)

The standard notations are used. The iteration scheme is defined as follows

νx,m(ψ
x,+(s)
m,i,j − ψ

x,−(s−1)
m,i,j ) + νy,m(ψ

y,+(s)
m,i,j − ψ

y,−(s−1)
m,i,j ) + ψ

(s)
m,i,j =

1

4π

(
cφ

(s)
i,j +

qi,j
σt

)
, (3.2.51a)

ψ
(s)
m,i,j =

1

2

(
ψ
x,+(s)
m,i,j + ψ

x,−(s−1)
m,i,j

)
, (3.2.51b)

ψ
(s)
m,i,j =

1

2

(
ψ
y,+(s)
m,i,j + ψ

y,−(s−1)
m,i,j

)
, (3.2.51c)

φ
(s)
i,j =

M∑
m=1

ψ
(s)
m,i,jwm , (3.2.51d)

and hence the equations for the iterative errors are given by

νx,m

(
δψ

x,+(s)
m,i,j − δψ

x,−(s−1)
m,i,j

)
+ νy,m

(
δψ

y,+(s)
m,i,j − δψ

y,−(s−1)
m,i,j

)
+ ψ

(s)
m,i,j =

c

4π
δφ

(s)
i,j , (3.2.52a)

δψ
(s)
m,i,j =

1

2

(
δψ

x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j

)
, (3.2.52b)

δψ
(s)
m,i,j =

1

2

(
δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j

)
, (3.2.52c)
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δφ
(s)
i,j =

M∑
m=1

δψ
(s)
m,i,jwm . (3.2.52d)

We cast Eqs. (3.2.52) as follows

νx,m(δψ
x,+(s)
m,i,j − δψ

x,−(s−1)
m,i,j ) + νy,m(δψ

y,+(s)
m,i,j − δψ

y,−(s−1)
m,i,j ) + ψ

(s)
m,i,j =

c

4π
δφi,j(s) , (3.2.53a)

δψ
(s)
m,i,j =

1

4

(
δψ

x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j + δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j

)
, (3.2.53b)

δψ
x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j = δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j , (3.2.53c)

δφ
(s)
i,j =

M∑
m=1

δψ
(s)
m,i,jwm . (3.2.53d)

Using these equations we derive the equations for the face-average angular fluxes:

p+
x,mδψ

x,+(s)
m,i,j + p−x,mδψ

x,−(s−1)
m,i,j + p+

y,mδψ
y,+(s)
m,i,j + p−y,mδψ

y,−(s−1)
m,i,j =

c

4π

∑
m′ 6=m

(
δψ

x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j + δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j

)
wm′ , (3.2.54a)

δψ
x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j = δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j , (3.2.54b)

where
p±α,m = 1± 4να,m −

cwm
4π

, α = x, y . (3.2.55)

3.2.2.2 Alternative Form of Equations

There is an alternative way for deriving equation of ITMM. The auxiliary conditions (3.2.48b) and (3.2.48c)
can be written as

ψα,+m,i,j = 2ψm,i,j − ψα,−m,i,j , α = x, y (3.2.56)

and hence Eq. (3.2.48a) leads to

2νx,m(ψm,i,j − ψx,−m,i,j) + 2νy,m(ψm,i,j − ψy,−m,i,j) + ψm,i,j =
c

4π
φi,j . (3.2.57)

Here we set the source term to zero to simplify derivation of equations for iterative errors. From Eq. (3.2.57)
we get

ψm,i,j =
cφi,j

4π(1 + 2(νx,m + νy,m))
+

2(νx,mψ
x,−
m,i,j + νy,mψ

y,−
m,i,j)

1 + 2(νx,m + νy,m)
. (3.2.58)

Thus, the equation for the cell-average scalar flux has the following form:

φi,j = 2

[
1− c

4π

∑
m

wm
1 + 2(νx,m + νy,m)

]−1∑
m

wm(νx,mψ
x,−
m,i,j + νy,mψ

y,−
m,i,j)

1 + 2(νx,m + νy,m)
(3.2.59)

and hence

φi,j =
4π

c

∑
m

(γxmψ
x,−
m,i,j + γymψ

y,−
m,i,j) , (3.2.60)
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where
γαm =

ηνα,mwm
1 + 2(νx,m + νy,m)

, (3.2.61)

η = 2

[
4π

c
−
∑
m

wm
1 + 2(νx,m + νy,m)

]−1

. (3.2.62)

We note that the auxiliary conditions (3.2.48b) and (3.2.48c) also give rise to

ψm,i,j =
1

4

(
ψx,+m,i,j + ψx,−m,i,j + ψy,+m,i,j + ψy,−m,i,j

)
. (3.2.63)

Using Eq. (3.2.63) in Eq. (3.2.48a) we obtain(
1

4
+ νx,m

)
ψx,+m,i,j +

(
1

4
− νx,m

)
ψx,−m,i,j +

(
1

4
+ νy,m

)
ψy,+m,i,j +

(
1

4
− νy,m

)
ψy,−m,i,j =

c

4π
φi,j . (3.2.64)

The equations (3.2.60) and (3.2.64) lead to the following equation in terms of incoming and outgoing face-
average angular fluxes:(

1

4
+ νx,m

)
ψx,+m,i,j +

(
1

4
− νx,m − γxm

)
ψx,−m,i,j

+

(
1

4
+ νy,m

)
ψy,+m,i,j +

(
1

4
− νy,m − γym

)
ψy,−m,i,j =∑

m′ 6=m

(
γxm′ψ

x,−
m′,i,j + γym′ψ

y,−
m′,i,j

)
. (3.2.65)

From Eq. (3.2.65) we get the following equations for iterative errors(
1 + 4νx,m

)
δψ

x,+(s)
m,i,j +

(
1 + 4νy,m

)
δψ

y,+(s)
m,i,j =(

4(νx,m + γxm)− 1
)
δψ

x,−(s−1)
m,i,j +

(
4(νy,m + γym)− 1

)
δψ

y,−(s−1)
m,i,j

+ 4
∑
m′ 6=m

(
γxm′ψ

x,−(s−1)
m′,i,j + γym′ψ

y,−(s−1)
m′,i,j

)
. (3.2.66)

The auxiliary condition is defined as

δψ
x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j = δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j . (3.2.67)

3.2.2.3 Fourier Analysis of S2 Case

In case of S2 quadrature set we have

M = 4 , wm = π , |Ωm,x| = |Ωm,y| =
1√
3
. (3.2.68)

