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Abstract

This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with orig-

inal termination date of April 31, 2013, which has been extended to April 31, 2014. Section II

describes the frequency-dependent attenuation and elasticity in unconsolidated earth materials

via the normal mode decomposition of the e↵ective mass and the e↵ect of stress and damping.

Section III investigates the pair fluctuation analysis of the elastic moduli of granular materials.

Section IV explains the studies of microstructure of packings of particles ranging from spherical

to non-spherical shapes, with adhesion, friction and in any dimensions. We conclude with a list of

talks given under the support of this grant, a list of papers published and submitted, the list of

personnel, and we attach all the papers published under this grant.
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I. PROGRAM SCOPE

The goal of this project is to develop a theoretical and experimental understanding of

sound propagation, elasticity and dissipation in granular materials. The topic is relevant

for the e�cient production of hydrocarbon and for identifying and characterizing the un-

derground formation for storage of either CO2 or nuclear waste material. Furthermore, un-

derstanding the basic properties of acoustic propagation in granular media is of importance

not only to the energy industry, but also to the pharmaceutical, chemical and agricultural

industries. We employ a set of experimental, theoretical and computational tools to develop

a study of acoustics and dissipation in granular media. These include the concept e↵ective

mass of granular media, normal modes analysis, statistical mechanics frameworks and nu-

merical simulations based on Discrete Element Methods. E↵ective mass measurements allow

us to study the mechanisms of the elastic response and attenuation of acoustic modes in

granular media. We perform experiments and simulations under varying conditions, includ-

ing humidity and vacuum, and di↵erent interparticle force-laws to develop a fundamental

understanding of the mechanisms of damping and acoustic propagation in granular media.

A theoretical statistical approach studies the necessary phase space of configurations in

pressure, volume fraction to classify granular materials.

We have developed a theory to predict the e↵ective mass of granular media in terms the

normal-mode spectrum of finite-sized granular systems. The theoretical formalism allows

the interpretation of the e↵ective mass experiments performed in our lab to perform a micro-

scopic investigation of the origin of dissipation and elasticity properties in granular matter.

The main goal is to derive expressions of the e↵ective mass in terms of the complex valued

normal modes of the confined granular medium. A pole-decomposition has been derived

that allows us to obtain the normal mode spectrum from direct experimental measurement

of the e↵ective mass. The spectrum allows us to determine the precise dissipative properties

of the medium. In a recent application we have shown a markedly increase of the damping

rate of each normal mode with the humidity of the medium relevant to our measurements.

We developed the theory for weakly and strongly damped medium to make contact with

experimental results. This theory accurately predicts the frequencies, widths, and relative

amplitudes of the various flexural mode resonances observed with rectangular bars, each

having a cavity filled with loose tungsten granules. A set of computer simulations has been
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performed to test the theory and finds agreement with theoretical and experimental results.

II. NORMAL MODE SPECTRUM OF GRANULAR SYSTEMS AND THE EF-

FECTIVE MASS

Below we explain the use of the newly developed concept of e↵ective mass of granular

matter to develop a theoretical, numerical and experimental understanding of sound prop-

agation, elasticity and dissipation in granular materials.

A. Theory: normal mode analysis.

From the theoretical perspective [1], we have analyzed the acoustic response of a cavity

filled with a loose granular material and derived expressions of the e↵ective mass in terms of

the complex valued normal modes of the confined granular medium. The theory accurately

predicts the frequencies, widths, and relative amplitudes of the various mode resonances.

We are able to decompose the e↵ective mass into a sum over the contributions from each of

the normal modes of the granular medium. Our results indicate that increasing either the

viscosity or the humidity, as the case may be, does markedly increase the damping rate of

each normal mode relevant to our measurements. However, there is appreciable damping

even in the absence of any macroscopic film. With a notable exception in the case of large

humidity, all the relevant modes are weakly damped in the sense of a microscopic theory

based on damped contact forces between rigid particles.

B. Stress dependent normal modes of granular materials

We investigate the attenuation properties of granular materials by measuring the e↵ective

mass of a cavity filled with grains from a experimental and numerical approach using Discrete

Element Methods to simulate a jammed packing of spherical particles [2]. A set of computer

simulations are performed to test the normal mode theory and experimental results for the

e↵ective mass of a granular medium and finds agreement with theoretical and experimental

results.

Our work shows the first experimental evidence of criticality at the jamming transition of
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granular matter in terms of the scaling of normal modes from the e↵ective mass of granular

matter. Specifically, we show how the critical hypothesis at the jamming transition can be

tested in a controlled laboratory experiment depicting a true thermodynamic transition char-

acterizing jammed matter. Our experiment clearly shows that even though granular matter

is athermal, i.e. there is no random thermal motion, the system displays the properties of a

thermodynamic critical point at the jamming transition.

We developed a experiment in a realistic scenario involving frictional and dissipative

granular materials [2]. To that end, we adapted an experimental technique to measure the

normal modes of the granular medium: the stress and frequency-dependent e↵ective mass.

Previously, the normal modes were measured only numerically from diagonalization of the

dynamical matrix. However, this technique was not successful at solving the experiment

since the interparticle potential defining the matrix is not available in practice. The technical

novelty of our work resides in the introduction of the e↵ective mass technique which allows

to investigate not only the normal modes of the system but also other mechanical properties

of the jamming transition.

To that end, we developed a novel theoretical framework valid to extract the normal

modes from a pole decomposition of the e↵ective mass, which we show to be exact. From

the pole decomposition, the characteristic normal mode frequency was extracted and then

studied as a function of the external pressure. The results are plotted in Fig. 1 and show

scaling behavior in terms of critical exponent ⌦.

Our work shows strong evidence that the jamming transition (J-point) is indeed a critical

point in this realistic experimental system involving friction and dissipative forces. An

additional crucial result also emerges: the critical exponent ⌦ characterizing the jamming

transition is significantly smaller than the prediction of theory for ideal frictionless spheres

⌦ = 1/2. We interpret this result as a new universality class in frictional and dissipative

jammed matter. Thus, our experiments not only demonstrate the critical hypothesis, but

also open new theoretical challenges to explain the anomalous value of the critical exponent

defining the jamming transition.

Our results have implications not only for granular matter but also for out-of-equilibrium

systems ranging from structural glasses to spin-glasses, and other soft materials like colloids

and compressed emulsions. All these systems present a jamming transition via structural

arrest (or glass transition) which is believed to be controlled by the common critical point of
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FIG. 1: E↵ective mass of tungsten particles in a cavity as a function of driving frequency: (a)

Real part M1(!), and (b) Imaginary part, M2(!), plotted for the indicated external stresses. We

calculate M̃ for 13 stresses between � = 44.8 kPa and 6.39 MPa and show six curves as indicated

for clarity. All datasets are available at http://jamlab.org. (c)-(d) Data collapse of M1(!) and

M2(!) according to the scaling scenario.

jamming. The present e↵ective mass technique and pole decomposition can be extended to

investigate these generic jammed systems as well. Thus, our results will be of great interest to

the broad experimental community of physicists interested in these non-equilibrium systems.
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C. Frequency-dependent attenuation and elasticity in unconsolidated earth ma-

terials: e↵ect of damping

We use the Discrete Element Method (DEM) to understand the underlying attenuation

mechanism in granular media, with special applicability to the measurements of the so-called

e↵ective mass developed earlier. Results are reported in [3]. We consider that the particles

interact via Hertz-Mindlin elastic contact forces and that the damping is describable as a

force proportional to the velocity di↵erence of contacting grains. We determine the behavior

of the complex-valued normal mode frequencies using 1) DEM, 2) direct diagonalization of

the relevant matrix, and 3) a numerical search for the zeros of the relevant determinant.

All three methods are in strong agreement with each other. The real and the imaginary

parts of each normal mode frequency characterize the elastic and the dissipative properties,

respectively, of the granular medium. We demonstrate that, as the interparticle damping,

⇠, increases, the normal modes exhibit nearly circular trajectories in the complex frequency

plane and that for a given value of ⇠ they all lie on or near a circle of radius R centered on

the point �iR in the complex plane, where R / 1/⇠ (see Fig. 2). We show that each normal

mode becomes critically damped at a value of the damping parameter ⇠ ⇡ 1/!0
n, where

!0
n is the (real-valued) frequency when there is no damping. The strong indication is that

these conclusions carry over to the properties of real granular media whose dissipation is

dominated by the relative motion of contacting grains. For example, compressional or shear

waves in unconsolidated dry sediments can be expected to become overdamped beyond a

critical frequency, depending upon the strength of the intergranular damping constant.

D. Experiments

We have analyzed the acoustic response of a structure that contains a cavity filled with a

loose granular material experimentally [4]. We have measured the e↵ects of adsorbed films

on the attenuative properties of loose granular media occupying a finite sized rigid container,

which is open on the top. We measure the e↵ective mass, M(w), of loose tungsten particles

prepared under two di↵erent sets of conditions: 1) We lightly coat tungsten grains with a

fixed volume fraction of silicone oil (PDMS), where the liquid viscosity is varied for individual

realizations. 2) In the other set of experiments we vary the humidity. Inasmuch as the
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FIG. 2: Locus of all the complex-valued normal mode frequencies of our large system for four

di↵erent values of the damping parameter, ⇠. The normal modes are calculated via the solution

of the dynamical matrix. Also shown are the trajectories of three of the normal mode frequencies

as ⇠ is varied from low to high values. The frequencies approximately follow circular trajectories.

The stated values for ⇠ are in millisec.

dominant mechanism for damping is due to adsorbed water at the grain-grain contacts, the

significant e↵ects of humidity on both the e↵ective mass of the granular medium as well as

on the response of the grain-loaded bars are monitored. Here, depending upon the humidity

and the preparation protocol, it is possible to observe one, two, or three distinct resonances

in a wide frequency range (15 kHz) over which the empty bar has but one resonance. These

e↵ects are understood in terms of the theoretical framework, which may simplify in terms

of perturbation theories.

III. IRREVERSIBLE INCREMENTAL BEHAVIOR IN A GRANULAR MATE-

RIAL

In a collaboration with Prof. J. Jenkins from Department of Theoretical and Applied

Mechanics, Cornell University, and Prof. Luigi La Ragione from Dipartimento di Ingegneria

Civile e Ambientale, Politecnico di Bari, we are investigating the properties of isotropically

compressed dense packings of spheres with the goal of capturing the relevant state variables

to develop a theoretical framework for the e↵ective bulk and shear moduli and dissipation

in granular packings [5].
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IV. STATISTICAL MECHANICS APPROACH TO CHARACTERIZE GRANU-

LAR MEDIA AND THE RESPONSE FUNCTIONS

We have studied the structural properties determining the elastic response of granular

media using a statistical mechanics approach based on the volume ensemble for granular

materials.

A statistical theory of volume fluctuations has been developed based on the calculation

of the Voronoi volume of a single particle in a packing [6] and a coarse-grained free volume

fraction [7]. This allows the application of statistical mechanics to predict the structural

properties of the granular aggregate. Our calculations reproduce the limiting densities of

RCP and RLP [7], the entropy of the packing [8] as well as the distribution of volumes and

coordination number [9]. The calculations have been extended to 2d packings [10]. We are

investigating how the micro-structure described by the theory determines the elastic response

and the vibrational density of states of the granular packing from the lowest densities of RLP

up to crystallization at FCC [11]. The e↵ect of the particles polydispersivity is investigated

to understand the mechanical response of the granular material [12].

Analysis have been extended to investigate the pressure dependence of the structural

properties. We have measured the so called, angoricity of the packings, a temperature-like

variable that determine the stress distribution [13, 14].

A. A statistical theory of correlations in random packings of hard particles

A random packing of hard particles represents a fundamental model for granular matter.

Despite its importance, analytical modeling of random packings remains di�cult due to the

existence of strong correlations which preclude the development of a simple theory. We take

inspiration from liquid theories for the n-particle angular correlation function to develop a

formalism of random packings of hard particles from the bottom-up. Papers published in

[15, 16]. A progressive expansion into a shell of particles converges in the large layer limit

under a Kirkwood-like approximation of higher-order correlations. We apply the formalism

to hard disks and predict the density of two-dimensional random close packing (RCP),

�rcp = 0.85 ± 0.01, and random loose packing (RLP), �rlp = 0.67 ± 0.01. Our theory also

predicts a phase diagram and angular correlation functions that are in good agreement with
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experimental and numerical data.

B. Force transmission in jammed disordered packings of hard particles

The force distribution of jammed disordered packings has always been considered a cen-

tral object in the physics of granular materials. However, many of its features are poorly

understood. In particular, analytic relations to other key macroscopic properties of jammed

matter, such as the contact network and its coordination number, are still lacking. We have

developed a mean-field theory for this problem, based on the consideration of the contact

network as a random graph where the force transmission becomes a constraint satisfaction

problem. We can thus use the cavity method developed in the past few decades within the

statistical physics of spin glasses and hard computer science problems. Paper is published

in [17]. This method allows us to compute the force distribution P (f) for random packings

of hard particles of any shape, with or without friction. We find a new signature of jamming

in the small force behavior P (f) ⇠ f ✓, whose exponent has attracted recent active interest.

Furthermore, we relate the force distribution to a lower bound of the average coordination

number zmin(µ) of jammed packings of frictional spheres with coe�cient µ. This bridges

the gap between the two known isostatic limits in zero and infinite dimensions by extending

the naive Maxwell’s counting argument to frictional spheres. The theoretical framework

describes di↵erent types of systems, such as non-spherical objects in arbitrary dimensions,

providing a common mean-field scenario to investigate force transmission, contact networks

and coordination numbers of jammed disordered packings.

C. Statistical mechanics framework for microstructure of granular materials: from

spherical to non-spherical particles with adhesion, friction and for any dimension.

Understanding random packings of objects of a particular shape is the first step towards a

theory of elasticity of granular materials. However, such jammed matter states have eluded

any systematic theoretical treatment due to the strong positional and orientational corre-

lations involved. In recent years progress on a fundamental description of jammed matter

could be made by starting from a constant volume ensemble in the spirit of conventional

statistical mechanics. Our work has shown that this approach, first introduced by S. F.
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FIG. 3: Phase diagram for all shapes. By plotting z vs � we obtain a phase diagram for smooth

shapes. We observe that the spherical random branch �sph, which ends at the RCP point at

(0.634, 6), in fact continues smoothly upon deformation into dimers and spherocylinders as pre-

dicted by our theory. The spherocylinder continuation provides a boundary for all known packing

states of rotationally symmetric shapes. The continuations from RCP. For a given value of z, the

densest packing is achieved by spherocylinders, followed by dimers, prolate ellipsoids, and oblate

ellipsoids. Note that the continuations for spherocylinders and dimers are almost identical.

Edwards more than two decades ago, can be cast into a predictive framework to calculate

the packing fractions of both spherical and non-spherical hard particles, with or without

adhesion and friction, and for any dimension. Papers published in [18–20].

In particular we have developed equations of states relating the volume fraction of a

packing of non-spherical particles with the coordination number [18]. Finding the optimal

random packing of non-spherical particles is an open problem with great significance in a
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broad range of scientific and engineering fields. So far, this search has been performed only

empirically on a case-by-case basis, in particular, for shapes like dimers, spherocylinders

and ellipsoids of revolution. We have developed a mean-field formalism to estimate the

packing density of axisymmetric non-spherical particles. We derive an analytic continuation

from the sphere that provides a phase diagram (see Fig. 3) predicting that, for the same

coordination number, the density of monodisperse random packings follows the sequence

of increasing packing fractions: spheres < oblate ellipsoids < prolate ellipsoids < dimers

< spherocylinders. We find the maximal packing densities of 73.1% for spherocylinders

and 70.7% for dimers, in good agreement with the largest densities found in simulations.

Moreover, we find a packing density of 73.6% for lens-shaped particles, representing the

densest random packing of the axisymmetric objects studied so far. This theory allows us to

characterize the microstructure of granular packings of any shape. The theory can be also

extended to any dimension and we can also include the e↵ects of adhesion forces which are

crucial to understand packings of small particles.

V. TALKS GIVEN UNDER THE SUPPORT OF THE PRESENT GRANT

1. Complexity in Oil Indusrty, November 2011. International Center of Theoretical
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5. Tsinghua University. Particle and Combustion Engineering Research Group, Depart-
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physics of granular matter”.
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Three graduate students from City College of New York have been supported by this
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granular matter and Lin Bo developed a theoretical formulation of force transmissions in

packings using the cavity method. A postdoc, Yanqing Hu is also supported. Dr. Hu
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theoretical framework and simulations with Discrete Element Methods.
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Distribution of volumes and coordination number in

jammed matter: mesoscopic ensemble

Ping Wang1, Chaoming Song1, Yuliang Jin1, Kun Wang1, Hernán A. Makse1,∗

Levich Institute and Physics Department, City College of New York, New York, NY 10031,
US

Abstract

We investigate the distribution of the volume and coordination number associ-
ated to each particle in a jammed packing of monodisperse hard sphere using
the mesoscopic ensemble developed in Nature 453, 606 (2008). Theory pre-
dicts an exponential distribution of the orientational volumes for random close
packings and random loose packings. A comparison with computer generated
packings reveals deviations from the theoretical prediction in the volume dis-
tribution, which can be better modeled by a compressed exponential function.
On the other hand, the average of the volumes is well reproduced by the theory
leading to good predictions of the limiting densities of RCP and RLP. We dis-
cuss a more exact theory to capture the volume distribution in its entire range.
The available data suggests a plausible order/disorder transition defining ran-
dom close packings. Finally, we consider an extended ensemble to calculate the
coordination number distribution which is shown to be of an exponential and
inverse exponential form for coordinations larger and smaller than the average,
respectively, in reasonable agreement with the simulated data.

1. Introduction

Jammed matter refers to a broad class of physical many-body systems rang-
ing from granular matter to frictionless emulsions, and colloids. These systems
share the property that their constitutive particles can be blocked in a config-
uration far from thermal equilibrium when undergoing a jamming transition.
The statistical mechanical description of these materials is based on the volume
fluctuations of the system [1] taken to be the conservative quantity instead of
energy, as typically done in thermal system. Therefore, the probability distribu-
tion of the volume occupied by each jammed particle is of particular interest and
many studies have been devoted to investigate them in detail [2, 3, 4, 5, 6, 7, 8].

Recently, a theory of volume fluctuations has been developed at the meso-
scopic level providing a relation between the volume occupied by each particle
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Preprint submitted to Elsevier November 18, 2010
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and its number of contacts [9]. Thus, the distribution of particle volumes in the
system is intimately related to the distribution of contacts per particle. In this
paper, we calculate the distribution of (orientational) volumes occupied by each
particle in a jammed system of monodisperse hard spheres and the distribution
of coordination numbers by following the theoretical formalism of [9], which is
in turn based on the Edwards statistical mechanics of jamming [1].

The distributions of volumes and contacts in real packings represent en-
semble averages in the statistical mechanics sense. Therefore, the distributions
depend on the state of the packings specified by their compactivity through
a Boltzmann-like probability in the partition function. We show that in two
limiting cases of zero and infinite compactivity (corresponding to the random
close packing, RCP, and random loose packing, RLP, respectively) the distribu-
tions can be obtained in analytical form. Theory predicts that the distribution
of orientational volumes is exponential with a mean volume varying with the
average coordination number for RLP and constant for RCP. The theoretical
predictions are compared with computer generated jammed packings of equal-
size spheres for any friction coefficient. We find that the theory well reproduces
certain features of the numerical distributions, but not all, in the entire range
of volumes.

The mean value of the occupied volumes is well reproduced by the theory.
However, we find important deviations between theory and simulations for the
higher moments of the distribution. For instance, simulations show a plateau
for small volumes while theory predicts an exponential. For intermediate values,
the exponential shape seems to provide a good fit to the simulated data and the
predicted dependence of the characteristic volume on the coordination number
follows partially the theoretical prediction. However, a higher scrutiny shows
deviations in the tail of the distribution which is found to decay faster than
exponential, having a compressed exponential tail. We conclude that the full
understanding of the distribution requires a more precise theory. We discuss how
to obtain more exact solutions of the volume distribution which can capture the
behavior in the entire ranges of volumes.

On the other hand, the distribution of coordination numbers provides fun-
damental information of the microscopic packing structures [3, 8, 10, 11, 12],
as well as important characteristics of the mesoscopic volume ensemble. In this
paper, we study the distribution of coordination numbers by generalizing the
ensemble proposed in [9] to include fluctuations in the number of contacts. The-
ory predicts an exponential decay for large coordination number and an inverse
exponential for small coordination number. Computer simulations well repro-
duce the predictions. Overall, the present paper serves as a critical assessment
of the theoretical predictions of the mesoscopic theory towards the development
of an exact formulation at the microscopic level that could capture the behavior
in the entire range of volume and coordination number fluctuations of jammed
matter.
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2. Mesoscopic ensemble of jammed matter

In this section, we briefly review the statistical mechanics theory developed
at the mesoscopic level in [9], which serves as the theoretical framework for the
study of the distributions of volumes and coordination numbers. A theoreti-
cal formalism of the volume ensemble is the starting point for the statistical
mechanics of jammed matter [13]. The role traditionally played by the energy
in thermal systems is replaced by the volume, and a new parameter X , called
“compactivity”, is introduced as an analogue of temperature. As a consequence,
the canonical partition function can be written as:

Z(X) =

∫

e−W/Xg(W )ΘWdW, (1)

where W is the free volume function, g(W ) is the density of jammed states for
a given volume W , and ΘW imposes the jamming condition. It has been shown
[9] that the free volume of coarse-grained “quasiparticles” in a monodisperse
hard sphere packing has an inverse relation with their coordination number z:

W (z) =
2
√
3

z
Vg, (2)

where Vg is the sphere volume. Since the quasiparticles are coarse-grained over
a uniform background field produced by other particles, Eq.(2) should be under-
stood as a mean-field result at the mesoscopic level. Assuming the quasiparticles
are independent, we can simplify the partition function Eq.(1) by changing vari-
ables:

Ziso(X) =

∫ 6

Z
e−W (z)/Xg(z)dz. (3)

The limit of integration here is given by the isostatic condition [14, 15, 16] over
the mechanical coordination number, Z , counting the contacts with nonzero
forces. The mechanical coordination number is different from the geometrical
coordination number, z, which counts all contacts, even those with zero forces.
By definition, it is easy to see that the geometrical coordination number z is
always equal or greater than the mechanical coordination number Z, and in
general we have Z ≤ z ≤ 6. The mechanical coordination, Z(µ), depends on
the friction, µ, the interparticle friction coefficient, and varies between Z(0) =
2d = 6 and Z(∞) = d+ 1 = 4 in dimensions d = 3. The density of states g(z)
is assumed to have an exponential form, g(z) = (hz)z−2d = e−(z−2d)/z∗

, with
the constant hz $ 1, representing the typical separation of the configurations
in the phase space (analogous to the Planck constant in quantum mechanics).
We have z∗ = −1/ lnhz. Equation (3) provides a useful tool to calculate the
ensemble average of any physical quantity f(z) since

f(X,Z) =
1

Ziso

∫ 6

Z
f(z)e−W (z)/Xg(z)dz. (4)
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3. PDF of the orientational free volumes

To calculate the volume distribution using the established mesoscopic for-
malism, we start by introducing the different definitions of the volume associated
with each particle necessary to understand the problem. The starting point is
the volume of a Voronoi cell associated to each particle. The Voronoi tessella-
tion tiles the entire packing is shown in [17, 9] to be a good candidate for the
volume function of jammed matter. The volume function replaces the Hamil-
tonian in thermal systems, and describes the state of the jammed packings in
the ensemble average in the partition function [1, 9]. The Voronoi volume for
each particle Wvor

i gives rise to the total volume of the system W =
∑N

i=1 Wvor
i ,

when summed up over all the N particles. In terms of the relative coordinates
of the particles, !rij , we have obtained in [17, 9] for monodisperse particles of
radius R and volume Vg the following formula for the Voronoi volume:

Wvor
i =

1

3

∮
(

min
ŝ·r̂ij>0

(
rij

2ŝ · r̂ij
)

)3

ds. (5)

where the integration is performed over the direction ŝ forming an angle θij with
!rij as in Fig. 1, and cos θij = ŝ · r̂ij . Taking advantage of this integration we can
define an orientational Voronoi volume, Ws

i , for a fixed direction ŝ, satisfying:

Wvor
i =

1
∮

ds

∮

Ws
i ds = 〈Ws

i 〉s, (6)

from which we obtain:

Ws
i ≡ Vg

(

1

2R
min

ŝ·r̂ij>0

rij
ŝ · r̂ij

)3

. (7)

Ws
i defines the orientational Voronoi volume which is obtained without the

integration over ŝ.
The average of the orientational volume over ŝ for a single particle, Eq.

(7), is the Voronoi volume, 〈Ws
i 〉s = Wvor

i and the average of the orientational
volume over many particles for a fixed ŝ is the same as the average of the Voronoi
volume over the particles: 〈Ws

i 〉i = 〈Wvor
i 〉i, in the case of isotropic systems.

This last property is useful since it allows the use of the orientational volume
to define the ensemble average of the volume fraction without resorting to the
use of the Voronoi volume which contains the average over ŝ and therefore is
more difficult to treat from a theoretical point of view. We therefore promote
the use of the orientational volume function Ws

i as the fundamental quantity
to characterize the state of jammed matter instead of Wvor

i . It is important to
note that the probability densities of P (Ws

i ) and P (Wvor
i ) in general differ. For

instance, as discussed in Fig. 1 the orientational free volume can be for instance
zero while the Voronoi free volume cannot. The distribution of Voronoi volume
P (Wvor

i ) can be fitted by a Gamma distribution [18], however, P (Ws
i ) has a

different form as shown below.
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We define the reduced free orientational volume function as

ws ≡
Ws

i − Vg

Vg
, (8)

(we drop the subscript i in ws for simplicity of notation).
In what follows, we provide a theory for the probability distribution func-

tion of the orientational free volume, P (ws), which is less complex than the
full Voronoi volume distribution of Eq. (5). In [17], this distribution is ob-
tained under assumption of uniformity in the packing, making the theory valid
at a mesoscopic level of a few particles diameters. This approximation can be
seen as defining quasiparticles of free volume ws capturing the behavior at the
mesoscopic distance. Under this approximation the inverse cumulative distri-
bution P> is obtained (see Eq. (20) in [9] and Eq. (41) in [17]) from where the

probability density can be calculated as, P (ws) = d(1−P>)
dws , then

P (ws) =
1

w
exp

(

−
ws

w

)

, (9)

where the average value over the particles,

w ≡ 〈ws〉i =
∫

wsP (ws)dws, (10)

was found to be directly related to the geometrical coordination number z (Eq.
(2)) as :

w(z) =
κ

z
, (11)

where κ = 2
√
3.

We note that

〈ws〉i =
〈Ws

i 〉i
Vg

− 1 =
〈Wvor

i 〉i
Vg

− 1. (12)

Therefore, the orientational volume ws captures the behavior of the average
volume function and thus can be used as the fundamental variable to define the
microstates of the system instead of the more complicated Voronoi volume.

The distribution of Eq. (9) is not the distribution that one would obtain in
real packings (generated either experimentally or numerically) corresponding to
the ensemble average of Eq. (9). Therefore, further examination is required to
derive the distribution of orientational volumes which can be directly compared
with real packings; their states determined by the compactivity, X .

Under the volume ensemble point of view [1], the observables in real packings
are ensemble average over the Boltzmann distribution function. Using Eq. (4),
the probability distribution of volumes in the canonical volume ensemble for a
single quasiparticle of orientational volume w is then:
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P (ws|X,Z) =
1

Ziso

∫ 6

Z
P (ws) exp

[

−
w(z)

X

]

g(z)dz

=
1

Ziso

∫ 6

Z

1

w(z)
exp

[

−
ws

w(z)

]

exp

[

−
w(z)

X
+

2
√
3

w(z)
lnhz

]

dz,

(13)

where we have used the inverse relation Eq. (11) and the exponential density
of states g(z) ∼ (hz)z.

This equation cannot be solved analytically for a general (X,Z). However,
analytical forms can be obtained in the limiting cases of X = 0 (the ground
state) andX → ∞: the RCP and RLP lines in the terminology of [9] respectively
(see Fig. 2). The advantage of studying these distributions is that they can be
checked with simulations or experiments without the use of the compactivity as
a fitting parameter.

From Eq. (13), we find along the RCP line, PRCP(ws|Z) ≡ P (ws|X = 0, Z):

PRCP(w
s|Z) =

√
3 exp

(

− ws
√
3
)

, Z ∈ [4, 6], (14)

and for the RLP line, PRLP(ws|Z) ≡ P (ws|X → ∞, Z):

PRLP(w
s|Z) =

Z

2
√
3
exp

(

−
wsZ

2
√
3

)

, Z ∈ [4, 6]. (15)

We note that both limiting distributions coincide at Z = 6, the frictionless
J-point.

In what follows, we test the above predictions with computer simulations.
We generate packings at the jamming transition using the split algorithm ex-
plained in [9]. The packings consist of 10,000 spherical equal-size soft particles
interacting via Hertz normal forces, Mindlin tangential forces and the Coulomb
condition with friction coefficient µ. The mechanical coordination number Z
versus the volume fraction φ of the generated packings are plotted in Fig. 2
in the framework of the phase diagram of [9]. We change friction from µ = 0
to µ → ∞ to generate the packings along the RLP line as indicated in the fig-
ure with the corresponding change in the mechanical coordination number from
Z(0) = 6 to Z(∞) = 4. The RCP line is also generated by changing friction but
the volume fraction remains constant, as seen in the figure, while the mechanical
coordination varies from 6 to 4.

We focus on the calculation of the probability distribution function of ws for
the packings along the RCP-line to test Eq. (14) and along the RLP-line to test
Eq. (15). Figure 3 shows the results. Along the RCP-line, shown in Fig. 3a, we
find all distributions are the same, independent of friction and Z, as suggested
by Eq. (14). On the other hand, the distribution along the RLP line, shown
in Fig. 3b, depends on friction and therefore on Z(µ) as suggested by theory.
The exponential dependence seems to be captured upon a first inspection of the
data done in a semi-log graph of Figs. 3a and b (arguably better for the RCP
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case), at least for intermediate values and the tail of the distribution. In the
case of the RLP line (Fig. 3b), the slope of the semi-log plot of the exponential
fit has the same dependence on Z as predicted by theory (that is the slope in
the semi-log plot increases linearly with Z) but with twice the constant value
as predicted by Eq. (15). We find that the exponential fit leads to a tail with
characteristic volume = Z/

√
3, twice the value predicted by theory Z/(2

√
3),

Eq. (15). However, the linear trend with Z is observed in the data.
On the other hand, the average of the distributions agrees very well with

simulations (see below). But when we fix the mean according to theory the
exponential tail is inaccurate. Theory either provides the exponential fit with
the incorrect average or provides the correct average with the deviations from
the exponential fit.

The same situation is observed in Fig. 3a for the RCP line. We force the
fitting to be exponential, and then the average value has to be modified from√
3 → 2

√
3. The reason for this discrepancy is that the theory does not capture

the distribution in the full range of volumes. Figure 3 clearly show a plateau
at small values of ws deviating from the exponential behavior predicted by the
theory.

Furthermore, a more strict scrutiny of the data seems to indicate that the
exponential fit may not be sufficiently accurate as shown in Figs. 3a and b.
While tempting to conclude that the exponential is a good fit to the data (for
instance, the fitting in Fig. 3a looks convincing), further scrutiny reveals im-
portant deviations in the tail. To visualize the deviations, one should take the
plot and look at it, not frontally, but from the side. It is evident that there is a
slight curvature in the distributions deviating from the linearity in the semi-log
plots. Indeed, the distributions decay slightly faster than the pure exponential
decay predicted by theory. The largest evidence of this deviation is perhaps in
the tail of the µ → ∞ data in the RLP, Fig. 3b.

A double log analysis of the data shown in Figs. 4a and 4b reveals that a
compressed exponential behaviour might better capture the tail of the distribu-
tions above the average value:

P (ws|Z) ∼ A exp
[

−
(ws

wc

)βw
]

, ws > w, (16)

where βw ≈ 1.5 is the compressed exponential exponent (βw = 1 would be a
pure exponential) valid for all the RCP and RLP packings according to Fig. 4a
and 4b, wc is a characteristic volume independent of Z in the RCP packings
and depends on Z for the RLP packings, and A is a constant.

We want to stress the difficulties associated with a fit to a compressed (or
stretched) exponential function like Eq. (16). A double log plot gives:

ln
(

− ln
(

P (ws|Z)/A
)

)

= βw ln(ws)− βw ln(wc), (17)

providing a linear fit with slope βw. Beyond the inherent subtleties associated to
taking a double log of a function in a such a short range, a further complication
arises because such a linear fit depends on the value of the constant A. Since
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Eq. (16) covers only the tail of the distribution, A cannot be obtained from
normalization, remaining as a fitting parameter. The result is a fitting of βw

dependent slightly on A, providing an extra level of difficulty.
Although the compressed exponential seems to fit the data better than the

pure exponential, before more theory or numerical/experimental evidence in
the limit N → ∞ become available, we are inclined to conclude that the prob-
lem is not closed. We note that a similar dichotomy between exponential and
compressed/stretched exponential behavior has plagued the study of the dis-
tribution of forces in jammed matter since the first studies on the subject [19].
Given the inherent difficulties in any numerical estimation, the dispute will have
to eventually be settled when more exact theories become available.

Beyond the distributions of volumes, the theory reproduces very well the
average value of the volumes, Eq. (11). Based on the properties of the aver-
ages expressed above, there is no need to calculate the full Voronoi volume to
obtain the average volume fraction, since the average of the orientational ws

suffices. For instance in the frictionless packing we find 〈ws〉 = 0.561, which
gives a volume fraction φ = 1/(1 + 〈ws〉) = 0.641, in agreement with the direct
measurement of the volume fraction of the packing, 0.64.

A full comparison between theory and simulations is given in Fig. 5, where
we study the dependence between average volume and coordination number.
For each packing along the RLP line we calculate the average orientational
volume focusing on the particles with a given z. We also calculate the average
over all the particles for a given packing, plotted as the red dots in Fig 5. In
practice, we do not measure the geometrical coordination number z but the
mechanical coordination number Z. However, we know that for the packings
along the RLP line z ≈ Z [9] (this is because hz → 0). Furthermore, the RLP
line corresponds to X → ∞ and therefore the prediction of the average volume
function, Eq. (11) can be tested directly with these fully random numerical
packings, extending this result, valid for a quasiparticle, to the entire packing.
Thus, the packings along the RLP line reveal the approximate behaviour of
quasiparticles of fixed coordination z. We notice that there could be still some
subtleties when comparing Eq. (11), valid for quasiparticles, to the results in
packings. Using φ−1 = w + 1, we plot the volume fraction in Fig. 5b.

Figures 5a shows that the mean of the distribution of volumes, w, is well
captured by the theory of Eq. (11) (see the black dashed line in comparison
with the red dots in Fig. 5). This is why the theory provides very good fittings
to the values of RCP and RLP in [9]. The agreement can be seen as well in the
volume fraction in Fig. 5b, and exists despite the fact that the full distribution
presents the deviations discussed above.

Figure 5 presents further interesting results. For a given packing along the
RLP-line specified by a fixed friction, there are a variety of particles with varying
coordination z, following a well-defined functional relation between the volume
occupied by the particle and its coordination number (see for instance the red
and blue dashed lines in Fig. 5a corresponding to fittings for the cases µ = 0 and
µ → ∞, respectively). While this plot does not tell us how many particles there
are for a given coordination number (see next section) we see that for each
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packing, there exists a variety of local volume functions with z ranging from
z = 0 (since there are some rattlers) up to z = 11 (but not 12, interestingly, see
below).

The assumptions for the limits of integration in the partition function in [9]
or the ensemble average Eq. (3), Z ≤ z ≤ 6, seem to be violated here. However,
we have to remember that the theory is mesoscopic and further coarse-graining
is needed for these bounds to be more accurate. Regardless, even though the
range in z extends further than the bounds, Fig. 5 corresponds to the average
for a fixed z but does not tell how many states there are for every z. When these
details are properly taken into account, the bounds are approximately satisfied,
although fluctuations persist, bringing us to the next Section of this paper.

Focusing around the z = 12 point in the figures, we observe that an ex-
trapolation of the fitting to the curve of frictionless packing seems to converge
to the green dot in Figs. 5 at z = 12 which correspond to the free volume
function of FCC, wFCC = 0.35135 (Fig. 5a) and the FCC volume fraction
φFCC = π/

√
18 ≈ 0.7402 (Fig. 5b). An extrapolation of the fitting to the

infinite friction data seems to pass through the volume fraction of the dodec-
ahedron as indicated by the blue point in Fig. 5, which has also z = 12 but
slightly larger volume fraction that FCC (the dodecahedron can’t tile the space
without leaving holes, so the best global packing is still the FCC). We observe
that there are no particles in the packings with z = 12. Indeed the green and
blue points at z = 12 in Figs. 5a and b were added by hand and the real curves
stop shortly at z = 11. The absence of z = 12 states indicate the randomized
state of the systems.

More importantly, we see that if we extend the theoretical result of Eq. (11)
to the ordered region, examining z from z = 6 to z = 12, the theory does not
fit the FCC value. Instead, we obtain w(z = 12) = 2

√
3/12 = 0.2886, below

the FCC or dodecahedron value. In principle, this result is expected since the
theory assumes random isotropic states while the FCC is an ordered anisotropic
packing. However, the absence of a good fitting of the disordered branch through
the FCC, together with the fact that the theory fits so well the disordered states,
raises the interesting question of the existence of a phase transition between the
RCP limit at z = 6 and the FCC at z = 12. Since packings cannot equilibrate
above z = 6 without the formation of crystalline regions, we expect an ordered
branch from the FCC point towards the RCP point. It seems plausible that there
could be a discontinuity from the disordered branch to the ordered branch, the
existence of which could determine whether there exist a disorder/order phase
transition characterizing the RCP. This scenario has been confirmed by analysis
of numerical packings in a recent study [20], which showed that RCP can be
interpreted as a “freezing point” in a first-order phase transition between ordered
and disordered phases.

To summarize this part of the study, while theory predicts an exponential
behavior and approximates well some features of the distribution such as the av-
erage value, simulations indicate that a compressed exponential fitting could be
also possible. We therefore require more refined theories to account for the full
behavior of the volume distribution. The present approach suggests that study
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of the ensemble of quasiparticles of fixed coordination number could provide
clues to the behavior of the entire system through the Edwards ensemble ap-
proach. While new theoretical concepts are required, current attempts indicate
that it might be possible to develop a theory of the volume distribution that is
exact to, at least, a given coordination shell of particles. It appears that P (ws)
for a fixed z-ensemble might be solved exactly by a brute force approach, since
the range of a Voronoi cell is finite. Although, it may contain a large number
of variables, the computer should handle such a computation. Such an analysis
parallels the Hales proofs of the Kepler’s conjecture [21].

4. PDF of the coordination number

Next, we analyze the distribution of coordination number by generalizing
the theory of [9] to include fluctuations in z. While we have assumed [9] that
every single quasiparticle satisfies the specified bounds: Z ≤ z ≤ 6, below we
relax this constraint to extend the bounds to the geometrical coordination of
the entire system by considering:

Nzmin ≤
N
∑

i=1

zi ≤ Nzmax, (18)

where in the following we set zmin = Z and zmax = 6. This new condition implies
that it is not possible to consider the single quasiparticle partition function, Eq.
(3), and that the full N -particle partition function has to be considered:

Z =

∫

. . .

∫

Nzmin≤
∑

N
i=1

zi≤Nzmax

N
∏

i=1

e−wi(zi)gi(zi)dzi

=

∫

. . .

∫

Nzmin≤
∑

N
i=1

zi≤Nzmax

N
∏

i=1

e−(zi/z
∗+βκ/zi)dzi.

(19)

We have z∗ = −1/ lnhz, the inverse compactivity β = 1/X and the coupling
constant

B =
βκ

z∗
. (20)

Then, the ensemble average of the probability distribution function of the geo-
metrical coordination number, P (z), is

P (z) ≡

〈

1

N

N
∑

i=1

δ(z − zi)

〉

=
1

Z

∫

. . .

∫

(Nzmin−z)≤
∑N−1

i=1
zi≤(Nzmax−z)

N−1
∏

i=1

e−(zi/z
∗+βκ/zi)dzi,

(21)

We obtain:
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P (z) =
Erf(

√
N−1(z′

max
−µ)√

2σ
) + Erf(

√
N−1(µ−z′

min
)√

2σ
)

Erf(
√
N(zmax−µ)√

2σ
) + Erf(

√
N(µ−zmin)√

2σ
)

e−(z/z∗+βκ/z), (22)

with the following constants:

z′max ≡ (Nzmax − z)/(N − 1) ≈ zmax + (zmax − z)/N,

z′min ≡ (Nzmin − z)/(N − 1) ≈ zmin + (zmin − z)/N,
(23)

and Erf(x) the Gauss error function.
The constants µ and σ in Eq. (22) are significant because they represent

the mean and standard deviation of the a Gaussian expansion in a saddle-point
approximation of the inverse Fourier transform of the partition function allowing
the calculation of the free-volume density. They are:

µ = z∗B1/2K1(2B1/2)

K0(2B1/2)
, (24)

which is the same as the ensemble average of the coordination number, and

σ2 ≡ z∗2B

(

K2(2B1/2)

K0(2B1/2)
−

K1(2B1/2)2

K0(2B1/2)2

)

, (25)

where Kn(a) is the modified Bessel function of the second kind:
∫ ∞

0
xne−

a
2
(x+1/x)dx = 2Kn(a). (26)

Next, we consider the approximations of Eq. (22) for two cases: When zmax−
µ < µ− zmin, then µ > (zmax + zmin)/2, and we obtain:

P (z) ∼ exp

[

−
1

z∗

(

z (2− w̄/wmin) +
1

z

κ2

w̄2

)]

, (27)

or otherwise, we obtain:

P (z) ∼ exp

[

−
1

z∗

(

z (2− w̄/wmax) +
1

z

κ2

w̄2

)]

, (28)

where w̄ is the ensemble average of the volume function (which depends on β,
or compactivity X), wmin = κ/zmax and wmax = κ/zmin.

In the following we consider the distribution functions at two special points
on the phase diagram and compare them to the numerical simulations. At
the frictionless J-point and the infinitely frictional L-point (see Fig. 2), the
distributions reduce to simple forms. For the RCP J-point, X = 0 and the
system has the minimum average volume and maximum average coordination
number, therefore, w̄ ∼ wmin and u ∼ zmax. From Eq. (27) We find:

PRCP(z) ∼ exp

[

−
1

z∗

(

z +
z2max

z

)]

. (29)
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For the RLP L-point, X → ∞ and the system has the maximum average volume
and minimum average coordination number, therefore, w̄ ∼ wmax and u ∼ zmin.
From Eq. (28), we find:

PRLP(z) ∼ exp

[

−
1

z∗

(

z +
z2min

z

)]

. (30)

We test these forms with the computer generated packings at the J-point and
L-point. The constant z∗ is treated as a fitting parameter since it determines
the density of states and is difficult to know a priori. Figure 6 shows the result.
The lin-lin plot of Fig. 6a shows that the distribution near the average value
is well approximated by the theory for both points. To investigate the tails of
the distributions, Fig. 6b plots a semi-log curve. While some deviations are
observed, the fit is still reasonable except for the larger coordination number of
J-point and smaller coordination number of L-point, which are very rare, about
10−2 less probable than the most probable value.

5. Conclusions

We have presented the predictions of the mesoscopic theory presented in [9]
concerning the probability distribution of the orientational volumes in jammed
matter. The theory captures very well the average volume and indeed gives
rise to good predictions of the RCP and RLP volume fraction as shown in [9].
However, when comparing the full distribution we find important deviations.
For instance, computer simulations are able to detect slight deviations from
the pure exponential behaviour predicted by theory. This deviation could be
better approximated by a compressed exponential behavior, although a more
conclusive fitting necessitates a more precise theory or simulations in the large
scale limit. The plateau observed in the volume distribution is not captured by
the theory either. There is evidence that this plateau might originate from the
spatial correlations between the first and second layer particles, which indicates
that further progress could come from a systematic analysis of higher level
coarse-graining. For example, by explicitly treating the second-layer neighbors,
it is possible to improve the distribution functions predicted by the theory. This
approach is particularly appropriate for two-dimensional systems, since the free
variables are significantly reduced in the 2d case.

On the other hand, the behavior of the probability distribution of coordi-
nation number is captured well by the theory. Here, the mesoscopic theory of
[9], considering restricted bounds for each quasiparticle, is extended to allow
for coordination number fluctuations, by imposing the bounds to the entire sys-
tem. Such a problem can be solved under several approximations and predicts
a mixed exponential forms that are well reproduced by the simulations at the J
and the L-point.

Why does the theory capture the contact distribution better than the volume
distribution? The distribution of contacts is an ensemble average based on the
states characterized by w(z). Since this function is quite accurate, the contact
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distribution follows. On the other hand, the volume distribution is based on the
uniform approximations done on [17], and therefore is not quite exact. The full
distribution of volumes is where more theoretical developments are required.
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i

j

rij

θij

rij/2 cos θij

ŝ

Figure 1: Schematics of the Voronoi volume and the orientational volume associated with
particle i. The boundary of the Voronoi cell (shown in 2d for simplicity) corresponds to the
irregular pentagon in black which defines Wvor

i . The limit of the Voronoi cell of particle i
in the direction ŝ is the minimum of rij/2 cos θij over all the particles in the packing, as
indicated. This defines the orientational volume Ws

i which is the volume of the sphere of
radius rij/2 cos θij defined by the dash red circle in the figure. The Voronoi volume is the
integration of the orientational volume over ŝ as in Eq. (6). Notice that ws, the orientational
free volume associated with Ws

i defined in Eq. (8), ranges from zero (when the orientational
volume coincides with the volume of the central ball, that is when the direction ŝ coincides with
a contact point) to in principle ∞ for an isolated ball, although the maximum ws in a jammed
system is, of course, bounded by the free space given by the first or second coordination shell.
The Voronoi free volume, on the other hand, cannot be zero, by definition.
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RLP line

X = ∞
RCP 

line

X = 0

Figure 2: Computer generated packings arranged in the phase diagram of [9]. The packings
are used to calculate the distribution of orientational volumes and coordination number. We
concentrate our study on packings generated with different friction as indicated in the figure
following the RLP line from the J point to the L point and the RCP line from the J point to
the C point.
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(a)

(b)

Figure 3: PDF of ws. Exponential fit in a semilog plot. (a) We plot the results for the
distribution of the packings along the RCP line with different values of friction, as indicated
in the figure (see Fig 2). The red dashed line is a fit with the theoretical prediction PRCP(ws),
Eq. (14), but with the inverse characteristic volume or slope of 2

√
3 instead of

√
3 as predicted

by the theory. (b) Same as (a) but for the packings along the RLP line in Fig. 2 prepared with
different µ. The red and blue dashed lines are fits to the theoretical prediction PRLP(ws), Eq.
(15), but with the inverse characteristic volume or slope replaced from Z/(2

√
3) → Z/

√
3,

twice as predicted by the theory like in (a). The red line is for µ = 0 and has slope 2
√
3. The

blue line is for µ → ∞ and has slope 4/
√
3.
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(a)

(b)

Figure 4: PDF of ws. Compressed exponential fit in a double log plot. The results are the
same as in Fig. 3 but now reploted in a double log plot to obtain the compressed exponential
fitting exponent β which is extracted from the sloe of such a plot, as explained in the text.
(a) PDF for the packings along RLP-line. (b) PDF for the packings along the RLP-line.
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(a)

(b)

Figure 5: Relation between local volume per particle and its coordination number for (a)
the volume function and (b) the volume fraction. We use the packings along the RLP line
with the friction as indicated and we calculate the volume function binning the data by the
coordination number of the particles. The red dots correspond to the average over all the
particles in the packing of the volume function which fits the theory very well. The red and
blue dashed lines are logarithmic-like fittings to the data and we add the value at z = 12
for the FCC and the dodecahedron. The data from the packings goes only up to z = 11,
indicating the absence of ordered structures.
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(a)

(b)

Figure 6: P (z): comparison between theory and simulations in (a) a lin lin plot and (b) a
semi-log plot to appreciate better the tail of the distribution. We plot the systems at the
J-point (µ = 0) and L-point (µ = ∞) in Fig. 2. we use a fitting parameter z∗ = 0.5 in Eqs.
(29) and (30).
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Irreversible Incremental Behavior in a Granular Material
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We test the elasticity of granular aggregates using increments of shear and volume strain in a
numerical simulation. We find that the increment in volume strain is almost reversible, but the
increment in shear strain is not. The strength of this irreversibility increases as the average number
of contacts per particle (the coordination number) decreases. For increments of volume strain,
an elastic model that includes both average and fluctuating motions between contacting particles
reproduces well the numerical results over the entire range of coordination numbers. For increments
of shear strain, the theory and simulations agree quite well for high values of the coordination
number.

PACS numbers: 81.05.Rm, 81.40.Jj, 83.80.Fg

Granular materials have received the attention of many
researchers in the last decade because of unsolved prob-
lems with direct relevance to chemistry, physics and en-
gineering. The behavior of a granular material can range
between that of a gas and that of a solid, depending on
the applied loading and the regime of deformation con-
sidered. Significant progresses have been made with the
introduction of numerical tools (e.g. [1]) that permit the
detailed analysis of an aggregate of particles. Although
such simulations have provided information about inter-
particle interactions, such as their elasticity, sliding, and
deletion, and statistical measures of their cooperative be-
havior, such as induced anisotropy and force chains, it is
still unclear how to incorporate these informations in a
predictive theoretical model.
Attempts to do this have been made in the context of

the effective medium theory (EMT) (e.g. [2, 3]) in which
the contact displacements are given by the applied aver-
age strain. However, the predicted shear and bulk mod-
uli are far from those measured in numerical simulations
(e.g. [4, 5]). In order to improve the theoretical predic-
tion, particle displacements are given by the sum of an
average and the fluctuation components (e.g. [6, 7]). In
particular, better predictions of the shear and bulk mod-
uli have been obtained in a recent work that employs pair
fluctuations [8, 9]. However, Agnolin and Roux [10] point
out that such predictions fail when the the coordination
number, Z̄, is low and close to the isostatic limit Z̄iso at
which the aggregate is statically determinate. They sug-
gest that for low coordination number, more complicated
models are needed that account for collective deforma-
tions among particles. That is, the assumption of pair
fluctuations is not sufficient to capture the response of
poorly coordinate aggregates of particles. Here, we ad-
dress this issue and provide an alternative interpretation
of the failure of an elastic description at low coordination
numbers.

We carry out numerical simulations using a distinct
element method and focus on the first incremental re-
sponse of an isotropically compressed random aggregate
that consists of identical, elastic, frictional spheres. We
consider dense aggregates, with solid volume fractions φ
near 0.64, that have different Z̄. Previous work [10–12]
have considered poorly coordinated aggregates and found
that the shear modulus is proportional to Z̄−Z̄iso, where
Z̄iso is equal to four for a packing of frictional spheres.
Here, we find that when Z̄ decreases, there is an irre-
versible behavior of the aggregate that involves local, co-
ordinated, irreversible motions of the particles that are
not resisted by forces. These motions result in a reduc-
tion of the apparent stiffness of the aggregate (e.g. [13]).
That is, the initial configuration of a poorly coordinated
aggregate can not sustain any incremental strain unless
a change in the geometry of the packing occurs. When
such irreversible changes are present, simple elastic the-
ory can not reproduce the response of the aggregate and
the utility of the elastic moduli is questionable.
We introduce measures of these irreversible deforma-

tions which vary with the coordination number. For in-
crements in volume strain, the number of irreversible mo-
tions is so small that their effect is negligible and the
response of the aggregate can be assumed to be elastic.
More importantly, for shear increments, the strength of
the irreversibility persists even at high Z̄ and increases
as Z̄ decreases towards its isostatic value, indicating that
elasticity does not describe the aggregate response.
Our numerical simulations consider 10, 000 particles,

each with diameter d = 0.2 mm, randomly generated
in a periodic cubic cell. We employ material properties
typical of glass spheres: a shear modulus µ = 29 GPa
and a Poisson’s ratio, ν = 0.2. The interaction between
particles is a non-central contact force in which the nor-
mal component is the non-linear Hertz interaction and
the tangential component is bilinear: an initial elastic

http://arxiv.org/abs/1001.5466v1
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FIG. 1: Measurement of irreversibility in terms of displace-
ments when increments of volume and shear strain are ap-
plied.

FIG. 2: Measurement of irreversibility in terms of contact
forces when increments of volume and shear strain are applied.

displacement followed by Coulomb sliding (e.g.[5]). We
create different initial isotropic states by varying the co-
efficient of friction between particles during the prepa-
ration (e.g. [14]); all initial states have a solid volume
fraction φ ∼ 0.64 and a confining pressure that varies
from 50KPa to 10MPa.
For all packings, we evaluate the response of the ag-

gregate to homogeneous increments in volume and shear
strain by setting the particle coefficient of friction high
enough to prevent sliding. Because of the random po-
sitions of the particles and their different initial contact
stiffnesses, the subsequent particle motions are the sum
of the homogeneous applied strain and a fluctuation that
relaxes the particles towards a new equilibrium state.
When this relaxation involves a rearrangement of par-
ticles, the incremental response is irreversible.
We attempt to characterize the particle rearrangement

and introduce two measures of the strength of the irre-
versibility: the first is related to contact displacement,

and the second is associated with contact forces. We
apply a forward increment in strain followed by an iden-
tical backward strain in which the reference configura-
tion should be recovered if the deformation were perfectly
elastic.
We define the parameter ζ as the average over all con-

tacts of the ratio of the absolute values of the contact
displacements after and before the backward increment
in strain. A parameter, χ, is similarly defined in terms
of the contact forces. Both parameters would be zero for
perfectly elastic behavior.
We measure ζ and χ in all of the packings for incre-

ments in both shear and volume strain. We apply incre-
ments of strain with magnitudes that depend on the con-
fining pressure; the ratio of the associated volume strain
with the confining pressure is constant at about 10−2.
The results are plotted in Figs. 1 and 2, displaying ζ and
χ as functions of Z̄.
Figs. 1 and 2 show small variations in ζ and χ asso-

ciated with increments in volume strain. The strength
of the irreversibility is almost negligible, with slight in-
creases as Z̄iso is approached. We conclude that an ap-
proximate elastic response for the aggregate is obtained
for increments of volume strain, independent of the co-
ordination number.
For increments in shear strain, both ζ and χ increase

as Z̄iso is approached. We believe that these irreversible
motions are associated with the presence of local insta-
bility (e.g. [13]). Moreover, both ζ and χ are non-zero
for high values of the coordination number, in contrast to
what we find for increments in volume strain. The aggre-
gate seems to experience rearrangements over the entire
range of the coordination number, with the irriversibility
becoming stronger as isostaticity is approached.
The condition of isostaticity has been an object of great

interest for many researchers ([5, 11, 12, 15–17]). The
contact forces in an aggregate are uniquely determined
in terms of the applied loads, independent of the con-
tact stiffness, when the aggregate is both statically and
kinematically determinate (e.g. [18]). The condition for
static determinacy, often referred to as Maxwells con-
dition [19], insures the equality between the number of
unknowns and the number of equilibrium equations. In
a granular aggregate, this necessitates that Z̄ = Z̄iso.
The condition for kinematic determinacy insures that
there are no inextensional mechanisms in the aggregate;
then a rigid aggregate is able to sustain any external self-
equilibrated perturbation without changing the relative
positions of its particle centers.
The kinematic condition is not often taken into account

in recent work on granular aggregates (e.g. [20]) and
sometimes has been emphasized in a different way. For
example, Moukarzel [13], in his description of network
rigidity, defines an isostatic system to be one in which
the rank K of the rigidity matrix that relates the contact
forces to the applied forces always equals to the number of
equations, rather than one in which the simple Maxwell
condition is satisfied. Then, when K is less than the
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number of equations, the network is flexible; this can
occur when Z̄ = Z̄iso.
The presence of irreversibility in all of our aggregates,

even in the limit that Z̄ = 4 (see Figs. 1 and 2) indi-
cates that the kinematic condition does not hold. Con-
sequently, inextensional mechanisms and the associated
soft or floppy vibrational modes are possible. This situa-
tion may occur whatever the value Z̄, if particles location
do not correspond to those of a rigid network. In par-
ticular, in packing characterized as isostatic by Z̄ = Z̄iso

(e.g. [11, 15, 16]), soft modes can occur as long as the
kinematic condition is not satisfied. However, we should
emphasize that the initial states that we employ are con-
structed in a much different way than those constructed
to insure an initial, stable, elastic response (e.g. [21]).
We now turn from irreversibility to elasticity and re-

port results from numerical simulation for the bulk mod-

ulus, Θ =
1

3

3
∑

i=1

∆σii/∆V , and the shear modulus, G =

∆σ12/∆ε12, where σij is the average stress tensor, εij
the average strain tensor, and V is the volume of the
aggregate. When a shear increment is applied to poorly
coordinated systems, the irreversibility increases and the
material response deviates from elasticity. That is, an
elastic theory can only be considered as providing an up-
per bound on the shear modulus.
To make predictions of the moduli, we adopt the fluc-

tuation theory developed by [9]. This theory improves
upon the simplest average strain models [2, 3], because
contacting particles are assumed to move with both the
average deformation and fluctuations and because the
statistics of the aggregate are taken in account. The the-
ory employs force and moment equilibrium for a typical
pair of particles to evaluate the fluctuations, and then
uses them to determine the stress in the aggregate. How-
ever, at low values of the coordination number, the simple
statistical model introduced to describe the variability of
the neighborhood of contacting pairs of particles is prob-
ably too simple, (e.g. [22]) and the initial distribution
contact forces (e.g.[23]) is not taken into account.
Here we repair the second deficiency and assume that

the distribution, w(P ), of the normal component of the
contact force, P is exponential (e.g.[4]):

w(P ) =
1

P̄
exp

(

−
P

P̄

)

, (1)

where, by definition, P̄ =

∫ ∞

0
Pw (P ) dP.

From the effective medium theory (e.g.[24]), the con-
fining pressure p0 can be expressed as function of P̄ ,

p0 = Z̄φP̄ /πd2,

and the relation between the normal component of the
contact displacement, δ, and P̄ is

δ =

[

3 (1− ν)

2µd1/2
P̄

]2/3

. (2)

FIG. 3: Comparison between the numerical data and fluctu-
ation theory for the normalized bulk modulus.

Using (1) in (2), we obtain

δ1/2 =

[

3 (1− ν)

2µd1/2

]1/3 ∫ ∞

0
P 1/3w (P ) dP

=

[

3 (1− ν)

2µd1/2

]1/3

P̄ 1/3Γ

(

4

3

)

, (3)

where Γ is the Gamma function.
So the average normal contact stiffness KN =

µd1/2δ1/2/ (1− ν) becomes

KN = d

(

1

3

)1/2
[

9
√
3πµ2

2Z (1− ν)2 φ
p0

]1/3

Γ

(

4

3

)

. (4)

The average shear stiffness is KT =
2KN (1− ν) / (2− ν).
Taking in account the initial distribution of forces in

this way, we obtain a new solution for the fluctuations;
with this, the resulting expressions for the bulk modulus
Θ and the shear modulus G are, respectively,

Θ =
φKN

5πd

[

−2.8Z̄ −
14.5

Z̄3
+

38

Z̄2
−

33.6

Z̄
− 12.7

]

(5)

G =
φ
(

KN −KT

)

5πd

[

1.7Z̄ +
8.7

Z̄3
−

22.8

Z̄2
+

20.2

Z̄
− 7.6

]

+
φKT

5πd

[

6.6Z̄ +
66.9

Z̄3
−

154.7

Z̄2
+

128.6

Z̄
− 46

]

. (6)

where a relation between the rms value of the fluctua-
tion in the number of contacts per particle and its av-
erage value has been adopted [14]. At the upper limit
of validity of equations (5,6), Z = 22/3, we recover the
average strain prediction [2, 3]. This limit results from
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FIG. 4: Comparison between the numerical data and fluctu-
ation theory for the normalized shear modulus.

the modeling of the statistical distribution of particles in
the assembly.
Comparison between the predictions of the bulk and

shear moduli and measurements in the numerical simu-
lation are shown in Figs. 3 and 4. There is agreement
at high values of the coordination number for the shear
modulus; the slight difference may be attributed to the ir-
reversibility. However, when the comparison is extended

to lower values of Z, the prediction strongly deviate from
the simulations, as also seen by others [10]. Here, we
conclude that this discrepancy is due to the observed ir-
reversible motions and that an elastic theory is not able
to capture the behavior of the system for low values of
Z. For the bulk modulus, the theory works quite well
over the entire range of Z, because the irreversibility,
measured by χ and ζ, can be neglected.

In conclusion, we have measured the irreversible mo-
tions in a granular aggregate subjected to incremental
strains and determined their influence on the mechanical
response of the material. We found that particles may
experience rearrangements in their geometry and contact
forces, even when small perturbations are applied and
that these rearrangements are sensitive to the coordina-
tion number. The strength of this irreversibility is neg-
ligible for increments in volume strain, while it strongly
increases for increments in shear strain as Z approaches
Ziso. The presence of irreversible motions in the aggre-
gates indicates a deviation from elastic behavior. That is,
an elastic theory is appropriate to describe the material
behavior only if mechanisms do not play an important
role in the displacements of the particles.
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Edwards thermodynamics of the jamming transition for frictionless packings:

ergodicity test and role of angoricity and compactivity
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This paper illustrates how the tools of equilibrium statistical mechanics can help to explain a
far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards
ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the ther-
modynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables).
We find that Edwards thermodynamics is able to describe the jamming transition (J-point). Using
the ensemble formalism we elucidate the following: (i) We test the combined volume-stress ensemble
by comparing the statistical properties of jammed configurations obtained by dynamics with those
averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity.
Agreement between both methods supports the idea of “thermalization” at a given angoricity and
compactivity. (ii) A microcanonical ensemble analysis supports the idea of maximum entropy prin-
ciple for grains. (iii) The intensive variables describe the approach to jamming through a series of
scaling relations as A → 0+ and X → 0−. Due to the force-volume coupling, the jamming transition
can be probed thermodynamically by a “jamming temperature” TJ comprised of contributions from
A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by
showing the absence of critical fluctuations at jamming in observables like pressure and volume. (v)
Finally, we elaborate on a comparison with relevant studies showing a breakdown of equiprobability
of microstates.

The application of concepts from equilibrium statisti-
cal mechanics to out of equilibrium systems has a long
history of describing diverse systems ranging from glasses
to granular materials [1–3]. For dissipative jammed
systems— particulate grains or droplets— the key con-
cept proposed by Edwards is to replace the energy en-
semble describing conservative systems by the volume
ensemble [3]. However, this approach alone is not able
to describe the jamming point (J-point) for deformable
particles like emulsions and droplets [4–7], whose geomet-
ric configurations are influenced by the applied external
stress. Therefore, the volume ensemble requires augmen-
tation by the ensemble of stresses [8–11]. Just as volume
fluctuations can be described by compactivity, the stress
fluctuations give rise to an angoricity, another analogue
of temperature in equilibrium systems.
In the past 20 years since the publication of Edwards

work there has been many attempts to understand and
test the foundations of the thermodynamics of powders
and grains. Three approaches are relevant to the present
study:

1. Experimental studies of reversibility.— Start-
ing with the experiments of Chicago which were
reproduced by other groups [12–15], a well-defined
experimental protocol has been introduced to
achieve reversible states in granular matter. These
experiments indicate that systematically shaken
granular materials show reversible behavior and
therefore are amenable to a statistical mechan-
ics approach, despite the frictional and dissipative
character of the material. These results are com-

plemented by direct measurements of compactiv-
ity and effective temperatures in granular media
[12, 14, 16–18].

2. Numerical test of ergodicity.— Numerical sim-
ulations compare the ensemble average of observ-
ables with those obtained from direct dynamical
measures in granular matter and glasses. These
studies [19–24] find general agreement between
both measures and, together with the experimental
studies of reversibility [12–15], suggest that ergod-
icity might work in granular media.

3. Numerical and experimental studies of
equiprobability of jammed states.— Exhaus-
tive searches of all jammed states are conducted
in small systems to test the equiprobability of
jammed states, as a foundation of the microcanon-
ical ensemble of grains. Numerical simulations and
experiments indicate that jammed states are not
equiprobable [25–27]. These results suggest that a
hidden extra variable [28] might be needed to de-
scribe jammed granular matter in contrast with the
work in 1 and 2.

The current situation can be summarized as follow-
ing: When directly tested or exploited in practical ap-
plications, Edwards ensemble seems to work well. These
include studies where ensemble and dynamical measure-
ments are directly compared, and recent applications
of the formalism to predict random close packing of
monodisperse spherical particles [29, 30], polydisperse
systems [31], and two [32] and high dimensional systems

http://arxiv.org/abs/1101.5634v1
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[33]. However, a direct count of microstates reveals prob-
lems at the foundation of the framework manifested in
the breakdown of the flat average assumption in the mi-
crocanonical ensemble [25–28].

In this paper we investigate the Edwards ensemble
of granular matter focusing on describing the jamming
transition [4–7]. A short version of this study has been
recently published in [34]. We employ a strategy that
mixes the approaches 2 and 3 above. We first perform
an exhaustive search of all jammed configurations in the
Potential Energy Landscape (PEL) of small frictionless
systems in the spirit of [25–28]. We then use this infor-
mation to perform a direct test of ergodicity in the spirit
of [19–24]. Our results indicate: (i) The dynamical and
ensemble measurements of presure, coordination number,
volume, and distribution of forces agree well, supporting
ergodicity. A microcanonical ensemble analysis supports
also a maximum entropy principle for grains. (ii) In-
tensive variables like angoricity, A, and compactivity, X ,
describe the approach to jamming through a series of
scaling relations. Due to the force-volume coupling, the
jamming transition can be probed thermodynamically by
a “jamming temperature” TJ comprised of contributions
from A and X . (iii) These intensive variables elucidate
the thermodynamic order of the jamming phase transi-
tion by showing the absence of critical fluctuations above
jamming in static observables like pressure and volume.
That is, the jamming transition is not critical and there
is no critical correlation length arising from a thermody-
namic n-point correlation function. We discuss other pos-
sible correlation lengths. (iv) Surprisingly, we reproduce
the results of [25] regarding the failure of equiprobability
of microstates while obtaining the correct dynamics mea-
surements as in [19–24]. We then offer a possible solu-
tion to this conundrum to elucidate why the microstates
seems to be not equiprobable while the ensemble averages
produce the correct results.

The paper is organized as follows. Section I discusses
the Edwards thermodynamics of the jamming transition.
Section II describes the ensemble calculations in the Po-
tential Energy Landscape formalism. Section III de-
scribes the Hertzian system to be studied. Section IV
describes the ensemble measurements to be compared
with the MD measures of Section V. Section VI explains
how to calculate A from the data. The ergodicity test is
made in Section VII. Section VIII describes the calcula-
tion in the microcanonical ensemble where the principle
of maximum entropy is verified and the coupled jamming
temperature is obtained. Section IX compares our results
with those of O’ Hern et al. [25] and Section X summa-
rizes the work. Appendix A includes “de yapa” a study of
coordination number fluctuations in the Edwards theory
for random close packings of hard spheres.

I. EDWARDS THERMODYNAMICS AND THE
JAMMING TRANSITION

The process typically referred to as the jamming tran-
sition occurs at a critical volume fraction φc where the
granular system compresses into a mechanically stable
configuration in response to the application of an external
strain [1, 2, 4]. The application of a subsequent external
pressure with the concomitant particle rearrangements
and compression results in a set of configurations char-
acterized by the system volume V = NVg/φ (φ is the
volume fraction of N particles of volume Vg) and applied
external stress or pressure p (for simplicity we assume
isotropic states).
It has been long argued whether the jamming transi-

tion is a first-order transition at the discontinuity in the
average coordination number, Z, or a second-order tran-
sition with the power-law scaling of the system’s pressure
as the system approaches jamming with φ−φc → 0+ [5–
7, 35]. Previous work [11, 36, 37] has proposed to explain
the jamming transition by a field theory in the pressure
ensemble. Here, we use the idea of “thermalization” of
an ensemble of mechanically stable granular materials at
a given volume and pressure to study the jamming tran-
sition from a thermodynamic viewpoint.
For a fixed number of grains, there exist many jammed

states [25, 26] confined by the external pressure p in a
volume V . In an effort to describe the nature of this
nonequilibrium system from a statistical mechanics per-
spective, a statistical ensemble [8, 10, 11] was introduced
for jammed matter. In the canonical ensemble of pres-
sure and volume, the probability of a state is given by
exp[−W(∂S/∂V ) − Γ(∂S/∂Γ)], where S is the entropy
of the system, W is the volume function measuring the
volume of the system as a function of the particle coor-
dinates and Γ ≡ pV is the boundary stress (or internal
virial) [36] of the system. Just as ∂E/∂S = T is the
temperature in equilibrium system, the temperature-like
variables in jammed systems are the compactivity [3]

X = ∂V/∂S, (1)

and the angoricity [8],

A = ∂Γ/∂S. (2)

In a recent series of papers [29–33] the compactiv-
ity was used to describe frictional and frictionless hard
spheres in the volume ensemble. Here, we test the valid-
ity of the statistical approach in the combined pressure-
volume ensemble to describe deformable, frictionless par-
ticles, such as emulsion systems jammed under osmotic
pressure near the jamming transition [38, 39].
In general, if the density of states g(Γ,φ) in the space

of jammed configurations (defined as the probability of
finding a jammed state at a given (Γ,φ) at A = ∞) is
known, then calculations of macroscopic observables, like
pressure p and average coordination number Z as a func-
tion of φ, can be performed by the canonical ensemble
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average [36, 37] at a given volume:

〈p(α,φ)〉ens =
1

Z

∫ ∞

0
p g(Γ,φ) e−αΓ dΓ, (3)

and

〈Z(α,φ)〉ens =
1

Z

∫ ∞

0
Z g(Γ,φ) e−αΓ dΓ, (4)

where the canonical partition function is

Z =

∫ ∞

0
g(Γ,φ)e−αΓdΓ, (5)

and the density of states is normalized as
∫∞
0 g(Γ,φ)dΓ =

1. The inverse angoricity is defined as

α ≡ 1/A = ∂S/∂Γ. (6)

At the jamming transition the system reaches isostatic
equilibrium, such that the stresses are exactly balanced
in the resulting configuration, and there exists a unique
solution to the interparticle force equations satisfying me-
chanical equilibrium. It is well known that observables
present power-law scaling [5–7]:

〈p〉dyn ∼ (φ− φc)
a , (7)

〈Z〉dyn − Zc ∼ (φ− φc)
b, (8)

where a = 3/2 and b = 1/2 for Hertzian spheres and
Zc = 6 is the coordination number at the frictionless
isostatic point (J-point) [40]. The average 〈· · · 〉dyn in-
dicates that these quantities are obtained by averaging
over packings generated dynamically in either simula-
tions or experiments as opposed to the ensemble average
over configurations 〈· · · 〉ens of Eqs. (3)–(4). Comparing
the ensemble calculations, Eqs. (3)–(4), with the direct
dynamical measurements, Eqs. (7)–(8), provides a basic
test of the ergodic hypothesis for the statistical ensemble.
Our approach is the following: We first perform an

exhaustive enumeration of configurations to calculate
g(Γ,φ) and obtain 〈p(α,φ)〉ens as a function of α for a
given φ using Eq. (3). Then, we obtain the angoric-
ity by comparing the pressure in the ensemble average
with the one obtained following the dynamical evolution
with Molecular Dynamics (MD) simulations. By setting
〈p(α,φ)〉ens = 〈p〉dyn, we obtain the angoricity as a func-
tion of φ. By virtue of obtaining α(φ), all the other ob-
servables can be calculated in the ensemble formulation.
The ultimate test of ergodicity is realized by comparing
the remaining ensemble observables with the correspond-
ing direct dynamical measures.

II. POTENTIAL ENERGY LANDSCAPE
APPROACH: ENSEMBLE CALCULATIONS

A. Features of the Potential Energy Landscape

An appealing approach for understanding out-of-
equilibrium systems is to study the properties of the

system’s “potential energy landscape” (PEL) [41], de-
scribed by the 3N -coordinates of all particles in the
multi-dimensional configuration space, or landscape, of
the potential energy of the system (N is the number
of particles). Characterizing such potential energy land-
scapes has become an important approach to study the
behaviour of out-of-equilibrium systems. For example,
this approach has provided important new insights into
the origin of the unusual properties of supercooled liq-
uids, such as the distinction between “strong” and “frag-
ile” liquids [42].
In frictionless granular matter, the potential energy is

well-defined and each jammed configuration corresponds
to one local minimum in the PEL. For small systems
(N ! 14), it is possible to find all the minima with cur-
rent computational power [25]. For somewhat larger sys-
tems N ≈ 30, it is possible to obtain a representative
ensemble, without exhaustively sampling all the states.
Based on these stationary points, we test the combined
volume-stress ensemble. The following work is only valid
for frictionless systems where the potential energy of in-
teraction is well defined. Frictional grains are path de-
pendent due to Coulomb friction between particles and
therefore not amenable to a PEL study since there is no
well defined energy of interaction.
The formalism introduced by Goldstein [43] consists

of partitioning the potential energy surface into a set of
basins as illustrated in Fig. 1. The dynamics on the po-
tential energy surface can be separated into two types:
the vibrational motion inside each basin and the transi-
tional motion between the local minima. Stillinger and
coworkers [44] developed the method of inherent struc-
ture to characterize the PEL. In this method, a local
minimum in the PEL is located by following the steepest-
descent pathway from any point surrounding the mini-
mum. The inherent structure formalism simplifies the
energy landscape into local minima and ignores the vi-
brational motion around them. The dynamics between
the inherent structures is introduced with the transition
states identified with the saddle points in the PEL. The
transition states are stationary points like the local min-
ima but they have at least one maximum eigendirection.

B. Finding Stationary States

For the simplest system of N structureless frictionless
particles possessing no internal orientational and vibra-
tional degrees of freedom, the potential energy function of
this N-body system is E(r1, . . . , rN ), where the vectors
ri comprise position coordinates. As mentioned above,
the most interesting points of a potential energy surface
are the stationary points, where the gradient vanishes.
Here we explain how to locate these stationary points.
The algorithm follows well established methods in com-
putational chemistry [41]. The procedure is analogous
to finding the inherent structures [45] of glassy systems.
The algorithm employed, LBFGS algorithm, is also sim-



4

FIG. 1: A model two-dimensional potential energy surface.
The energy landscape is divided into basins of attraction,
where the minima are the jammed states connected by path-
ways through saddle points. States A and B are typical pack-
ing configurations of 30 particles (in blue) with their periodic
boundary systems.

ilar to the conjugate gradient method employed by O’
Hern [5, 25, 26], differing in the fact that it does not
require the calculation of the Hessian matrix at every
time step. We make the source code in C++ available
at http://www.jamlab.org and free to use together with
all the packings generated in this study. The algorithm
has been used in the short version of this article [34]
and in a study of the PEL in Lennard-Jones glasses to
reconstruct a network of stationary states and apply a
percolation picture of the glass transition [46].

C. General Method – Newton-Raphson Method

Consider the Taylor expansion of the potential energy,
E, around a general point in configuration space, r,

E(r + h) = E(r) + gTh+
1

2
hTHh+O(h3), (9)

where g is the gradient, gi = ∂iE, H is the Hessian ma-
trix, Hij = ∂i∂jE, and h is a small step vector that gives
the displacement away from r.
By Eq. (9), the calculation of energy difference for a

given step h from the initial point r is complicated. By
selecting the eigenvectors of the Hessian matrix eα as our
local coordinates, we can simplify the Taylor expansion
of Eq. (9) as:

!E = E(r + h)− E(r) ≈
∑

α

(gαhα +
λα

2
h2
α), (10)

where g =
∑

α gαeα, h =
∑

α hαeα, Heα = λαeα, and
λα is the eigenvalue of the Hessian matrix for component
α.