The equations (3.2.54) lead to

p+
x δψ

x,+(s) + p−x δψ
x,−(s−1)
m,i,j + p+

y δψ
y,+(s)
m,i,j + p−y δψ

y,−(s−1)
m,i,j =

c̃
∑
m′ 6=m

(
δψ

x,+(s)
m′,i,j + δψ

x,−(s−1)
m′,i,j + δψ

y,+(s)
m′,i,j + δψ

y,−(s−1)
m′,i,j

)
, (3.2.69a)
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δψ
x,+(s)
m,i,j + δψ

x,−(s−1)
m,i,j = δψ

y,+(s)
m,i,j + δψ

y,−(s−1)
m,i,j , (3.2.69b)

where

c̃ =
1

4
c (3.2.70)

p±α = 1± 4να − c̃ , α = x, y , (3.2.71)

να =
1√

3σt∆α
. (3.2.72)

The matrix form of equations (3.2.69) is the following:

A2Dδ ~ψ
+(s) = B2Dδ ~ψ

−(s−1) , (3.2.73a)

δ ~ψ+ = (δψ1,i+1/2,j , δψ2,i−1/2,j , δψ3,i−1/2,j , δψ4,i+1/2,j ,

δψ1,i,j+1/2, δψ2,i,j+1/2, δψ3,i,j−1/2, δψ4,i,j−1/2)T , (3.2.73b)

δ ~ψ− = (δψ1,i−1/2,j , δψ2,i+1/2,j , δψ3,i+1/2,j , δψ4,i−1/2,j ,

δψ1,i,j−1/2, δψ2,i,j−1/2, δψ3,i,j+1/2, δψ4,i,j+1/2)T , (3.2.73c)

A2D =



p+
x −c̃ −c̃ −c̃ p+

y −c̃ −c̃ −c̃
−c̃ p+

x −c̃ −c̃ −c̃ p+
y −c̃ −c̃

−c̃ −c̃ p+
x −c̃ −c̃ −c̃ p+

y −c̃
−c̃ −c̃ −c̃ p+

x −c̃ −c̃ −c̃ p+
y

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


, (3.2.73d)

B2D =



−p−x c̃ c̃ c̃ −p−y c̃ c̃ c̃

c̃ −p−x c̃ c̃ c̃ −p−y c̃ c̃

c̃ c̃ −p−x c̃ c̃ c̃ −p−y c̃

c̃ c̃ c̃ −p−x c̃ c̃ c̃ −p−y
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1


. (3.2.73e)

Thus
δ ~ψ+(s) = T2Dδ ~ψ

−(s−1) , (3.2.74)

where
T2D = A−1

2DB2D . (3.2.75)

To carry out the Fourier analysis we introduce the following ansatz:

δψ
(s)
m,i+1/2,j = ωs(λ)ax,me

iσt(λxxi+1/2+λyyj) , (3.2.76a)

δψ
(s)
m,i,j+1/2 = ωs(λ)ay,me

iσt(λxxi+λyyj+1/2) (3.2.76b)
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considering a single Fourier error mode with arbitrary λx and λy. We apply (3.2.76) in Eqs. (3.2.69) taking
into account (3.2.50). As a result, we obtain the equation for ω given by(

ωÃ2D − B̃2D

)
~a = 0 , (3.2.77)

where ~a is the vector of coefficients of the Fourier expansion

~a = (ax,1, ax,2, ax,3, ax,4, ay,1, ay,2, ay,3, ay,4)T , (3.2.78)

the matrices are defined as

Ã2D =



p+
x e

iτx −c̃e−iτx −c̃e−iτx −c̃eiτx p+
y e

iτy −c̃eiτy −c̃e−iτy −c̃e−iτy
−c̃eiτx p+

x e
−iτx −c̃e−iτx −c̃eiτx −c̃eiτy p+

y e
iτy −c̃e−iτy −c̃e−iτy

−c̃eiτx −c̃e−iτx p+
x e
−iτx −c̃eiτx −c̃eiτy −c̃eiτy p+

y e
−iτy −c̃e−iτy

−c̃eiτx −c̃e−iτx −c̃e−iτx p+
x e

iτx −c̃eiτy −c̃eiτy −c̃e−iτy p+
y e
−iτy

eiτx 0 0 0 −eiτy 0 0 0
0 e−iτx 0 0 0 −eiτy 0 0
0 0 e−iτx 0 0 0 −e−iτy 0
0 0 0 eiτx 0 0 0 −e−iτy


, (3.2.79)

B̃2D =



−p−x e−iτx c̃eiτx c̃eiτx c̃e−iτx −p−y e−iτy c̃e−iτy c̃eiτy c̃eiτy

c̃e−iτx −p−x eiτx c̃eiτx c̃e−iτx c̃e−iτy −p−y e−iτy c̃eiτy c̃eiτy

c̃e−iτx c̃eiτx −p−x eiτx c̃e−iτx c̃e−iτy c̃e−iτy −p−y eiτy c̃eiτy

c̃e−iτx c̃eiτx c̃eiτx −p−x e−iτx c̃e−iτy c̃e−iτy c̃eiτy −p−y eiτy
−e−iτx 0 0 0 e−iτy 0 0 0

0 −eiτx 0 0 0 e−iτy 0 0
0 0 −eiτx 0 0 0 eiτy 0
0 0 0 −e−iτx 0 0 0 eiτy


,

(3.2.80)

τα =
1

2
λ̃α α = x, y , (3.2.81)

λ̃α = λασt∆α α = x, y . (3.2.82)

We note that (
Ã−1

2DB̃2D − ωI
)
~a = 0 , (3.2.83)

and hence ω is the eigenvalue of matrix T̃2D = Ã−1
2DB̃2D and ~a is the associated eigenvector.

If we consider the case of a spatially constant mode, i.e. λx = λy=0, then the matrix of Eq. (3.2.77)
has the following form:

ωÃ2D − B̃2D = ωA2D −B2D =

p+
x ω + p−x −c̃(ω + 1) −c̃(ω + 1) −c̃(ω + 1) p+

y ω + p−y −c̃(ω + 1) −c̃(ω + 1) −c̃(ω + 1)

−c̃(ω + 1) p+
x ω + p−x −c̃(ω + 1) −c̃(ω + 1) −c̃(ω + 1) p+

y ω + p−y −c̃(ω + 1) −c̃(ω + 1)

−c̃(ω + 1) −c̃(ω + 1) p+
x ω + p−x −c̃(ω + 1) −c̃(ω + 1) −c̃(ω + 1) p+

y ω + p−y −c̃(ω + 1)

−c̃(ω + 1) −c̃(ω + 1) −c̃(ω + 1) p+
x ω + p−x −c̃(ω + 1) −c̃(ω + 1) −c̃(ω + 1) p+

y ω + p−y
ω + 1 0 0 0 −(ω + 1) 0 0 0

0 ω + 1 0 0 0 −(ω + 1) 0 0
0 0 ω + 1 0 0 0 −(ω + 1) 0
0 0 0 ω + 1 0 0 0 −(ω + 1)


.