α

∆
α

α α
λ

α α
λ

FIG. 2: A schematic energy change curve for one component
with λα > 0. We can select the downhill step as hα = − gα

λα

to obtain a maximum energy change. The uphill step can not
be too large since the Taylor expansion will not be accurate
enough for the calculation. Here, the uphill step is chosen as
hα = gα

λα
.

From Eq. (10), it is easy to see that the total change
of energy could simply be the sum of the changes in each
directions. This may help us to raise the energy in some
directions and reduce the energy at others, and finally
reach a stationary point. The length of each step compo-
nents can be selected as the maximum change of energy:

hα = Sα
gα
λα

, (11)

as shown in Fig.2. The sign Sα = ±1 in this formula
depends on the choice of uphill or downhill direction. In
fact, for λα > 0, it is possible to choose another step for
the uphill case, since !Eα increases as |hα|, but for large
steps, the Taylor expansion Eq. (9) may breakdown.
Therefore, it is important to control the step length. For
λα < 0, we reach the opposite conclusion.
The stationary points can be separated into local min-

ima and saddle points. Based on the eigenvalues of the
Hessian matrix for the stationary point, the local minima
are ordered as:

0 ≤ λ1 ≤ λ2 · · · ≤ λ3N , (12)

and for a saddle point of order α:

λ1 ≤ · · · ≤ λα ≤ 0 ≤ λα+1 ≤ · · · ≤ λ3N . (13)

Generally, this algorithm searches for the nearest sta-
tionary point on the surface by following the opposite
(λα ≥ 0) and along (λα ≤ 0) the various gradient direc-
tions.

D. Finding local minima – LBFGS algorithm

It is much easier to locate local minima than saddle
points because, for the first, we only need to search down-
hill in every direction. At present one of the most effi-
cient methods to search the local minima for large system

http://www.jamlab.org
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is Nocedal’s limited memory Broyden-Fletcher-Goldfarb-
Shanno algorithm (LBFGS) [45, 47]. The LBFGS algo-
rithm constructs an approximate inverse Hessian matrix
from the gradients (first derivatives) which are calculated
from previous points. Since it is only necessary to cal-
culate the gradients at each searching step, the LBFGS
algorithm increases the computational speed of the algo-
rithm enormously.
In the Newton-Raphson method discussed above,

the Hessian matrix of second derivatives is needed
to be evaluated directly. Instead, the Hessian
matrix used in LBFGS method is approximated
using updates specified by gradient evaluations.
The LBFGS algorithm code can be obtained from
http://www.netlib.org/opt/index.html. Here we present
a brief explanation of the algorithm
From an initial random point r0 and an approximate

Hessian matrix H0 (in practice, H0 can be initialized
with H0 = I), the following steps are repeated until r
converges to the local minimum.

• Obtain a direction hk by solving: Hkhk =
−∇E(rk).

• Perform a line search to find an acceptable step
size γk in the direction found in the first step, then
update rk+1 = rk + γkhk.

• Set sk = αkhk.

• Set yk = ∇E(rk+1)−∇E(rk).

• Set the new Hessian, Hk+1 = Hk + yky
T
k

yT
k
sk

−
Hksk(Hksk)

T

sT
k
Hksk

.

E. Finding saddles – Eigenvector following method

In the present study we do not make use of the saddle
points. However, other studies using network theory to
represent the PEL necessitate the links between minima
through the saddle points [46]. For completeness, below
we explain how to search for saddles. A particular pow-
erful method for locating saddle points is the eigenvector
following method [41].
The eigenvector-following method, developed by Cer-

jan, Miller and others [41, 48–52], consists of locating a
saddle point from a local minimum. At each searching
step towards a saddle point with α order, the directions
are separated into two types: α uphill directions to maxi-
mization and 3N−α downhill directions to minimization.
We follow the implementation of the eigenvector-

following method by Grigera [49]. We give a general
description: at each searching step, a step size h is cal-
culated by the diagonalized Hessian matrix [49, 51, 52]:

hα = Sα
2gα

|λα|
(

1 +
√

1 + 4g2α/λ
2
α

) , (14)

Local Minimum A

1st Order SaddleA

Local Minimum B

FIG. 3: A two dimensional 31 particle system in a circular
boundary. Three different configurations in this system are
generated with different algorithms. The LBFGS method is
applied to locate minima A and B. For saddle C which con-
nects A and B, the eigenvector following method is used.

where λα are the eigenvalues of the Hessian matrix and
gα are the components of the gradient in the diagonal
base (hα is set to 0 for the directions where λα = 0).
The sign Sα = ±1 is chosen by the order of the saddle
point. For a saddle point of order n, the algorithm will
set Sα = −1 for 1 ≤ α ≤ n and Sα = 1 for α > n.
When gα → 0, the step size hα converges to the

Newton-Raphson step as Eq. (11):

hα = Sα
gα
λα

+O(g2α). (15)

F. An Example

We generate a two dimensional soft-ball system in cir-
cular boundary, which contains 31 particles of equal ra-
dius, to illustrate the method of finding stationary and
saddle points in the PEL. The interaction between par-
ticles (also the interaction between particles and wall)
follows the Hertzian law [6]:

V (ri, rj) = ε|ri − rj |
5

2 (16)

Here, ε is the interaction strength between particles i and
j. The volume fraction is φ = 0.80, which is closed to
the jamming transition of 2d hard disks.
We first generate a random configuration, which is

the initial point of the search of the minima. With the
LBFGS method, we search the local minimum A nearby
this initial point. After the minimum A is obtained, we
apply the eigenvector following method to walk from the
point A on the potential energy surface to locate the tran-
sition state C (here the transition state is a first order
saddle). Finally, the minimum B is located by applying
LBFGS method again. Figure 3 shows configurations of
two local minima (marked as red) and the transition state
(marked as blue) between them.

http://www.netlib.org/opt/index.html
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FIG. 4: The pathway from minimum A to minimum B, pass-
ing by the saddle C, the x-coordinate is the distance from sad-
dle C, the y-coordinate is the potential energy of the packing.

The pathway from minimum A to minimum B, passing
by transition state C, is shown in Fig. 4. The pathway
distance is the Euclidean distance,

d =
√

(r′ − r)(̇r′ − r) =

√

∑

i,α

(r′i,α − ri,α)2, (17)

where i = 1, 2, 3, α = 1 · · · 3N , r′ is the coordinate of
configuration passing along the searching method and r
is the coordinate of saddle C.
The dynamics from minimum to minimum can be rep-

resented as a walk on a network whose nodes corre-
spond to the minima and where edges link those min-
ima which are directly connected by a transition state.
The work of Doye [53] provides an illustration of such a
landscape network for a LJ energy surface. To charac-
terize the topology of the landscape network, Doye [53]
study small Lennard-Jones clusters to locate nearly all
the minima and transition states on the potential en-
ergy landscape. The inherent structure network of such
a system has a scale-free and small-world properties. In
a companion study [46] we repeated the main results as
Doye studied. The numbers of minima and transition
states are expected to increase roughly as Nmin ∼ eαN

and Nst ∼ NeαN respectively, where N is the number
of atoms in the cluster. Therefore, the largest network
that we are able to consider is for a 14-atom cluster for
which we have located 4158 minima and 90 738 transition
states in agreement with the results of Doye. In the next
Section we apply the above formalism to find the station-
ary states for a 3d granular system of Hertz spheres in a
periodic boundary.

III. SYSTEM INFORMATION. HERTZIAN
SYSTEM OF SPHERES

Next we calculate the density of jammed states g(Γ,φ)
in the framework of the PEL formulation for a system of

Hertz spheres. In the case of frictionless jammed systems,
the mechanically stable configurations are defined as the
local minima of the PEL [5, 26].
The systems used for both, ensemble generation and

molecular dynamic simulation, are the same. They are
composed of 30 spherical particles in a periodic boundary
box. The particles have same radius R = 5µm and inter-
act via a Hertz normal repulsive force without friction.
The normal force interaction is defined as [6, 35, 54]:

Fn =
2

3
knR

1/2(δr)δ , (18)

where δ = 3/2 is the Hertz exponent, δr = (1/2)[2R −
|$x1 − $x2|] > 0 is the normal overlap between the spheres
and kn = 4G/(1 − ν) is defined in terms of the shear
modulus G and the Poisson’s ratio ν of the material from
which the grains are made. We use typical values for
glass: G = 29 GPa and ν = 0.2 and the density of the
particles, ρ = 2 × 103 kg/m3 [6, 35]. The interparticle
potential energy is

E =
2

3

kn
δ + 1

R1/2(δr)δ+1. (19)

The Hertz potential is chosen for its general applica-
bility to granular materials. The results are expected to
be independent of the form of the potential. Below, we
apply the LBFGS algorithms [45, 47] to find the local
minima of the PES (zero-order saddles).

IV. ENSEMBLE GENERATION

In this section, we first explain the method to obtain
geometrically distinct minima in the PEL to calculate
the density of states. Then we show that the density
of the states, g(Γ,φ), does not change significantly after
sufficient searching time for the configurations.
In principle, if all local minima corresponding to the

mechanically stable configurations of the PEL are ob-
tained, the density of states g(Γ,φ) can be calculated.
Such an exhaustive enumeration of all the jammed states
requires that N not be too large due to computational
limits. On the other hand, in order to obtain a precise
average pressure in the MD simulation, 〈p〉dyn, N cannot
be too small such that boundary effects are minimized.
Considering these constraints, we choose a 30 particle
system.
In order to enumerate the jammed states at a given vol-

ume fraction φ, we start by generating initial unjammed
packings (not mechanically stable) performing a Monte
Carlo (MC) simulation at a high, fixed temperature. The
MC part of the method applied to the initial packings
assumes a flat exploration of the whole PEL. Every MC
unjammed configuration is in the basin of attraction of
a jammed state which is defined as a local minimum in
the PES with a positive definite Hessian matrix, that
is a zero-order saddle. In order to find such a minimum,
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we apply the LBFGS algorithm provided by Nocedal and
Liu [47] explained above. The PEL for each fixed φ likely
includes millions of geometrically distinct minima by our
simulation results. Therefore, an exhaustive search of
configurations is computationally long; for a system of
30 particles it is impossible to find all the configurations
with the current available computational power. How-
ever, we notice that it not crucial to find all the states,
but rather a sufficiently accurate density of states. There-
fore, we check that the number of found configurations
has saturated after sufficient trials and that the density
of states g(Γ,φ) has converged to a final shape under a
prescribed approximation.
It is also important to determine if the local minima

are distinct. Usually, the eigenvalues of the Hessian ma-
trix at each local minimum can be used to distinguish
these mechanically stable packings. Here, we follow this
idea to compare minima to filter the symmetric pack-
ings. However, instead of calculating the eigenvalues of
each packing, which is time consuming, we calculate a
function of the distance between any two particles in the
packing to improve search efficiency (for the LBFGS al-
gorithm, we do not need to calculate the Hessian matrix).
For each packing, we assign the function Qi for each par-
ticle:

Qi =
∑

1≤j≤N, j "=i

tan2(
πr2ij
3L2

), (20)

where rij is the distance between particles i and j, L is
the system size and N = 30. We list the Qi for each
packing from minimum to maximum {Qi}(1 ≤ i ≤ N).
Since Qi is a higher order nonlinear function, we can
assume that two packings are the same if they have the
same list. The tolerance is defined as:

T =

√

∑

1≤i≤N (Qi −Q
′

i)
2

N2
, (21)

where Qi and Q
′

i are the corresponding values from the
lists of two packings.
Figure 5 shows the distributions of the tolerance T

for packings at different volume fractions. This figure
suggests that two packings can be considered the same if
T ≤ 10−1, which defines the noise level.
From Fig. 6, we see that after one week of search-

ing, g(Γ,φ) does not change significantly, since the initial
packings are generated by a completely random protocol.
We also calculate the probability of finding new mechani-
cally stable states for different searching days, defined as
Nnew(i)/Ntotal(i), where Nnew(i) is the number of new
configurations found on the i-th day and Ntotal(i) is the
total number of configurations found in i days. From Fig.
7, we see that, after one week searching, the probability of
finding new configurations at different volume fractions
seems to have converged in the linear plot. Figure 7b
shows a detail of the actual number of new configurations
found and g(Γ,φ) versus searching time in days suggest-
ing convergence. However, the log-log plot of the inset in

T

FIG. 5: The distribution of the tolerance T between any two
packings at the given φ. From the graph, the value of T for
which any two different packings are considered to be same
is chosen to be 10−1, which is above the noise threshold and
below the distribution of T .

FIG. 6: Log-log plot of the distribution of g(Γ,φ) for 15
searching days (a) at φ = 0.609, (b) at φ = 0.614, (c) at
φ = 0.625. Different color in (a), (b), (c) corresponds to the
different day. We find that after 15 days the distributions
have converged.

Fig. 7a indicates that the algorithm is still searching for
new configurations; the power-law relation in the inset
suggesting a neverending story. However, the main ques-
tion is whether the observables have converged. A further
test of convergence is obtained below in Fig. 14 where the
value of the inverse angoricity is measured as a function
of the searching time in days. This plot suggests that
enough ensemble packings have been obtained to cap-
ture the features of g(Γ,φ) that give rise to the correct
observables. We conclude that we have obtained an ac-
curate enough density of states for this particular system
size. Regarding system size dependence, the presented
results are still N dependent, although they started to
converge for N ∼ 35 and above, Fig. 8. More accurate
calculations for large values of N remain computation-
ally impossible, but in our treatment the exact choice of
N is not as important as the consistency of the results
between ensemble and MD, for a given N value.
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(a)

(b)

FIG. 7: (a) The probability to find new configurations as a
function of searching time. (b) Linear plot of the density of
states as a function of searching time. Different colors indicate
different days according to the inset. Inset shows the actual
number of new configurations.

Figure 9 shows g(Γ,φ) versus Γ for different volume
fractions.

V. MD CALCULATIONS

In order to analyze numerical results, we perform MD
simulations to obtain Zdyn and φdyn, which are herein
considered real dynamics. The algorithm is described in
detail in [29, 35, 55]. Here, a general description is given:
A gas of non-interacting particles at an initial volume
fraction is generated in a periodically repeated cubic box.
Then, an extremely slow isotropic compression is applied
to the system. The compression rate is Γ0 = 5.9t−1

0 ,
where the time is in units of t0 = R

√

ρ/G. After obtain-
ing a state for which the pressure p is a slightly higher
than the prefixed pressure we choose, the compression is
stopped and the system is allowed to relax to mechani-
cal equilibrium following Newton’s equations. Then the
system is compressed and relaxed repeatedly until the
system can be mechanically stable at the predetermined
pressure. To obtain the statical average of Zdyn and φdyn,
we repeat the simulation to get enough packing samples
having statistically independent random initial particle
positions. Here, 250 independent packings are obtained
for each fixed pressure (see Fig. 10). φ = 〈φ〉dyn and

FIG. 8: Dependence of the results on the system size. The
average value of p converges as early as N ∼ 25 particles. The
distribution g(Γ,φ) (inset) has not fully converged yet but its
shape has converged after N = 35 and the first moment does
not change as indicated by the average p.

FIG. 9: The density of states g(Γ,φ) as a function of internal
virial Γ for different volume fraction, φ, ranging from 0.610 to
0.670. The inset shows the logarithmic distribution of g(Γ,φ).
At low volume fraction (φ ! 0.625), the distributions are
sharp and the tails of the distributions are exponential. At
high volume fraction (φ " 0.640), the distributions are much
broader and the tails are Gaussian.

〈Z〉dyn are flat averages of these 250 packings by

〈φ〉dyn =

∑

1≤i≤250 φi

250
, (22)

and

〈Z〉dyn =

∑

1≤i≤250 Zi

250
. (23)

From previous studies, it has been observed the pres-
sure p vanishes as power-law of φ when approaching the
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(a)

(b)

FIG. 10: The cyan © is (a) φdyn and (b) Zdyn for every
single packing obtained with MD and the blue © is 〈φ〉dyn
and 〈Z〉dyn average over the single packings for the system
which are shown in the text of the paper.

jamming transition as seen in Eq. (7) [5, 6]. We obtain
(Fig. 11)

〈p〉dyn = p0 (φ− φc)
1.65 , (24)

where φc = 0.6077 is the volume fraction corresponding
to the isostatic point J [5, 6] following Eq. (8) and p0 =
10.8MPa. This critical value φc and the exponent, a =
1.65, are slightly different from the values obtained for
larger systems (a = δ) [5, 6]. However, our purpose is
to use the same system in the dynamical calculation and
the exact enumeration for a proper comparison.

VI. ANGORICITY CALCULATION

Since we obtain g(Γ,φ) and 〈p〉dyn for each volume
fraction φ, we can calculate the inverse angoricity α by
Eq. (3). The pressure 〈p(α,φ)〉ens for a given φ is a
function depending on α as:

〈p(α,φ)〉ens =
∫∞
0 pg(Γ,φ)e−αΓdΓ
∫∞
0 g(Γ,φ)e−αΓdΓ

=

∑

pe−αΓ

∑

e−αΓ
. (25)

Figure 12 shows the result of the numerical integration
of Eq. (25) for a particular φ = 0.614 as a function of

FIG. 11: Scaling of pressure. The blue © shows the power-
law relation for 〈p〉dyn vs 〈φ〉dyn−φc for the 30-particle system.
Here, the pressure 〈p〉dyn are average values obtained by 250
independent MD simulations. The red © is the pressure used
to obtain the inverse angoricity α predicted by Eq. (24).
The relatively small system size results in large fluctuations
of the observables. In order to predict a precise relation for
the system (N = 30), sufficient independent samples of the
packings are generated to calculate the precise average for
observables. We prepare 250 independent packings for each φ
to get enough statistical samples to obtain 〈p〉dyn and 〈Z〉dyn
by statistical average. The inset shows a semi-log plot.

< >

FIG. 12: The numerical integration of Eq. (25) for φ = 0.614
is shown as the pink curve. We input the 〈p〉dyn (pink © in
the plot) and obtain the corresponding inverse angoricity α.

α using the numerically obtained g(Γ,φ) from Fig. 9.
To obtain the value of α for this φ, we input the corre-
sponding measure of the pressure obtained dynamically
〈p(φ)〉dyn and obtain the value of α as schematically de-
picted in Fig. 12. The same procedure is followed for
every φ (see Fig. 13) and the dependence α(φ) is ob-
tained.
We also check the inverse angoricity α(φ) using g(Γ,φ)

for different searching days. to ensure the accuracy and
convergence to the proper value. From Fig. 14, we can
see that, after 10 days searching, α(φ) is stable due to the
fact that the density of state, g(Γ,φ), does not change
significantly.
For each φ we use g(Γ,φ) to calculate 〈p(α)〉ens by

Eq. (3). Then, we obtain α(φ) by setting 〈p(α,φ)〉ens =
〈p〉dyn for every φ. The resulting equation of state α(φ) is
plotted in Fig. 15 and shows that the angoricity follows
a power-law, near φc, of the form:

A ∝ (φ− φc)
γ , (26)
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FIG. 13: Calculation of α for several volume fractions φ as
explained in detail in Fig. 12

FIG. 14: Calculation of inverse angoricity α as a function of
searching time.

with γ = 2.5. The result is consistent with γ = δ + 1.0,
suggesting that A ∝ Γ ∝ Fnr. For volume fraction much
larger than φc, the system’s input pressure 〈p(φ)〉dyn
reaches the plateau at low α of the function 〈p(α,φ)〉ens
(see Fig. 13) and the corresponding α(φ) becomes much
smaller (the angoricity A(φ) becomes much larger), lead-
ing to large errors in the value of A as φ becomes
large. This might explain the plateau found in A when
(φ− φc) > 2× 10−2 as shown in Fig. 15.

Angoricity is a measure of the number of ways the
stress can be distributed in a given volume. Since the
stresses have a unique solution for a given configuration
at the isostatic point, φc, the corresponding angoricity
vanishes. At higher pressure, the system is determined by
multiple degrees of freedom satisfying mechanical equi-
librium, leading to a higher stress temperature, A. The
angoricity can also be viewed as a scale of stability for the
system at different volume fractions. Systems jammed at
larger volume fractions require higher angoricity (higher
driving force) to rearrange.

(a)

(b)

FIG. 15: (a) Inverse angoricity α as a function of φ-φc. We
find a power-law relation for system’s volume fraction φ near
φc. The solid line has a slope of -2.5. (b) The angoricity
A(= 1/α) vs φ-φc. To find A accurately for system’s volume
fraction φ much larger than φc, becomes difficult due to the
large fluctuations and finite size effects. In principle, we ex-
pect that the plateau of A for large volume fraction φ might
be related to the finite size of the sample. Indeed it is very
difficult to estimate α since it falls in the plateau in Fig. 13.

VII. TEST OF ERGODICITY

In principle, using the inverse angoricity, α, from Eq.
(26) we can calculate any macroscopic statistical observ-
able 〈B〉ens at a given volume by performing the ensemble
average [37]:

〈B(φ)〉ens =
1

Z

∫ ∞

0
B g(Γ,φ) e−αΓ dΓ. (27)

We test the ergodic hypothesis in the Edwards’s ensemble
by comparing Eq. (27) with the corresponding value ob-
tained with MD simulations averaged over (250) sample
packings, Bi, generated dynamically:

〈B(φ)〉dyn =
1

250

250
∑

i=1

Bi. (28)

The comparison is realized by measuring the average
coordination number, 〈Z〉, the average force and the dis-
tribution of interparticle forces. We calculate 〈Z〉ens by
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Eq. (4) and 〈Z〉dyn as in Eq. (28). Using α(φ) for each
volume fraction, we calculate 〈Z〉ens by:

〈Z(φ)〉ens =
∫∞
0 Zg(Γ,φ)e−αΓdΓ
∫∞
0 g(Γ,φ)e−αΓdΓ

=

∑

Ze−αΓ

∑

e−αΓ
. (29)

The average force 〈F 〉ens is given by:

〈F (φ)〉ens =
∫∞
0 Fg(Γ,φ)e−αΓdΓ
∫∞
0 g(Γ,φ)e−αΓdΓ

=

∑

Fe−αΓ

∑

e−αΓ
, (30)

where F is the average force for each ensemble packing.
Finally, the force distribution Pens(F/F ) is given by:

Pens(F/F ) =

∫∞
0 P (F/F )g(Γ,φ)e−αΓdΓ
∫∞
0 g(Γ,φ)e−αΓdΓ

=

∑

P (F/F )e−αΓ

∑

e−αΓ
.

(31)
Equations (29)–(31) are then compared with the dynam-
ical measures for a test of ergodicity in Figs. 16 and 17.

(a)

(b)

FIG. 16: Test of ergodicity. (a) The blue © is the av-
erage coordination number 〈Z〉dyn obtained by 250 indepen-
dent MD simulations. The red © is the coordination number
〈Z〉ens calculated by the ensemble for different volume frac-
tions. Agreement between both measures supports the con-
cept of ergodicity in the system. (b)The same as (a) but
in a log-log plot. The blue © shows the power-law rela-
tions for 〈Z〉dyn-Zc vs 〈φ〉dyn -φc for 30-particle system with
φc = 0.6077 and Zc = 5.82.

Figure 16a and 16b show that the two independent
estimations of the coordination number agree very well:

〈Z〉ens = 〈Z〉dyn. The average inter-particle force F for
a jammed packing is proportional to the pressure of the
packing. We calculate 〈F 〉ens and 〈F 〉dyn and find that
they coincide very closely (see Fig. 17a). The full dis-
tribution of inter-particle forces for jammed systems is
also an important observable which has been extensively
studied in previous works [5, 56, 57]. The force distribu-
tion is calculated in the ensemble Pens(F/F ) by averaging
the force distribution for every configuration in the PES.
Figure 17b shows the distribution functions. The peak
of the distribution shown in Fig. 17b indicates that the
systems are jammed [5, 56, 57]. Besides the exact shape
of the distribution, the similarity between the ensemble
and the dynamical calculations shown in Fig. 17b is sig-
nificant. The study of 〈Z〉, 〈F 〉 and P (F/F ) reveals that
the statistical ensemble can predict the macroscopic ob-
servables obtained in MD. We conclude that the idea of
“thermalization” at an angoricity is able to describe the
jamming system very well.

(a)

(b)

FIG. 17: Test of ergodicity. (a) Comparison of 〈F 〉dyn and
〈F 〉ens for different volume fractions. (b) The comparison of
selected distribution of force Pdyn(F/F ) and Pens(F/F ) for
different volume fractions.

The MD simulations performed so far are at a prede-
termined pressure p. For this case there is no difference
between the force distribution P (F/F ) and P (F/〈F 〉) [5].
On the other hand, a MD simulation at a given fixed vol-
ume fraction φ, gives rise to different distributions. For
each system with fixed φ, the packings can have various
pressure. This suggests that the force distribution for
each packing scaled by the average force over all pack-
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ings, P (F/〈F 〉), should be different from the force dis-
tribution scaled by the average force of that particular
packing P (F/F ) [25]. We now proceed to investigate a
constant volume MD, vMD simulation.

FIG. 18: (a) The distribution of force PvMD(F/〈F 〉vMD). (b)
The distribution of force Pens(F/〈F 〉ens). (c) and (d) The
comparison of selected P (F/〈F 〉) between vMD and ensemble
predicted by angoricity.

FIG. 19: The distribution of forces, P (F/〈F 〉)vMD

The force distribution for vMD ensemble,
Pdyn(F/〈F 〉dyn) is shown in Fig. 18a. From Fig.
18a, we find that the force distribution Pdyn(F/〈F 〉dyn)
as a function of different volume fraction φ no longer
collapse. At φ close to φc, the average system force F for
each packing changes dramatically. While at φ is much
above φc, the fluctuations of the average system force
F decrease, then the force distribution Pdyn(F/〈F 〉dyn)
changes continuously.

We can also calculate the force distribution

Pens(F/〈F 〉ens) in the ensemble average:

Pens(F/〈F 〉ens =
∫∞
0 P (F/〈F 〉ens)g(Γ,φ)e−αΓdΓ

∫∞
0 g(Γ,φ)e−αΓdΓ

, (32)

where 〈F 〉ens is the overall average F of the ensemble.
From Fig. 18b, we find the same tendency as obtained

in MD simulation. Furthermore, we check the distribu-
tion of force P (F/〈F 〉) for our vMD system (see Fig.
19). We see that P (F/〈F 〉) for different volume fraction
φ collapses very well similarly to those obtained from the
predetermined pressure system. This result suggests that
P (F/〈F 〉) is a global quantity that can be used to verify
if the system is jammed or not [25].

FIG. 20: Microcanonical calculations. The entropy surface
S(ln(φ − φc), ln p). The color bar indicates the value of the
entropy. The superimposed blue © is 〈p(φ)〉dyn from MD
calculations as in Fig. 11. The olive arrow line indicates the
maximization direction of the entropy (− sin θ, cos θ). Fol-
lowing this direction, the entropy is maximum at the point
(ln(〈φ〉dyn − φc), ln〈p〉dyn), corroborating the maximum en-
tropy principle.

VIII. THERMODYNAMIC ANALYSIS OF THE
JAMMING TRANSITION

So far we have considered how the angoricity deter-
mines the pressure fluctuations in a jammed packing at
a fixed φ. The role of the compactivity in the jamming
transition can be analyzed in terms of the entropy which
is easily calculated in the microcanonical ensemble from
the density of states. Figure 20 shows the entropy of the
system as a function of (p,φ) in phase space:

S = ln(Ω(p,φ)). (33)

Here Ω is the number of states which is the unnormalized
version of g(Γ,φ). It is important to note that Fig. 20
shows the non-equilibrium entropy, in the Edwards sense.
At the Edwards equilibrium, the entropy is maximum
respect to changes in φ and Γ. We will now see how
the jammed system verifies the principle of maximum
entropy.
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We analyze the entropy surface S(ln(φ−φc), ln p) plot-
ted versus (ln(φ − φc), ln p) in Fig. 20. When we plot
superimposed the MD-obtained curve 〈p(φ)〉dyn we see
that the MD values pass along the maximum of the
entropy surface constrained by the coupling between
p and φ, Eq. (8) (such a curve is superimposed to
the entropy surface in Fig. 20). Due to the coupling
through the contact force law, the maximization of en-
tropy is not on p or φ alone but on a combination of
both. The entropy S reaches a maximum at the point
S(ln(〈φ〉dyn − φc), ln〈p〉dyn) when we move along the di-
rection perpendicular to the jamming curve 〈p(φ)〉dyn
(see the maximization direction in Fig. 20). This is a
direct verification of the second-law of thermodynamics:
the dynamical measures maximize the entropy of the sys-
tem.
We can use this result to obtain a relation between an-

goricity and compactivity and show how a new “jamming
temperature” TJ and the corresponding jamming “heat”
capacity CJ can describe the jamming transition.
From the power-law relation p = Γ/V ∝ (φ− φc)a, we

have:

ln p = ln p0 + a ln(φ− φc), (34)

where p0 is the constant depending on the system.
Figure 20 indicates that the jammed system always

remain at the positions of maximal entropy,

δS = 0, (35)

in the direction (− sin θ,cos θ), perpendicular to the jam-
ming power-law curve and the slope

tan θ = a. (36)

In order to further analyze this result, we plot the en-
tropy distribution along the direction (− sin θ,cos θ) in
Fig. 21. We see that the entropy of the corresponding
jammed states remains at the peak of the distributions
along (− sin θ,cos θ). This is clear when we plot the value
of (p,φ) from MD simulations in the plot of S in Fig. 21,
blue dot. Except for volumes very close to jamming, the
MD coincides with the maximum of S when taken along
(− sin θ,cos θ). We notice that the maximization is quite
accurate for large volume fractions. For φ close to jam-
ming deviations are seen. We cannot rule out that these
deviations are finite size effects. The deviations for small
φ (Fig. 21) remains to be studied. They could be due
to finite size effects or due to the fact that the value of
φc is different for the MD results and the microcanoni-
cal ensemble S due to the small size of the system. In
general, this plot verifies the maximum entropy princi-
ple in this particular direction. An analogous plot where
the entropy is shown as a function of φ but along the
horizontal direction (or along the vertical direction, Γ)
shows that the MD entropy is not maximal along these
two directions.
Thus, the maximization of entropy is not on Γ or V

alone, but on a combination of both. This means that the

entropy S(ln(〈φ〉dyn − φc), ln〈p〉dyn) is maximum along
the direction of (− sin θ,cos θ) and the slope for the en-
tropy of the jamming power-law curve along this direc-
tion (− sin θ,cos θ) is 0 (see Fig. 22), that is,

∂S

∂ ln(φ − φc)
sin θ =

∂S

∂ ln p
cos θ. (37)

FIG. 21: The non-equilibrium entropy S(ln p, ln(φ−φc)) along
the direction (− sin θ, cos θ) for different jamming ensemble
points. The blue © represents the entropy of the jammed
system obtained from MD. We see that closely follows the
maximum of S for all the volume fractions except very close
to the jamming point where the blue point does not coincide
with the maximum of S. It remains to be studied if this
deviation is a finite size effect, or it could be due to a different
value of φc between simulations and microcanonical ensemble.

FIG. 22: The representation of the maximization analysis
δS = 0 along the direction (− sin θ, cos θ) for one point in
the jamming power-law curve. Here c1 = Γ and c2 = (φ −
φc)(NVg/φ2).

By the definition of angoricity A = ∂Γ/∂S and com-
pactivity X = ∂V/∂S, we have:

∂S

∂ ln p
= p

∂S

∂p
= Γ

∂S

∂Γ
=

Γ

A
=

c1
A
, (38)



14

∂S

∂ ln(φ− φc)
=(φ− φc)

∂S

∂φ
= (φ− φc)

∂V

∂φ

1

X
=

=− (φ − φc)
NVg

φ2

1

X
= −

c2
X

,

(39)

where φ = NVg/V , c1 = Γ and c2 = (φ− φc)(NVg/φ2).
By Eq. (38) and Eq. (39), we can simplify Eq. (37):

c1
A

+ a
c2
X

= 0. (40)

The relation between X and A can be obtained then
(Fig. 22):

X = −a
c2
c1
A = −a

φ− φc

pφ
A. (41)

From Eq. (41) we obtain that: X ∝ −(φ−φc)1+a−γ/φ
and near φc:

X ∼ −(φ− φc)
2. (42)

We notice that the compactivity is negative near the
jamming transition. A negative temperature is a general
property of systems with bounded energy like spins [58]:
the system attains the larger volume (or energy in spins)
at φc when X → 0− and not X → +∞ [The bounds
φc ≤ φ ≤ 1 imply that the jamming point at X → 0−

is “hotter” than X → +∞. At the same time A → 0+

since the pressure vanishes].
We conclude that, A and X alone cannot play the

role of temperature, but a combination of both deter-
mined by entropy maximization satisfying the coupling
between stress and strain. Instead, there is an actual
“jamming temperature” TJ that determines the direction
(− sin θ, cos θ) in the log− log plot of Fig. 20 along the
jamming equation of state (see Fig. 22). By maximizing
the entropy along this direction we obtain the “jamming
temperature” TJ as a function of A and X :

1

TJ
=

c1
A

sin θ −
c2
X

cos θ = cos θ(a
c1
A

−
c2
X

). (43)

That is:

TJ =
A sin θ

c1
= −

X cos θ

c2
=

sin θ

Γ
A =

=
a√

1 + a2
A

Γ
∼ (φ− φc)

γ−a ∼ (φ− φc).
(44)

Thus, the temperature vanishes at the jamming transi-
tion.
Furthermore, the “jamming energy” EJ, corresponding

to the “jamming temperature” TJ in Eq. (43), has the

relation as below:

dEJ = TJdS

= TJ
∂S

∂ ln(φ− φc)
d ln(φ− φc) + TJ

∂S

∂ ln p
d ln p

= (−
X cos θ

c2
)(−

c2
X

)d ln(φ − φc) +
A sin θ

c1

c1
A
d ln p

= cos θd ln(φ− φc) + sin θd ln p

= (cos θ + sin θ tan θ)d ln(φ− φc)

=
d ln(φ− φc)

cos θ
.

(45)

That is,

dEJ =
√

a2 + 1d ln(φ− φc), (46)

and

EJ = (
√

a2 + 1) ln(φ − φc). (47)

By the definition of “heat” capacity, we obtain two
jamming capacities as the response to changes in A and
X :

CΓ ≡ ∂Γ/∂A ∼ (φ − φc)−1 ∼ A−2/5,
CV ≡ ∂V/∂X ∼ (φ− φc)−1 ∼ |X |−1/2.

(48)

The jamming capacity CJ can be obtained as:

CJ = TJ
∂S

∂TJ
= TJ

∂S

∂ ln p

∂ ln p

∂TJ
+TJ

∂S

∂ ln(φ− φc)

∂ ln(φ− φc)

∂TJ
.

(49)
Finally, with Eq. (37)–(39), the capacity CJ can be cal-
culated:

CJ = TJ(
c1
A

−
c2
aX

)
∂ ln p

∂TJ
= TJ

1 + a2

a2
c1
A

∂ ln p

∂TJ
. (50)

Since TJ ∼ (φ− φc) and p ∼ (φ− φc)1.5, we obtain

CJ ∼ (φ − φc)
−1. (51)

From Eq. (48), the jamming capacities diverge at the
jamming transition as A → 0+ and X → 0−. However,
this result does not imply that the transition is critical
since from fluctuation theory of pressure and volume [58]
we obtain:

〈(∆Γ)2〉 = A2CΓ ∼ A1.6,

〈(∆V )2〉 = X2CV ∼ |X |1.5.
(52)

Thus, the pressure and volume fluctuations near the jam-
ming transition do not diverge, but instead vanish when
A → 0+ and X → 0−. From a thermodynamical point
of view, the transition is not of second order due to the
lack of critical fluctuations. As a consequence, no diverg-
ing static correlation length from a correlation function
can be found at the jamming point. However, other cor-
relation lengths of dynamic origin may still exist in the
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response of the jammed system to perturbations, such as
those imposed by a shear strain or in vibrating modes
[7, 59]. Such a dynamic correlation length would not
appear in a purely thermodynamic static treatment as
developed here. We note that static anisotropic packings
can be treated in the present formalism by allowing the
inverse angoricity to be tensorial [37].
The intensive jamming temperature Eq. (44) gives use

to a jamming effective energy EJ as the extensive vari-
able satisfying TJ = ∂EJ/∂S and a full jamming capac-
ity CJ ∼ (φ − φc)−1, which also diverges at jamming.
However, the fluctuations of EJ defined as 〈(∆EJ)2〉 =
T 2
JCJ ∼ TJ has the same behavior as the fluctuations of

volume and pressure, vanishing at the jamming transi-
tion TJ → 0+ [A → 0+ in Eq. (44)].

IX. COMPARISON WITH O’HERN ET AL.

The results so far show a general agreement between
MD and the ensemble average. These include the maxi-
mum entropy principle and ergodicity. We now turn to a
comparison with similar simulations done by O’Hern et
al. [25, 26]. These studies perform an exhaustive search
of all configurations in the PEL of frictionless particles
similarly as in the present paper. However, they find that
the microstates are not equiprobable, i.e., microstates
with the same pressure and volume fraction (pressure is
fixed at zero since only hard sphere states are of inter-
est) do not have the same probability when sampled by
a given algorithm. Furthermore, experimental studies of
equilibration between two systems [28], suggests that a
hidden variable is necessary to describe the microstates,
further supporting the results of [25]. The applicability of
the microcanonical ensemble is based on the fact that the
microstates are defined by (Γ,φ). Thus, the fact that the
states are not equiprobable implies that there must be
an extra variable needed to describe their probabilities.
Therefore, ergodicity and the maximum entropy princi-
ple, which are downstream from equiprobability, are not
supposed to hold, in disagreement with the results shown
in the present paper.
To investigate this situation, we repeat the same cal-

culations as in [25] with our algorithms. We first rule
out subtleties related to algorithmic dependent results
in sampling the space of configurations. We use our 30
particles system and use φ = 0.61 very close to jamming
and Γ = 0 to look for the hard sphere packings. We
search for the jammed configurations as above. We re-
call that the sampling of the space of configurations is
not complete due to the relatively large system size but
represent a good sampling as discussed above. Ref. [25]
uses a different system of 14 particles in 2d for which
248,900 configurations are found exhaustively sampling
the phase space (which is estimated to have ∼ 371, 500
states). These simulations correspond to a system with
periodic boundary conditions for which a larger space is
expected than the close boundary-system of Section II F.