(3.2.84)
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Analysis of the matrix (3.2.84) shows that in this case ω = −1 is the eigenvalue of multiplicity 4 without
regard to the value of scattering ratio c, total cross section σt and cell dimensions ∆x and ∆y.

If λ̃x = λ̃y = π, then the matrix of Eq. (3.2.77) has the following form:

ωÃ2D − B̃2D =

p+
x ω − p−x c̃(ω − 1) c̃(ω − 1) c̃(1− ω) p+

y ω − p−y c̃(1− ω) c̃(ω − 1) c̃(ω − 1)

c̃(1− ω) p+
x ω − p−x c̃(ω − 1) c̃(1− ω) c̃(1− ω) p+

y ω − p−y c̃(ω − 1) c̃(ω − 1)

c̃(1− ω) c̃(ω − 1) p+
x ω − p−x c̃(1− ω) c̃(1− ω) c̃(1− ω) p+

y ω − p−y c̃(ω − 1)

c̃(1− ω) c̃(ω − 1) c̃(ω − 1) p+
x ω − p−x c̃(1− ω) c̃(1− ω) c̃(ω − 1) p+

y ω − p−y
ω − 1 0 0 0 1− ω 0 0 0

0 1− ω 0 0 0 1− ω 0 0
0 0 1− ω 0 0 0 ω − 1 0
0 0 0 ω − 1 0 0 0 ω − 1


.

(3.2.85)

In this case ω = 1 is the eigenvalue of multiplicity 4.
If λ̃x = λ̃y = π

2 , then the matrix of Eq. (3.2.77) has the following form:

ωÃ2D − B̃2D =

e
iπ
4 (p+xω−ip−x) −c̃e−iπ

4 (ω + i) −c̃e−iπ
4 (ω + i) −c̃ei

π
4 (ω − i) e

iπ
4 (p+yω−ip−y ) −c̃ei

π
4 (ω − i) −c̃e−iπ

4 (ω + i) −c̃e−iπ
4 (ω + i)

−c̃ei
π
4 (ω − i) e

−iπ
4 (p+xω+ip−x) −c̃e−iπ

4 (ω + i) −c̃ei
π
4 (ω − i) −c̃ei

π
4 (ω − i) e

iπ
4 (p+yω−ip−y ) −c̃e−iπ

4 (ω + i) −c̃e−iπ
4 (ω + i)

−c̃ei
π
4 (ω − i) −c̃e−iπ

4 (ω + i) e
−iπ

4 (p+xω+ip−x) −c̃ei
π
4 (ω − i) −c̃ei

π
4 (ω − i) −c̃ei

π
4 (ω − i) e

−iπ
4 (p+yω+ip−y ) −c̃e−iπ

4 (ω + i)

−c̃ei
π
4 (ω − i) −c̃e−iπ

4 (ω + i) −c̃e−iπ
4 (ω + i) e

iπ
4 (p+xω−ip−x) −c̃ei

π
4 (ω − i) −c̃ei

π
4 (ω + i) −c̃e−iπ

4 (ω + i) e
−iπ

4 (p+yω+ip−y )

e
iπ
4 (ω − i) 0 0 0 −ei

π
4 (ω − i) 0 0 0

0 e
−iπ

4 (ω + i) 0 0 0 −ei
π
4 (ω − i) 0 0

0 0 e
−iπ

4 (ω + i) 0 0 0 −e−iπ
4 (ω + i) 0

0 0 0 e
iπ
4 (ω − i) 0 0 0 −e−iπ

4 (ω + i)


.

(3.2.86)

In this case ω = ±i.
Thus, the spectral radius ρ2D ≥ 1. Further analysis of ω and ρ2D for various cases of c and optical

thickness of cells showed that the spectral radius doesn’t exceed 1 and hence

ρ2D = 1 . (3.2.87)

Tables 3.2.2-3.2.4 show eigenvalue ω for selected wave numbers for problems with c=0.1 and three
different cases of optical thicknesses of square cells (∆x = ∆y), namely, 0.1, 1, and 100. The eigenvalues
for high scattering ratio c=0.999 are listed in Tables 3.2.5-3.2.7. Figures 3.2.6-3.2.11 present plots of |ω|
versus

λ̃x = λxσt∆x , λ̃y = λyσt∆y (3.2.88)

in case c = 0.1, 0.9, 0.999 and σt∆x = σt∆y = 0.1, 1.
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3.2.2.4 Analysis of Eigenvectors

If ω = −1, then the matrix (3.2.84) gives rise to

ωÃ2D − B̃2D =

p−x − p+
x 0 0 0 p−y − p+

y 0 0 0

0 p−x − p+
x 0 0 0 p−y − p+

y 0 0

0 0 p−x − p+
x 0 0 0 p−y − p+

y 0

0 0 0 p−x − p+
x 0 0 0 p−y − p+

y

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (3.2.89)

and hence the equations for the eigenvector are the following:

(p−x − p+
x )ax,l + (p−y − p+

y )ay,l = 0 , l = 1, ..., 4 (3.2.90)

and hence
νxax,l + νyay,l = 0 , l = 1, ..., 4 . (3.2.91)

Thus, if ∆x = ∆y, then
ax,l = −ay,l , l = 1, ..., 4 . (3.2.92)

Analysis of the matrix (3.2.85) for ω = 1 leads to similar results.
If ω = i, then the matrix (3.2.86) gives rise to

ωÃ2D − B̃2D =

e
iπ
4 (p+x −p

−
x) −2c̃e

iπ
4 −2c̃e

−iπ
4 0 e

iπ
4 (p+y −p

−
y ) 0 −2c̃e

−iπ
4 −2c̃e

−iπ
4

0 e
−iπ

4 (p+x +p−x) −2c̃e
−iπ

4 0 0 e
iπ
4 (p+y −p

−
y ) −2c̃e

−iπ
4 −2c̃e

−iπ
4

0 −2c̃e
−iπ

4 e
−iπ

4 (p+x +p−x) 0 0 0 e
−iπ

4 (p+y +p−y ) −2c̃e
−iπ

4

0 −2c̃e
−iπ

4 −2c̃e
−iπ

4 e
iπ
4 (p+x −p

−
x) 0 −2c̃e

−iπ
4 −2c̃e

−iπ
4 e

−iπ
4 (p+y +p−y )

0 0 0 0 0 0 0 0

0 2c̃e
−iπ

4 0 0 0 0 0 0

0 0 2c̃e
−iπ

4 0 0 0 −2c̃e
−iπ

4 0

0 0 0 0 0 0 0 −2c̃e
−iπ

4


. (3.2.93)

The equations for the eigenvector are the following:

(p+
x − p−x )ax,1 + (p+

y − p−y )ay,1 = 0 , (3.2.94)

ax,l = ay,l = 0 , l = 2, 3, 4 , (3.2.95)

and hence
νxax,1 + νyay,1 = 0 , (3.2.96)

ax,l = ay,l = 0 , l = 2, 3, 4 , (3.2.97)

If ω = −i, then the matrix (3.2.86) gives rise to

ωÃ2D − B̃2D =

−ei
π
4 (p+x +p−x) 0 0 2c̃e

iπ
4 −ei

π
4 (p+y +p−y ) 2c̃e

iπ
4 0 0

2c̃e
iπ
4 −e−iπ

4 (p+x −p
−
x) 0 2c̃e

iπ
4 0 −ei

π
4 (p+y +p−y ) 0 0

2c̃e
iπ
4 0 −e−iπ

4 (p+x −p
−
x) 2c̃e

iπ
4 2c̃e

iπ
4 2c̃e

iπ
4 −e−iπ

4 (p+y −p
−
y ) 0

2c̃e
iπ
4 0 0 −ei

π
4 (p+x +p−x) −2c̃e

iπ
4 0 0 −e−iπ

4 (p+y −p
−
y )

−2c̃e
iπ
4 0 0 0 2c̃e

iπ
4 0 0 0

0 0 0 0 0 2c̃e
iπ
4 0 0

0 0 0 0 0 0 0 0

0 0 0 −2c̃e
iπ
4 0 0 0 0


.

(3.2.98)
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As a result we obtain the equations for the eigenvector

(p+
x − p−x )ax,3 + (p+

y − p−y )ay,3 = 0 , (3.2.99)

ax,l = ay,l = 0 , l = 1, 2, 4 , (3.2.100)

and hence
νxax,3 + νyay,3 = 0 , (3.2.101)

ax,l = ay,l = 0 , l = 1, 2, 4 . (3.2.102)

Tables 3.2.8-3.2.13 present calculated eigenvectors for some wave numbers in case c=0.1, 0.999.

3.2.2.5 Analysis of Iterative Error Modes of the Cell-Average Scalar Flux

We now analyze iterative errors in the cell-average scalar flux. We use Eq. (3.2.60) to get error in s-th
iterate in the following way:

δφ
(s)
i,j =

4π

c

∑
m

(γxmδψ
x,−(s−1)
m,i,j + γymδψ

y,−(s−1)
m,i,j ) , (3.2.103)

In S2 case we have
γαm = γα =

πηνα
1 + 2(νx + νy)

, (3.2.104)

η =
1

2π

[
1

c
− 1

1 + 2(νx + νy)

]−1

. (3.2.105)

Thus,

δφ
(s)
i,j =

4π

c

[
γx
(
δψ

(s−1)
1,i−1/2,j + δψ

(s−1)
2,i+1/2,j + δψ

(s−1)
3,i+1/2,j + δψ

(s−1)
4,i−1/2,j

)
+ γy

(
δψ

(s−1)
1,i,j−1/2 + δψ

(s−1)
2,i,j−1/2 + δψ

(s−1)
3,i,j+1/2 + δψ

(s−1)
4,i,j+1/2

)]
. (3.2.106)

This leads to

δφ
(s)
i,j =

4π

c
eiσt(λxxi+λyyj)ωs−1

[
γx
(

(ax,1 + ax,4)e−iτx + (ax,2 + ax,3)eiτx
)

+ γy
(

(ay,1 + ay,2)e−iτy + (ay,3 + ay,4)eiτy
)]
. (3.2.107)

In case λx = λy = 0 and the eigenvalue ω = −1 we have

δφ
(s)
i,j =

4π

c
eiσt(λxxi+λyyj)(−1)s−1γx

[ 4∑
m=1

ax,m +
νy
νx

4∑
m=1

ay,m

]
. (3.2.108)

Taking into account that components of the eigenvector meet Eq. (3.2.91), we get

δφ
(s)
i,j = 0 (3.2.109)

for an arbitrary rectangular grid. Similarly, we get that this is also true for ω = 1, λ̃x = λ̃y = π.
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If λ̃x = λ̃y = π
2 and ω = ±i we get

δφ
(s)
i,j =

4π

c
eiσt(λxxi+λyyj)(±i)s−1 1√

2
γx
[(

(ax,1 + ax,4)(1− i) + (ax,2 + ax,3)(1 + i)
)

+
νy
νx

(
(ay,1 + ay,2)(1− i) + (ay,3 + ay,4)(1 + i)

)]
. (3.2.110)

Using Eqs. (3.2.96) and (3.2.97) for ω = i and Eqs. (3.2.101) and (3.2.102) for ω = −i in Eq. (3.2.110),
we obtain that in each case

δφ
(s)
i,j = 0 (3.2.111)

for arbitrary rectangular cells.

3.2.2.6 Summary

The main results of the analysis of ITMM in 2D Cartesian geometry are the following:

1. The spectral radius of ITTM
ρ2D = sup

λx,λy

|ω(λx, λy)| = 1 ,

It does not depend on values of c, ∆x, ∆y.

2. The slowest convergent modes of the errors in the face-averaged angular fluxes associated with
|ω| = 1 are anisotropic. The dependence of the modes on the angular variable is given by the
following relations:

νxax,l + νyay,l = 0 , l = 1, ..., 4

for λx = λy = 0, ω = −1 and λx = λy = π, ω = 1,

νxax,1 + νyay,1 = 0 , ax,l = ay,l = 0 , l = 2, 3, 4

for λ̃x = λ̃y = π
2 , ω = i,

νxax,3 + νyay,3 = 0 , ax,l = ay,l = 0 , l = 1, 2, 4

for λ̃x = λ̃y = π
2 , ω = −i.