FIG. 23: Sampling probability of each microstate fk identified
by its rank k fro low to high. Results are for a system of 30
particles at φ = 0.61 and a narrow set of pressures around 0.

However, these differences do not affect the conclusions
below.
We start by measuring fk which is the probability to

find a given microstate k as defined by [25]: each packing
can be obtained many times during a search and there-
fore fk measures the probability for which each packing
occurs. The main result of [25] is that fk differs by many
orders of magnitude for states with fixed (Γ,φ). Indeed,
even configurations which are visually very similar can
be 106 more frequent, see Fig. 1 of [25].
Figure 23 shows fk sorted as a function of k, the rank,

as in [25]. This plot reproduces the results of [25] in
our system. For a fixed pressure and volume there are
many states with a large difference in their probability.
The least probable states are 10−3 less probable than the
most probable state showing a breakdown of equiproba-
bility. The question is how to interpret the results of er-
godicity in the light of the failure of equiprobability and
whether there is a need for an extra variable to describe
the microstates.
We first mention the issue of the small system size. It

is quite possible that the low probability states will com-
pletely disappear in the thermodynamic limit and the
ones remaining are the most probable ones with equal
probability. Indeed, the flat average assumption is only
valid in the thermodynamic limit and simply says that
even if there exists less probable states (10−3 less proba-
ble) then they will be irrelevant in the ensemble average,
thus only the most probable and flat states are impor-
tant.
We have done simulations with N =14 particles and

found that the least probable states are 10−5 less proba-
ble than the most probable states. Comparing with the
factor 10−3 for N = 30, may indicate that the system
size may take care of the non-equiprobability problem.
However, calculations for larger system to fully test this
assertion are out of the range of current and near future
computational power.
Second, we notice that the coordination number is also
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(a)

(b)

FIG. 24: (a) Sampling probability of each microstate fk as
a function of the coordination number Zk of each microstate.
(b) Plot of ln(

∑
fixZk

fk/f
max
k ) versus Zk showing an expo-

nential decay consistent with the density of states proposed
in [29].

important to define the jammed states. Figure 24 plots
the same states as Fig. 23 but as a function of Zk, the
coordination number of microstate k. The most probable
states satisfy:

fk(Zk) ∼ e−8Zk . (53)

Furthermore, if we sum up all the states for a given Zk

and plot log(
∑

fixZk
fk) vs Zk we obtain Eq. (53) as seen

in Fig. 24b. This result does not mean that Zk is the
hidden variable but rather Eq. (53) provides the density
of states proposed in [29] in the thermodynamics calcu-
lation of the random close packing of spheres. Indeed,
we have predicted that the density of states g(z) = hz

z,
with hz playing the role of a Planck constant defining the
minimum size in the volume landscape. According to Eq.
(53), this prediction is satisfied in average with hz = e−8

which is a small number as expected.
This result indicates that some variability in the prob-

abilities of the microstates is expected from the fluctua-
tions in the coordination number of each microstate. In
Appendix A we elaborate an extension of the framework
of [29] to incorporate fluctuations in Z that are neglected
in [29]. The purpose is to test whether the RCP and jam-

ming transition are affected by these fluctuations. We
find that the results are consistent with those found in
[29].
We notice that for a fix Zk there are still many

marginal states with very small probabilities as seen in
Fig. 24a. If these states do not completely disappear
in the thermodynamic limit, then they need to be ex-
plained. We end this discussion by providing a possible
explanation for the existence of these states.
The numerical breakdown of equiprobability might be

related to the fact that the found packings are not indis-
tinguishable. Indeed, we ignore the rotation and trans-
lation symmetries of the packing in order to make the
numerical search possible. However, for the Edwards
flat hypothesis, these packings should be assumed differ-
ent. Once we breakdown the rotational symmetry, there
would be many similar packings. The high degeneracy of
the high symmetric packings may be responsible for the
uneven distribution, which would be, in this case, simply
artificial.
For instance, consider two packings with 4 particles:

(a) a square packing with each particle on the corner
and (b) a triangle with each particle in each corner plus
one in the center.
For both packings there are 4! = 24 different per-

mutations, which should be considered as 24 different
packings, in principle. However, since we can rotate the
square packing by 90 degree and obtain the same one,
there are only 24/4 = 6 distinguishable packings. Simi-
larly, for the triangle, there are 24/3 = 8 distinguishable
packings. The probability between (a) and (b) is uneven
(6:8) if we assume that each distinguishable packing is
equal-probable. Therefore, different symmetries of the
packings may contribute to the unequal probabilities that
we measure in the algorithms.
Therefore, if the Edwards assumption is correct, fk

should be proportional to Sk, where Sk is the order of
the symmetry group (point group) of the packing k, since
there are Sk degenerations (same packing if particles are
identical). This conjecture needs extra evaluation of the
symmetry of each packing. For instance, the translation
invariance is important, and for cubic periodic boundary,
it is also important to include the symmetry of cubic
point group C3h.
We do not investigate this conjecture but rather pro-

vide the codes and packings in http://jamlab.org to do
that. Since the 3d case is complicated, one might try the
2d system first to easily visualize different packings. A
simple question is: given two packings with different fre-
quencies, how do they look like [25]? Would be the high
symmetric one visited more, or inversely?

X. CONCLUSION

We have demonstrated that the concept of “ thermal-
ization ” at a compactivity and angoricity in jammed sys-
tems is reasonable by the direct test of ergodicity. The

http://jamlab.org
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numerical results indicate that the full canonical ensem-
ble of pressure and volume describes the observables near
the jamming transition quite well. From a static thermo-
dynamic viewpoint, the jamming phase transition does
not present critical fluctuations characteristic of second-
order transitions since the fluctuations of several observ-
ables vanish approaching jamming. The lack of critical
fluctuations is respect to the angoricity and compactivity
in the jammed phase φ → φ+

c , which does not preclude
the existence of critical fluctuations when accounting for
the full range of fluctuations in the liquid to jammed
transition below φc. Thus, a critical diverging length
scale might still appear as φ → φ−

c [60], which has been
recently observed by experiment [61].
In conclusion, our results suggest an ensemble treat-

ment of the jamming transition. One possible analytical
route to use this formalism would be to incorporate the
coupling between volume and coordination number at the
particle level found in [29, 62] together with similar de-
pendence for the stress to solve the partition function.
This treatment would allow analytical solutions for the
observables with the goal of characterizing the scaling
laws near the jamming transition.
Acknowledgements: We thank NSF-CMMT and DOE-

Geosciences Division for financial support and L. Gallos
for discussions.
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Appendix A: Microstates and Fluctuations in
coordination number

Here, we develop a Z-ensemble for hard spheres in
the limit of zero angoricity. In the main test we found
that fluctuations in Z may account for certain variabil-
ity in the probability of microstates. Here we investigate
whether this variability affect the existence of RCP and
the jamming point. We develop a partition function in
Edwards ensemble to study the dependence of RCP on
this type of fluctuations.
The partition function is

Z =

∫

. . .

∫

Nzmin<
∑

zi<Nzmax

∏

i

e−(zi/z
∗+βκ/zi)dzi,

(A1)

where zmin = Z and zmax = 6, β = 1/X , and κ = 2
√
3.

We follow the notation and concepts from [29, 62–64].
We define x = (

∑

i zi)/N , thus:

Z =

∫ zmax

zmin

P (x)dx, (A2)

where

P (x) ≡
∫ ∞

0
. . .

∫ ∞

0

∏

i

e−(zi/z
∗+βκ/zi)δ

(

x−
1

N

∑

i

zi

)

dzi,

(A3)
where z∗ = 1/8 according to Fig. 24b. We consider the
inverse Fourier transform of Px(f):

F−1
f [Px(f)] ≡

∫ ∞

−∞
e2πifXP (x)dx =

∫ ∞

0
. . .

∫ ∞

0

∏

i

e−(zi/z
∗+βκ/zi)e2πif

∑
zi/Ndzi =

=

[
∫ ∞

0
e−(z/z∗+βκ/z)e2πifz/Ndz

]N

=

{

∫ ∞

0

[

1 +

(

2πifz

N

)

+
1

2

(

2πifz

N

)2

+ . . .

]

e−(z/z∗+βκ/z)

}N

.

(A4)

Since
∫ ∞

0
xne−

a
2
(x+1/x)dx = 2Kn(a), (A5)

whereKn(a) is the modified Bessel function of the second
kind. By taking the coupling constant

B ≡ βκ/z∗,

a ≡ 2B1/2,

z = B1/2z∗x.

(A6)

Then:

∫ ∞

0
zne−(z/z∗+βκ/z)dz = 2z∗n+1B(n+1)/2Kn(2B

1/2).

(A7)

Thus,

F−1
f [PX(f)] = (2z∗)N

[

B1/2K0(2B
1/2) +

(

2πifz∗

N

)

BK1(2B
1/2) +

1

2

(

2πifz∗

N

)2

B3/2K2(2B
1/2) +O(N−3)

]N

= (2z∗)N exp

{

N ln

[

B1/2K0(2B
1/2) +

(

2πifz∗

N

)

BK1(2B
1/2) +

1

2

(

2πifz∗

N

)2

B3/2K2(2B
1/2) +O(N−3)

]}

= (2z∗B1/2K0(2B
1/2))N exp

{

N ln

[

1 +

(

2πifz∗

N

)

K1(2B1/2)

K0(2B1/2)
B1/2 +

1

2

(

2πifz∗

N

)2 K2(2B1/2)

K0(2B1/2)
B +O(N−3)

]}

(A8)

Now, we expand

ln(1 + x) = x−
1

2
x2 +

1

3
x3 + . . . (A9)

and
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exp

{

N ln

[

1 +

(

2πifz∗

N

)

K1(2B1/2)

K0(2B1/2)
B1/2 +

1

2

(

2πifz∗

N

)2 K2(2B1/2)

K0(2B1/2)
B +O(N−3)

]}

=exp

{

N

[

(

2πifz∗

N

)

K1(2B1/2)

K0(2B1/2)
B1/2 +

1

2

(

2πifz∗

N

)2 K2(2B1/2)

K0(2B1/2)
B −

1

2

(

2πifz∗

N

K1(2B1/2)

K0(2B1/2)

)2

B +O(N−3)

]}

≈ exp

[

2πif

(

z∗B1/2K1(2B1/2)

K0(2B1/2)

)

−
(2πf)2

2N
z∗2B

(

K2(2B1/2)

K0(2B1/2)
−

K1(2B1/2)2

K0(2B1/2)2

)]

,

(A10)

is just a Gaussian distribution with the mean

µ = z∗B1/2K1(2B1/2)

K0(2B1/2)
, (A11)

and the mean square deviation

σN =
σ√
N

, (A12)

where

σ2 ≡ z∗2B

(

K2(2B1/2)

K0(2B1/2)
−

K1(2B1/2)2

K0(2B1/2)2

)

. (A13)

Thus, by using the saddle point approximation, we ob-
tain the free energy density f :

βf ≡− lim
N→∞

ln(Z)

N
=

− ln(B1/2K0(2B
1/2))+

1

2σ2
[(µ− zmax)

2Θ(µ− zmax)+

(zmin − µ)2Θ(zmin − µ)].
(A14)

We also obtain the energy density, or volume density
in the context of Edwards:

z∗

κ
w =

d(βf)

dB
= −

1

2B
+B−1/2K1(2B1/2)

K0(2B1/2)
+

1

2

d

dB

[

(µ− zmax)2

σ2

]

Θ(µ− zmax)+

1

2

d

dB

[

(zmin − µ)2

σ2

]

Θ(zmin − µ).

(A15)

(µ− zmax)2

σ2
=

(L(B)− Zmax)2

B + L(B)− L(B)2
, (A16)

(µ− zmin)2

σ2
=

(L(B)− Zmin)2

B + L(B)− L(B)2
, (A17)

where Zmax ≡ zmax/z∗, Zmin ≡ zmin/z∗, and

L(B) ≡ B1/2K1(2B1/2)

K0(2B1/2)
, (A18)

because

dL(B)

dB
=

L(B)2

B
− 1. (A19)

Then,

B

2

d

dB

[

(µ− zmax)2

σ2

]

Θ(µ−zmax) =

[

1

2

(

L(B)(L(B)− Zmax)

B + L(B)− L(B)2

)2

−
(B − ZmaxL(B))(L(B)− Zmax)

B + L(B)− L(B)2

]

Θ(L(B)−Zmax),

(A20)
and

B

2

d

dB

[

(µ− zmin)2

σ2

]

Θ(µ−zmin) =

[

1

2

(

L(B)(L(B)− Zmin)

B + L(B)− L(B)2

)2

−
(B − ZminL(B))(L(B) − Zmin)

B + L(B)− L(B)2

]

Θ(Zmin−L(B)).

(A21)
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Thus,

βw = −
1

2
+ L(B) +

[

1

2

(

L(B)(L(B)− Zmax)

B + L(B)− L(B)2

)2

−
(B − ZmaxL(B))(L(B)− Zmax)

B + L(B)− L(B)2

]

Θ(L(B)− Zmax)

+

[

1

2

(

L(B)(L(B)− Zmin)

B + L(B)− L(B)2

)2

−
(B − ZminL(B))(L(B)− Zmin)

B + L(B)− L(B)2

]

Θ(Zmin − L(B)),

(A22)

and the entropy density:

s = β(w − f). (A23)

There are two phase transitions at L(B) = Zmin and
L(B) = Zmax. For the jammed phase Zmin < L(B) <
Zmax, we have βw = L(B)− 1/2. If z∗ is a small value,
z∗ = 1/8 from Fig. 24, then B is relatively large. Thus,
L(B) ≈ B1/2 and wmax ≈ L(B)/β = κ/z∗B−1/2 =
κ/(z∗Zmin) = κ/zmin. Similarly, wmin ≈ κ/zmax, which
is consistent with the boundaries of the phase diagram
obtained in [29]. Furthermore, f ≈ 2B1/2 and s ≈

s0 − B1/2, where s0 = Zmax. Or, s = (zmax − κ/w)/z∗.
Thus, we have verified that the inclusion of fluctuations
in the coordination number does not change the shape of
the jamming phase diagram obtained in [29, 63]. These
fluctuations may affect the probability of the microstates
according to the density of states proposed in [29]. A
further application of this generalized Z-ensemble is de-
veloped in [65] to calculate the probability of coordina-
tion numbers in packings, with good agreement with the
numerical results for different packings in the phase dia-
gram.
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llenges in packing problems: from
spherical to non-spherical particles

Adrian Baulea and Hernán A. Makse*b

Random packings of objects of a particular shape are ubiquitous in science and engineering. However, such

jammed matter states have eluded any systematic theoretical treatment due to the strong positional and

orientational correlations involved. In recent years progress on a fundamental description of jammed

matter could be made by starting from a constant volume ensemble in the spirit of conventional

statistical mechanics. Recent work has shown that this approach, first introduced by S. F. Edwards more

than two decades ago, can be cast into a predictive framework to calculate the packing fractions of both

spherical and non-spherical particles.
Introduction
In 1989 Edwards and Oakeshott made the remarkable proposal
that the macroscopic properties of static granular matter can be
calculated as ensemble averages over equiprobable jammed
microstates controlled by the system volume.1 In other words,
granular matter is amenable to a statistical mechanical treat-
ment, where the role of energy is played by the volume. Clearly,
there is no a priori reason why such a treatment should be
correct. Granular matter is profoundly out of equilibrium, since
thermal uctuations are essentially absent for the macroscopic
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length scales considered. In particular, there is no equivalent of
Liouville's theorem for equilibrium systems due to the strongly
dissipative nature of granular assemblies, which are dominated
by static frictional forces. Nevertheless, the Edwards' ensemble
approach has proven exceedingly useful in characterizing the
properties of these athermal states of matter and continues to
intrigue both experimentalists and theoreticians alike.

Themain statements of this approach are:1,2 (i) the distribution
of jammed microstates is at and independent of the compaction
history leading to a natural denition of a congurational entropy
S¼ ln UEdw, whereUEdw is the number of jammed congurations.
(ii) There is an equivalence between ensemble averages and time
averages, if the system can explore its jammed congurations by
some external drive (tapping or slow shearing). (iii) The compac-
tivity X�1¼ vS/vV characterizes the packing state analogous to the
temperature in equilibrium systems. These strong assumptions
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Table 1 Overview of maximal packing fractions found for disordered
packings of a selection of regular shapes. We observe that spheres are
the worst-packing objects among all shapes in 3d as conjectured by
Ulam,88 while tetrahedra achieve the densest disordered packing. We
note that the tetrahedron is the only shape known that packs in a
disordered arrangement denser than spheres in the FCC crystal (fFCC

¼ 0.7405). Ellipsoids and lens-shaped particles pack very close to this
value

Shape
fmax

simulation
fmax

experiment
fmax

theory

Sphere 0.645 (ref. 54) 0.64 (ref. 53) 0.634 (ref. 31)
M&M candy 0.665 (ref. 58)
Dimer 0.703 (ref. 91) 0.707 (ref. 34)
Oblate ellipsoid 0.707 (ref. 58)
Prolate ellipsoid 0.716 (ref. 58)
Spherocylinder 0.722 (ref. 68) 0.731 (ref. 34)
Lens-shaped
particle

0.736 (ref. 34)

Octahedron 0.697 (ref. 67)
Icosahedron 0.707 (ref. 67)
Dodecahedron 0.716 (ref. 67)
General ellipsoid 0.735 (ref. 58) 0.74 (ref. 59)
Tetrahedron 0.7858 (ref. 63) 0.76 (ref. 64)
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have been scrutinized in various studies over recent years in order
to obtain insight into the validity of Edwards' approach.3 So
compaction experiments under continuous tapping have provided
evidence for a reversible branch in the packing fraction for a
variation of the tapping amplitude, indicating the existence of
thermodynamic states.4–7 Simple models of such a compaction
dynamics have conrmed ergodicity and have been connected to a
slow relaxation dynamics akin to the relaxation in glasses.8–12 One
signature of such a slow dynamics is the existence of a non-equi-
librium uctuation–dissipation relation.8,9,13 Indeed, the effective
temperature appearing in FDRs under perturbations agrees with
the congurational temperature Teff

�1 ¼ vS/vE in Edwards'
framework.13

Ergodicity has also been demonstrated explicitly in more real-
istic simulations.14,15 The compactivity has been measured in
simulations and experiments.16–20 On the other hand, results on
the equiprobability of microstates are mixed. By evaluating the
probabilities of jammed microstates in small clusters a break
down of the at distribution assumption has been demon-
strated,21–24 which might be traced back to the packing protocol
used.15 Recent studies have investigated the equilibration of
granular subsystems in contact,15,25,26 providing further insight into
the thermodynamic nature of granular matter.

Ultimately, the success of any statistical mechanical theory
needs to bemeasured by the comparison with experiments. One
key problem in Edwards' approach is to identify a suitable
volume function, which parametrizes the total volume of the
packing as a function of the particle congurations (positions
and orientations), replacing the role of the Hamiltonian.2 Here,
different conventions can be employed to partition the total
volume into cells associated with each particle,27,28 the simplest
of which is the Voronoi tessellation.29,30 In 3D these exact
volume functions are difficult to handle analytically, so that
reduced representations are sought. The thermodynamic
nature of packings suggests to use a coarse-grained description
of the volume function in terms of observables such as the
average number of contacts z (coordination number).31–34 In
turn, z is determined by the force transmission in the contact
network leading to a mechanically stable packing in which
forces and torques on each particle balance.35 For the force
network ensemble approaches similar to the volume ensembles
have been introduced in order to explain the observed force
distribution36 from an entropy maximization.37–41 The stress
tensor has also been considered as a conserved quantity leading
to a different class of ensembles.41,42

Recently, the force transmission has been treated on a
random graph under local mechanical stability constraints
resulting in quantitative predictions for the force distribution
and the value of z using a cavity method.43 The problem of
nding the densest random packing can be similarly formu-
lated as a constraint optimization problem: random close
packings appear as the ground state of the volume ensemble
restricted to disordered packings as X/ 0 for a given z.31,32 This
picture highlights that jamming falls into the class of NP opti-
mization problems,44 which can be tackled successfully with the
methods of statistical mechanics such as cavity methods.43 A
full solution needs to combine the two approaches for the force
4424 | Soft Matter, 2014, 10, 4423–4429
and volume ensembles, where the Hamiltonian that enforces
jamming is a function of both the particle congurations and
the contact forces on a random contact network. These
ensemble approaches are thus similar in spirit to other recent
works that consider jamming as the innite pressure limit of
metastable glass phases.44–51 Here, one considers instead of the
Edwards entropy S, the “glass complexity” in order to obtain the
statistics of the metastable basins as the pressure diverges.
Treatments of this problem based on the random-rst order
transition picture and replica theory have been performed.50

From spheres to non-spheres
Random packings of hard objects appear in a broad range of
scientic and engineering elds like self-assembly of nano-
particles, liquid crystals, glass formation and bio-materials.52 In
fact, the question of how densely objects of a particular shape can
ll a given volume is probably one of the most ancient scientic
problems and still of great practical importance for all industries
involved in granular processing. The densest random packing
has been extensively studied in experiments and simulations for
spheres, which typically reach a maximal volume fraction of fz
0.64 in monodisperse assemblies.53,54 This value is quite robustly
reproducible and commonly referred to as random close packing
(RCP) density. However, much less is known about anisotropic
shapes, despite the fact that all shapes in nature deviate from the
ideal sphere. A theoretical investigation of the packing problem
has proven notoriously difficult due to the strong positional and
orientational correlations of dense packings. In fact, a mathe-
matically rigorous treatment of random sphere packings has
been the outstanding component in T.C. Hales' proof of Kepler's
conjecture on the densest packing of spheres.55

Recent empirical work has focused on packings of aniso-
tropic shapes like ellipsoids, spherocylinders, and tetrahedra,
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 The Voronoi excluded volume and surface for spherocylinders.
(a) The volume U (red) is excluded for the remaining N � 1 particles in
the packing because otherwise the Voronoi boundary would be found
at a value smaller than c in the direction ĉ. We draw the usual hard-
core excluded volume Vex

70 in blue. (b) The overlap of U and Vex

defines the Voronoi excluded volume V* (red) and the Voronoi
excluded surface S* (green). Figure taken from ref. 34.
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which can achieve considerably denser volume fractions than the
spherical RCP56–68 (see Table 1). In fact, a conjecture attributed to
Ulam in the context of regular packings and recently also
formulated for random packings67 states that the sphere is,
indeed, the worst packing object among all convex shapes. This
suggests to improve packing fractions by searching in the space
of object shapes, but in the absence of any general theory, this
search could so far only be performed on a case-by-case basis
using experiments and simulations. A caveat of such empirical
studies is the strong protocol dependence of the nal close
packed state even for the same shape. While the range of ach-
ieved volume fractions is relatively small for spheres,54 recent
studies of spherocylinder packings, e.g., exhibit a much greater
variance depending on the algorithm used.56,57,60–62,65–68 Further
theoretical insight is needed, which can be obtained by consid-
ering a coarse-grained distribution for the Voronoi volumes in
the packing, as discussed next.
A mean-field theory for random close
packings
In the Voronoi convention one associates with each particle the
fraction of space that is closer to this particle than to any other
one. This denes the Voronoi volume Wi of a particle i, which
depends on the congurations of all remaining particles xj¼ (rj,
t̂j), (including position rj and orientation t̂j). The total volume V

occupied by N particles is V ¼
XN

i¼1
Wiðfx1;.; xNgÞ; and the

packing fraction of monodisperse particles of volume Va is f ¼
NVa/V. In order to determine Wi one has to know the Voronoi
boundary (VB) between two particles i and j, which is the
hypersurface that contains all points equidistant to the surfaces
of both particles and thus depends on the particle shape and
their relative conguration. The boundary of Wi then follows
from a global minimization procedure over all pairwise VB.32 In
order to take into account multi-particle correlations in the
packing, we use a statistical treatment where the overall volume
is expressed in terms of an average Voronoi volume: V ¼ N �W (z),
so that f ¼ Va/ �W (z). Instead of an exact description in terms of
all congurations {x1,., xN}, the average Voronoi volume is
characterized by the coordination number z, which denotes the
average number of contacting neighbours in the packing. We
derive a self-consistent equation for the coarse-grained volume
function �W (z) of monodisperse particles:31,32,34

W ðzÞ ¼
ð ​
dc exp

�
� V*ðcÞ
W ðzÞ � Va

� sðzÞS*ðcÞ
�
: (1)

Here, Va is the volume of a single particle and s(z) is the
average free-surface of particles at contact, which can be
estimated from local congurations of z contacting particles.
Formally, the integrand on the right hand side can be
considered as the cumulative distribution function P(c) con-
taining the probability to nd the boundary of the Voronoi
volume in the direction ĉ at a value larger than c. This quantity
can be interpreted geometrically as the probability to nd all
N � 1 particles outside a volume U centred at c from the
This journal is © The Royal Society of Chemistry 2014
reference particle (see Fig. 1a). The particular form of P(c)
results from a factorization into bulk and contact terms, which
are motivated from the dominant contributions in the radial
distribution function.31,32,34,69

The quantities V* and S* are the Voronoi excluded volume
and surface, which extend the usual hard-core excluded volume
of equilibrium systems Vex70 to packings. The volume V* is the
volume excluded by U for bulk particles and takes into account
the overlap between U and Vex: V* ¼ U� UXVex; where the bar
denotes an orientational average. Likewise, S* denotes the
surface excluded by U for contacting particles: S* ¼ vVexXU:

Plots of V* and S* for spherocylinders are shown in Fig. 1b.
Analytical expressions for V* and S* can be derived in the
spherical limit in closed form.31,32 For non-spherical shapes
analytic expressions for the VB can be derived using a suitable
decomposition of the shape into overlapping and/or intersecting
spheres. This leads to exact expressions for V* and S*, which can
be evaluated numerically.71 Interestingly, in the limit a / 1, eqn
(1) admits an exact solution for spheres: WðzÞ ¼ 2

ffiffiffi
3
p

V1=z: As a
consequence, we obtain an equation of state for spherical
packings31,32

fðzÞ ¼ z

zþ 2
ffiffiffi
3
p ; (2)

which predicts the limiting values f ¼ 0.536 and f ¼ 0.634
under the isostatic conditions z ¼ 4 and z ¼ 6 for innitely
rough and frictionless spheres, respectively. Using the ther-
modynamic framework one can show that these two values are
reached in the limits of innite and zero compactivity, respec-
tively.31 Therefore, the spherical equation of state leads to a
statistical interpretation of RCP as the ground state of disordered
sphere packings. The predictions for the limiting values are in
good agreement with the values found in experiments and simu-
lations for both random loose packings and RCP of spheres.

Under deformation from the sphere, higher packing frac-
tions are typically reached, where the spherical limit appears as
a singular point in the f(a) plane. Moreover, smooth shapes
close to the sphere are not isostatic but hypostatic with z < 2df
due to redundancies in the force and torque balance equa-
tions.72,73 The variation z(a) is obtained by considering the
average effective number of degrees of freedom ~df dened as the
Soft Matter, 2014, 10, 4423–4429 | 4425
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Fig. 2 Phase diagram of jammed matter. We plot our results for dimers
and spherocylinders in the z–f plane together with results from the
literature for frictionless disordered packings of a selection of regular
shapes. We have selected those shapes for which the z and f values
have been determined in the same simulation. The predicted spherical
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number of linearly independent force and torque balance
equations: z ¼ h~df(a)i.34 Here, the probability of redundant
congurations with ~df < df can be estimated by re-weighting all
congurations by rotating into states of maximal redundancy.

The existence of redundant congurations explains the
observed convergence in z(a) to values close to 8 for spherocy-
linders with large aspect ratios:62,68 for long spherocylinders the
contacts are predominantly on the cylindrical part so that all
normal forces are coplanar. As a consequence, the effective
number of degrees of freedom is reduced by one, leading to z ¼
8.34 The requirement of local force and torque balance can also
be formulated as a constraint optimization problem on a factor
graph, which describes the force transmission on a single
particle.43 Solving this problem with standard methods such as
the cavity method predicts values of z in frictional packings and
also allows for the computation of the distribution of contact
forces in good agreement with experimental results.43
random branch eqn (2) (ref. 31) (thick black line) and a conjectured first
order disorder–order transition at RCP for spheres77 (dotted and thin
black lines) are also indicated. We observe that the analytic continuation
of RCP under deformation into dimers and spherocylinders provides an
empirical bound to disordered packings in the phase diagram. The
symmetry of the shape indicates the possible values of the coordination
number z: (i) spheres have z between 4 (infinitely rough) and 6 (fric-
tionless). (ii) Axisymmetric particles have z between 6 and 10. (iii) Fully
aspherical particles have z between 10 and 12. Note that for polyhedra, z
is associated with the total degrees of freedom blocked by the different
types of contacts (face–face, face–vertex, vertex–vertex, face–edge).67

The data point for lens-shaped particles is a theoretical prediction.34
Phase-diagram of jammed isotropic
and anisotropic particles
The combination of the results for �W (z) and z(a) leads to a
complete theoretical prediction for the packing density f(a) ¼
Va/ �W (z(a)) of non-spherical particles without any adjustable
parameters.34 We estimate the maximum density of spherocy-
linders at a¼ 1.3 with a density fmax¼ 0.731 in good agreement
with empirical data. The theory also reproduces well the density
of dimers, estimating a maximum at a ¼ 1.3 with fmax z 0.707.
We have also calculated the packing fraction of lens-shaped
particles, which can serve as approximations for oblate ellip-
soidal shapes. Our theory yields fmax ¼ 0.736 for a ¼ 0.8. This
shape represents the densest random packing of an axisym-
metric shape known so far. The appearance of a maximum in f

for non-spherical shapes close to the sphere has been explained
in a simple qualitative picture on the basis of the excluded
volume Vex.56 For a close to 1, the ratio Vex/Va changes only
slightly from the spherical value and a density increase results
due to the additional orientational degrees of freedom, whereby
the particles can t into gaps by rotating, similar to the increase
in packing efficiency due to polydispersity.74 For larger a, Vex
exceeds Va while z remains constant, so that the packing is
dominated by the excluded volume and the packing fraction
decreases. This argument can explain qualitatively the observed
larger packing fraction of spherocylinders compared with
dimers. The ratio Vex/Va is approximately equal for both shapes
up to a z 1.2, but for larger a the ratio for dimers increases
beyond that of spherocylinders. The packing densities derived
in our framework are interpreted as upper bounds to the
empirically obtained densities and correspond to maximally
random jammed states75 by construction, since the distribution
of contact angles in the rst coordination shell is imposed to be
uniform, avoiding any partial order.

By plotting z(a) against f(a) parametrically as a function of a,
we obtain a phase diagram in the z–f plane (Fig. 2). Surpris-
ingly, we nd that both dimer and spherocylinder packings
appear as smooth continuations of spherical packings. The
4426 | Soft Matter, 2014, 10, 4423–4429
analytic form of this continuation from the spherical random
branch can be derived (blue dashed line in Fig. 2).34 A comparison
of our theoretical results with empirical data for a large variety of
shapes highlights that the analytic continuation provides a
boundary line in the z–f phase diagram. Maximally dense disor-
dered packings appear to the le of this boundary, while the
packings to the right of it are partially ordered. The spherical
ordered branch provides another boundary, which separates
tetrahedra from all other shapes: tetrahedra are the only shape
that pack in a disorderedway denser than spheres in a FCC crystal.
We observe that the maximally dense packings of dimers, spher-
ocylinders, lens-shaped particles and tetrahedra all lie surprisingly
close to the analytic continuation of RCP. Whether there is any
deeper meaning to this remains an open question.

The picture that emerges is that spherical packings can be
generated between the RLP and RCP limits by variation of the
inter-particle friction, since this leads to an increase in the
coordination number under the isostatic condition from z ¼ 4
to z ¼ 6. Beyond RCP, the spherical equation of state can be
continued smoothly by deforming the sphere into elongated
shapes. Moreover, the spherical RCP is interpreted as the
freezing point of disordered sphere packings, associated with a
melting point at f ¼ 0.68.76,77 The signature of this disorder–
order transition is a discontinuity in the entropy density of
jammed congurations as a function of the compactivity. This
highlights the fact that beyond RCP, denser packing fractions of
spheres can only be reached by partial crystallization up to the
homogeneous FCC crystal phase.75
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Decomposition of various shapes to calculate the Voronoi
boundary. The Voronoi boundary (VB) between two particles is defined
as the hypersurface that contains all points equidistant to their
surfaces. This implies that the VB between two equal spheres, e.g., is
that between two points at the centers of the spheres, so that the VB is
generated effectively by the interaction of two points (a). Likewise, the
VB between two spherocylinders is due to the effective interaction of
two lines, since spherocylinders can be represented as dense overlaps
of spheres (d). Arbitrary shapes can be decomposed into dense
overlaps of spheres following certain design principles.90 The VB
between two such shapes can then be calculated following an exact
algorithm that considers the effective Voronoi interactions between
points and lines (a–d).34 For shapes that are not naturally given as
overlapping spheres (e–h), we propose alternatively an approximation
in terms of a small number of intersecting spheres. In this way, two
intersecting spheres (a lens-shaped particle) approximate an oblate
ellipsoid and four intersecting spheres approximate a tetrahedron. The
effective Voronoi interactions are then between points, lines, and anti-
points (indicated by crosses).34 Anti-points arise from the inversion of

This journal is © The Royal Society of Chemistry 2014
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Conclusions and outlook
The rst-order transition of jammed spheres identied within
Edwards' thermodynamics77 is reminiscent of the entropy
induced phase transition of equilibrium hard spheres,
which is found at f ¼ 0.494 and f ¼ 0.545, respectively.
However, it should be emphasized that the physical origin of
these two transitions is fundamentally different: the equilib-
rium phase transition is a consequence of the maximization of
the conventional entropy, while the transition at RCP of
jammed spheres is driven by the competition between volume
minimization and maximization of the entropy of jammed
congurations S. For anisotropic particles at equilibrium, a
disorder–order phase transition appears, e.g., between isotropic
and nematic phases of elongated shapes: for large a, Onsager's
theory of equilibrium hard rods predicts a rst order isotropic–
nematic transition with freezing point at the rescaled density fa
¼ 3.29 and melting point at fa ¼ 4.19.70 For colloidal suspen-
sions of more complex shapes like polyhedra, both liquid
crystal as well as plastic crystal and even quasicrystal phases
have been found.78–80 By analogy with the case of jammed
spheres, one might wonder whether packings of non-spherical
particles exhibit similar transitions that might be characterized
in the z–f phase diagram. Packings of hard thin rods indeed
satisfy a scaling law, where the RCP has been experimentally
identied at fa z 5.4.81

The Edwards' approach thus helps to elucidate how macro-
scopic properties of granular matter arise from the anisotropy
of the constituents – one of the central questions in present day
materials science.82,83 A better understanding of this problem
will facilitate, e.g., the engineering of new functional materials
with particular mechanical responses by tuning the shape of the
building blocks. A search in the space of object shapes for
optimization can be performed by considering a small number
of spheres and systematically exploring the different possible
congurations.84

Our approach eqn (1) can be applied to a large variety of both
convex and non-convex shapes. The key is to parametrize the
Voronoi boundary between two such shapes, which allows for
the calculation of the Voronoi excluded volume and surface. In
fact, analytical expressions for the Voronoi boundary can be
derived following an exact algorithm for arbitrary shapes by
decomposing the shape into overlapping and intersecting
spheres (see Fig. 3). Therefore, a systematic search for maxi-
mally dense packings in the space of given object shapes can be
performed using our framework. Extensions to mixtures and
polydisperse packings can also be formulated. So far, exhaustive
searches for dense packings have only been performed for
the effective interaction between the spheres in the decomposition.
This is evident in the case of lens-shaped particles (e), where the
interaction between the spheres is inverted compared to the case of
dimers (b). The VB between two tetrahedra is then due to the inter-
action between the vertices (leading to four point interactions), the
edges (leading to six line interactions), and the faces (leading to four
anti-point interactions). This approach can be generalized to arbitrary
polyhedra. Figure taken from ref. 34.

Soft Matter, 2014, 10, 4423–4429 | 4427
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ordered packings using computer simulations85,86 and a
combination of analytic and simulation techniques.87 This has
elucidated in particular the validity of Ulam's conjecture that
the sphere is the worst packing object in 3d.88 Analytical prog-
ress to prove this conjecture locally, that is, for shapes deformed
from the sphere, has recently been made.89

A more systematic investigation of disordered packings can
shed light on the validity of a random variant of Ulam's
conjecture, which so far has only been investigated in simula-
tions.67 Our analytic continuation from RCP highlights that this
conjecture might hold more generally than previously assumed,
containing not only convex shapes, but also a signicant class of
non-convex ones. Ultimately, our approachmight lead to amore
exhaustive theoretical investigation of Ulam's conjecture. Along
the way one might be able to answer important questions such
as if a shape that packs denser in a random conguration than
in a regular one exists.72 Such objects could represent optimal
glass formers with far reaching consequences for materials
science.
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Finding the optimal random packing of non-spherical particles is an open problem with great

significance in a broad range of scientific and engineering fields. So far, this search has been

performed only empirically on a case-by-case basis, in particular, for shapes like dimers,

spherocylinders and ellipsoids of revolution. Here we present a mean-field formalism to

estimate the packing density of axisymmetric non-spherical particles. We derive an analytic

continuation from the sphere that provides a phase diagram predicting that, for the same

coordination number, the density of monodisperse random packings follows the sequence

of increasing packing fractions: spheres ooblate ellipsoids oprolate ellipsoids odimers

ospherocylinders. We find the maximal packing densities of 73.1% for spherocylinders and

70.7% for dimers, in good agreement with the largest densities found in simulations.

Moreover, we find a packing density of 73.6% for lens-shaped particles, representing the

densest random packing of the axisymmetric objects studied so far.
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Understanding the properties of assemblies of particles
from the anisotropy of their building blocks is a central
challenge in materials science1–3. In particular, the shape

that leads to the densest random packing has been systematically
sought empirically4–17, as it is expected to constitute a superior
glass forming material1. Despite the significance of random
packings of anisotropic particles in a range of fields like self-
assembly of nanoparticles, liquid crystals, glasses and granular
processing18, there is yet no theoretical framework to estimate
their packing density. Thus, random packings of anisotropic
particles are typically investigated on a case-by-case basis using
computer simulations, which have shown, for example, that
elongated shapes like prolate ellipsoids and spherocylinders can
pack considerably denser than the random close packing (RCP)
fraction of spheres at fRCPE0.64. These shapes exhibit a
maximum in the packing fraction for aspect ratios (length/
width) close to the sphere4–6.

Table 1 summarizes the empirical findings for maximal
densities and highlights a further caveat of simulation and
experimental studies: The protocol dependence of the final close-
packed (or jammed) state leading to a large variance of the
maximal packing fractions found for the same shape. This
observation can be explained using the picture of a rugged energy
landscape from theories of the glass phase19. Different algorithms
get stuck in different metastable basins of the energy landscape,
reaching different final packing states.

Here we present a mean-field approach to systematically study
the packing fraction of a class of anisotropic shapes with rotational
symmetry, which can therefore guide further empirical studies.
Explicit results are obtained for axisymmetric particles like dimers,
spherocylinders and lens-shaped particles, and we discuss general-
izations to other shapes like tetrahedra, cubes and irregular
polyhedra. Furthermore, we derive an analytic continuation of the
spherical RCP which provides a phase diagram for these and other
anisotropic particles like oblate and prolate ellipsoids. We first
define the Voronoi volume of a non-spherical particle on which
our calculation is based, and show that it can be calculated
analytically for many different shapes by a decomposition of the
shape into overlapping and intersecting spheres, which we
organize into interactions between points, lines and anti-points.
We then develop a statistical mean-field theory of the Voronoi
volume to treat the particle correlations in the packing. This
geometric mean-field approach is complemented by a quantitative
estimation of the variation of the average contact number with the
particle aspect ratio. The predicted packing density is interpreted
as an upper bound of the empirically obtained packings.

Results
Voronoi boundary between non-spherical objects. We consider
rotationally symmetric objects for which the aspect ratio a is
defined as length/width, where the length is measured along the
symmetry axis. In the following, we focus on the region 0oao2,
where the largest densities are found17. Our description of
packings relies on a suitable tessellation of space into non-
overlapping volumes20. We use the standard Voronoi
convention21,22, where one associates with each particle the
fraction of space that is closer to this particle than to any other
one. This defines the Voronoi volume Wi of a particle i, which
depends on the configurations x¼ðr; t̂Þ of all particles (including
position r and orientation t̂). The total volume V occupied by N
particles is V ¼

PN
i¼ 1 Wiðfx1; :::; xNgÞ, and the packing fraction

of monodisperse particles of volume Va and aspect ratio a follows
as f¼NVa/V. In order to determine Wi one has to know the
Voronoi boundary (VB) between two particles i and j, which is
the hypersurface that contains all points equidistant to both

particles (Fig. 1 for spherocylinders). The VB of the volume Wi
along ĉ, denoted by liðĉÞ, is the minimal one in this direction
among all possible VBs of each particle j in the packing. It is
formally obtained by the global minimization20:

liðĉÞ¼ min
j: s4 0

sðrj; t̂j; ĉÞ; ð1Þ

where sðrj; t̂j; ĉÞ denotes the VB along ĉ between particles i and j
with relative position rj and orientation t̂j (Fig. 1). The Voronoi
volume follows then exactly as the orientational integral,

Wi¼
1
3

I
dĉ liðĉÞ3: ð2Þ

The VB between two equal spheres is identical to the VB
between two points and is a flat plane perpendicular to the
separation vector (Fig. 2a)20. Finding the VB for more
complicated shapes is a challenging problem in computational
geometry, which is typically only solved numerically23. We
approach this problem analytically by considering a decomposi-
tion of the non-spherical shape into overlapping spheres. The VB
is then determined as follows: Every segment of the VB arises due
to the Voronoi interaction between a particular sphere on each of
the two particles reducing the problem to identifying the correct
spheres that interact. This identification follows an exact
algorithm for a large class of shapes obtained by the union and
intersection of spheres, which can be translated into an analytical
expression of the VB as outlined in Fig. 3 for dimers,
spherocylinders and lens-shaped particles.

For instance, a dimer is the union of a pair of spheres (Fig. 2b).
The dimers VB is thus a composition of maximal four different
surfaces depending on the relative orientation of the dimers
defined by four points at the centre of each sphere (Fig. 3a).

Table 1 | Overview of packing fractions from simulations and
experiments.

Shape /max Aspect ratio at
/max

Reported
z

Spherocylinder5 0.653 1.5
M&M candy6 0.665 0.5 9.8
Spherocylinder14 0.689
Spherocylinder8 0.694 1.4
Spherocylinder4 0.695 1.4 8.6
Dimer 0.697 1.4 8.0
Dimer12 0.703 1.4
Spherocylinder15 0.703 1.5
Spherocylinder9 0.704 1.4
Oblate ellipsoid6 0.707 0.6 9.6
Dimer (theory) 0.707 1.3 8.74
Spherocylinder10 0.708 1.5 9.1
Prolate ellipsoid6 0.716 1.5 9.6
Spherocylinder17 0.722 1.5 8.7
Spherocylinder (theory) 0.731 1.3 9.5
Lens-shaped particle
(theory)

0.736 0.8 9.2

General ellipsoid6 0.735
General ellipsoid7 0.74 10.7
Tetrahedron13 0.76 12
Tetrahedron16 0.763
Tetrahedron11 0.7858

The maximal packing fraction fmax and reported coordination number z at fmax of random
packings of spherocylinders, dimers, ellipsoids and tetrahedra, determined from simulations and
experiments. The aspect ratio is defined for rotationally symmetric objects. Some simulations do
not report z. Results are separated by the symmetry of the object (rotationally symmetric and
asymmetric) and ordered by packing fraction. From the available empirical data we cannot
conclude whether spherocylinders pack better than dimers or ellipsoids of revolution, for
instance.
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The extension to trimers is straightforward (Fig. 2c). Likewise, n
overlapping spheres lead to compositions of n surfaces. A
spherocylinder is a dense overlap of spheres of equal radii and
the VB interaction is identical to that between four points and
two lines (Fig. 2d). The interactions then simplify into line–line,
line–point, and point–point interactions, which generally lead to
a curved VB for non-parallel orientations (Fig. 3b).

The Voronoi decomposition used for dimers and sphero-
cylinders can be generalized to arbitrary shapes by using a dense
filling of spheres with unequal radii24. However, even if it is
still algorithmically well defined, this procedure may become
practically tedious for dense unions of polydisperse spheres.
Alternatively one can apply specialized algorithms to compute
numerical VBs between curved line segments25. Here we
propose an analytically tractable approach: Convex shapes can
be approximated by intersections of a finite number of spheres.
An oblate ellipsoid, for example, is well approximated by a lens-
shaped particle, which consists of the intersection of two spheres;
an intersection of four spheres is close to a tetrahedra, and six
spheres can approximate a cube. This is illustrated in Fig. 2e–h,
and the corresponding algorithms outlined in Fig. 3c. The main
insight is that the effective Voronoi interaction of these shapes is
governed by a symmetry: Points map to ‘anti-points’ (as the
interactions between spheres is inverted; Fig. 3c). The VB of
ellipsoid-like objects arises from the interaction between four
anti-points and four points in two dimensions (Fig. 3c) or lines
in three dimensions, and thus falls into the same class as
spherocylinders. For cubes, the effective interaction is that of
twelve lines, eight points and six anti-points (Fig. 2g). Analytic
expressions of the VB for dimers and spherocylinders are
calculated in the Supplementary Methods.

A statistical theory for Voronoi volume fluctuations. We turn
the above formalism into a mean-field theory to calculate the
volume fraction of a packing of monodisperse non-spherical
objects. In order to take into account multi-particle correlations
in the packing, we use a statistical mechanics treatment where the
overall volume is expressed in terms of the average Voronoi
volume WðzÞ: V ¼NWðzÞ (ref. 20) characterized by the average
coordination number z, which denotes the mean number of
contacting neighbours in the packing. This approach is motivated
by the observation that, as N-N, packings exhibit reproducible

phase behaviour, which is characterized by only few observables
such as f and z (ref. 26). Our statistical mechanics framework is
based on the Edwards ensemble approach, which considers the
volume as a Hamiltonian of the system and attempts to find the
minimum volume27. Here W is given as the ensemble average of
Wi over all particles in the packing: W¼ Wih ii. We obtain
therefore from equation (2):

W¼ 1
3

I
dĉ liðĉÞ3

! "

i
¼ 1

3

I
dĉ liðĉÞ3
# $

i

¼ 1
3

I
dĉ
Z1

c$ðĉÞ

dc c3pðcÞ: ð3Þ

In the last step, we have introduced the probability density p(c),
which contains the probability to find the VB at c in the direction
ĉ. The lower integration limit c$ðĉÞ is the minimal value of the
boundary along ĉ, which corresponds to the hard-core boundary
of the particle in that direction. We introduce the cumulative
distribution function (CDF) P(c) via the usual definition
pðcÞ¼ % d

dc PðcÞ. Substituting the CDF in equation (3) and
performing an integration by parts leads to the volume integral

WðzÞ¼
Z

dc Pðc; zÞ; ð4Þ

where we indicate the dependence on z. In a geometric picture20,
P(c,z) is interpreted as the probability that N% 1 particles are
outside a volume O centred at c (see Fig. 4), as otherwise they
would contribute a shorter VB. This leads to the definition

Oðĉ; t̂Þ¼
Z

drYðc% sðr; t̂; ĉÞÞYðsðr; t̂; ĉÞÞ; ð5Þ

where Y(x) denotes the usual Heavyside step. We refer to O as
the Voronoi excluded volume, which extends the standard
concept of the hard-core excluded volume Vex considered by
Onsager in his theory of elongated equilibrium rods28 (Fig. 4).

The dependence of P(c,z) on O has been treated at a mean-field
level in Song et al.20 and has been derived from a theory of
correlations using liquid state theory in29 for high-dimensional
sphere packings. In both cases it provides a Boltzmann-like
exponential form Pðc; zÞ / exp %

R
OðcÞdrrðr; zÞ

% &
in the limit

N-N, where r(r, z) is the density of spheres at r.
The crucial step is to generalize this result to anisotropic particles.

Following Onsager28, we treat particles of different orientations as
belonging to different species. This is the key assumption to treat
orientational correlations within a mean-field approach. Thus, the
problem for non-spherical particles can be mapped to that of
polydisperse spheres for which P factorizes into the contributions of
the different radii30. We thus obtain the factorized form:

Pðc; zÞ¼ exp %
Z

d̂t
Z

Oðc;̂tÞ

drrðr; t̂; zÞ

8
><

>:

9
>=

>;
; ð6Þ

where rðr; t̂; zÞ is the density of particles with orientation t̂ at r.
Next, we assume an approximation of this density in terms of

contact and bulk contributions, which is motivated by the
connection with the radial distribution function in spherical
theories in both high and low dimensions20,29. The contact
contribution relies on the condition of contact between the two
particles of a given relative position r and orientation t̂, which
defines the contact radius r$ðr̂; t̂Þ: r$ is the value of r for which the
two particles are in contact without overlap. In the case of equal
spheres the contact radius is simply r$ðr̂; t̂Þ¼ 2a. For non-
spherical objects, r$ðr̂; t̂Þ depends on the object shape and the
relative orientation (Supplementary Methods). Using r$ðr̂; t̂Þ we

rj

s(rj,tj,c)^ ^ ĉ

tj
^

Figure 1 | Parametrization of the VB. The VB in blue, denoted by sðrj; t̂j; ĉÞ,
along a direction ĉ between two spherocylinders of relative position rj and

orientation t̂j .
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Object shape Decomposition Effective Voronoi interaction

Sphere

Dimer

Trimer

Spherocylinder

One sphere Two points

Two spheres Four points

Three spheres Six points

Two lines and four pointsN spheres

Ellipsoid

Tetrahedron

Two spheres

Four spheres Six lines, four points, four anti-points

Two lines and four anti-points

Cube Six spheres
Twelve lines, eight points,

six anti-points

Irregular polyhedron Unequal spheres Points, lines, anti-points

Figure 2 | Decomposition of various shapes and effective Voronoi interactions. Arbitrary object shapes can be decomposed into unions and intersections
of spheres. (a–d) Union of spheres. The VB between two such objects is equivalent to the VB between the point multiplets at the centre of the spheres, as
shown for four basic shapes. (e–g) Intersection of spheres. The VB between such intersections is equivalent to that between multiplets of ‘anti-points’ at
the centre of the spheres, indicated by crosses, and, in addition, lines at the edges of the intersections, shown as points in e–d. The additional lines arise due
to the positive curvature at the singular intersections, resulting in edges that point outwards from the particle rather than inwards. In the case of dimers and
trimers shown in b,c, the curvature is negative and the edges do not influence the VB. The generalization to (f) tetrahedra-like, (g) cubes and (h) irregular
polyhedra-like shapes is straightforward. Note that the VBs drawn in e–h are only qualitative.
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can separate bulk and contact terms in rðr; t̂; zÞ as in20,29:

rðr; t̂; zÞ¼ 1
4p

rYðr$ r%ðr; t̂ÞÞþ sðzÞdðr$ r%ðr̂; t̂ÞÞ
! "

: ð7Þ

The prefactor 1/4p is the density of orientations, which we
assume isotropic. The symbols r and s(z) stand for the average

free-volume of particles in the bulk and the average free-surface
of particles at contact, respectively, which are discussed further
below. The approximation equation (7) corresponds to consider-
ing a pair distribution function as a delta function modelling the
contact particles plus a constant term modelling the particles in
the bulk29, which are thus considered as a uniform structure.
These assumptions are further tested in the Methods section.

Substituting equation (7) into equation (6) leads to our final
result for the CDF:

Pðc; zÞ¼ exp $rðWÞV%ðcÞ$ sðzÞS%ðcÞ
# $

: ð8Þ

Here we have explicitly written the dependence of r on W,
which is important to interpret equation (4) as a self-consistent
equation to obtain the volume fraction of the packing. The free-
volume per particle in the bulk depends specifically on WðzÞ as
r¼ 1=ðWðzÞ$VaÞ:

The CDF thus factorizes into two contributions: A contact
term:

PCðc; zÞ¼ exp $sðzÞS%ðcÞf g; ð9Þ

and a bulk term:

PBðcÞ¼ exp $rðWÞV%ðcÞ
# $

; ð10Þ

Construct separation lines from
the spherical decomposition

Separate different interactions
between two objects

Spherocylinder

Dimer

Ellipsoid (lens-shaped particle)

Figure 3 | Analytical solution to determine the VB for non-spherical
objects. (a) The VB between the two objects of a given relative position and
orientation consists of the VBs between particular spheres on each of the two
objects. The spheres that interact are determined by separation lines given as
the VBs between the spheres in the filling. For dimers, there is one separation
line for each object, tesselating space into four areas, in which only one
interaction is correct. The pink part in a, for example, is the VB between the
two upper spheres. (b) The dense overlap of spheres in spherocylinders leads
to a line as effective Voronoi interaction at the centre of the cylindrical part.
This line interaction has to be separated from the point interactions due to
the centres of the spherical caps as indicated. Overall, the two separation
lines for each object lead to a tessellation of space into nine different areas,
where only one of the possible line–line, line–point, point–line, and point–point
interactions is possible. The yellow part in b, for example, is due to the upper
point on spherocylinder 1 and the line of 2. Regions of line interactions are
indicated by blue shades. (c) The spherical decomposition of ellipsoid-like
shapes is analogous to dimers, only that now the opposite sphere centres
interact. We indicate this inverted interaction by a cross at the centres of the
spheres and refer to these points as ‘anti-points’. In addition, the positive
curvature at the intersection point leads to an additional line interaction,
which is a circle in 3D (a point in 2D) and indicated here by two points. The
separation lines are then given by radial vectors through the intersection
point/line. The Voronoi interaction between the two ellipsoids is thus given
by two pairs of two anti-points and a line, which is the same class of
interactions as spherocylinders. The different point and line interactions are
separated analogous to spherocylinders, as shown.

c

x^ x^

z^z^

c

Figure 4 | The Voronoi excluded volume and surface. (a) The hard-core
repulsion between the two objects defines the hard-core excluded volume
Vex (enclosed by a dashed blue line): This volume is excluded for the centre
of mass of any other object. Packings of rods in the limit a-N can be
described by a simple random contact equation based on Vex (ref. 51). We
introduce the Voronoi excluded volume O (enclosed by a dashed red line),
which is the basis of our statistical theory of the Voronoi volume. The
volume O, equation (5), is excluded by the condition that no other particle
should contribute a VB smaller than c in the direction ĉ, which defines the
CDF P(c, z). (b) Taking into account the hard-core exclusion leads to the
effective Voronoi excluded volume V* (indicated as red volume), which is
excluded for bulk particles. Likewise, the overlap of Vex and O excludes the
surface S* (thick green line) for all contacting particles. The volumes are

shown here for a single orientation t̂. (c) The 3D plot corresponding to b:
The central particle is in brown, Vex is indicated in blue, V* in red, and S*
in green.
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such that

Pðc; zÞ¼PCðc; zÞ$PBðcÞ: ð11Þ
The volume V* is the volume excluded by O for bulk particles
and takes into account the overlap between O and the hard-core
excluded volume Vex: V% ¼ O&O\Vexh ît, where :::h it̂ denotes an
orientational average. Likewise, S* is the surface excluded by O for
contacting particles: S% ¼ @Vex\Oh it̂, where @Vex denotes the
boundary of Vex. The volumes Vex and O as well as the resulting
V* and S* are calculated in the Supplementary Methods and
shown in Fig. 4 for spherocylinders.

The surface density s(z) is a measure for the available surface
for contacts when the packing is characterized by an average
coordination number z. We evaluate this density by simulating
random local configurations of one particle with z non-over-
lapping contacting particles and determining the average available
free-surface. This surface is given by S*(cm), where cm is the
minimal contributed VB among the z contacts in the direction ĉ.
Averaging over many realizations with a uniform distribution of
orientations and averaging also over all directions ĉ provides the
surface density in the form,

sðzÞ¼ 1
S%ðcmÞh ih iĉ

: ð12Þ

In this way, we can only calculate s(z) for integer values of z. For
fractional z that are predicted from our evaluation of degenerate
configurations in the next section, we use a linear interpolation to
obtain WðzÞ.

Equations (4) and (8) lead to a self-consistent equation for the
average Voronoi volume WðzÞ in the form: WðzÞ¼F ½WðzÞ(.
Analytic expressions for V* and S* can be derived in the spherical
limit in closed form, where also the self-consistency equation can
be solved exactly20. For non-spherical shapes we resort to a
numerical integration to obtain V* and S*. Equation (4) can then
be solved numerically, which yields WðzÞ, and subsequently the
equation of state for the volume fraction versus coordination
number, fðz; aÞ¼Va=WðzÞ, in numerical form (denoting
explicitly the dependence on a).

Variation of the coordination number with aspect ratio. In this
purely geometric theory of the average Voronoi volume, the
packing fraction is given as f(z, a), with z and a free parameters,
in principle. In practice, z is fixed by the symmetry properties of

the object shape, z(a), and the physical condition of mechanical
stability, requiring force and torque balance on every particle.
Under the assumption of minimal correlations, these conditions
typically motivate the isostatic conjecture based on Maxwell’s
counting argument31: z¼ 2df, with df the number of degrees of
freedom, giving z¼ 6 for fully symmetric objects (spheres), z¼ 10
for rotationally symmetric shapes like spherocylinders, dimers and
ellipsoids of revolution6, and z¼ 12 for shapes with three different
axis like aspherical ellipsoids and tetrahedra13. While the isostatic
conjecture is well-satisfied for spheres, packings of non-spherical
objects are in general hypoconstrained with zo2df, where z(a)
increases smoothly from the spherical value for a41 (ref. 6). The
fact that these packings are still in a mechanically stable state can be
understood in terms of the occurrence of stable degenerate
configurations (Fig. 5), which reduce the effective number of
degrees of freedom32. However, the observed variation z(a) could
not be explained quantitatively so far. Here we deduce the relation
z(a) by evaluating the probability of finding these degenerate
configurations to provide a prediction of f(a) in close form.

In a degenerate configuration, force balance already implies
torque balance, as the net forces are aligned with the inner axis of
the particle (Fig. 5). This implies that there is redundancy in the
set of force and torque balance equations for mechanical
equilibrium as force and torque balance equations are not
linearly independent. Our evaluation of these degenerate config-
urations is based on the assumption that a particle is always
found in an orientation such that the redundancy in the
mechanical equilibrium conditions is maximal. This condition
allows us to associate the number of linearly independent
equations involved in mechanical equilibrium with the set of
contact directions. Averaging over the possible sets of contact
directions then yields the average effective number of degrees of
freedom ~df ðaÞ, from which the coordination number follows as
zðaÞ¼ 2~df ðaÞ (Methods).

The results for z(a) are shown in Fig. 6a for prolate ellipsoids of
revolution, spherocylinders, dimers and lens-shaped particles. We
are able to recover the observed continuous transition as a
function of a from the isostatic coordination number for spheres,
z¼ 6 at a¼ 1, to the isostatic value z¼ 10, for aspect ratios above
E1.5. The trend compares well to known data for ellipsoids6 and
spherocylinders10,17. In particular, our approach explains the
decrease of z for higher aspect ratios observed in simulations of
spherocylinders10,17: For large a, the most probable case is to have

r3

r4

r1

r2
r3

r4

r1

r2

r1

r4

r3

r2
f3 +f4

f1 + f2 

Figure 5 | Quantitative method to calculate z(a). (a) A 2D sketch of a spherocylinder with a random configuration of contact directions rj. The associated
forces are along directions n̂j normal to the surface (indicated in red) and torques are along rj$n̂j . From these directions, one can determine if mechanical
equilibrium has some redundancy, that is, if force and torque balance equations are not linearly independent. The configuration shown has no redundancy:
The equivalent situation in three dimensions would show force and torque balance equations as five different constraints (the most general case for a 3D
particle would be six constraints, but the torque along the axis of a spherocylinder is always vanishing, due to its rotational symmetry). (b) Here the
spherocylinder is rotated. With the same contact directions rj as in a, the contact force directions n̂j are now modified. We explore the space of possible
orientations for the spherocylinder, and try to find configurations which maximize redundancy in the mechanical equilibrium conditions. (c) As an example,
this orientation exhibits some redundancy: All the contacts are on the spherical caps of the spherocylinder. Therefore, f1þ f2 and f3þ f4 are aligned with the
spherocylinder axis and the condition of force balance automatically implies torque balance. If this is the orientation of the spherocylinder for which
redundancy is maximal, we associate the number of linearly independent equations (that is, the effective number of degrees of freedom) from the
mechanical equilibrium condition with the set of contact directions {rj} and perform an average over the possible sets of {rj}. This yields the averaged

effective number of degrees of freedom ~dfðaÞ for a spherocylinder having an aspect ratio a and the coordination number follows as zðaÞ¼ 2~dfðaÞ. Note that
for non-convex shapes like dimers, the resulting z is the number of contacting neighbours, not the number of contacts, which can exceed the former.
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contacts only on the cylindrical part of the particle, so that all
normal forces are coplanar reducing the effective number of
degrees of freedom by one. Consequently, z-8 as a-N, as we
obtain in Fig. 6a. This decrease is specific to spherocylinders, and
not observed for dimers or ellipsoids, since the normal forces are
not coplanar.

Phase diagram of non-spherical particles. Our calculation leads
to a close theoretical prediction for the packing density f(a)¼
f(z(a), a) which does not contain any adjustable parameters.
Figure 6b shows the prediction for dimers, spherocylinders and
lens-shaped particles. For spherocylinders, results in the literature
on f(a) vary greatly (Table 1), but all show a peak at around aE
1.3–1.5, which is captured by our formalism. We predict the
maximum density of spherocylinders at a¼ 1.3 with a density
fmax¼ 0.731 and that of dimers at a¼ 1.3 with fmax¼ 0.707. We
have also calculated the packing fraction of the lens-shaped
particles of Fig. 3c, which yields fmax¼ 0.736 for a¼ 0.8. This
shape represents the densest random packing of an axisymmetric
shape known so far.

We further investigate packings of non-spherical objects in the
z–f representation. This change in perspective allows us to
characterize packings of differently shaped objects in a phase
diagram. By plotting z(a) against f(a) parametrically as a
function of a, we obtain a phase diagram for jammed anisotropic

particles in the z–f plane (Fig. 6c). In the same diagram, we also
plot the equation of state obtained with the present theory in the
case of spheres in20: fsphðzÞ¼ z=ðzþ 2

ffiffiffi
3
p
Þ, which is valid

between the two isostatic limits of frictionless spheres z¼ 6 and
infinite frictional spheres at z¼ 4. Surprisingly, we find that both
dimer and spherocylinder packings follow an analytical
continuation of these spherical packings. This result highlights
that the spherical random branch can be continued smoothly
beyond the RCP in the z–f plane.

The analytical continuation of RCP is derived by solving
the self-consistent equation (4) close to the spherical limit
(Supplementary Methods):

fðzÞ¼ 1þo1
1þ g1ðo1Þ z

!z % 1
" #Mb

Mz

z
!z % g2ðo1Þ z

!z % 1
" #Mb

Mz

h i
1þ z

!z % 1
" #

Mv
Mz

h i

0

@

1

A
% 1

ð13Þ

here o1¼ 1=
ffiffiffi
3
p

denotes the spherical free-volume at RCP
defined as o1¼ 1=fsph% 1 evaluated at z¼ 6 as calculated in20,
z¼ 6 is the spherical isostatic value, and the functions g1,2 can be
expressed in terms of exponential integrals. The dependence of
equation (13) on the object shape is entirely contained in the
geometrical parameters Mb, Mv, and Mz: Mb and Mv quantify
the first-order deviation from the sphere at a¼ 1 of the object’s
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Figure 6 | Theoretical predictions for packings of particles with various shapes. (a) The function z(a) determined by evaluating the probability of
degenerate configurations. Both spherocylinders and dimers increase up to just below the isostatic value z¼ 10. For dimers, z(a) is the number of
contacting neighbours, not the number of contacts, as a single contacting particle can have more than one contacting point. For spherocylinders, z reduces
to 8 for large a, as the forces acting on the cylindrical part are coplanar and reduce the effective degree of freedom. We also include the results from our
method for prolate ellipsoids of revolution and lens-shaped particles. (b) The predicted packing fraction f(a) of spherocylinders, dimers and lens-shaped
particles compared with simulation results of maximal densities from the literature. We predict the maximal packing fraction of spherocylinders
fmax¼0.731 at a¼ 1.3 and of dimers fmax¼0.707 at a¼ 1.3, demonstrating that spherocylinders pack better than dimers. For the lens-shaped particles we
obtain fmax¼0.736 at a¼0.8. (c) By plotting z vs f we obtain a phase diagram for smooth shapes. We observe that the spherical random branch fsph,
which ends at the RCP point at (0.634,6) (ref. 20), in fact continues smoothly upon deformation into dimers and spherocylinders as predicted by our
theory. The spherocylinder continuation provides a boundary for all known packing states of rotationally symmetric shapes. Inset: The continuations from
RCP. For a given value of z, the densest packing is achieved by spherocylinders, followed by dimers, prolate ellipsoids and oblate ellipsoids. Note that the
continuations for spherocylinders and dimers are almost identical.
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hard-core boundary and its volume, respectively, while Mz
measures the first-order change in the coordination number
upon deformation of the sphere. The resulting continuations z(f)
obtained by inverting equation (13) for different object shapes are
plotted in the inset of Fig. 6c.

For the smooth shapes considered, we find generally that
denser packing states are reached for higher coordination
numbers. For a given value of z, spherocylinders achieve the
densest packing, followed by dimers, prolate ellipsoids and oblate
ellipsoids, as seen in the inset of Fig. 6c. We observe that the
densest packing states for dimers and spherocylinders found in
simulations lie almost exactly on the continuation, while the one
of the ellipsoids deviate considerably.

Comparison with empirical data. Table 1 indicates that there is a
finite range of densities for random jammed packings according
to the particular experimental or numerical protocol used
(denoted as a J-line in the case of jammed spheres19,33). On the
other hand, our mean-field theory predicts a single density value
and Fig. 6 indicates that our predictions are an upper bound of
the empirical results. We interpret these results in terms of
current views of the jamming problem developed in the limiting
case of spheres, where the question of protocol-dependency of
packings has been systematically investigated.

Random close packings can be considered as infinite-pressure
limits of metastable glass states, which was shown theoretically in
refs 19,34–36 and confirmed in computer simulations in ref. 37.
Indeed, there exist a range of packing fractions named as
[fth, fGCP] following the notation of mean-field Replica Theory
(RT)19. Here fGCP stands for the density of the ideal glass close
packing and is the maximum density of disordered packings, while
fth is the infinite-pressure limit of the least dense metastable states.
In RT, the states [fth, fGCP] are all isostatic.

From the point of view of simulations, the well-known
Lubachevsky–Stillinger (LS) protocol33 provides this range of
packings for different compression rates. The densities [fth,
fGCP] are achieved by the corresponding compression rates
(from large to small) [gth, gGCP-0]. Compression rates larger
than gth all end to fth. The threshold value gth corresponds to the
relaxation time 1/gth of the least dense metastable glass states. The
denser states at GCP are unreachable by experimental or
numerically generated packings, as it requires to equilibrate the
system in the ideal glass phase, a region where the relaxation time
is infinite. In general, large compression rates lead to lower
packing fractions. This picture was investigated for sphere
packings in33,38 and it is particularly valid for high-dimensional
systems where crystallization is avoided19.

Random close packings are also known to display sharp
structural changes39–43 signalling the onset of crystallization at a
freezing point fc (ref. 18). All the (maximally random) jammed
states along the segment [fth, fGCP] can be made denser at the
cost of introducing some partial crystalline order. Support for a
order/disorder transition at fc is also obtained from the increase
of polytetrahedral substructures up to RCP and its consequent
decrease upon crystallization44. In terms of protocol preparation
like the LS algorithm, there exists a typical time scale tc
corresponding to crystallization. Crystallization appears in
LS18,19,41 if the compression rate is smaller than gc¼ 1/tc,
around the freezing packing fraction45. A possible path to avoid
crystallization and obtain RCP in the segment [fth, fGCP] is to
equilibrate with g4gc to pass the freezing point, and eventually
setting the compression rate in the range [gth, gGCP-0] to
achieve higher volume fraction.

As the present statistical mechanics framework is based on the
Edwards ensemble approach27, our prediction of the packing

density fEdw corresponds to the ensemble average over the
configuration space of random states at a fixed coordination
number. As the volume has the role of the Hamiltonian, the
energy minimization in equilibrium statistical mechanics is
replaced in our formalism by a volume minimization: The
highest volume fraction for a given disordered system is achieved
in the limit of zero compactivity. Therefore, the present
framework provides a mean-field estimation of such a maximal
volume fraction (minimum volume) of random packings with no
crystallization. As we perform an ensemble average over all
packings at a fix coordination number, the obtained volume
fraction fEdw corresponds to the one with the largest entropy
(called largest complexity in RT) along [fth, fGCP]. This point
needs not to be fth, and in general it is a larger volume fraction.
Thus, fth ofEdw ofGCP.

The above discussion can be translated to the present case of
non-spherical particles. In this case, unfortunately, there is no
detailed study of the protocol-dependent packing density as done
by19,33,38 for spheres. However, the survey of the available
simulated data obtained by different groups (Table 1 and
Fig. 6b,c) can be interpreted analogously as for spheres. In the
case of spherocylinders, packings have been obtained in the range
[0.653, 0.722] (these minimum and maximum values have been
obtained in ref. 5 and in ref. 17, respectively, see Table 1). Our
predicted density is 0.731, representing an upper bound to the
simulated results. In the case of dimers, there are two simulations
giving a density of 0.697 (C. F. Schreck and C. S. O’Hern (2011)
personal communication) and 0.703 (ref. 12), which are both
smaller than and very close to our prediction 0.707. Thus, our
prediction is interpreted as the upper limit in the range of packings
observed with numerical algorithms. Under this scenario, which is
consistent with analogous three-dimensional (3D) spherical results,
packings may exist in the region [fth, fEdw], and our theory is a
mean-field estimation of fEdw. This region is very small for spheres
but the above evidence indicates that non-spherical particles may
pack randomly in a broader range of volumes. The present
framework estimates the upper bound for such a range.

Discussion
We would like to stress that our analytic continuation is non-
rigorous and appears as the solution of our mean-field theory for
first-order deviations in a from the sphere using suitable
approximations. The shapes of dimers, spherocylinders, ellipsoids
are then all shown to increase the density of the random packing
to first-order. In the case of regular (crystal) packings, recent
mathematically rigorous work has shown in fact that for
axisymmetric particles any small deformation from the sphere
will lead to an increase in the optimal packing fraction of the
crystal46. This appears only in 3D and is related to Ulam’s
conjecture stating that the sphere is the worst case scenario for
ordered packings in 3D (ref. 47). A full mathematical proof of this
conjecture is still outstanding, but so far all computer simulations
verify the conjecture. In particular, recent advances in simulation
techniques allow to generate crystal packings of a large variety of
convex and non-convex objects in an efficient manner48,49. The
extensive study of de Graaf et al.48 has extended the verification
of Ulam’s conjecture to the first eight regular prisms and
antiprisms, the 92 Johnson solids, and the 13 Catalan solids. The
verification for regular n-prisms and n-antiprisms can be
extended to arbitrary n using this method, providing an
exhaustive empirical verification of the conjecture for these
regular shapes. We remark that a random analogue of Ulam’s
packing conjecture has been proposed and verified for the
Platonic solids (apart from the cube) in simulations16. The results
presented here support the random version of Ulam’s conjecture
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and might help in investigating this conjecture further from a
theoretical point of view.

We believe that our decomposition of various shapes into
intersections and overlaps of spheres will be a useful starting
point for a systematic investigation of this issue. Our approach
can be systematically continued beyond the axisymmetric shapes
considered here. For instance, in Fig. 2e–h, we have 2,3,6,n anti-
points to describe ellipsoids and polyhedra of increasingly varying
complexity. The challenge would be to implement our algorithm
to calculate the resulting Voronoi excluded volumes that appear
in our mean-field theory. For this, one might also consider a fully
numerical evaluation using, for example, graphics hardware25.

Methods
Quantitative method to calculate z(a). Mathematically, we can write the local
mechanical equilibrium on a generic non-spherical frictionless particle having k
contacts defined by their location rj, normal n̂j and force fjn̂j , as:

n̂1 ::: n̂k

r1!n̂1 ::: rk!n̂k

! " f1

..

.

fk

0

B@

1

CA " N f ¼ 0; ð14Þ

where N is a df!k matrix. A local degenerate configuration has a matrix N
such that rankðNÞominðdf ; kÞ. We base our evaluation on two assumptions: (i)
Contact directions around a particle in the packing are uncorrelated, and (ii) Given
one set of contact directions, a particle i is found in an orientation t̂i such that the

redundancy in the mechanical equilibrium conditions is maximal, that is,
rankðN t̂i

Þ is a minimum. Note that N
t̂i

depends on t̂i , as only the absolute
direction of contact points are chosen, and thus rotating particle i affects the
direction and normal of these contacts with respect to particle i. This situation is
described in Fig. 5c, which includes a two-dimensional (2D) sketch of a 3D
degenerate configuration that we observe often in our procedure. In this case, the
rank is reduced by one unit, and the probability of occurrence of such a situation is
large at small aspect ratio, as it just requires that there is no contact on the
cylindrical part of the inner particle.

Within our assumptions, we explore the space of possible contact directions
for one particle, given a local contact number k, and aspect ratio a. We then
extract the average effective number of degrees of freedom ~df ða; kÞ, which is
the average over the contact directions of the minimal value of rankðN

t̂
Þ:

~df ða; kÞ¼ hmint̂ðrankðN t̂ÞÞ i fr1 ; ... ;rkg , where :::h i r1 ;&&&;rkf g ¼N
' 1 R

J :::dr1:::drk
denotes the average over contact directions. This average is limited to a subset J of
all possible {r1yrk} such that mechanical equilibrium (equation 14) is possible
with positive forces, as expected for a packing of hard particles. This corresponds
geometrically to sets {r1,y,rk} which do not leave a hemisphere free on the unit
sphere. Finally, the normalization N is the volume of J. For a packing with a
coordination number distribution Qz(k), with average z, the effective df is:
~df ðaÞ¼

P
k QzðkÞ~df ða; kÞ, and the average z follows as zðaÞ¼ 2~df ðaÞ. In our

evaluation, we use a Gaussian distribution for Qz(k), with variance 1.2 and average
z, consistent with simulations50. Overall, z(a) is thus the solution of the following
self-consistent relation:

zðaÞ¼ 2
X

k

QzðkÞ min
t̂

rankðN t̂Þ
# $% &

fr1 ; ... ;rkg
: ð15Þ

The way we look for the orientation t̂ on the unit sphere showing the lowest
rank is simply by sampling it randomly with a uniform distribution (106 samples).
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Figure 7 | Comparison of the CDF with simulation data. We plot the theoretical predictions (solid lines) for P(c, z) (black), PB(c) (red) and PC(c, z) (green)
with the corresponding CDFs sampled from simulated configurations (symbols) of spherocylinders. For each aspect ratio a¼ 1.1, 1.5, 2.0, we plot results for
three values of the polar angle ycA[0,p/2]. We generally observe that the three CDFs agree quite well in the regime of small c values, which provides the

dominant contribution to the average Voronoi volume WðzÞ. The same plots are shown on a linear scale in the Supplementary Fig. S1. The error bars denote
the root mean square error of the finite-size sampling.
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The computation of the rank is done via a standard Singular Value Decomposition
of N

t̂
, which is here numerically accurate for aZ1.05.