3. If |ω| = 1, then δφ(s)
i,j = 0 for any c, ∆x and ∆y. Thus, the error in the cell-averaged scalar flux

decreases.
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Table 3.2.2: Eigenvalues ωk for c=0.1, σt∆x = σt∆y = 0.1 (λ̃α = λασt∆α)

λ̃x λ̃y ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Re(ω) -1 -1 -1 -1 0.924981 0.916992 0.916992 0.916992
0 0 Im(ω) 0 0 0 0 0 0 0 0

Re(ω) -0.698636 -0.698636 -0.698193 -0.698193 0.659129 0.659129 0.656689 0.656689
0 π/2 Im(ω) 0.698637 -0.698637 -0.698193 0.698193 -0.659122 0.659122 -0.656689 0.656689

Re(ω) -0.809017 -0.809017 -0.992173 -0.991763 0.928244 0.924608 0.743481 0.743481
π/5 π/5 Im(ω) 0.587785 -0.587785 0 0 0 0 -0.540152 0.540152

Re(ω) 0 0 -0.959676 0.959676 0.957597 -0.957597 0 0
π/2 π/2 Im(ω) -1 1 0 0 0 0 0.918983 -0.918983

Re(ω) 1 1 1 1 -0.924981 -0.916992 -0.916992 -0.916992
π π Im(ω) 0 0 0 0 0 0 0 0

Table 3.2.3: Eigenvalues ωk for c=0.1, σt∆x = σt∆y = 1 (λ̃α = λασt∆α)

λ̃x λ̃y ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Re(ω) -1 -1 -1 -1 0.439148 0.395661 0.395661 0.395661
0 0 Im(ω) 0 0 0 0 0 0 0 0

Re(ω) -0.625022 -0.625022 -0.620826 -0.620826 0.333724 0.333724 0.318657 0.318657
0 π/2 Im(ω) -0.625153 0.625153 -0.620826 0.620826 -0.333123 0.333123 0.318657 -0.318657

Re(ω) -0.809017 -0.809017 -0.923312 -0.91931 0.451847 0.430389 0.328959 0.328959
π/5 π/5 Im(ω) -0.587785 0.587785 0 0 0 0 0.237846 -0.237846

Re(ω) 0 0 -0.64582 0.64582 0.629016 -0.629016 0 0
π/2 π/2 Im(ω) 1 -1 0 0 0 0 -0.405992 0.405992

Re(ω) 1 1 1 1 -0.439148 -0.395661 -0.395661 -0.39566
π π Im(ω) 0 0 0 0 0 0 0 0

Table 3.2.4: Eigenvalues ωk for c=0.1, σt∆x = σt∆y = 100 (λ̃α = λασt∆α)

λ̃x λ̃y ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Re(ω) -1 -1 -1 -1 -0.954855 -0.954855 -0.954855 -0.949964
0 0 Im(ω) 0 0 0 0 0 0 0 0

Re(ω) -0.977167 -0.977167 -2.607E-04 -2.607E-04 -0.977133 -2.909E-04 -2.909E-04 -0.974694
0 π/2 Im(ω) -2.607E-04 2.607E-04 0.977167 -0.977167 0 0.975913 -0.975913 0

Re(ω) -0.809017 -0.809017 -0.790755 -0.790755 -0.78982 -0.78982 -0.771451 -0.771451
π/5 π/5 Im(ω) -0.587785 0.587785 -0.574074 0.574074 -0.573347 0.573347 -0.560485 0.560485

Re(ω) 0 0 0 0 0 0 0 0
π/2 π/2 Im(ω) 1 -1 0.977167 -0.977167 -0.975982 0.975982 -0.953562 0.953562

Re(ω) 1 1 1 1 0.954855 0.954855 0.954855 0.949964
π π Im(ω) 0 0 0 0 0 0 0 0
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Table 3.2.5: Eigenvalues ωk for c=0.999, σt∆x = σt∆y = 0.1 (λ̃α = λασt∆α)

λ̃x λ̃y ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Re(ω) -1 -1 -1 -1 0.999913 0.916992 0.916992 0.916992
0 0 Im(ω) 0 0 0 0 0 0 0 0

Re(ω) -0.702565 -0.702565 -0.698193 -0.698193 0.681791 0.681791 0.656689 0.656689
0 π/2 Im(ω) -0.702701 0.702701 0.698193 -0.698193 -0.68102 0.68102 -0.656689 0.656689

Re(ω) -0.809017 -0.809017 -0.99587 -0.991763 0.961714 0.758905 0.758905 0.924608
π/5 π/5 Im(ω) 0.587785 -0.587785 0 0 0 -0.549512 0.549512 0

Re(ω) 0 0 0.978567 -0.978567 -0.957597 0.957597 0 0
π/2 π/2 Im(ω) -1 1 0 0 0 0 0.937035 -0.937035

Re(ω) 1 1 1 1 -0.999913 -0.916992 -0.916992 -0.916992
π π Im(ω) 0 0 0 0 0 0 0 0

Table 3.2.6: Eigenvalues ωk for c=0.999, σt∆x = σt∆y = 1 (λ̃α = λασt∆α)

λ̃x λ̃y ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Re(ω) -1 -1 -1 -1 0.999134 0.395661 0.395661 0.395661
0 0 Im(ω) 0 0 0 0 0 0 0 0

Re(ω) -0.657136 -0.657136 -0.620826 -0.620826 0.505835 0.505835 0.318657 0.318657
0 π/2 Im(ω) -0.670439 0.670439 0.620826 -0.620826 -0.438959 0.438959 0.318657 -0.318657

Re(ω) -0.809017 -0.809017 -0.959487 -0.91931 0.823164 0.387908 0.387908 0.430389
π/5 π/5 Im(ω) -0.587785 0.587785 0 0 0 -0.218091 0.218091 0

Re(ω) 0 0 -0.811703 0.811703 -0.629016 0.629016 0 0
π/2 π/2 Im(ω) 1 -1 0 0 0 0 -0.487234 0.487234

Re(ω) 1 1 1 1 -0.999134 -0.395661 -0.395661 -0.395661
π π Im(ω) 0 0 0 0 0 0 0 0

Table 3.2.7: Eigenvalues ωk for c=0.999, σt∆x = σt∆y = 100 (λ̃α = λασt∆α)

λ̃x λ̃y ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Re(ω) -1 -1 -1 -1 -0.954855 -0.954855 -0.954855 0.916992
0 0 Im(ω) 0 0 0 0 0 0 0 0

Re(ω) -0.489195 -0.489195 -0.977167 -2.607E-04 -2.607E-04 -0.977167 -0.977161 0.936619
0 π/2 Im(ω) 0.846985 -0.846985 -2.607E-04 -0.977167 0.977167 2.607E-04 0 0

Re(ω) -0.809017 -0.809017 -0.790755 -0.790755 -0.971274 0.567405 -0.78172 0.922572
π/5 π/5 Im(ω) 0.587785 -0.587785 0.574074 -0.574074 0 -0.78172 -0.567405 0

Re(ω) 0 0 0 0 0 0 0.946599 -0.946599
π/2 π/2 Im(ω) -1 1 -0.977167 0.977167 -0.965949 0.965949 0 0

Re(ω) 1 1 1 1 0.954855 0.954855 0.954855 -0.916992
π π Im(ω) 0 0 0 0 0 0 0 0
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Table 3.2.8: Eigenvectors ~a for c=0.1, σt∆x = σt∆y = 1, λ̃x = λ̃y=0

k ωk ax,1 ax,2 ax,3 ax,4 ay,1 ay,2 ay,3 ay,4
1 -1 1.784E-01 1.441E-01 -6.689E-01 -2.411E-03 -1.784E-01 -1.441E-01 6.689E-01 2.411E-03
2 -1 3.553E-01 5.712E-01 2.179E-01 0.000E+00 -3.553E-01 -5.712E-01 -2.179E-01 0.000E+00
3 -1 -5.847E-01 3.911E-01 -7.169E-02 -7.886E-04 5.847E-01 -3.911E-01 7.169E-02 7.886E-04
4 -1 4.369E-05 -9.278E-04 2.361E-03 -7.071E-01 -4.369E-05 9.278E-04 -2.361E-03 7.071E-01
5 4.391E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01
6 3.957E-01 -1.468E-01 -4.251E-02 -3.842E-01 5.736E-01 -1.468E-01 -4.251E-02 -3.842E-01 5.736E-01
7 3.957E-01 -1.057E-01 -5.213E-01 4.148E-01 2.122E-01 -1.057E-01 -5.213E-01 4.148E-01 2.122E-01
8 3.957E-01 5.850E-01 -3.185E-01 -2.352E-01 -3.138E-02 5.850E-01 -3.185E-01 -2.352E-01 -3.138E-02

Table 3.2.9: Eigenvectors ~a for c=0.1, σt∆x = σt∆y = 1, λ̃x = λ̃y = π
2

k ωk ax,1 ax,2 ax,3 ax,4
1 i 0.707107 0 0 0
2 -i 0 0 -0.707107 0
3 -0.64582 2.8219E-4 +i1.18733E-2 -0.45561-i0.205617 -5.1413E-3+i1.07062E-2 0.499859
4 0.64582 2.8219E-4 -i1.18733E-2 0.45561 -i0.205617 5.1413E-3+i1.07062E-2 0.499859
5 0.629016 0 0.450694 -i0.216506 0 -0.5
6 -0.629016 0 -0.450694 -i0.216507 0 -0.5
7 -i0.405992 0.706768 i1.83158E-2 i9.10803 E-3 -7.73811E-3
8 i0.405992 -i9.10803 E-3 -7.73811E-3 0.706768 -i1.83158E-2

k ωk ay,1 ay,2 ay,3 ay,4
1 i -0.707107 0 0 0
2 -i 0 0 0.707107 0
3 -0.64582 2.8219E-4 +i1.18733E-2 0.499859 -5.1413E-3+i1.07062E-2 -0.45561-i0.205617
4 0.64582 2.8219E-4 -i1.18733E-2 0.499859 5.1413E-3+i1.07062E-3 0.45561-i0.205618
5 0.629016 0 0.5 0 -0.450694 -i0.216506
6 -0.629016 0 0.5 0 0.450694 +i0.216507
7 -i0.405992 0.706768 -7.73811E-3 i9.10803 E-3 i1.83158E-2
8 i0.405992 -i9.10803 E-3 -i1.83158E-2 0.706768 -7.73811E-3

Table 3.2.10: Eigenvectors ~a for c=0.1, σt∆x = σt∆y = 1, λ̃x = λ̃y = π

k ωk ax,1 ax,2 ax,3 ax,4 ay,1 ay,2 ay,3 ay,4
1 1 -5.182E-01 3.993E-01 -1.306E-01 -2.345E-01 5.182E-01 3.993E-01 1.306E-01 -2.345E-01
2 1 -7.071E-01 4.375E-17 1.464E-18 -2.982E-19 7.071E-01 6.378E-17 2.304E-18 1.924E-18
3 1 3.359E-01 -2.559E-01 -5.635E-01 -6.463E-02 -3.359E-01 -2.559E-01 5.635E-01 -6.463E-02
4 1 -5.596E-01 4.302E-01 1.831E-02 3.729E-02 5.596E-01 4.302E-01 -1.831E-02 3.729E-02
5 -0.439148 3.536E-01 -3.536E-01 -3.536E-01 3.536E-01 3.536E-01 3.536E-01 -3.536E-01 -3.536E-01
6 -0.395661 1.173E-01 -4.783E-01 4.979E-01 -9.765E-02 1.173E-01 4.783E-01 4.979E-01 9.765E-02
7 -0.395661 4.794E-02 -4.967E-01 4.583E-02 -4.989E-01 4.794E-02 4.967E-01 4.583E-02 4.989E-01
8 -0.395661 5.512E-01 -4.593E-02 3.874E-01 -2.097E-01 5.512E-01 4.593E-02 3.874E-01 2.097E-01
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Table 3.2.11: Eigenvectors ~a for c=0.999, σt∆x = σt∆y = 1, λ̃x = λ̃y=0

k ωk ax,1 ax,2 ax,3 ax,4 ay,1 ay,2 ay,3 ay,4
1 -1 6.939E-17 1.479E-02 4.103E-01 -5.757E-01 0.000E+00 -1.479E-02 -4.103E-01 5.757E-01
2 -1 1.388E-17 -2.075E-02 -5.754E-01 -4.105E-01 -1.180E-16 2.075E-02 5.754E-01 4.105E-01
3 -1 -4.028E-02 7.055E-01 -2.544E-02 -1.041E-17 4.028E-02 -7.055E-01 2.544E-02 0.000E+00
4 -1 -7.060E-01 -4.025E-02 1.452E-03 -2.602E-18 7.060E-01 4.025E-02 -1.452E-03 0.000E+00
5 9.991E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01
6 3.957E-01 5.696E-01 -3.666E-01 -2.029E-01 2.776E-17 5.696E-01 -3.666E-01 -2.029E-01 0.000E+00
7 3.957E-01 -2.156E-01 -4.482E-01 2.047E-01 4.591E-01 -2.156E-01 -4.482E-01 2.047E-01 4.591E-01
8 3.957E-01 6.422E-02 -1.993E-01 5.403E-01 -4.053E-01 6.422E-02 -1.993E-01 5.403E-01 -4.053E-01