Test of the approximations of the theory. We perform a comprehensive test of
the different approximations of the theory using computer simulations of spher-
ocylinder packings (Supplementary Note 1). From the generated configurations at
the jamming point we obtain the CDF P(c, z), where z is also an observable of the
simulation determined by the jamming condition. P(c, z) contains the probability
that the boundary of the Voronoi volume in the direction ĉ is found at a value
larger than c and is determined as follows. We select an orientation ĉ relative to the
orientation t̂i of a chosen reference particle i. A large number of particles in the
packing contribute a VB along ĉ with particle i. We determine all these different
VBs denoted by sðrj; t̂j; ĉÞ. The boundary of the Voronoi volume in the direction ĉ
is the minimum cm of all positive VBs:

cm ¼ min
j: s4 0

sðrj; t̂j; ĉÞ; ð16Þ

where rj and t̂j are the relative position and orientation of particle j with respect to
the reference particle i. Determining this minimal VB for all particles i in the
packing yields a list of cm values for a given ĉ (which is always relative to the
orientation t̂i). The CDF P(c,z) simply follows by counting the number of values
larger than a specified c.

Owing to the rotational symmetry of the spherocylinders, the orientational
dependence of P(c, z) is reduced to P(c, yc; z), where yc is the polar angle of the
orientation ĉ in spherical coordinates. Moreover, due to inversion symmetry it is
sufficient to select only yc 2 ½0; p=2%. Therefore, we choose three yc values to cover
this range: yc¼ 0.22, 0.8, 1.51. We also use the rotational symmetry to improve the
sampling of P(c, z): We fix yc to one of the three values, but select a number of
azimuthal angles at random. As the packing is statistically isotropic for all
azimuthal angles, the resulting cm value for these directions can all be included in
the same ensemble. We consider three different aspect ratios a¼ 1.1, 1.5, 2.0
of the spherocylinders to capture a range of different shapes. The results are plotted
in Fig. 7.

We test the two main approximations considered in the theory: (a) The
derivation of P(c, z) using a liquid like theory of correlations as done in Song
et al.20 Jin et al.29 leading to the exponential form of equation (8). (b) The
factorization of this CDF into contact and bulk contributions as in equation (11).
This approximation neglects the correlations between the contacting particles and
the bulk. In Fig. 7, we test these approximations by comparing theory and
simulations for three different CDFs: P(c, z), PB(c) and PC(c, z), equations (8)–(10).
In order to determine the PB(c) from the simulation data we need to take the
contact radius r&ðr̂j; t̂jÞ between particle i and any particle j into account. The
minimal VB, cm, is determined from the contributed VBs of particles in the bulk
only, that is, particles with rj 4 r&ðr̂j; t̂jÞ. Likewise, PC(c) is determined from the
simulation data by only considering VBs of contacting particles with rj ¼ r&ðr̂j; t̂jÞ.

Following this procedure, we have tested these approximations with the
computer generated packings. We find (Fig. 7): (i) The contact term PC is well
approximated by the theory for the full range of c; (ii) For small values of c the bulk
distribution PB is well approximated by the theory, and deviations are observed for
larger c; (iii) The full CDF P(c) agrees well between the computer simulations and
the theory, especially for small c. The small values of c provide the dominant
contribution in the self-consistent equation to calculate the average Voronoi
volume equation (4), and therefore to the main quantity of interest, the volume
fraction of the packing. This can be seen by rewriting equation (4) as

WðzÞ¼Va þ
I

dĉ
Z 1

c&ðĉÞ
dc Pðc; ĉ; zÞ; ð17Þ

as the CDF is trivially unity for c values smaller than the hard-core boundary c&ðĉÞ.
The main contribution to the integral then comes from c values close to c&ðĉÞ due
to the decay of the CDF.

Systematic deviations in our approximations arise in the bulk distribution PB
for larger values of c, but, interestingly, the slope of the decay still agrees with our
theory. Overall, the comparison highlights the mean-field character of our theory:
Correlations are captured well up to about the first coordination shell of particles,
after which theory and simulations diverge, especially for the bulk term. The
agreement is acceptable for the nearest neighbour-shell, but is incorrect for the
second neighbours. Beyond this shell, bulk particles are affected in a finite range by
correlations that we do not address, as we assume a uniform distribution of the
density of these particles; this is a typical assumption in a mean-field theory. The
additional unaccounted correlations lead to a slightly higher probability to observe
the VB at intermediate c values in the simulation, compared with our theory.
However, these deviations from simulations are small. For instance, Fig. 7 indicates
that for a typical value a¼ 1.5 and polar angle yS¼ 0.22, the numerically measured
CDF P(c,z) at a relative large value c/a¼ 2 is of the order of 10( 3, while the theory
predicts this probability at a slightly larger value of c/a¼ 2.07. This small
discrepancy is not relevant, as such a value of the probability is negligibly small in
the calculation of the volume fraction in equation (4). Thus, because of this small
probability to find the VB with values larger than c/a¼ 2, the deviations expected
from our approximations are small. These results indicate that, overall, the theory
captures the distribution of VBs in the region of small c, which is the relevant
region in the calculation of the volume fraction.

The neglected higher-order correlations in the upper coordination shells can
only decrease the volume fraction in the calculation leading to smaller packing
densities. Following this analysis, we interpret our predicted packing fractions as
upper bounds for the empirically found ones, which is indeed observed in Fig. 6b,c.
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Minkowski tensors reveal onset of local crystallinity. Phys. Rev. E 85, 030301
(2012).

44. Anikeenko, A. V., Medvedev, N. N. & Aste, T. Structural and entropic insights
into the nature of the random-close-packing limit. Phys. Rev. E 77, 031101
(2008).

45. Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).
46. Kallus, Y. & Nazarov, F. In which dimensions is the ball relatively worst

packing? Preprint at http://arxiv.org/abs/1212.2551 (2012).
47. Gardner, M. The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and

Problems (Norton, 2001).

48. de Graaf, J., van Roij, R. & Dijkstra, M. Dense regular packings of irregular
nonconvex particles. Phys. Rev. Lett. 107, 155501 (2011).

49. de Graaf, J., Filion, L., Marechal, M., van Roij, R. & Dijkstra, M. Crystal-
structure prediction via the Floppy-Box Monte Carlo algorithm: Method and
application to hard (non)convex particles. J. Chem. Phys. 137, 214101 (2012).

50. Wang, P., Song, C., Jin, Y. & Makse, H. A. Jamming II: Edwards’ statistical
mechanics of random packings of hard spheres. Physica A 390, 427–455 (2011).

51. Philipse, A. The random contact equation and its implications for (colloidal)
rods in packings, suspensions, and anisotropic powders. Langmuir 12,
1127–1133 (1996).

Acknowledgements
We gratefully acknowledge funding by NSF-CMMT and DOE Office of Basic Energy
Sciences, Chemical Sciences, Geosciences and Biosciences Division. We are grateful to
C.F. Schreck and C.S. O’Hern for discussions and for providing simulated data on 3D
packings of dimers. We are also grateful to F. Potiguar for discussions, T. Zhu for
simulations and M. Danisch for theory. We also thank F. Zamponi, P. Charbonneau and
Y. Jin for discussions on the interpretation of protocol-dependent packings.

Author contributions
A.B., R.M., L.B., L.P. and H.A.M. designed research, performed research and wrote the
paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Baule, A. et al. Mean-field theory of random close packings of
axisymmetric particles. Nat. Commun. 4:2194 doi: 10.1038/ncomms3194 (2013).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3194 ARTICLE

NATURE COMMUNICATIONS | 4:2194 | DOI: 10.1038/ncomms3194 | www.nature.com/naturecommunications 11

& 2013 Macmillan Publishers Limited. All rights reserved.

http://arxiv.org/abs/1212.2551
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications


Frequency-dependent attenuation and elasticity in unconsolidated earth

materials: e↵ect of damping

Yanqing Hu1, Hernán A. Makse1,3, John J. Valenza2, David L. Johnson2

1 Levich Institute and Physics Department,

City College of New York,

New York, New York 10031, USA
2 Schlumberger-Doll Research,

One Hampshire, Cambridge,

Massachusetts 02139, USA
3 Corresponding author

Abstract
We use Discrete Element Methods (DEM) to test and further develop the theory framework for the e↵ec-

tive mass of unconsolidated earth materials recently proposed by Valenza and Johnson, Phys. Rev. E 85,

041302, (2012). First, we validate our DEM framework by comparing the computed e↵ective mass of an

unconsolidated granular medium to that determined theoretically. Then, we extract the low-frequency ( 15

kHz) normal modes and investigate the corresponding e↵ect of di↵erent interparticle damping coe�cients.

We demonstrate that, as the interparticle damping increases, the normal modes exhibit roughly circular tra-

jectories in the complex frequency plane. The complex valued normal modes characterize the dissipative

and elastic properties of the granular material. Thus, our findings may be applied to interpret sonic logging

data of near wellbore structures. Our numerical investigation yields two additional observations regarding

the e↵ective mass: 1) The individual normal modes are characterized by a unique critical damping parame-

ter, above which the mode is overdamped. 2) The dissipative capacity of the system is largely derived from

a few modes with a large imaginary component. Overall, we find that the DEM simulations support the

theory of normal modes and e↵ective mass of granular materials. The results are useful for optimizing the

attenuation of sound in granular materials.
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I. INTRODUCTION

An important challenge in the development of a hydrocarbon reservoir is optimizing well com-

pletion and production. After placing a well, sonic well logging techniques characterize the

subsurface at high resolution in the immediate vicinity of a borehole. For a given strata, the

acoustic properties depend on many characteristics (composition, structure, porosity) and con-

ditions (stress, temperature, pore fluid). In the soft unconsolidated formations of interest in the

present study, sonic measurements are further complicated by nonlinear e↵ects arising from het-

erogeneities, inhomogeneous stress distributions, and dissipation due to fluid flow [2, 11, 14–

16, 18, 19, 23, 29, 33, 44, 45, 48]. These nonlinearities have important e↵ects on the dynamics

of unconsolidated media as reviewed by [19] and [25]. Therefore, coupled with a representative

model of the granular medium [2, 16, 18, 19, 33, 45], sonic wave propagation can be utilized to

characterize subsurface conditions and elucidate active mechanisms. In turn, this information can

be utilized during well completion and production. Another important e↵ect of non-linearities is

to cause dispersion in the system as studied in [19, 23].

Another issue for sonic logging tools is the interference between the signal from the formation

and the acoustic energy propagating along the tool body. Wireline tools utilize various methods

to attenuate the tool signal. The issue is more challenging for Logging While Drilling (LWD)

acoustics [23, 35], because methods for attenuating structure borne sound must not diminish the

mechanical integrity of the drill collar, or complicate the drilling process.

Loose granular media are capable of dissipating energy through the network of interparticle

contacts and viscous dissipation through the surrounding medium [4, 5, 9, 12, 40]. In fact, it

was previously demonstrated that loose grains damp acoustic modes very e�ciently [5, 12] and

they are routinely used as e↵ective methods to optimize the damping of unwanted structure-borne

acoustic signals [20, 41–43].

The motivation of the present study is to develop theoretical and numerical tools to study the

acoustic and dissipative properties of unconsolidated granular materials. Our findings can then

be employed to a) improve the interpretation of sonic logging measurements, and (b) to optimize

granular media for the dissipation of acoustic energy. First, we utilize the Discrete Element Meth-

ods (DEM) to test the theory for the e↵ective mass of discrete systems as outlined in [43]. We

utilize this DEM and analytical framework to calculate the frequency-dependent e↵ective mass of

unconsolidated granular media held in a cup, and study the e↵ect of interparticle damping on the

2



normal modes in the system.

Previous work on the normal modes of unconsolidated granular materials [1, 34, 37, 38, 46, 47]

have studied the vibrational density of states of a granular system as the external applied pressure

is diminished and the volume fraction of the system decreases towards the point of random close

packing (RCP), i.e., when the granular medium is a fragile unconsolidated formation [30, 34].

However, these previous studies have not considered the important e↵ect of attenuation on the

normal modes. Attenuation plays a crucial role in governing the dynamic response of real sys-

tem. Thus, interpretation of any experiment and acoustic logging needs to take into account the

dissipative nature of granular matter.

In a previous study we have focused on the stress-dependent dissipative characteristics of the

granular medium [21]. The e↵ect of attenuation at the grain-grain contacts has been also studied

experimentally and theoretically in [43]. Here, we test the theoretical developments presented in

[43] with Discrete Element Methods (DEM) [13], with a particular focus on the low-frequency

modes in the e↵ective mass of granular materials. We further develop this theoretical basis for

granular systems in order to investigate the dependence of the normal modes on the damping

mechanism at the interparticle contact. An area of primary focus is the consequences of assuming

the elastic and damping matrices commute.

The paper is organized as follows: Section II introduces the concept of the e↵ective mass.

Section III introduces previous analytical results, in particular, the relation between the e↵ective

mass and the normal modes in the system. Section IV investigates the trajectories of the normal

modes frequencies as a function of damping. Section V outlines our DEM technique which is

implemented to test the main implications of the theory in Section VI. Section VII develops the

numerical methods to evaluate the trajectories of the normal modes in the frequency domain as a

function of damping and the results are discussed in Section VIII. We summarize our findings in

Section IX.

II. EFFECTIVE MASS OF A GRANULAR MEDIUM

The e↵ective mass of the granular medium in a cup of mass Mc vibrating with frequency ! is

defined as [20]:

M̃(!) =
F(!)
a(!)

� Mc. (1)
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For each frequency !, F(!) is determined by measuring the force necessary to displace the cup

and, a(!) is the associated acceleration. The system is schematically explained in Fig. 1. Ex-

perimentally, both quantities are recorded in the frequency domain after waiting a short stabi-

lization period of a few seconds. Then, equation 1 is employed to construct M̃(!). In general,

M̃(!) = M1(!) + iM2(!) is complex-valued and reflects the partially in-phase and out-of-phase

motion of the individual grains relative to the cup motion. M1 and M2 characterize the ensemble

averaged elastic and dissipative capacity of the material in a simplified continuum with negligible

boundary e↵ects (see for instance [49]). An ideal example is provided by a low viscosity liquid

where the dimensions of the cup are much larger than the viscous skin depth across the experimen-

tal frequency band; In this case the e↵ective mass resonates at odd-multiples of 1/4 wavelength of

the longitudinal wave in the medium [20]. In fact, the dominant low frequency normal modes in a

granular medium exhibit similar scaling behavior. However, the scaling of the modes in a confined

granular medium is e↵ected by the preparation protocol, and boundary condition [49].

The imaginary part of the frequency dependent e↵ective mass in a granular medium is roughly

proportional to the frequency dependent attenuation in the system. This dissipation can be due to

solid contact friction (asperities, material plasticity, etc.) or wetting dynamics from liquid bridges

or films between grains. Figure 2 shows the results of a frequency sweep of the real (M1) and

imaginary (M2) components of the e↵ective mass obtained with DEM for packings under grav-

ity with the indicated damping coe�cients (DEM procedure outlined below). These results are

qualitatively similar to those determined experimentally, and reported in [20] and [43]. Here, we

adapt the DEM technique to obtain the low-frequency modes in the region of interest. In a manner

analogous to that achieved experimentally in [43] we use DEM to test the e↵ect of interparticle

damping on the dynamics of discrete systems.

III. PREVIOUS THEORETICAL RESULTS

A. Hertz-Mindlin interparticle force law

We consider a granular medium made of spherical particles interacting via Hertz-Mindlin con-

tact forces, Coulomb friction and dissipative forces at the contact point. The normal component

of the contact force between any two contacting particles with radius R is the Hertz force [24, 27]

defined as:
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Fn =
2
3

knR1/2x3/2
i j , (2)

where the normal deformation (1/2 the overlap between the spheres) between the neighboring

grains is xi j =
1
2 [2R � |xi � x j|], xi, j are the position vectors, and kn is the normal spring constant.

The latter is defined in terms of the corresponding material properties. The normal elastic constant

is

kn = 4Gg/(1 � ⌫g), (3)

where Gg is the shear modulus, and ⌫g is the Poisson’s ratio of the material from which the grains

are made.

The tangential Mindlin force between neighboring grains in contact is [36]:

�Ft = kt(Rxi j)1/2�s, (4)

where

kt = 8Gg/(2 � ⌫g), (5)

is the tangential spring constant, and the variable s is defined such that the relative shear displace-

ment between the two grain centers is 2s. Finally, Coulomb friction with interparticle friction

coe�cient µ imposes

Ft  µFn, (6)

at every contact.

The normal and tangential components of the damping force at the contact point between two

particles have been calculated by [6] based on theory by [26] and linear viscoelastic theory by

[27]. The dissipative force in the normal direction is:

FN
dis = ⇠knR1/2x1/2

i j ẋi j, (7)

where ⇠ is the damping parameter related to the elastic and viscoelastic constant of the material

from which the particles are made. From [27], we find:

⇠ =
1
2

(3⌘2 � ⌘1)2

(3⌘2 + 2⌘1)

h (1 + ⌫g)(1 � 2⌫g)
2Gg

i
, (8)

where ⌘1 and ⌘2 are the viscous constants of the material of the particles (see Eq. (23) in [6]). The

damping parameter ⇠ has dimension of time. The tangential component of the dissipative force is

analogous to the normal component [6]:

FT
dis = ⇠ktR1/2x1/2

i j ṡ. (9)
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We emphasize that the damping mechanism outlined by Eqs. (7 - 9) is governed by the prop-

erties of the materials that makes up the particles. However, this is not the only mechanism for

dissipation that may contribute to attenuation in granular materials. For instance, when particles

are coated with a viscous fluid, like oil, the dissipation is mainly due to the ’squirt flow’ in liquid

bridges at the particle contacts [43]. Given the fact that we consider infinitesimal perturbations this

mechanism is accounted for in an identical manner as that outlined for viscoelastic deformation of

the solid. The result is a variation of the above equations where the dissipative forces are indepen-

dent of the static deformation at the contact, and are linearly dependent on the relative velocity.

For example, set kN,T R(1/2)x(1/2)
(i j) = C, in Eqs. (7) and (9), where C is a constant.

It sould be mentioned that it was shown in [9] that while the above Hertz model

qualitatively reproduce the specific stress-dependent viscous damping of granular matter,

(1/Q) P(1/3), in terms of the Q-factor, yet, the Herzt model does not capture quantitatively

the data due to the grain roughness, which is not captured by the Hertz force law.

Furthermore, frictional dissipation via the interparticle coe�cient of friction µ may have

implications for nonlinear e↵ects arising from larger perturbations. However, we work in the

linear response regime. The strain perturbations are infinitesimally small and they do not

produce sliding at the contacts between the particles. Under this approximation, frictional

dissipation will not a↵ect the results. However, it will play a role as nonlinear e↵ects and

plastic arrangements arise for larger strain perturbations.

We are interested in the linear response of the granular system to infinitesimal perturbations.

Therefore we consider the linearized forms of the above equations, ie, we use the Hertz-Mindlin

force law linearized about the static value of the normal compression of contacts. The resulting

elastic sti↵ness is the slope of the force law evaluated at xi j (eg. Eqs. (7) and (9)):

kN(xi j) = knR1/2x1/2
i j , (10)

and

kT (xi j) = ktR1/2x1/2
i j . (11)

For typical hard particles made of steel, glass or sand, the Poisson’s ratio is small. For instance,

for sand grains we have ⌫g = 0.2. Thus kn ' 4Gg and also kt ' 4Gg. Therefore, this leads to kn ' kt

and consequently to

kN(xi j) ' kT (xi j). (12)
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B. Theory of normal modes

In a typical experiment or simulation, the grains are settled in a cup that moves sinusoidally

with magnitude W, taken in the z�direction. We denote W = W ẑ as the uniaxial displacement of

the cup. In the analogous physical experiments [20], W is less than 1µm, at least three orders of

magnitude smaller than R. This assures that the external displacement is smaller than the static

compression at the grain contacts. Therefore, we take all ui to be infinitesimal, and utilize the

linear equation of motion for the i-th particle with mass m to describe the system dynamics. The

coupled equations of motion for the i�th particle in a system of N particles is written as (see [43]

and [21] for details):

Hi j(!)uj = Ki!W, i, j = 1 : 6N. (13)

The dynamical matrix Hi j(!) in the frequency domain can be written as,

Hi j(!) = �mi j!
2 � i!Bi j + Ki j. (14)

Here the mass matrix M has elements mi j = m�i j, with I the identity matrix if the particles interact

via central forces only (frictionless), and it contains the moment of inertia for rotating particles

interacting via tangential forces. Each term in Hi j accounts for the inertial term, the dissipative

matrix B, and elastic matrix K, defined at the contact between particles i and j, respectively. The

elements of the elastic matrix Ki j are

Ki j = kN(xi j)d̂i jd̂i j + kT (xi j)[I � d̂i jd̂i j], (15)

where d̂i j denotes the direction of the normal displacement along the contact point and we use the

dyadic notation. The damping matrix Bi j is

Bi j = �
N(xi j)d̂i jd̂i j + �

T (xi j)[I � d̂i jd̂i j]. (16)

If the particles, i and j, are not in contact (|x j � xi| > 2R), we set both Ki j = 0 Bi j = 0. The vector

{uj} accounts for the set of 3N particle displacements and 3N particle rotations, and Kiw is the

generalized spring constant connecting a particle to the walls of the cup which moves oscillatory

in the z direction with amplitude W.

Inverting the matrix H we obtain the e↵ective mass as has been shown in our previous work

[43]:

M̃(!) = m[H�1(!)]i jK jw. (17)
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This equation expresses the relation between the e↵ective mass and the normal mode spectrum.

The peaks observed in the e↵ective mass (Fig. 2), M̃(!), are due to the set of normal modes, en
j ,

that are a solution to Eq. (13) when there is no forcing by the cup, W = 0, i.e.,

Hi j(!n)en
j = 0. (18)

Thus, the normal modes, en
j , are those eigenvectors of H for which the corresponding eigenvalue

is zero, and they occur at specific complex-valued frequencies, !n.

IV. EIGENVALUE TRAJECTORIES AS A FUNCTION OF DAMPING

While previous theoretical studies have considered the undamped modes of frictionless systems

[46, 47], the interpretation of the e↵ective mass data from experiments or sonic logging data

necessitates a formalism that considers damping and rotational modes that are indigenous in to real

granular matter. Our formalism thus generalizes previous results valid for frictionless undamped

systems to more realistic granular materials consisting of dissipative interactions with tangential

forces.

Equation (17) implies that !n is the resonance frequency when H(!) has at least one zero

eigenvalue or the determinant of H(!) is equal to zero. When ⇠ > 0, the resonance frequency is

a complex number and the imaginary part is relevant to the attenuative properties of the granular

system. Here, we study the e↵ect of interparticle damping, ⇠, on the resonant modes !n.

We are interested in the complete set {en
j} of complex valued normal modes that satisfy Eq.

(18). For these modes, we can rewrite Eq. (18) in the frequency domain as (we follow [21] and

utilize some results from [10]):

⇣
�I!2

n � i!nB̃ + K̃
⌘

q = 0. (19)

Here we have defined: q ⌘ M�1/2e, B̃ ⌘ M�1/2BM�1/2 and K̃ ⌘ M�1/2KM�1/2, provided that the

M matrix is positive definite, we can always find M�1/2.

In previous work [21] we have argued that B̃ and K̃ are proportional and commute. Indeed, un-

der the approximation Eq. (12) we find that both damping constants, normal �N(xi j) and tangential

�T (xi j), are proportional to the respective elastic constants in the elastic counterparts kN(xi j) and

kT (xi j), as seen from Eqs. (7) and (9). Therefore,

�N(xi j) = ⇠kN(xi j), (20)
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and

�T (xi j) = ⇠kT (xi j). (21)

We find:

Bi j ' ⇠Ki j. (22)

Equation (22) indicates that the matrices are approximately proportional and therefore commute

BK ' KB. This result will be exploited next in the characterization of the normal modes [17].

An important implication of Eq. (22) is the set {q} are the complete eigenvectors for both K and

B. The normal modes in the damped system are exactly the same as in the undamped case except

that they now have complex-valued frequencies, due to the attenuation. Here, we study the e↵ect

of the commuting approximation on the behavior of the normal mode frequencies as ⇠ is varied.

Let !2
n0 > 0 be the eigenvalues of K̃ with qn the corresponding eigenvectors. Thus, in the

absence of attenuation B̃ = 0, ±!n0 is the undamped frequency of oscillation of this mode. If the

matrices B̃ and K̃ exactly commute, then each mode exactly decouples and we can write:

h
� !2

n � i!n⇠!
2
n0 + !

2
n0

i
qn = 0, (23)

which is a quadratic equation in !n with roots:

!n = �i
⇠!2

n0

2
± !n0

s

1 �
✓⇠!n0

2

◆2
. (24)

From this result, it is clear that the modes follow circular trajectories in the complex plane with a

radius !n0. Equation (24) indicates that the position of the normal mode in the complex plane is a

function of ⇠ as long as the damping is smaller than a critical damping given by

⇠c =
2
!n0
. (25)

For large enough damping ⇠ > ⇠c, each normal mode becomes overdamped, and the corresponding

frequencies are purely imaginary valued [3, 22]. For ⇠ < ⇠c, the modal frequencies are damped

oscillators with

|!n(⇠)| = !n0. (26)

That is, the trajectories of the modes in the plane
⇣
Re[!n(⇠)], Im[!n(⇠)]

⌘
are exactly circular as a

function of ⇠. For a fix ⇠ we find the following. According to Eq. (24), the plot of Im[!n] versus

9



Re[!n] would give a circular shape as long as ⇠ < ⇠c, following the equation:

Re[!n]2 +
⇣
Im[!n] +

1
⇠

⌘2
=

1
⇠2 . (27)

That is, the shape of the plot is a circle centered at
⇣
Re[!n], Im[!n]

⌘
= (0,�1/⇠) and with radius

1/⇠. If we take the low dissipation limit of Eq. (24), i.e. ⇠ ! 0 and expand the square root term,

we see that the normal modes correspond to the purely elastic system !n0 plus an imaginary part,

proportional to the damping parameter:

!n ' !n0 � i
⇠!2

n0

2
+ O(⇠2). (28)

In the same limit, we observe that the real and imaginary parts of the normal modes follow a

parabola in the complex plane for a given small fixed ⇠:

Im[!n] ' �i
⇠

2
Re[!n]2 + O(⇠2). (29)

It is important to note that Eq. (25) is neither an exact result of the system, nor the result

of a trivial dimensional analysis. Equation (25) is not an exact result from Eq. (19) since

it involves a series of approximations which are not valid in general. Eq. (25) can only be

derived from Eq. (19) when we assume that the damping matrix and the elastic matrix are

proportional to each other as stated in Eq. (22). In turn, this approximation is only valid in

the limit of small particle Poisson ratio ⌫g ⌧ 1. That is, assuming that the Poisson ratio of

the particles is negligible then Eq. (12) is valid and then the matrices are proportional, from

where we can derive Eq. (23) from Eq. (19), and then the scaling of Eq. (25) follows.

Then, Eq. (25) is only an approximation, since the Poisson ratio is not exactly zero, even

though it is small ⌫g = 0.2 compared to one. Thus, the deviations in Fig. 7 from the scaling

law arise from the fact that Eq. (25) is not exact, since the Poisson ratio of the particles is not

exactly zero, but a small number.

Furthermore, we dimensionalize Eq. (23) and show that Eq. (25) remains a scaling law of

the system. Eq. (23) is normalized by the characteristic time given by the constants defining

the force-law. That is, t0 = R
p
⇢/G. Then, normalizing the variables in Eq. (23) by this

characteristic time: ⇠0 = ⇠/t0 and !0n0 = !n0t0, then Eq (25) transforms into ⇠0c = 2/!0n0. Thus

the scaling is still valid in this normalized form.
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V. DEM SIMULATIONS

The primary motivation of this work is to test the predictions of Eqs. (25), (27) and (29) using

the DEM. The discrete simulations consist of a monodisperse granular packing where the grains

interact via the contact force laws defined in the previous sections. For all calculations the particles

are homogeneous with radius R = 1mm, particle density ⇢ = 103 kg m�3, shear modulus Gg = 161

GPa and Poisson ratio vg = 0.2. We prepare a granular packing and impose gravity g = 9.8m/s2 in

the direction perpendicular to the bottom wall. We impose with periodic boundary conditions in

both the direction perpendicular and parallel to the surface of the page. Damping at the grain-grain

contact is governed by Eqs. (7) and (9) with ⇠ the damping parameter. We measure the damping

parameter in ms and the frequencies in kHz. The packings are composed of N particles and we

vary N from small systems of 14 particles up to N = 400 to test di↵erent aspects of the theory.

The small system of 14 particles is used only to test the calculation of the normal modes. Figure

1 shows a typical configuration of the packing under gravity. The preparation protocols used to

generate packings are explained in [7, 8, 28–31, 39], where it is demonstrated that our approach

generates stable jammed-packings.

VI. TEST OF THE THEORY WITH DEM SIMULATIONS

First we validate our DEM framework by comparing the dynamical e↵ective mass to the an-

alytical prediction of Eq. (17). The latter relates the e↵ective mass of a packing, a dynamical

measure, to the inverse of the dynamical matrix Hi j, which is given by the static packing structure.

The test of equation 17 involves two steps: First we perform a direct dynamical measure of the

e↵ective mass by shaking a packing generated by computer simulations at a given frequency. For

a given shaking frequency and amplitude A = 1µm, which is very small compared to the radii and

overlap between particles, we record the equilibrium positions in the packing and shake the bottom

wall for a time long enough to measure the force against the bottom wall. According to the time

series of the force, we can compute [41] the e↵ective mass corresponding to the frequency. For

this calculation we consider a fixed value of damping parameter ⇠. Thus, we measure the force and

acceleration of the cup and extract the e↵ective mass following Eq. (1). We hold the amplitude

constant and vary the frequency therefore, the acceleration increases with the frequency.

The real and imaginary part of the DEM simulation are plotted as a function of ! in Fig. 2.
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The calculated e↵ective mass exhibits dominant resonance features at similar frequencies as that

observed experimentally [20, 21, 41, 43]. Next, we calculate H�1(!) by using the static positions

of the grains before the shaking in order to employ Eq. (17). Figure 2 shows that the DEM and

analytical result (Eq. 17) are in agreement. We think it is important to point out that the analytical

prediction (Eq. (17)) accounts for the complex behavior of dissipative granular media. Moreover,

we demonstrate that the agreement is consistently good over an order of magnitude in damping

parameter.

VII. METHOD TO EVALUATE THE TRAJECTORIES OF THE NORMAL MODES IN THE

FREQUENCY SPACE

Given the good agreement demonstrated in Figure 2, we calculate the normal modes of the

system to test equations (25), (27) and (29.) By using the static positions of the grains obtained

from the packings, we can solve Eq. (18) to extract the normal modes by following the method

derived by [32]. In the time domain, Eqs. (13) and (18) take the form:

Mẍ + Bẋ +Kx = 0. (30)

If we utilize the state vector y = [x1, ·, xN , ẋ1, ·, ẋN]T , Eq. (30) can be recast as an ordinary

eigenvalue-eigenvector problem:

ẏ = Ay, (31)

where

A =

0
BBBBBBB@

0 I

�M�1K �⇠M�1B

1
CCCCCCCA . (32)

Here, the normal modes frequencies are

!n = i�n, (33)

where �n is the n-th eigenvalue of matrix A.

VIII. EFFECT OF DAMPING ON THE NORMAL MODES

Since the results of our DEM simulations are consistent with theory and experiment, we pro-

ceed to study the e↵ect of the damping parameter, ⇠, on the normal mode frequencies. In particular
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we investigate the trajectories of the normal modes in the complex plane as we change the damp-

ing from undamped to critically damped and beyond. We first calculate the normal modes of the

undamped system. For any single trajectory, we calculate the starting point at the undamped fre-

quency !n0. To obtain the trajectory of this particular normal mode we set an objective function

y = min[|�1(⇠ + �⇠) � �1(⇠)|2, · · · , |�n(⇠ + �⇠) � �n(⇠)|2, where �i are given by Eq. (33). Then, we

increase ⇠ by a small amount to ⇠ + �⇠. Using the ’Eig’ function in Matlab, we calculate y for

a given damping. Next we employ the multidimensional unconstrained nonlinear minimization

method (’Fminsearch’ function in Matlab) with a starting point !n(⇠) to determine !n(⇠ + �⇠)

corresponding to y = 0. It is important to note that using the starting point !n(⇠), implies that the

solution will be in the vicinity of !n(⇠). This is the case when �⇠ is small enough, which allows

us to determine the exact trajectory of the normal mode in the complex plane as ⇠ is varied.

We first test the method of Eq. (32) to calculate the normal modes using a small system of 14

particles, for which the modes can be easily calculated. We compare the modes obtained from

Eq. (32) with a direct numerical calculation of the eigenvalues of the dynamical matrix Hi j, ie,

we calculate all the !n which satisfy det(H) = 0. We use a method derived from expanding

the expression for the determinant of H. The desired roots of the resulting polynomial in ! are

equal to the eigenvalues of a simple matrix formed from the coe�cients of that polynomial. The

eigenvalues are calculated with the ’Eig’ function in Matlab. A potential problem of this technique

appears for large number of particles. Thus, we use this technique to validate the use of Eq. (33)

in a small system of 14 particles, and later we will use Eq. (33) to calculate the normal modes for

larger systems of 400 particles.

For instance, consider the results of 14 balls interacting via central forces. The number of

normal modes is 6 ⇥ 14 and therefore the order of the polynomial to calculate the roots is 84.

In our calculations, the di↵erent normal mode frequencies, !n, vary by a factor of 10 from the

highest to lowest. If one were to evaluate the polynomial directly, the term !84 would vary by a

factor 1084. This is well beyond the accuracy with which a computer stores numbers. So there

may be a problem with the accuracy of the results obtained by a direct numerical evaluation of the

normal modes via the eigenvalues of Hi j for large numbers of particles.

Figure 3 shows a comparison of both methods to calculate the normal modes as a function of

⇠ for a system of 14 particles. The system is small enough that we can plot the trajectories of all

the 84 normal modes. We see that for this system, Eq. (33) gives the same result as the direct

calculation of normal modes via eigenvectors of the dynamical matrix H (Eq. 18). We conclude
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that the alternative method of [32], Eq. (33), is correct and then we proceed to use it for large

system sizes.

Figure 4a shows the results of the trajectories of the normal modes as a function of ⇠ for a

system of N = 400 particles. The normal modes are calculated via Eq. (33). We start with a

specific undamped mode !n0 and then follow its trajectory as a function of ⇠ in the
⇣
Re[!n(⇠)],

Im[!n(⇠)]
⌘
-plane. We follow the trajectories of specific undamped modes by increasing the damp-

ing parameter ⇠ in small steps and using the method explained above. Since the system is large,

we do not trace the trajectories of all 2400 modes. To indicate the general shape of the mode

trajectories we trace that for three modes characterized by undamped frequencies !n0 = 6.5, 10.2

and 15kHz, as indicated by the solid red and black lines in the figure, respectively. In addition, we

also plot all the modes for four values of ⇠ as indicated in the figure.

In general, the theoretical predictions Eqs. (25), (27) and (29) are in good agreement with the

results in Figure 4. This plot shows that the modes follow a circular trajectory as we change ⇠ (the

Menorah-shape traced in contiguous black and red lines) as predicted by Eq. (27). When ⇠ � ⇠c
the modes lie on the imaginary axis in agreement with the prediction of Eq. (25). For a constant ⇠

we find the parabolic shape predicted by Eq. (29). The latter prediction is valid for small ⇠ (light

blue curve, ⇠ = 0.08). For greater ⇠ we find the circular plots predicted by Eq. (27) (see blue and

purple curves for ⇠ =0.4 and 0.8, respectively). The center of the circles lie on the imaginary axis

and they are characterized by a radius ' ⇠�1.

To further test the prediction of circular trajectories, we plot the evolution of the absolute value

of selected modes for increasing values of ⇠ (Figure 4b). We find that the absolute value of the

mode is constant, corresponding to the circular trajectory, Eq. (26) for ⇠ < ⇠c(!n0), until the critical

value of damping unique to the individual modes. When ⇠ approaches ⇠c, the absolute value of the

normal mode frequency is no longer constant and the mode becomes overdamped, decreasing or

increasing as a function of ⇠ along the imaginary axis.

Figure 5 shows the normal modes for a system with a fixed value of ⇠ = 0.06. In this case,

the relative residue of each mode is indicated by the size of the data point. The residue is loosely

indicative of the contribution of the mode to the e↵ective mass [21, 43]; large residues correspond

to modes with large damping contribution to the e↵ective mass. The modes exhibit a parabolic

dependence on Re[!n] consistent with Eq. (29), which is valid for this system characterized by

small ⇠. However, we also observe that several modes with large residue do not lie on the parabola.

As previously noted, the large residue indicates that these outliers make an important contribution
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to the e↵ective mass.

Figure 6 shows the imaginary part of the e↵ective mass, M2, calculated via DEM, for di↵erent

values of the damping parameter ⇠. As ⇠ increases the large amplitude modes spread out over

a larger frequency band, and modes characterized by a small amplitude, disappear. That is, for

small ⇠ we find a large number of peaks in the e↵ective mass. As ⇠ increases, more and more

peaks disappear; In general, the greater the amplitude the more di�cult it is to dampen a mode.

We also find a special low frequency mode smaller than 1 kHz with a very large resonance peak

indicating that this frequency contributes a lot to the attenuation of the medium. When the damp-

ing is increased from ⇠ = 8⇥10�4 to ⇠ = 8⇥10�3, the peak almost disappears. Thus, even at small

⇠ modes that make important contributions to dissipation can be overdamped. The strong attenu-

ation of the first (low-frequency) peak is observed when increasing the damping parameter,

compared to the high-frequency peaks. This e↵ect is a consequence of Eq. (25), which states

that the critical damping is inverse proportional to the frequency of the undamped mode.

Thus, when the damping parameter increases ⇠, then the attenuation of the low frequency

modes appears first.

Finally, we test the scaling of the critical damping ⇠c as a function of the frequency of the

undamped mode !n0, as suggested by Eq. (25). Figure 7 shows good agreement between the

numerical estimation of ⇠c(!n0) and !n0, confirming the inverse scaling law of Eq. (25). This

scaling law indicates that lower frequency modes are more resistant to becoming overdamped.

Again, some high frequency modes do not obey the scaling behavior Eq. (25). These modes have

a small ⇠c and therefore can be easily dampened. This insight is useful for optimizing granular

media to attenuate structure borne sound.

IX. CONCLUSIONS

In summary, we explored the e↵ect of interparticle damping on the normal modes in a granular

medium. We find good agreement between the DEM simulations and the analytical predictions.