Table 3.2.12: Eigenvectors ~a for c=0.999, σt∆x = σt∆y = 1, λ̃x = λ̃y = π
2

k ωk ax,1 ax,2 ax,3 ax,4
1 i -0.707107 0 0 0
2 -i 0 0 0.707107 0
3 -0.811703 -4.65483E-2 -i0.100065 0.487668 2.49754E-2+i1.07099E-2 -0.477245+i0.100287
4 0.811703 2.49754 E-2 -i0.107499 0.477245 -i0.100287 4.65483E-3+i0.100065 0.487668
5 -0.629016 0 0.450694 -i0.216506 0 -0.5
6 0.629016 0 0.450694 -i0.216507 0 -0.5
7 -i0.487234 0.685981 i0.147576 i7.11496E-2 -5.08811E-2
8 i0.487234 -i7.11496 E-2 -5.08811E-2 0.685981 -i0.147576

k ωk ay,1 ay,2 ay,3 ay,4
1 i 0.707107 0 0 0
2 -i 0 0 -0.707107 0
3 -0.811703 -4.65483E-2 -i0.100065 -0.477245+i0.100287 2.49754E-2+i1.07099E-2 0.487668
4 0.811703 2.49754 E-2 -i0.107499 0.487668 4.65483E-3+i0.100065 0.477245 -i0.100287
5 -0.629016 0 0.5 0 -0.450694 +i0.216506
6 0.629016 0 0.5 0 0.450694 +i0.216507
7 -i0.487234 0.685981 -5.08811E-2 i7.11496 E-2 i0.147576
8 i0.487234 -i7.11496 E-2 -i0.147576 0.685981 -5.08811E-2

Table 3.2.13: Eigenvectors ~a for c=0.999, σt∆x = σt∆y = 1, λ̃x = λ̃y = π

k ωk ax,1 ax,2 ax,3 ax,4 ay,1 ay,2 ay,3 ay,4
1 1 1.883E-01 4.825E-01 -4.714E-01 9.720E-02 -1.883E-01 4.825E-01 4.714E-01 9.720E-02
2 1 -7.071E-01 -4.337E-19 8.457E-18 -3.730E-17 7.071E-01 -8.457E-18 -1.019E-17 1.540E-17
3 1 -3.498E-01 5.029E-01 3.513E-01 3.596E-02 3.498E-01 5.029E-01 -3.513E-01 3.596E-02
4 1 2.727E-01 -2.800E-01 -9.213E-02 5.820E-01 -2.727E-01 -2.800E-01 9.213E-02 5.820E-01
5 -0.999134 -3.536E-01 3.536E-01 3.536E-01 -3.536E-01 -3.536E-01 -3.536E-01 3.536E-01 3.536E-01
6 -0.395661 3.022E-01 -3.920E-01 4.307E-01 -2.636E-01 3.022E-01 3.920E-01 4.307E-01 2.636E-01
7 -0.395661 1.771E-01 -7.256E-02 5.897E-01 3.401E-01 1.771E-01 7.256E-02 5.897E-01 -3.401E-01
8 -0.39566 6.124E-01 2.041E-01 2.041E-01 -2.041E-01 6.124E-01 -2.041E-01 2.041E-01 2.041E-01

20



(a) |ω1| (b) |ω2|

(c) |ω3| (d) |ω4|

(e) |ω5| (f) |ω6|

(g) |ω7| (h) |ω8|

Figure 3.2.6: ω(λ̃x, λ̃y) for 2D, c = 0.1, σt∆x=σt∆y=0.1

21



(a) |ω1| (b) |ω2|

(c) |ω3| (d) |ω4|

(e) |ω5| (f) |ω6|

(g) |ω7| (h) |ω8|

Figure 3.2.7: ω(λ̃x, λ̃y) for 2D, c = 0.1, σt∆x=σt∆y=1
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(a) |ω1| (b) |ω2|

(c) |ω3| (d) |ω4|

(e) |ω5| (f) |ω6|

(g) |ω7| (h) |ω8|

Figure 3.2.8: ω(λ̃x, λ̃y) for 2D, c = 0.9, σt∆x=σt∆y=0.1
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(a) |ω1| (b) |ω2|

(c) |ω3| (d) |ω4|

(e) |ω5| (f) |ω6|

(g) |ω7| (h) |ω8|

Figure 3.2.9: ω(λ̃x, λ̃y) for 2D, c = 0.9, σt∆x=σt∆y=1
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(a) |ω1| (b) |ω2|

(c) |ω3| (d) |ω4|

(e) |ω5| (f) |ω6|

(g) |ω7| (h) |ω8|

Figure 3.2.10: ω(λ̃x, λ̃y) for 2D, c = 0.999, σt∆x=σt∆y=0.1
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(a) |ω1| (b) |ω2|

(c) |ω3| (d) |ω4|

(e) |ω5| (f) |ω6|

(g) |ω7| (h) |ω8|

Figure 3.2.11: ω(λ̃x, λ̃y) for 2D, c = 0.999, σt∆x=σt∆y=1
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3.2.3 3D Cartesian Geometry

3.2.3.1 Formulation of the Computational Method

The DD method in 3D Cartesian geometry is defined as follows:∑
α=x,y,z

να,m(ψα,+m,i,j,k − ψ
α,−
m,i,j,k) + ψm,i,j,k =

1

4π

(
cφi,j,k +

q

σt

)
, (3.2.112a)

ψm,i,j,k =
1

2

(
ψα,+m,i,j,k + ψα,−m,i,j,k

)
, α = x, y, z , (3.2.112b)

φi,j,k =
M∑
m=1

ψm,i,j,kwm , (3.2.112c)

να,m =
|Ωα,m|
σt∆α

, c =
σs
σt
, (3.2.113)

Ωx,m>0, Ωy,m>0, Ωz,m > 0 : ψx,±m,i,j,k=ψm,i±1/2,j,k, ψ
y,±
m,i,j,k=ψm,i,j±1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k±1/2,

(3.2.114a)
Ωx,m<0, Ωy,m>0, Ωz,m> 0: ψx,±m,i,j,k=ψm,i∓1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j±1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k±1/2,

(3.2.114b)
Ωx,m<0, Ωy,m<0, Ωz,m> 0: ψx,±m,i,j,k=ψm,i∓1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j∓1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k±1/2,

(3.2.114c)
Ωx,m>0, Ωy,m<0, Ωz,m>0 : ψx,±m,i,j,k=ψm,i±1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j∓1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k±1/2,

(3.2.114d)
Ωx,m>0, Ωy,m>0, Ωz,m<0 : ψx,±m,i,j,k=ψm,i±1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j±1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k∓1/2,

(3.2.114e)
Ωx,m<0, Ωy,m>0, Ωz,m<0 : ψx,±m,i,j,k=ψm,i∓1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j±1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k∓1/2,

(3.2.114f)
Ωx,m<0, Ωy,m<0, Ωz,m<0 : ψx,±m,i,j,k=ψm,i∓1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j∓1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k∓1/2,

(3.2.114g)
Ωx,m>0, Ωy,m<0, Ωz,m<0 : ψx,±m,i,j,k=ψm,i±1/2,j,k, ψ

y,±
m,i,j,k=ψm,i,j∓1/2,k, ψ

z,±
m,i,j,k=ψm,i,j,k∓1/2.

(3.2.114h)
The ITMM equations for iterative errors are the following:∑

α=x,y,z

να,m

(
δψ

α,+(s)
m,i,j,k − δψ

α,−(s−1)
m,i,j,k

)
+ δψ

(s)
m,i,j,k =

1

4π
cδφ

(s)
i,j,k , (3.2.115a)

δψ
(s)
m,i,j,k =

1

2

(
δψ

α,+(s)
m,i,j + δψ

α,−(s−1)
m,i,j

)
, α = x, y, z , (3.2.115b)

m = 1, ...,M ,

δφ
(s)
i,j,k =

M∑
m=1

δψ
(s)
m,i,j,kwm . (3.2.115c)

The system of equations for the iterative errors in face-averaged angular fluxes is given by∑
α=x,y,z

(
p+
α,mδψ

α,+(s)
m,i,j,k + p−α,mδψ

α,−(s−1)
m,i,j,k

)
=

c

4π

∑
m′ 6=m

wm′
∑
α′ 6=α

(
δψ

α,+(s)
m,i,j,k + δψ

α,−(s−1)
m,i,j,k

)
, (3.2.116a)
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δψ
α,+(s)
m,i,j + δψ

α,−(s−1)
m,i,j,k = δψ

α′,+(s)
m,i,j,k + δψ

α′,−(s−1)
m,i,j,k , α, α′ = x, y, z, α′ 6= α , (3.2.116b)

m = 1, ...,M ,

where
p±α,m = 1± 6να,m −

cwm
4π

, α = x, y, z . (3.2.117)

3.2.3.2 Fourier Analysis of S2 Case

We now consider S2 case:
M = 8 , wm =

π

2
, |Ωm,α| = Ω∗ . (3.2.118)

The equations (3.2.116) give rise to∑
α=x,y,z

(
p+
α δψ

α,+(s)
m,i,j,k + p−α δψ

α,−(s−1)
m,i,j,k

)
= c̃

∑
m′ 6=m

∑
α′ 6=α

(
δψ

α,+(s)
m,i,j,k + δψ

α,−(s−1)
m,i,j,k

)
, (3.2.119a)

δψ
α,+(s)
m,i,j + δψ

α,−(s−1)
m,i,j,k = δψ

α′,+(s)
m,i,j,k + δψ

α′,−(s−1)
m,i,j,k , α, α′ = x, y, z, α′ 6= α , (3.2.119b)

m = 1, ..., 8 ,

where

c̃ =
1

8
c , (3.2.120)

p±α = 1± 6να − c̃ , να =
Ω∗

σt∆α
, α = x, y, z . (3.2.121)

We consider a single Fourier error mode with arbitrary λx, λy, and λz and introduce the Fourier ansatz of
the following form:

δψ
α,+(s)
m,i,j,k = ωs(λ)am,αe

iσt(λααn+λα′α
′
n′+λα′′α

′′
n′′ )ei0.5σtλαχ

+
α,m∆α , (3.2.122a)

δψ
α,−(s)
m,i,j,k = ωs(λ)am,αe

iσt(λααn+λα′α
′
n′+λα′′α

′′
n′′ )ei0.5σtλαχ

−
α,m∆α , (3.2.122b)

where
for α = x : n = i , α′ = y , n′ = j , α′′ = z , n′′ = k , (3.2.123a)

for α = y : n = j , α′ = x , n′ = i , α′′ = z , n′′ = k , (3.2.123b)

for α = z : n = k , α′ = x , n′ = i , α′′ = y , n′′ = j , (3.2.123c)

χ±x,1 = ±1 , χ±x,2 = ∓1 , χ±x,3 = ∓1 , χ±x,4 = ±1 , (3.2.124a)

χ±x,5 = ±1 , χ±x,6 = ∓1 , χ±x,7 = ∓1 , χ±x,8 = ±1 , (3.2.124b)

χ±y,1 = χ±y,2 = ±1 , χ±y,3 = χ±y,4 = ∓1 , (3.2.124c)

χ±y,5 = χ±y,6 = ±1 , χ±y,7 = χ±y,8 = ∓1 , (3.2.124d)

χ±z,1 = χ±z,2 = χ±z,3 = χ±z,4 = ±1 , (3.2.124e)

χ±z,5 = χ±z,6 = χ±z,7 = χ±z,8 = ∓1 . (3.2.124f)
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This ansatz is similar to one in 2D geometry given by Eq. (3.2.76). Introducing Eq. (3.2.122) into Eq.
(3.2.119), we obtain the system of equations for the eigenvalue ω and associated eigenvector

~a = (ax,1, ..., ax,8, ay,1, ..., ay,8, az,1, ..., az,8)T (3.2.125)

of the following form:

∑
α=x,y,z

(
ωp+

α e
i0.5σtλαχ

+
α,m∆α + p−α e

i0.5σtλαχ
−
α,m∆α

)
am,α =

c̃
∑
m′ 6=m

∑
α′ 6=α

(
ωe

i0.5σtλα′χ
+
α′,m′∆α

′
+ e

i0.5σtλα′χ
−
α′,m′∆α

′
)
am′,α′ , (3.2.126a)

(
ωei0.5σtλβχ

+
β,m∆β + ei0.5σtλβχ

−
β,m∆β

)
am,β

−
(
ωe

i0.5σtλβ′χ
+
β′,m∆β′

+ e
i0.5σtλβ′χ

−
β′,m∆β′

)
am,β′ , β′ 6= β , β, β′ = x, y, z , (3.2.126b)

m = 1, ..., 8 .

The eigenvalue is complex in general case. The results of Fourier analysis in 3D are similar to the
results in 2D geometry.

ρ3D = sup
λx,λy ,λz

|ω(λx, λy, λz)| = 1 (3.2.127)

without regard to values of scattering ratio c, total cross section σt and cell sizes ∆x, ∆y, and ∆z. For
example, the Fourier analysis of the spatially flat mode, i.e., λx = λy = λz = 0 in case σt=0.6, c=1

6 ,
∆x = ∆y = ∆z = 1 showed that there are three different eigenvalues

• ω1=-1 is the eigenvalue of multiplicity 16,

• ω2=0.704736 is the eigenvalue of multiplicity 1.

• ω3=0.704732 is the eigenvalue of multiplicity 7.

These eigenvalues were also observed in numerical calculations of the corresponding test problem. The
eigenvector ~a associated with ω2=0.704736 is constant and hence the corresponding Fourier mode is
isotropic in angle. The slowest converging harmonic associated with ω1 is anisotropic and alternating sign.
Further analysis showed that the spectral radius ρ3D equals unity for any values of total cross section σt,
scattering ratio c, mesh size ∆x, ∆y, ∆z.

3.2.3.3 Summary

The main result of the analysis of ITMM in 3D Cartesian geometry is that the spectral radius

ρ3D = 1 .

It does not depend on values of c, ∆x, ∆y, ∆z.
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