As the interparticle damping is varied, the normal modes trajectories in the complex plane are

roughly circular. This is a consequence of commutative properties of the damping and elastic

matrices that govern the interparticle dynamics. It is plausible that the same commuting properties

are realized in experimental systems. For the overwhelming majority of the normal modes, the

corresponding critical damping obeys the inverse scaling law ⇠c / !�1
n0 .
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A surprising observation is that there are some very special normal modes that do not obey

this scaling law. The corresponding frequencies are easy to identify in trajectory plots and are

characterized by a small critical damping parameter. These outliers make large contributions to

dissipation of acoustic energy in the granular medium. Thus, this observation may have potential

for application to dampen the tool signal in downhole sonic logging.
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FIG. 1. Schematic view of the simulation box and particles. The simulations consider periodic

boundary conditions. The walls are made of fixed particles of the same features of the particles in

the bulk. The figure shows a system prepared after the relaxation under gravity has finished. The

walls are shaken during the dynamical calculation of the e↵ective mass with an acceleration a(!)

and the force F(!) is measured at the bottom of the cup to obtain the e↵ective mass via Eq. (1).

FIG. 2.Comparison of theoretical estimation of the e↵ective mass via Eq. (17) and the direct

dynamical measurements using the numerically generated packings with DEM by shaking the

packing at a given frequency !. DEM results are shown by the symbols for two damping param-

eters ⇠ = 0.08ms and ⇠ = 0.8ms and separately for the real and imaginary part of the e↵ective

mass M̃(!), as indicated. The DEM shaking simulation results are obtained from the frequency

sweep with amplitude A = 1µm. The theory lines correspond to the solution of the right hand side

of Eq. (17): m[H�1(!)]i jK j!, where H�1 is calculated as discussed in the text. We observe a very

good agreement between theory and DEM simulations validating the theoretical results.

FIG. 3. Trajectories of all the 84 resonance frequencies for a small packing of 14 particles. This

plot shows the comparison between the trajectories of !n(⇠) calculated by the Meirovitch method

of Eq. (32) (circles) with the direct determination of the determinant of the dynamical matrix H

(line trajectories). We confirm that both methods gives the same result for the normal frequencies.

This result indicates that Eq. (32) is an e�cient way to calculate the normal modes, and it is used

then in the calculations for larger system sizes in the rest of the paper. The trajectories follow the

Menorah-like shapes which are further investigated in Fig. 4 for a larger system.

FIG. 4. (a) Menorah-like circular trajectories of the normal modes in the complex plane ob-

tained for di↵erent modes with increasing values of ⇠ for a system of N = 400 particles. This result

confirms the prediction of circular trajectories (red and black curves for three selected modes) as

a function of ⇠ Eq. (26), for damping below the critical value ⇠. The modes then become over-

damped when ⇠ > ⇠c and the frequency of the normal modes become purely imaginary, as shown

in the figure. The normal modes are calculated via the solution of Eq. (32). We also plot the

modes for fixed ⇠ as indicated. For small ⇠ the plot follows a parabola (green curve) as predicted

by Eq. (29). For large damping (blue and purple plots) the shape is a circle following Eq. (27).

(b) Mode amplitude for increasing values of ⇠ shown for a few selected modes obtained from (a).

The constant value as a function of ⇠ corresponds to the circular trajectories in the complex plane

which end at ⇠c where the mode becomes imaginary and decreases or increases as a function of ⇠.

FIG. 5. Distribution of normal modes in the complex plane for a given fixed small damping
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⇠ = 0.06ms for N = 400. The size of the symbol is proportional to the resonance mode residue.

The shape of the curve confirms the parabolic prediction of Eq. (29) in average valid when the

damping is small. However, we also find that some modes with large residues deviate considerably

from the parabolic approximation. These modes are characterized by large residues and therefore

contribute with large damping to the e↵ective mass. They can be used to damp unwanted modes

in the system.

FIG. 6. Imaginary e↵ective mass calculated via the direct dynamical shaking of the medium

for increasing values of ⇠ for N = 400. The plot shows the changes to M2(!) with ⇠, as indicated.

Normal modes with important contribution disapears with the increase of damping. When the

damping is small, there are large number of peaks in the e↵ective mass. With increasing damping

the peaks gradually disappear. We find that the larger the peaks the more di�cult to be damped. We

also find a special low frequency mode less than 1 kHz with a very large resonance peak indicating

that this frequency contributes much to the attenuation of the medium. When the damping is

increased from ⇠ = 8 ⇥ 10�4 to ⇠ = 8 ⇥ 10�3, the peak almost disapears.

FIG. 7. Critical damping ⇠c as function of the normal mode frequency !n0 of the undamped

mode for N = 400. The theoretical prediction ⇠c / !�1
n0 in Eq. (25) is in satisfactory agreement

with the numerical results. However, we still find some modes that deviates from the inverse

scaling law. These modes are indeed very easy to damp since they have very low ⇠c, which may

lead to applications in damping acoustic noise in geomechanical tools.

21



FIG. 1:

22





















FIG. 2:

23



 



 

FIG. 3:

24



 


 















 







FIG. 4:

25











FIG. 5:

26


















FIG. 6:

27





 

 





FIG. 7:

28



Structural Properties of Dense Hard Sphere Packings
Boris A. Klumov,*,†,‡,⊥ Yuliang Jin,§ and Hernań A. Makse§
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ABSTRACT: We numerically study structural properties of
mechanically stable packings of hard spheres (HS), in a wide
range of packing fractions 0.53 ≤ ϕ ≤ 0.72. Detailed structural
information is obtained from the analysis of orientational order
parameters, which clearly reveals a disorder−order phase
transition at the random close packing (RCP) density, ϕc ≃
0.64. Above ϕc, the crystalline nuclei form 3D-like clusters,
which upon further desification transform into alternating
planar-like layers. We also find that particles with icosahedral
symmetry survive only in a narrow density range in the vicinity
of the RCP transition.

■ INTRODUCTION
As a fundamental model in condensed matter physics and
material science, packings of hard spheres (HS) reproduce many
essential structural properties of glassy and granular media.1−3

Structural changes of the HS system have been observed when a
packing is densified above the density of random close packing
(RCP4), ϕc ≃ 0.64 (see, e.g., refs 5 and 6). A new order
parameter, which is based on the cumulative distribution of the
rotational invariant w6, was proposed in ref 5 to identify these
structural changes. Random arrangement is transferred to partial
crystallization across RCP, and two lattice types, the face
centered cubic (fcc) and the hexagonal close-packed (hcp), are
observed in the crystalline clusters. However, more detailed
information has not been obtained due to insufficient system
size. In this study, we aim to explore more detailed structural
changes of the transition at RCP in comparison with previous
studies,5,6 based on larger scale simulations.
We numerically generate a large set of HS packings composed

of N = 64 × 103 monodispersed spheres located in the cubic box
with periodic boundary conditions, using the modified
Lubachevsky−Stillinger (LS) algorithm.7

■ RESULTS
To examine the structural properties of jammed spheres, we first
study their spatial correlations. Figure 1 shows the radial
distribution function g(r) of hard spheres for several different
packing fractions in the range [0.60, 0.68]. The cumulative
function Z(r) ≡ 4πρ∫ 0

r r′2g(r′) dr′, which is the mean number of
particles inside a sphere of radius r, is also plotted in Figure 1.
When ϕ ≤ ϕc, addition to the strong peaks at the contact
distances r = 1, 2, ... (we set unit diameter), a weak secondary
peak at r = (3)1/2 is visible. This peak corresponds to a contact
angle θ = 2π/3 but not necessarily a lattice structure.8 Above ϕc,

additional peaks appear at (2)1/2, (8/3)1/2, and (11/3)1/2, which
are typical distances in the fcc and hcp lattices. The observation
indicates the onset of crystallization when the packings are
densified above ϕc.
More detailed structural information can be obtained from the

well-known bond order parameter method,9 which is widely used
to study the structural properties of condensed matter,9−11 hard
spheres,12−19 Lennard-Jones systems,20−24 complex plas-
mas,25−34 colloidal and patchy systems,35−37 granular media,38

metallic glasses,39 repulsive shoulder systems,40 etc. Each particle

Received: May 8, 2014
Revised: August 3, 2014

Figure 1. Radial distribution function g(r) of hard spheres (solid lines)
and its cumulative function Z(r) (dashed lines) at different packing
fractions ϕ. The values of ϕ, and the positions of peaks, are indicated on
the plot.
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i is connected via vectors (bonds) with its Nnn(i) nearest
neighbors (NN), and the rotational invariants (RIs) of rank l of
second ql(i) and third wl(i) orders are calculated as

∑π= + | |
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where qlm(i) = Nnn(i)
−1∑j=1

Nnn(i) Ylm(rij), Ylm are the spherical
harmonics, and rij = ri − rj are vectors connecting centers of

particles i and j. In eq 2, ⎡⎣ ⎤⎦l l lm m m1 2 3
are the Wigner 3j-

symbols, and the summations performed over all the indexesmi =
−l, ..., l satisfying the conditionm1 +m2 +m3 = 0. As shown in the
pioneer paper,9 the bond order parameters ql and wl can be used
as measures, to characterize the local orientational order and the
phase state of considered systems. Because each lattice type has a
unique set of bond order parameters, the method of RIs can also
be used to identify lattice structures in mixed systems. The values
of ql and wl for a few common lattice types (including the liquid-
like HS state) are presented in Table 1. Some of the values were

reported previously (see, e.g., refs 9 and 41−44). From eq 2, it is
easy to see that wl ∝ ql

3, and therefore, we expect wl’s to be more
sensitive measures compared to ql’s.
In three dimensions (3D), the densest possible packings of

identical hard spheres are the fcc and hcp lattices (with the
densest packing fraction (pf) ϕfcc = ϕhcp = (2)1/2π/6 ≃ 0.74).
Dense HS systems may also include particles having the
icosahedral (ico) type of symmetry. Icosahedral, fcc, and hcp
spheres have 12 nearest neighbors (the spheres located in the
first coordination shell).
To identify lattice-like particles, we calculate the bond order

parameters ql and wl (l = 4, 6) for each particle with a fixed
number of the nearest neighbors Nnn = 12.45 A particle is called
fcc-like (hcp-like, ico-like) if its coordinates in the four-
dimensional space (q4, q6, w4, w6) are sufficiently close to those
of the perfect fcc (hcp, ico) lattice type. An amorphous (liquid-
like) particle is identified if its order parameters are sufficiently
small, for example, q6

liq≃Nnn
−1/2≃ 0.29≪ q6

fcc/hcp/ico. Note that, by
varying the NN number and rank l of parameters wl and ql, in
principle, it is possible to find any lattice type. For instance, the
first and second (next nearest neighbors) shells of body centered
cubic (bcc) lattices correspond to Nnn = 8 and 14, respectively.
To quantify the local orientational order, it is convenient to use

the probability distribution functions (PDFs) P(ql) and P(wl).

Figure 2 shows how the PDFs vary at different l (l = 4, 6) and ϕ
(covering both amorphous and solid-like states). Densification of

the HS, as clearly seen in Figure 2, results in appearance of the
crystalline fcc-like and hcp-like spheres in the vicinity of the RCP.
Corresponding cumulative distributions Cq

l and Cw
l (shown by

dashed lines of the same color) are also plotted in Figure 2. For
instance, the cumulative function Cq

l associated with the P(ql) is
defined as

∫≡
−∞

C x P q q( ) ( ) dq
l

x

l l (3)

Table 1. BondOrder Parameters ql and wl (l = 4, 6) for Several
Typical Lattices and Liquid-Like HS RandomPackings (rp) at
ϕ = 0.55, Calculated via the Fixed Number of Nearest
Neighbors (NN)

lattice type q4 q6 w4 w6

hcp (12 NN) 0.097 0.485 0.134 −0.012
fcc (12 NN) 0.19 0.575 −0.159 −0.013
ico (12 NN) 1.4 × 10−4 0.663 −0.159 −0.169
bcc (8 NN) 0.5 0.628 −0.159 0.013
bcc (14 NN) 0.036 0.51 0.159 0.013
rp at ϕ = 0.55
(12 NN)

≈0.16 ≈0.34 ≈−0.019 ≈−0.032

Figure 2. Probability distribution functions (PDFs) of the rotational
invariants qi (a and c) and wi (b and d) at various packing fractions ϕ.
Values of the bond order parameters for ideal lattice types (fcc and hcp)
are also indicated. Cumulative distributions (normalized to unity) of
these PDFs are shown by dashed lines, which are much less noisy than
PDFs. By using these distributions, it is easy to estimate the abundance
of crystalline and liquid-like particles. Insets (from top to bottom) show
spatial distributions of N = 64 × 103 HS in the cubic box at different
packing fractions of ϕ ≃ 0.65, 0.66, and 0.68, respectively. Hard spheres
are color-coded by their q6 values, in order to visualize liquid-like (blue
color) and crystalline hcp-like (green color) and fcc-like (red color)
structures.
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Evidently, Cq
l (x) is the abundance of particles, having values of ql

< x and Cq
l (∞) = 1. Figure 3 shows two-dimensional PDFs

probability distributions on the plane q4−q6in the vicinity of
the RCP atϕ≃ 0.64 andϕ≃ 0.65. Atϕ≃ 0.64, structurally HS is
amorphous, while atϕ≃ 0.65 the formation of crystalline fcc-like
spheres is clearly seen. The result suggests a disordered−ordered
transition in the density range [0.64, 0.65], consistent with
previous studies.5,6,16

The global order parameters, i.e., the cumulantW6
c (defined as

Cw
l (Wl

c) = 1/2) and the mean value of q6 (defined from the global
averaging ⟨q6⟩ = (1/N)∑i=1

N q6(i)), are shown in Figure 4. No
significant finite size effects are observed between N = 104 and N
= 64 × 103 systems. For the purpose of detecting crystallization
onset, we findW6

c to be a more sensitive measure than ⟨q6⟩. This
is because (1) liquid-like and lattice-like spheres have quite
different values of w6 and (2) w6 is nearly the same for perfect fcc
and hcp lattices (see Table 1). Because of this reason, the
measure W6

c has been recently used to describe the melting and

freezing phase transitions of Lennard-Jones23,24 and Yukawa
systems.32−34 On the other side, the density dependence of ⟨q6⟩
also reveals fascinating properties. The relatively slow increase of
⟨q6⟩ atϕ≲ϕc can be attributed to single hcp-like particles,

5 while
at ϕ > ϕc the bond order parameter ⟨q6⟩ increases more rapidly
due to the emergence of crystalline clusters. Further densification
of the HS leads to strong fluctuations (“oscillations”) of the
global parameter ⟨q6⟩, which start at ϕ ≃ 0.68 and suggest
another transition.5,6 This oscillatory behavior is due to the fact
that the hcp and fcc crystalline structures are characterized by
quite different values of the bond order parameter q6 (see Table
1), and at a given ϕ, dense partially crystallized HS packings can
be realized with quite different abundances of hcp-like and fcc-
like spheres. Another important parameter characterizing the
local structure is the abundance Nico of spheres having
icosahedral-type (5-fold) symmetry (see Figure 4, inset). Here,
ico-like spheres are defined as spheres having q6 ≥ 0.61. The
density dependence of Nico shows that ico-like spheres can exist
only in a narrow range of pf, and its abundance maximizes at ϕc.
The above analysis provides detailed information about the

local and global orders. Next, we study the abundance of
crystalline particles and their spatial arrangement. We use the
standard friends-of-friends algorithm46 to find crystalline
clusters. Figure 5 presents the spatial distribution and the
shape of crystalline clusters composed of hcp- and fcc-like
spheres, at several different ϕ. When ϕ < 0.65 (Figure 5a,b), the
crystalline particles are mostly isolated; increase of packing
fraction ϕ leads to an appearance of several 3D (containing tens
of spheres, both hcp- and fcc-type) clusters (Figure 5c,d at ϕ ≈
0.66). Upon further densification, these 3D clusters transform
into 2D layers spanning system-wide (see Figure 5e,f at ϕ ≈
0.68).5

The abundances of hcp-like (nhcp) and fcc-like (nfcc) spheres
are shown in Figure 6 as functions of packing fraction ϕ. At ϕ ≤

Figure 3. Probability distributions on the order parameter plane of q4−
q6 in the vicinity of the RCP at ϕ = 0.64 (a) and ϕ = 0.65 (b). Loci of the
perfect fcc, hcp, and ico are also indicated on the plot. An fcc peak
appears at ϕ = 0.65. Note that the hcp lattice may have a large overlap
with the liquid-like structure in this plot.

Figure 4. Cumulant W6
c (blue and cyan circles) and ⟨q6⟩ (green and

orange circles) versus packing fraction ϕ. Blue and green circles
correspond to the HS system with N = 104 spheres; cyan and orange
circles correspond toN = 64 × 103 spheres. The minimum ofW6

c can be
used to locate the RCP transition, ϕc≃ 0.645. The explosive-like growth
of W6

c above ϕc is a clear indicator of the appearance of ordered,
crystalline-like (hcp-like and/or fcc-like) spheres. The growth of the
⟨q6⟩ value near ϕc is rather monotonous and relatively slow. The
possibility for the dense HS system to be packed via different abundance
of fcc-like and hcp-like particles is the key reason behind the fluctuation
of ⟨q6⟩ when ϕ ≳ 0.68. The inset shows the number of ico-like spheres
versus ϕ: ico-like spheres survive only in the narrow range of parameters
ϕ near the RCP transition.
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ϕc, the relatively slow increase of ntot = nhcp + nfcc is mainly due to

the emergence of randomly distributed single hcp-like spheres.

Around ϕ ≃ ϕc, the slopes of nhcp(ϕ) and nfcc(ϕ) increase

significantly. At ϕ≃ 0.66, the abundance of the fcc-like spheres is

equal to that of the hcp-like spheres (nfcc ≈ nhcp). Additionally,

the abundance of spheres having number of contacts Nc = 12 is

plotted in Figure 6, as one more sensitive indicator of the

crystallization of a dense HS. The relative cumulative spectrum of

cluster mass is plotted in the inset of Figure 6, showing that this

distribution becomes wider as the density increases.

■ DISCUSSION AND CONCLUSION
The above results illustrate a sharp first-order-like transition6 at
ϕc between disordered (frictional) packings and partially ordered
packings. Amorphous frictionless packings only exist at a single
density ϕc: below ϕc, the packings are unstable unless they are
frictional (and the frictional packings are disordered);6 above ϕc,
the packings are partially ordered. On the other hand, multiple
amorphous frictionless states have been found in other
simulations,47−50 which supports the mean-field theoretical
prediction that amorphous jammed packings should exist in the
interval (so-called J-line) ϕ ∈ [ϕth, ϕGCP].

1 We stress that this
apparent contrast is due to the presence of crystallization: If the
nucleation rate is slow enough, such as in polydisperse47 or large

Figure 5.Distributions of hcp and fcc clusters over the space at differentϕ values:ϕ≃ 0.65 (a, b),ϕ≃ 0.66 (c, d), andϕ≃ 0.68 (e, f). Particles are color-
coded by themass of the cluster (in the unit of themass of a single sphere). Atϕ≃ 0.65, single hcp-like spheres dominate. Atϕ≃ 0.65, three-dimensional
local clusters of both hcp- and fcc-like particles are observed. Further densification of HS results in a structural transition: the 3D local clusters transform
into global and planar layers (e, f).
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dimensional systems,48 then crystallization is suppressed and
dense amorphous packings can be obtained by slow
compressions; while in 3Dmonodisperse systems, the nucleation
process is so fast such that any slow compression would result in
partial crystallization. Combined with the mean-field prediction,
our results suggest two possible scenarios for 3D monodisperse
packings: (i) ϕc < ϕth, therefore, dense amorphous packings ϕ >
ϕth are hidden by crystallization; (ii) ϕth ≲ ϕc, however, the
difference between ϕth and ϕc is very small, such that the
amorphous packings in the range [ϕth, ϕc] are difficult to detect
on the basis of the present numerical accuracy. Further studies
are required to test these two scenarios.
To conclude, we have studied structural properties of dense

hard spheres in the vicinity of the Bernal limit. The spatial and
bound order parameters and the abundances of hcp-, fcc-, and
ico-like particles all indicate a sharp disorder−order phase
transition at ϕc. Finally, we find that at packing fraction ϕ ≃ 0.68
an additional structural transition occurs: the 3D-like shape of
solid-like crystalline clusters changes to a planar-like structure.
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A random packing of hard particles represents a fundamental model for granular matter. Despite
its importance, analytical modeling of random packings remains di�cult due to the existence of
strong correlations which preclude the development of a simple theory. Here, we take inspiration
from liquid theories for the n-particle angular correlation function to develop a formalism of random
packings of hard particles from the bottom-up. A progressive expansion into a shell of particles
converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations.
We apply the formalism to hard disks and predict the density of two-dimensional random close
packing (RCP), �rcp = 0.85±0.01, and random loose packing (RLP), �rlp = 0.67±0.01. Our theory
also predicts a phase diagram and angular correlation functions that are in good agreement with
experimental and numerical data.

I. INTRODUCTION

In recent years, many important practical applications
have been found for granular materials, which are com-
monly modeled by dense packings of hard spheres [1].
Sphere packing problems are equivalent to important
problems in number theory and error-correcting coding
[2], both of which are fundamental in computer science.
Despite its importance, analytical developments in gran-
ular matter have lagged behind in comparison with other
fields of condensed matter, like liquid theory. In the case
of random packings [3], analytical results are still di�-
cult to obtain. The theoretical di�culty arises due to (i)
the absence of a first principle derivation of the statisti-
cal ensemble of packings (such as Liouville’s theorem in
ordinary liquids) that would lead to a proper definition
of randomness [4], and (ii) the existence of correlations
between the particle positions determining the properties
of random packings.

In previous theories, these correlations have been ne-
glected or treated using simple approximations. For in-
stance, Gotoh and Finney [5] estimated the density of
RCP based only on correlations among the contact neigh-
bors. Another example is the ‘granocentric’ model [6],
which considers the correlations between the central par-
ticle and nearest Voronoi neighbors. Beyond local corre-
lations, the statistical treatment of Song et al. takes a
mean-field approximation of the long-range correlations
[7, 8]. Other mean-field approaches are developed based
on liquid theories [9] and replica theory (RT) of the glass
transition [10]. However, in low dimensions the e↵ects
of fluctuations are strong and mean-field approximations
are insu�cient. For example, in 2d, the coarse-grained
approximation used in Ref. [7] works poorly [11], and
therefore more sophisticated treatments of correlations
become necessary.

In this paper, we aim to establish a framework for
random packings that addresses the two problems stated
above: (i) we define an ensemble of equiprobable graphs
that satisfy the jamming conditions to represent the
statistics of all possible contact networks, and (ii) we

take into account pair and higher-order particle corre-
lations that are important to describe low-dimensional
systems. Inspired by the more advanced liquid theories,
our formulation is analogous to the Yvon-Born-Green
(YBG) hierarchy [12] augmented to consider the con-
tact network and local and global jamming conditions
for packings. We develop a systematic layer-expansion
within a Kirkwood-like superposition approximation [12]
to provide a phase diagram and predictions of the volume
fractions of jammed packings. The theoretical predic-
tions on volume fractions and pair distribution functions
agree well with experiments and computer simulations on
two-dimensional frictional packings. We also discuss the
relation between the present approach and glass theory
frameworks in search of unifications of random packings
and glasses [10, 13–15].
The present approach builds up on the Edwards mean-

field theory of packings developed by Song et al. [7], by
incorporating correlations between the particle positions.
Previous theory [7] utilizes a mean-field assumption of
uniformity of the particle density in the bulk as well as
the particles in contact. The present theory is a bottom-
up approach to take into account particle-particle corre-
lations which were neglected in [7] in a systematic way.
In the thermodynamic limit of infinite number of par-
ticles in the bulk and contacts, the theory recovers the
results of Song et al. [7], namely the exponential form
of the distribution of the excluded Voronoi volume which
is the basic result to predict the volume fraction of the
packing.
The paper is organized as follows: in Sec. II we develop

a general theoretical formalism. The formalism is applied
to 2d packings (Sec. III) which provides a phase diagram
(Sec. IV). The theoretical predictions are tested with
experiments and computer simulations in Sec. V. At the
end, we conclude our paper with discussions (Sec. VI).

II. GENERAL FORMALISM

Within the context of Edwards statistical ensemble of
packings [7, 8, 16–19], the volume associated to each par-



2

ticle plays the role of the Hamiltonian, since packings
tend to minimize the occupied volume rather than en-
ergy. The fundamental quantity to describe the packing
ensemble is the Voronoi volume surrounding each parti-
cle, which is defined as the volume of the Voronoi cell
whose interior consists of the points that are closer to
a given particle than to any other. The d-dimensional
Voronoi volume W

i

of particle i is an angular average of
a function of the “Voronoi radius” ` [7] (see Fig. 1a):
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(Fig. 1b).
According to Eq. (1), the ensemble average of the

Voronoi volume is:
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where h· · · i
s

is the average over direction ŝ, and h· · · i
i

is
the average over particle i. In the random ensemble of
homogeneous and isotropic packings, each particle as well
as each direction is equivalent. Thus ` is independent of
particle i and direction ŝ:

hW i
e

=
S

d

d

h`di
e

. (3)

Equation (3) shows that it is enough to consider the dis-
tributions of particle positions along any arbitrary direc-
tion around any arbitrary particle, and the result is repre-
sentative for the global properties of the entire packing.
This feature of random packings significantly simplifies
the problem. Furthermore, this ensemble average can be
calculated from distribution functions:
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and the packing fraction � is the ratio between the vol-
ume of spheres

� =
V

d

hW i
e

. (5)

Here p(`) is the probability distribution function of ` in
the ensemble, and P (`) is the inverse cumulative distri-
bution function: p(`) = �dP (`)/d`. According to the
definition, P (`) is the probability that rij

2ŝ·r̂ij > ` for all

j-particles at a distance r

ij

from i. Geometrically, P (`)
corresponds to the probability that all particles are out-
side a “Voronoi excluded volume”, ⌦(`), which is a sphere
of radius ` (Fig. 1b). The Voronoi excluded volume is a
generalization of the excluded volume due to hard-core
interactions, dating back to Onsager’s hard rods solution

[20]. The distribution function P (`) is similar to the ex-
clusion probability function in the scaled particle theory
for liquids [21], and is related to the n-particle correlation
functions g

n

of all orders [8].
As shown in Fig. 1c, to determine P (`) we need to con-

sider Voronoi particles which are the only ones with pos-
sible contributions to the Voronoi radius `. This means
that in the condition rij

2ŝ·r̂ij > ` for P (`), we only need

to consider particle j labelled as a Voronoi particle. In
2d, the Voronoi particles are located on the two clos-
est branches to the direction ŝ, but in higher dimensions
more branches should be considered. The positions of
the Voronoi particles are described by the n-particle an-
gular correlation function G

n

(↵1,↵2, . . .↵n

) of exclusive
angles.
However, to calculate G

n

one needs to define a proper
ensemble first. Here we use the principle of entropy max-
imization which corresponds to a statistical treatment of
an ensemble of all jammed states, each of which has an
equal probability [5, 7, 8, 16]. This ensemble can be rep-
resented by a set of contact networks satisfying the jam-
ming condition, while for a given contact network, parti-
cle positions are allowed to fluctuate without destroying
the contacts. Our approach defines a random packing
as the typical state in a flat average over the ensemble
of all possible graphs of contact network configurations
constraint to a given average coordination number [7].
Mechanical force and torque balance is assured by the
isostatic condition imposed on the coordination number
[22].
The network representation is a unique feature of pack-

ings compared to unjammed liquid systems. For contact-
ing neighbors, we only need to know the distribution of
the surface angles: the original d-dimensional problem is
mapped onto a (d � 1)-dimensional space. The theory
is mathematically treatable in two limits: (i) In 2d, the
one-dimensional surface space can be analyzed analyti-
cally; (ii) In large dimensions, the contacting neighbors
on the surface can be approximated to the simple ideal
gas [8]. Below we apply the general formalism to study 2d
random packings, where correlations are more profound.

III. APPLICATION OF THE THEORY IN 2D

In this section, we apply the general formalism in 2d,
and provide quantitative predictions which can be tested
by experiments and computer simulations. The approach
may be generalized to higher dimensions, although the
calculations might become much more complicated.

A. Calculation of P (`)

By definition, P (`) of the central particle i = 1 is
the probability that the Voronoi excluded volume ⌦(`)
is empty of particles, or equivalently r1j

2ŝ·r̂1j > ` for any

other particle j. It is su�cient to only consider “Voronoi
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ŝ
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FIG. 1: (Color online) Illustration of the theoretical
formalism. (a) A 2d illustration of the Voronoi volume
(bounded by red lines) and the Voronoi radius ` in direction
ŝ. (b) The Voronoi excluded volume ⌦(`) (pink area). ` is
determined by particle j because it minimizes

rij
2ŝ·r̂ij

. (c) An

illustration of the contact network and the Voronoi particles.
Each dot represents a particle. The exclusive angle ↵j is the
angle between any two contact neighbors. No other contact
particles are allowed to be inside this angle. (d) In 2d, the
Voronoi radius ` is determined by the Voronoi particles on the
two closest branches (green). Other particles may contribute
only in an exceptional case such as shown by the dashed blue
line. (e) An illustration of the geometrical quantities used in
the calculation of P (`). (f) Mapping monodisperse contact
disks to 1d rods. The 2d exclusive angle ↵ corresponds to the
1d gap.

particles” on the two closest branches except for the
case shown in Fig. 1d. This exception disappears in
the infinite expansion order limit n ! 1. The condi-
tion that all Voronoi particles are outside ⌦(`) requires
that r1j

2 cos �j
> `, where r1i is the distance between the

central particle i = 1 and the Voronoi particle j, and
cos�

j

= ŝ · r̂1j . We can write P (`) as:
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where n

0 is the total number of Voronoi particles consid-
ered, and p(~r12,~r13, . . .~r1n0) is the distribution function
of the positions of Voronoi particles. The constraints

⇥
⇣

r1j

2ŝ·r̂1j � `

⌘
impose the Voronoi exclusive conditions.

For a given contact network, the positions (~r12,~r13, . . .)
can be transformed to the exclusive angles (↵1,↵2, . . .)
and the angle � of the direction ŝ, see Appendix A. Us-

ing this transformation, P (`) becomes:

P (`) = lim
n!1

Z
· · ·

Z
p(~r12,~r13, . . .~r1,n+2)

⇥
n+2Y

j=2

⇥

✓
r1j

2ŝ · r̂1j
> `

◆

⇥ @(~r12,~r13, . . .~r1,n+2)

@(�,↵1, . . . ,↵n

)
d�d↵1 · · · d↵n

,

(7)

where we let n

0 = n + 2. If the contact network

is fixed, the degree of freedom of each particle

is reduced from two to one. Therefore the posi-
tion variables (~r12,~r13, . . .~r1,n+2) and angular variables
(�,↵1, . . . ,↵n

) have the same total n+1 degrees of free-
dom.
Now the distribution of positions can be related to the

distribution of angles:

p(~r12,~r13, . . .~r1,n+2)
@(~r12,~r13, . . .~r1,n+2)

@(�,↵1, . . . ,↵n

)

⇠ G(�,↵1, . . . ,↵n

)

⇠ ⇥(↵1 � �)G
n

(↵1, . . . ,↵n

).

(8)

The Heavyside function ⇥(↵1 � �) means that the di-
rection ŝ is uniformly distributed and is bounded by the
Voronoi particles (� < ↵1). Using Eq. (8), we rewrite
Eq. (7) with the n-particle angular correlation function
G

n

:

P (`) = lim
n!1

z

L

Z
· · ·

Z
⇥(↵1 � �)G

n

(↵1, . . .↵n

)

⇥
n+2Y

j=2

⇥

✓
r1j

2ŝ · r̂1j
� `

◆
d�d↵1 · · · d↵n

,

(9)

where L = 2⇡, z is the average coordination number,
and z/L is a normalization factor determined from the
condition that P (1/2) = 1 (we set the particle diameter
to be one). Equation (9) can be truncated at any value
of n, and becomes exact in the limit n ! 1. In this
study, it is treated as an expansion of n or number of
coordination layers (n corresponds to twice of the number
of layers).
Equation (9) is similar to the YBG hierarchy [12] in liq-

uid theories in the sense that it relates one distribution
function, P (`), to another, G

n

. This similarity inspires
us to bring the two approaches together to solve Eq. (9)
within a closure approximation for G

n

. In liquid theory,
the 3-point correlation function g3 is decomposed into
the product of pair correlation functions g2, by the use of
Kirkwood’s superposition approximation [23]. This pro-
vides a closure of the YBG hierarchy, which results in the
non-linear integro-di↵erential Born-Green equation [12].
Here we use a similar Kirkwood-like approximation to de-
compose G

n

into the single-particle angular correlation
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function G(↵):

G

n

(↵1, . . .↵n

) ⇡
nY

j=1

G(↵
j

). (10)

This approximation neglects higher-order correlations
between particles that do not share any common neigh-
bors (Appendix B).

B. Calculation of the single-particle angular
correlation function G(↵) from a 1d model

To find G(↵), we map the contacting particles to a sys-
tem of 1d rods with an e↵ective potential. As shown in
Fig. 1f, the contact particles in 2d can be mapped to a
set of z interacting 1d hard rods at position x

i

of length
l0 = ⇡/3 and system size L = 2⇡ = 6l0, with a peri-
odic boundary condition. The local jamming condition
requires that each particle has at least d + 1 contacting
neighbors, and not all of these neighbors are in the same
“hemisphere”. In 2d, this means that z � 3 and there is
no exclusive angle ↵ that could be greater than ⇡. In the
equivalent 1d model, the latter condition requires that
no two nearest neighbors are separated farther than 3l0.
Thus, the jamming condition is equivalent to introducing
an infinite square-well potential between two hard rods:

V (x) =

(
1, if x/l0 < 1 or x/l0 > a

0, if 1 < x/l0 < a,

(11)

with potential parameter a = 3. The total potential is a
sum of the pairwise potentials,

V (x1, · · · , xz

) =V (L� x

z

) + V (x
z

� x

z�1) + · · ·
+ V (x2 � x1).

(12)

To solve the 1d model, we first calculate the partition
function Q(L, z), which is

Q(L, z) =

Z
· · ·

Z
exp[�V (x1, · · · , xz

)
zY

i=2

dx

i

=

Z
l

0

exp[�V (L� x

z

)]dx
z

⇥
Z

xz

0

exp[�V (x
z

� x

z�1)]dxz�1 · · ·

⇥
Z

x3

0

exp[�V (x3 � x2)] exp[�V (x2)]dx2,

(13)

where we have used Eq. (12), and set the temperature to
be unit since it is irrelevant for our system. This integral
is a z-fold convolution for the Laplace transform of the
function exp[��V (x)] [26], which could be written as:

Q(L, z) =
1

2⇡i

Z
�+i1

��i1
e

sL

q

z(s)ds,

q(s) =

Z 1

0

exp[�sx� V (x)]dx,

(14)

FIG. 2: (Color online) Phase diagram of 2d packings.
Theoretical results for n = 1, 2, 3 (line-points, from left to
right) and �1 (red) are compared to (i) values in the litera-
ture: Berryman [9] (down triangle), RT [10] (diamond), and
O’Hern et al. [24] (up triangle), (ii) simulations of 10,000
monodisperse disks (crosses), and polydisperse disks (pluses)
with a discrete uniform distribution of radius in [0.7, 1.0] (in
unit of maximum radius), and (iii) experimental data of fric-
tional disks (square). (inset) The theoretical RCP volume
fraction �rcp(n) as a function of n. The points are fitted to
a function �rcp(n) = �1

rcp � k1e
�k2n, where k1 = 0.34± 0.02,

k2 = 0.67 ± 0.06, and �1
rcp = 0.85 ± 0.01 (blue dashed line).

Other values of �1 (with di↵erent z) are obtained in the same
way.

where � is greater than the real parts of all the singular-
ities of q(s). If we plug the potential V (x) (Eq. (11)) in
q(s), we have (see Appendix C for details)

Q(L, z) =

bL/l0�z
2 cX

k=0

(�1)k
✓
z

k

◆
[L/l0 � z � 2k]z�1

(z � 1)!

⇥⇥(L/l0 � z)⇥(3z � L/l0),

(15)

where bxc is the integer part of x.
To provide an analytical form of the single-particle an-

gular correlation function, we consider the distribution
of gaps between 1d neighboring rods. For simplicity, we
only consider the gap between rod 1 and 2 (its distribu-
tion is the same as that of other gaps due to translational
invariance):

G(↵) =h�(x2 � x1 � ↵)i

=
1

Q(L, z)

Z
· · ·

Z

0=x1<x2<···<xz<L

zY

i=2

dx

i

⇥ exp[��V (x1, · · · , xz

)]�(x2 � ↵)

=
exp[��V (↵)]

Q(L, z)

Z
· · ·

Z

↵=x2<x3<···<xz<L

zY

i=3

dx

i

⇥ exp[��V (x2, · · · , xz

)]

=
Q(↵, 1)Q(L� ↵, z � 1)

Q(L, z)
.

(16)

If we set a = 1 in the potential V (x), the system
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becomes a classical model – a one dimensional gas

of hard rods (Tonks gas) [25]. In the thermody-

namic limit (L ! 1 and z ! 1), the gap distri-

bution is [25, 26]:

GHR(↵) = ⇢

f

e

�⇢f (↵/l0�1)
, (17)

where ⇢

f

= z/(L/l0 � z) is the free density. This

result is exact in 1d because the Kirkwood-like

decomposition Eq. (10) is satisfied. Equation (17)

is also consistent with the exponential form of

the distribution of Voronoi excluded volume in

Ref. [7], where the 1d hard rod model is used as

a mean-field approximation for 3d packings.

IV. PHASE DIAGRAM OF 2D JAMMED
PACKINGS

The strategy of our method to calculate the volume
fraction for a fixed coordination number z is to first evalu-
ateG(↵) from Eq. (16), then plug it into Eqs. (10) and (9)
to calculate P (`) and eventually obtain hW i

e

and � via
Eqs. (4) and (5). Equation (9) is a high-dimensional
integration which is solved numerically by Monte Carlo
method.

In the proof of the Kepler conjecture, Hales shows
that considering a cluster of 50 spheres is su�cient in
search for the optimal crystal packing [27]. Analogously,
we expect that the volume fraction of random packings
would converge quickly with n. We truncate the expan-
sion Eq. (9) to a finite value of n, and extrapolate the
finite behavior to the infinite limit. Indeed, our results
show that �(n) approaches the asymptotic value �

1 ex-
ponentially fast as n ! 1 (Fig. 2 inset).

The results can be visualized into a 2d phase diagram
in the z � � plane. Figure 2 shows the equation of state
�

1(z) (see Appendix E for values) as well as the ap-
proach to this asymptotic value for small n. Our for-
malism reproduces the highest density in 2d packings
obtained by Thue and Tóth [28] of hexagonal packing
�

1
hex = 0.91 at z = 6. It also predicts the densities of

isostatic packings with di↵erent friction coe�cients. In
order to have a mechanical stable packing, the isostatic
counting argument [22, 29] requires that z = 2d = 4
for frictionless packings (RCP), and z = d + 1 = 3 for
infinite frictional packings (RLP). Our theory asymptoti-
cally predicts in the two limiting cases: �1

rcp = 0.85±0.01
and �

1
rlp = 0.67± 0.01 for z = 4 and z = 3, respectively.

The 2d RCP density of monodisperse packings has
been estimated theoretically by Berryman from a con-
tinuous extension of the liquid phase [9], which reports
�rcp = 0.82 ± 0.02. However, this approach is question-
able due to the existence of a glass transition between
liquid and jammed phases as noted in [10]. Binary disk
simulations (commonly used to suppress crystallization)
obtain �rcp ⇠ 0.84 [24] which is within the predicted �

1
rcp.

On the other hand, to our knowledge there is no reported
density of 2d RLP.

FIG. 3: (Color online) Angular pair correlation function
g(✓). The theoretical g(✓) (red solid lines, rescaled by ⇡/3) is
compared to simulation (black triangle-lines) and experimen-
tal (green circle-lines) data, with local coordination number
(a) z1 = 3, (b) z1 = 4, and (c) z1 = 5 [30]. The simulation
data are obtained from a polydisperse RCP packing in order
to avoid crystallization. The subset of particles with local
coordination number z1 is used to evaluate g(✓).

More sophisticated theories use RT to solve for the
density of hard spheres [10, 13], and predict that pack-
ings can exist in a range of volume fractions at the iso-
static coordination number z = 2d [10]. In the case
of two-dimensional packings RT predicts isostatic pack-
ings in a range from the threshold density �th = 0.8165
to the maximum density of glass close packing �GCP =
0.8745 [10]. It is interesting to interpret our prediction of
a single RCP point within the range predicted by RT [10].
The ensembles in our theory are characterized by the
correlation functions like G

n

or P (`). This provides a
systematic way to correlate � to characteristic packing
structures. If the isostatic packings could indeed have
di↵erent correlations, which might be protocol-dependent
in the experimental realizations, then our theory would
also predict multiple packing fractions as in RT, based on
proper characterizations of the correlations. This venue
will test possible commonalities between Edwards statis-
tical mechanics for jamming and the mean-field RT pic-
ture for glasses; a unification that has been sought after
in the field [8, 13–15].

V. EXPERIMENTAL AND NUMERICAL TESTS

The experiments are conducted using a granular mono-
layer of photoelastic disks [31]. The data consist of 500
packings each containing 1004 bidisperse disks in a 1:1
concentration with diameters 11.0 mm and 14.4 mm, hav-
ing an interparticle friction coe�cient µ

B

⇡ 0.8. Pack-
ings are isotropically compressed and recorded using sep-
arate images to measure the position of the disks and con-
tact forces. This study presents data similar to Ref. [31],
except that we consider only the majority particles in the
bath with the same friction coe�cient. More experimen-
tal details can be found in Ref. [31] and Appendix F. The
average � = 0.7859±0.0006 and the average z = 3.4±0.1
agree well with the prediction of the theory as seen in
Fig. 2.
Further test of the theory is obtained by comparing

the correlations. For this purpose, we obtain the angular
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FIG. 4: (Color online) Generalization of the model. (a)
Mapping contact ellipses to the Paris car parking model [40].
(b) Mapping polydisperse contact disks to polydisperse rods.
(c) Mapping mixtures of disks and ellipses to a 1d model.

correlation function g(✓) [35] (equivalent to the pair cor-
relation function of angles, where ✓ is the angle between
any two surface particles) from the theory (Appendix D):

g(✓) =
L

z

z�1X

m=1

Q(✓,m)Q(l � ✓, z �m)

Q(l, z)
, (18)

which reproduces well the experimental data (Fig. 3).
The theory deviates from data in the peak magnitudes
but not locations when the local coordination number
z1 = 5. This might be due to the presence of the poly-
disperse e↵ect in the experiments (which becomes more
significant for larger coordination numbers), or the ne-
glect of higher order correlations in the theory. The peak
presented in the experimental data at ✓ ⇡ ⇡/3 (or 5⇡/3)
when z1 = 3 is probably due to the remaining crystalline
order in binary packings.

We also tested the theory with simulation packings
generated by the Lubachevsky-Stillinger (LS) algorithm
[32] and the “split” algorithm [7]. Using simulations we
are able to test the full curve of �(z). We prepare pack-
ings for both monodisperse and polydisperse disks in the
random phase 3 < z < 4 by changing the interparticle
friction coe�cient from zero (z = 4, RCP) to infinity
(z = 3, RLP) [34]. We find a good agreement expect
for small z, which suggests that for very loose packings,
higher-order correlations beyond the Kirkwood decom-
position Eq. (10) may be necessary. The numerical g(✓)
is consistent with theories and experiments as seen in
Fig. 3. Our results are in line with existing analysis [36].

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we construct a framework to study ran-
dom packings. Our theory is based on a statistical ap-
proach, which assumes that each state can be visited with
equal probability. The approach should be applied and

generalized with caution. For example, in Ref. [31], the
authors studied the equilibrium of two subsystems with
di↵erent frictions. They found that while each subsys-
tem is equilibrated, only the angoricity (conjugate to the
stress) but not the compactivity (conjugate to the vol-
ume) equilibrates between the two subsystems. In this
case, one should appropriately integrate the stress en-
semble with the volume ensemble. Moreover, in recent
years, it is found that several protocols produce RCPs
at densities di↵erent from the commonly observed values
(�RCP ⇠ 0.64 in 3d and �RCP ⇠ 0.84 in 2d). The en-
sembles generated by these protocols are likely di↵erent
from the Edwards ensemble, and the final states could
depend on the dynamics of the protocols. In principle,
one needs a dynamic theory for each of these protocols,
and we leave the question open whether they can be de-
scribed by static theories like the present approach.
Generalization of the formalism to other shapes of par-

ticles and polydisperse systems are possible. For in-
stance, 2d packings of ellipses require a 1d model with ori-
entations (Fig. 4a). The solution of such a model (named
the “Paris car parking” problem [40]) will lead to a pre-
diction of RCP and the optimal packing of elongated par-
ticles, an open theoretical problem with implication for
self-assembly of nanoparticles and liquid crystal phases.
It is also possible to generalize this model to polydis-
perse systems, by explicitly calculating the dependence
of the local coordination numbers with the concentration
of species [41], and mapping the problem to a “car park-
ing” problem of polydisperse cars (Fig. 4b). Note that in
our experiments and simulations, we have introduced a
weak polydispersity to avoid crystalline order. Although
one usually neglects the packing fraction corrections of
weak polydispersities [36], we expect monodisperse theo-
ries to become insu�cient for systems with strong poly-
dispersities. Furthermore, the theory can be applied to
mixtures of spherical and non-spherical objects in search
of new phases of jammed matter (Fig. 4c).
Overall, the present formalism facilitates a systematic

investigation of correlations in packings, and paves the
path to a solvable model. The framework may be ex-
tended to predict the optimal ordered and disordered
packings over a set of specified shapes, dimensions and
friction properties.
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APPENDIX A: CALCULATION OF ANGLES IN
P (`)

We need n+1 angles, (�,↵1, . . . ,↵n

), to determine the
positions of Voronoi particles. According to the geomet-
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rical relationships (Fig. 5), other angles and distances can
be calculated from these integration variables recursively
as:

�

j

= ↵

j�2 � ⌧

j�2

r1j =
q

r

2
1,j�2 + 1� 2r1,j�2 cos�j

⌧

j

= arcsin

✓
r1,j�2

r1j
sin�

j

◆

⌘

j

= arcsin

✓
1

r1j
sin�

j

◆

�

j

= �

j�2 + ⌘

j

,

(A1)

and

�

j

=

(
�2 � �

j

, if j = 4, 6, 8 . . .

�3 � �

j

, if j = 5, 7, 9 . . .
(A2)

with initial values

�2 = ⌧2 = ⌘2 = �2 = 0,

�2 = �,

r12 = 1,

�3 = ⌧3 = ⌘3 = �3 = 0,

�3 = ↵1 � �2,

r13 = 1.

(A3)

FIG. 5: An illustration of the geometrical relations between
angles and distances.

APPENDIX B: A DISCUSSION ON THE
KIRKWOOD-LIKE DECOMPOSITION OF THE

n-PARTICLE ANGULAR CORRELATION
FUNCTION

The Kirkwood-like decomposition Eq. (5) in the main
text is an approximation of the n-particle angular cor-
relation function G

n

(↵1, . . .↵n

), which neglects higher-
order correlations between particles that do not share a
common contact neighbor. To see this, let us look at the
simplest case when n = 2. An expression of G2(↵1,↵2)

FIG. 6: An illustration of particles and angels in Eq. (B1).
There are z� 3 particles (not shown) between particles 3 and
5 (4 and 6).

is:

G2(↵1,↵2) ⇠
Z

L

�1=0

Z
L

�2=0

Q(↵1, 1)Q(�1, 1)

⇥Q(↵2, 1)Q(�2, 1)

⇥Q(L� ↵1 � �1, z � 2)

⇥Q(L� ↵2 � �2, z � 2)

⇥⇥(r34 � 1)⇥(r56 � 1)d�1d�2,

(B1)

where L = 2⇡, and Q(L, z) is the partition function of
1d rods (see below). The particles and angles are indi-
cated in Fig. 6. The Heaviside step functions impose the
hard-sphere constraints between particles 3 and 4, and
between 5 and 6, which are not in direct contact with
any common neighbors (compared to “direct” particles
such as particles 2 and 3, which share a common neigh-
bor particle 1). If we neglect the hard-sphere constraints
between these indirect particles, and only include corre-
lations between direct particles, Eq. (B1) becomes

G2(↵1,↵2) ⇠
Z

L

�1=0

Z
L

�2=0

Q(↵1, 1)Q(�1, 1)

⇥Q(↵2, 1)Q(�2, 1)

⇥Q(L� ↵1 � �1, z � 2)

⇥Q(L� ↵2 � �2, z � 2)d�1d�2

(B2)

Because
Z

L

�1=0

Q(L� ↵1 � �1, z � 2)Q(�1, 1)

Q(L� ↵1, z � 1)
d�1 = 1, (B3)

(same for �2), Eq. (B2) can be further written as

G2(↵1,↵2) ⇠Q(↵1, 1)Q(L� ↵1, z � 1)

⇥Q(↵2, 1)Q(L� ↵2, z � 1)

⇠G(↵1)G(↵2).

(B4)

The above derivation shows that the 2-particle angular
correlation function G2(↵1,↵2) can be approximated as a
product of single-particle angular correlation functions, if
higher-order correlations are neglected. The same anal-
ysis can be extended to G

n

(↵1, . . .↵n

) when n > 2.
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APPENDIX C: PARTITION FUNCTION OF 1D
RODS

To simplify the notation, here we set the size of rods
to be the unit, l0 = 1. The full expressions (in the main
text) are recovered by adding a proper scaling factor 1/l0
to the distance parameters, such as x and L. If we plug
the potential Eq. (11) in q(s) (Eq. (14)), we have

q(s) =

Z
a

1

e

�sx

dx =
e

�s � e

�as

s

, (C1)

and the partition function becomes

Q(L, z) =
1

2⇡i

Z
�+i1

��i1
e

sL

✓
e

�s � e

�as

s

◆
z

ds

=
zX

k=0

(�1)k
✓
z

k

◆⇢
1

2⇡i

Z
�+i1

��i1

e

s[L�z�k(a�1)]

s

z

�

=

bL�z
a�1 cX

k=0

(�1)k
✓
z

k

◆
[L� z � k(a� 1)]z�1

(z � 1)!

⇥⇥(L� z)⇥(az � L).
(C2)

where we have used the binomial expansion of⇣
e

�s�e

�as

s

⌘
z

.

APPENDIX D: ANGULAR PAIR CORRELATION
FUNCTION g(✓)

The 2d angular pair correlation function g(✓) is equiv-
alent to the pair correlation function in the 1d model,
which is the probability of finding a rod at a given dis-
tance ✓ from another rod. g(✓) is di↵erent from G(↵)
because other rods are allowed to be inside ✓. Due to the
translational invariance, we can choose any rod (rod 1 in
this case) as the reference point:

⇢g(✓) =h
zX

k=2

�(x
k

� x1 � ✓)i

=
1

Q(L, z)

zX

k=2

Z
· · ·

Z

0=x1<x2<···<xz<L

zY

i=2

dx

i

⇥ exp[��V (x1, · · · , xz

)]�(x
k

� ✓)

=
1

Q(L, z)

zX

k=2

Z
· · ·

Z

0=x1<x2<···<xk=✓

k�1Y

i=2

dx

i

⇥ exp[��V (x1, · · · , xk�1)]

⇥
Z

· · ·
Z

✓=xk<xk+1<···<xz<L

zY

i=k+1

dx

i

⇥ exp[��V (x
k

, · · · , x
z

)]

=
zX

k=2

Q(✓, k � 1)Q(L� ✓, z � k + 1)

Q(L, z)
,

(D1)

where the number density ⇢ = z/L. From the last ex-
pression, the angular pair correlation function g(✓) can
be written as

g(✓) =
1

⇢

z�1X

m=1

g

m

(✓),

g

m

(✓) =
Q(✓,m)Q(L� ✓, z �m)

Q(L, z)
.

(D2)

The function g

m

(✓) is the probability density of finding
two contact particles at a relative angle ✓, such that
there is exactly m � 1 contact particles between them.
Equation (D2) is used to calculate the theoretical g(✓) in
Fig. 3.
The normalization of g(✓) is conventional:

Z
L

0

⇢g(✓)d✓ = z � 1. (D3)

APPENDIX E: THEORETICAL VALUES OF �1(z)

In Table I, we list the extrapolated values of �

1(z)
evaluated from our theory (see Fig. 2).

z 3.0 3.3 3.5 3.7 4.0 4.5 5.0 6.0
�1 0.67 0.76 0.81 0.83 0.85 0.88 0.89 0.91

TABLE I: Theoretical values of �1(z).

APPENDIX F: COLLECTION OF
EXPERIMENTAL DATA

The experiments involve an assembly of 1004 bi-
disperse, photoelastic disks having a diameter of 11.0
mm and 15.4 mm in equal concentration by number.
Particles are composed of photoelastic material (Vishay
PhotoStress PSM-4) and are birefringent under strain
so that contact forces can be calculated. The granular
monolayer rests on a nearly frictionless surface of an air
table and is confined by two immovable walls and two
pistons. The system is initially dilute and unjammed.
Two pistons bi-axially compress the system through a
series of small quasi-static steps with a size correspond-
ing to �� = 0.0009. At each step, separate images are
recorded to measure the displacement and contact forces.
We use only data collected from jammed configurations
over the range of 0.7836 < � < 0.7884. After the system
has reached the maximum desired �, the pistons dilate
and the system is mixed. This cycle is repeated ensuring
generation of independent configurations. In this way,
over 500 packings are obtained and analyzed. More de-
tails of the experimental apparatus and procedures are
reported in a recent paper, Ref. [31].
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We have recently developed a mean-field theory to estimate the packing fraction of non-spherical
particles [A. Baule et al, Nature Commun. (2013)]. The central quantity in this framework is
the Voronoi excluded volume, which generalizes the standard hard-core excluded volume appearing
in Onsager’s theory. The Voronoi excluded volume is defined from an exclusion condition for the
Voronoi boundary between two particles, which is usually not tractable analytically. Here, we show
how the technical di�culties in calculating the Voronoi boundary can be overcome for lens-shaped
particles and spherocylinders, two standard prolate and oblate shapes with rotational symmetry.
By decomposing these shapes into unions and intersections of spheres analytical expressions can be
obtained.

I. INTRODUCTION

Packings of hard particles are ubiquitous in many fields in science and engineering [1]. Most
studies have focused on particles with spherical symmetry, which in a disordered arrangement typ-
ically achieve packing fractions of ⇡ 64% volume fraction. By contrast, both prolate and oblate
non-spherical shapes can achieve higher packing fractions, as found in simulations [2–4] and experi-
ments [5]. The existence of strong positional and orientational correlations has so far prevented any
systematic study apart from the limit of infinitely thin rods, which are treated in an equilibrium
setting by Onsager’s virial expansion of the free energy [6]. However, the densest packings are
typically found in a regime close to the sphere [4], for which this expansion breaks down.
A statistical mechanical framework to treat jammed granular matter has been proposed more

than two decades ago by S. F. Edwards, who postulated that the macroscopic properties of these
systems can be calculated as ensemble averages similar to equilibrium systems [7]. These averages
are taken over all jammed microstates at a fixed system volume, where all microstates are assumed
as equiprobable. This means that the role of energy in thermal systems is replaced by the volume in
granular systems, leading to an analogous statistical mechanical framework. The main task is then
to obtain the volume function (analogue of the Hamiltonian), which describes the system volume as
a function of the particles’ positions and orientations. Here, di↵erent conventions can be employed
to partition the total volume into cells associated with each particle [8, 9], the simplest of which is
the Voronoi tesselation [10, 11]. However, in 3D these exact volume functions are di�cult to handle
analytically, requiring a suitable coarse-graining procedure.
We have recently followed such a mesoscopic approach in order to develop a mean-field theory of

packings of both spheres and anisotropic particles [12–14]. The central quantity in our framework
is the coarse-grained Voronoi volume W (z) of a single particle, which, roughly speaking, contains

⇤
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the volume that is closer to this particle than to any other one on average. This approach is further
motivated by the observation that, as the particle number N ! 1, packings show reproducible
phase behaviour and are characterized by only few observables such as the packing fraction and the
average coordination number z [11, 15, 16]. W (z) satisfies a self-consistent equation: [12–14]

W (z) =

Z
dc exp

⇢
� V

⇤(c)

W � V

0

� �(z)S⇤(c)

�
, (1)

where the key ingredients V

⇤(c) and S

⇤(c) are referred to as the Voronoi excluded volume and
surface, which extend Onsager’s hard-core excluded volume to jammed packings. In Eq. (1), the
quantity �(z) is the free surface density for a packing with z contacts and is obtained from simu-
lations of local configurations. Once W (z) is determined by solving the self-consistency equation,
the packing fraction as a function of z follows simply from � = V

0

/W (z), where V

0

is the particle
volume. This approach has to be complemented with a prescription for the value of z in the pack-
ing, which is fixed by the isostatic conjecture z = 2d

f

satisfied by spheres. However, anisotropic
particles can have z < 2d

f

due to redundancy in the force and torque balance equations that define
mechanical equilibrium. A quantitative theory for this e↵ect has been developed in Ref. [14] and
calculates z as an average z = 2 hd

e↵

i over e↵ective number of degrees of freedom.
Therefore, in order to apply our framework the main task is to calculate V

⇤(c) and S

⇤(c) for a
particular particle shape. Both quantities are defined from an exclusion condition on the Voronoi
boundary (VB) between two particles, so that the calculation requires analytic expressions for the
VB, which are typically di�cult to obtain [10, 17]. In this paper we show how to calculate the
VB of lens-shaped particles and spherocylinders, two model shapes for both oblate and prolate
anisotropic particles. Regular crystal packings of these shapes have recently been investigated
theoretically in Ref. [18]. For both shapes analytic expressions for the VB can be obtained, which
is in contrast to, e.g., prolate and oblate ellipsoids. The underlying reason is that both can be
decomposed into decompositions and intersections of spheres of equal radii, such that the VB is
generated from simpler e↵ective interactions, namely those between points, lines, and anti-points
leading to an exact algorithm for the VB [14]. By comparison, the corresponding decomposition of
prolate and oblate ellipsoids requires a dense set of spheres with continuously varying radii, which
greatly complicates the problem. In the following we explicitly show how to calculate the VB for
lens-shaped particles and spherocylinders following our algorithm. This will guide the calculation
of the VB between more complicated shapes that can be decomposed similarly.
This paper is organized as follows. In the next section we first recapitulate how to calculate the

VB between spheres before showing how to extend it to lens-shaped particles (Sec. IIA) and how
to calculate the contact radius between two such objects (Sec. II B). Then we review the calculation
of both quantities for spherocylinders (Sec. II C and Sec. IID). We summarize how to use these
results in order to evaluate the excluded volume and surface of these particles in Sec. II E. We
finally conclude with a brief discussion of potential generalizations (Sec. III).

II. RESULTS

We set the centre of our coordinate system to the centre of mass of particle i and fix the orientation
of this particle along ẑ. Given a direction ĉ, a point on the VB is found at sĉ, where s depends on
the position r and orientation ˆ

t of particle j: s = s(r,ˆt, ĉ). The value of s is obtained from two
conditions:

1. The point sĉ has the minimal distance to each of the two objects along the direction ĉ.
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2. Both distances are the same.

The VB between two spheres of equal radii is the same as the VB between two points at the centres
of the spheres. Therefore, condition 1 is trivially satisfied for every s and condition 2 translates
into the equation

(sĉ)2 = (sĉ� r)2, (2)

leading to

s =
r

2ĉr̂
, (3)

i.e., the VB is the plane perpendicular to the separation vector r at half the separation. Already
for two spheres of unequal radii, the VB is a curved surface. Taking into account the di↵erent radii
ai and aj , Eq. (2) becomes [19]

s� ai =
p
(sĉ� r)2 � aj , (4)

which has the solution

s =
1

2

r

2 � (ai � aj)2

ĉr̂� (ai � aj)
. (5)

Finding a solution for both conditions for general non-spherical objects is in general non-trivial.
Next we show how to overcome the di�culties for lens-shaped particles.

A. The VB between two lens-shaped particles

A lens-shaped particle is made of two spherical parts and their circular junction that we call the
“crown”. Here we use two spheres of the same radius R so that the gravity centre is the centre
of the crown. L denotes its diameter of and l the thickness of the lens. The aspect ratio of a
lens is then defined by ↵ = l/L (see Fig. 1). We first wrote a short code (using Geogebra) to
visualize qualitatively the VB between two lens-shaped particles in 2D for the most general case of
an intersection of two spheres with di↵erent radii (Fig. 3).
We then attempted to follow the calculation explained above for spheres, with the same set of

conditions to determine the VB. However, the spherical parts of the lens determine the VB only in
specific regions. These are defined by cones as displayed in Fig. 1. When the VB is found out of
these cones, we should consider the extremity of the lens that corresponds to the circle defined by all
points belonging to both spheres (the “crown”) for the calculation. Indeed, a sphere is assimilated
to its centre for the calculation because the centre, the point of the sphere that interacts and the
VB are aligned. It is not valid anymore when being out of the cones for lenses. Thus if we fix two
lenses in space, the VB along a given direction depends on these cones, and we have the following
di↵erent types of interaction (Fig. 4):

1. Sphere-Sphere (4 interactions): The boundary falls in a cone of each lenses. We have the same
calculation as in the sphere study.

2. Sphere-Crown and Crown-Sphere (4 interactions): The boundary falls in a cone of the first
lens but does not fall in a cone of the second. The distances to equalize are between the
surface of the interacting sphere and a precise point of the interacting crown.
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FIG. 1: A lens is made of two spheres centred in A and B. The lens is the green shape, the intersection of
the spheres. The yellow line denotes the “crown”, whose extremities in the plane are marked C1 and C2.

FIG. 2: Parametrization of lens i, blue points denote the centres of the spheres constituting the lens.
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FIG. 3: VB of two lenses in the plane, coloured in function of the type of interaction. Sphere-Sphere
interaction: red and blue lines; Sphere-Crown interaction: green and yellow lines; Crown-Crown: black
line. The four points are the positions of the centres of the spheres constituting the lenses.

3. Crown-Crown (1 interaction): The boundary falls out of both cones for both lenses. The
distances to equalize are between two precise points on the crowns.

The purpose of the following algorithm is to calculate each interaction one after the other and
to evaluate if the VB e↵ectively falls in the corresponding area and if it is the minimum of all
interactions. If it does, then it is a valid solution. Some tests may allow one to avoid the evaluation
of one or two cases.

1. Parametrization of the problem

We use the parameters displayed in Fig. 2. The origin of the coordinate system is set to the
gravity centre of lens i. rr̂ij links the centres of lens i and j. The VB is to be found along vector
ĉ. We can set ĉ in the plane (ŷ, ẑ) because of the axisymmetry of the lens. The orientation of lens
j in the space is given by the vector ẑj . We are interested in the calculation of s along ĉ, where s

denotes the position of the VB between lens i and lens j. As mentioned before we have the same
set of conditions as in the sphere study:

1. The point sĉ has the minimal distance to each of the two objects along the direction ĉ.

2. Both distances are the same.
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FIG. 4: Di↵erent interactions that generate the VB depending on the cone configurations

Depending on the direction of ĉ, s may necessarily be in a cone of i, or not. It is determined by
an angular test. If the direction of ĉ stays in a cone of lens i, the spherical part of lens i whose
centre is the vertex of this cone, will interact. It is assimilated to the centre of this sphere. Thus,
the square of the distance between sĉ and the concerned sphere i is:

D

2

i = (±(R� l

2
)ẑ+ sĉ)2. (6)

If s may be found outside of both cones of lens i, depending of the orientation of ĉ relatively to the
cones of lens i, one should also evaluate a crown interaction for i. In this case, the projection of ĉ
on the crown i will interact since it is the closest point of lens i to s, changing Eq. (6) into:

D

2

i = (�L

2
ŷ + sĉ)2, (7)

We then compute all interactions with lens j and keep the minimum result that falls its good
corresponding area. This is the purpose of the algorithm: We try to determine the interacting
part of i at the beginning with an angular test and calculate each combination with j. For each
interaction we determine if s falls inside the corresponding area of influence of j and is the minimum
in comparison with the other cases. If it does then it is a valid solution, if not we calculate another
interaction. Tests are based on an angular verification of the positions of s relatively to the cones
of j, as well as we had for i. Thus, if s falls in a cone of j

D

2

j = (±(R� l

2
)ẑj � rr̂ij + sĉ)2. (8)

If s falls outside of both cones j, the point of crown j that interacts is necessarily the one defined
by the projection of the vector �rr̂ij + sĉ on the crown of lens j. It is given by tj:

tj =
L

2N
(ẑj ⇥ ((�rr̂ij + sĉ)⇥ ẑj)) (9)

and

N

2 = r

2(ẑj ⇥ (r̂ij ⇥ ẑj))
2 � 2rs(ẑj ⇥ (r̂ij ⇥ ẑj))(ẑj ⇥ (ĉ⇥ ẑj)) + s

2(ẑj ⇥ (ĉ⇥ ẑj))
2 (10)



7

Thus,

D

2

j = (�tj � rr̂ij + sĉ)2, (11)

Condition 2 requires D

2

i = D

2

j . However, if a sphere is assimilated to its centre, a crown is not.
Indeed if we assimilate the crown to its centre, we may have solutions on the sphere centred on the
crown that are not on the plane of the crown. Thus we will have to subtract the radius of a sphere
in one term of the equation D

2

i = D

2

j in the Sphere-Crown and Crown-Sphere interactions.
Condition 1 is always satisfied in each calculation because we work with spheres of the same

radius, and because the interacting point of the crown is necessarily defined by the projections of
the vectors calculated above. Now we show the results for the di↵erent interactions:

2. Sphere-Sphere interaction

This case arises if s falls in a cone of lens i and a cone of lens j. D2

i = D

2

j leads to:

(±(R� l

2
)ẑ+ sĉ)2 = (±(R� l

2
)ẑj � rr̂ij + sĉ)2 (12)

Thus we obtain for s:

s =
1

2

r

2 ± 2(R� l/2)rẑj r̂ij
±(R� l/2)ẑĉ± (R� l/2)ẑj ĉ+ rr̂ij ĉ

(13)

3. Crown-Sphere interaction

In this case s is outside of both cones of lens i. Thus, the distances to equalize are not between
the centres of two spheres Si � Sj and s but between the crown of lens i and the spherical surface
of lens j. The point of crown i that interacts is necessarily the one defined by the projection of ĉ
on the crown of lens i, and we have to subtract the radius of the concerned sphere j (±) in the
equation. Since all spheres do have the same radius we have:

(�L

2
ŷ + sĉ)2 + 2R

r
(�L

2
ŷ + sĉ)2 +R

2 = (±(R� l

2
)ẑj � rr̂ij + sĉ)2 (14)

We then have an equation that is to be squared in order to obtain a polynomial of order 2 on s :

r

2 + 2r(±(R� l

2
)ẑj r̂ij � sr̂ij ĉ)± 2s(R� l

2
)ẑj ĉ

+sLŷĉ+ (R� l

2
)2 � L

2

4
�R

2 = 2R

r
(�L

2
ŷ + sĉ)2 (15)

4. Sphere-Crown interaction

In this case, angular tests for the previous interactions show that s does not fall inside any of
both cones of lens j. As in the Crown-Sphere interaction we subtract the radius of a sphere in one
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term of the equation:

(

r
(±(R� l

2
)ẑ+ sĉ)2 �R)2 = (�tj � rr̂ij + sĉ)2 (16)

Since the denominator N of tj depends on the square root of terms in s

2

, s, and constants, we
square the previous equation to have a polynomial in s. It is a polynomial of order 6 that we
resolve numerically.

5. Crown-Crown interaction

Now all the angular tests show that s is out of both cones of lens i and both cones of lens j.
D

2

i = D

2

j leads to:

(�L

2
ŷ + sĉ)2 = (�tj � rr̂ij + sĉ)2 (17)

We proceed as in Eq. (16) and obtain a polynomial of order 6 that we also resolve numerically.

B. Calculation of the contact radius of two lens-shaped particles

Still using the same parametrization, we now want to determinate the position r

⇤ of the centre
of lens j so that it is in contact with lens i along r̂ij . So we just consider the vector r̂ij , and ĉ has
no influence in this calculus. We also have a test procedure and a choice to make for r⇤.
It consists of calculating first a Sphere-Sphere contact and then determinate if the point of contact

belongs to both lens. Indeed, it may happen that the point of contact is on a sphere constituting
a lens, but not on the lens itself. This determines an upper limit to r

⇤. If the test is positive, it is
a valid solution. If the test is negative, then one of the crowns necessarily is in contact.
Thus we calculate a Sphere-Crown contact and Crown-Sphere one. For each of these two new

interactions we test if the point of contact belongs to both lenses. If the test is positive for both
interactions the solution is valid and the same for both cases. If it is positive for only one interaction
then it is a valid one. If it is negative for both interactions r⇤ is necessarily determined by a Crown-
Crown contact. It may happen since the tests are exclusive and because the resolution of the
equations is numerical for the Sphere-Crown and Crown-Sphere interactions. We may also have
special cases where lenses i and j have the same orientation with their crown in the same plane,
thus a Crown-Crown interaction is directly calculated. We note that there is one and only one
Sphere-Sphere interaction to evaluate: The sphere from which r̂ij goes out for i and the one that
it enters for j.

1. Sphere-Sphere

We directly obtain

(±(R� l

2
)ẑ+ r

⇤
r̂ij ± (R� l

2
)ẑj)

2 = 4R2 (18)
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The signs (±) depend on which sphere interacts, and after developing we keep the positive root of
the polynomial:

(r⇤)2 + 2r⇤(R� l/2)(±ẑ± ẑj)r̂ij + 2(R� l

2
)2(1± ẑẑj)� 4R2 (19)

2. Crown-Sphere and Sphere-Crown

These interactions are of course similar. We show here the Crown-Sphere interaction, and we
follow the same procedure in a coordinate system fixed to lens j to calculate the Sphere-Crown
interaction. We denote by (x, y, z) the point of contact. It belongs to the crown i, which simply
means:

(S)

(
x

2 + y

2 = L

2

/4

z = 0

It also belongs to the projection of the sphere j on the plane of crown i, thus we add to the previous
system:

(r⇤r̂ij x̂± (R� l

2
)ẑj x̂� x)2 + (r⇤r̂ijŷ ± (R� l

2
)ẑjŷ � y)2 = R

2 (20)

Then we substitute x from (S) in Eq. (20), thus :

(r⇤r̂ij x̂± (R� l

2
)ẑj x̂�

r
L

2

4
� y

2)2 + (r⇤r̂ijŷ ± (R� l

2
)ẑj ŷ � y)2 = R

2 (21)

We develop and simplify the expression, which gives a polynomial of order 2 in y. The equations
and the algorithm take into account that y and r

⇤ must be positive since the signs in Eq. (20)
depends on the interacting sphere (±(R� l/2)ẑj ŷ and ±(R� l/2)ẑj x̂ terms).
Thus we do necessarily have one and only one solution for y so that � = 0 for the polynomial

of order 2 on y. This leads to a polynomial of order 6 in r

⇤ that we resolve numerically. Thus we
obtain y and an angular test allows one to obtain x:

x = ±
p
L

2

/4� y

2 (22)

These coordinates x and y allow one to find now if the interaction is the good one with another
angular test. In order to calculate the Sphere-Crown interaction we temporarily change the base
that we set in lens j and do the same calculation in the plane of Crown j.

3. Crown-Crown

We denote by (x, y, z) the point of contact. It belongs to the crown i :

(S1)

(
x

2 + y

2 = L

2

/4

z = 0
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FIG. 5: Voronoi diagram equivalence between two spherocylinders and two line segments defining the
spherocylinders. The VB is equivalent to that of two rods of vanishing width and length L, i.e., solving for
the point where D1 = D2 is the same as solving D1 + a = D2 + a.

It also belongs to the crown j :

(S2)

8
><

>:

(r⇤r̂ijx̂� x)2 + (r⇤r̂ijŷ � y)2 + r

⇤2
r̂ij ẑ = L

2

/4

�xx̂ẑj � yŷẑj + r

⇤
r̂ij ẑj = 0

We substitute x in the first equation of (S2) with its expression from the second equation of (S2)
to have an expression on y. Then we follow the exact same procedure as mentioned in the Sphere-
Crown interaction.

C. The VB between two spherocylinders

The calculation of the Voronoi diagram of spherocylinders is comparatively simpler than the one
for, e.g., ellipsoids thanks to the following property: The VB of two spherocylinders of length L (of
the cylindrical part) and radius a (of the semi-spherical end-caps) is equivalent to the VB between
two line segments of length L (see Fig. 5) at the centre of the cylindrical part. In the following we
refer to these line segments as “rods”. This equivalence is analogous to the sphere–point equivalence
of equal size spheres.
The radius a of the spherocylinders thus does not appear explicitly in the calculation of the VB

as outlined in the next sections. However, the radius enters naturally as a limiting condition for
the possible configurations of the spherocylinders and defines the contact radius r

⇤(r̂, t̂), which is
discussed in more detail in Sec. IID.
The calculation of the VB and the contact radius between two spherocylinders has previously

been presented in the supplementary material of Ref. [14]. In the following we use the convention
that a vector x can be decomposed as x = xx̂, where x denotes the absolute value and x̂ the unit
direction. The product of two vectors xy denotes the scalar product x · y =

P
k xkyk, where the

sum is over all components.
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a

{

2a

1

2

1

2

ẑ

r*

r

t^

x̂

t^
ẑ

x̂

b

1

2

1

2

ẑ
t^
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FIG. 6: (a) Parametrization of the VB between two spherocylinders of relative orientation t̂ and position
r. (b) The VB consists of the VBs due to the interaction of the four points and two lines (indicated
in di↵erent colours), which are separated following our algorithm. The red part of the VB is due to the
Point-Point interactions, the green part due to Line-Point and Point-Line, and the blue part due to the
Line-Line.

We align rod i with the ẑ axis of our coordinate system, so that a point on it is parametrized
by the vector tiẑ with ti 2 [�L/2;L/2]. Likewise, the orientation of rod j is given by ˆ

t, so that a
point on rod j is parameterized by r + tjˆt, where also tj 2 [�L/2;L/2]. See Fig. 6a for the setup
of our coordinate ssytem. In order to solve the two conditions that define the VB, we first find the
distance between sĉ and a point on rod i and j, denoted by D

2

i and D

2

j , respectively. We obtain

D

2

i = (tiẑ� sĉ)2, (23)

D

2

j = (r+ tjˆt� sĉ)2. (24)

Condition 1. (minimal distance) requires:

@D

2

i

@ti
= 0, (25)

@D

2

j

@tj
= 0. (26)

Solving these two conditions yields the minimal values

t

min

i = sĉẑ = s(ĉẑ), (27)

t

min

j = (sĉ� r)ˆt = s(ĉˆt)� r. (28)

Condition 2. (equal distances) requires:

D

min

i = D

min

j , (29)

so that

(tmin

i ẑ� sĉ)2 = (tmin

j
ˆ

t+ r� sĉ)2. (30)
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Here, it is important to note that tmin
i and t

min
j are only the correct minimal values when t

min

i 2
[�L/2, L/2] and t

min

j 2 [�L/2, L/2] due to the finite length of the rods. If tmin
i and/or tmin

j are not
2 [�L/2, L/2] interactions involving the end-points of the rods arise. Overall, one has to distinguish
the cases:

1. Line-Line interaction: tmin

i 2 [�L/2, L/2] and t

min

j 2 [�L/2, L/2] (1 case).

2. Line-Point interaction between the segment i and an end-point of j: tmin

i 2 [�L/2, L/2] and
tj = ±L/2 (2 cases).

3. Point-Line interaction between the segment j and an end-point of i: tmin

j 2 [�L/2, L/2] and
ti = ±L/2 (2 cases).

4. Point-Point interaction between the end points of i and j: ti = ±L/2 and tj = ±L/2 (4
cases).

In the following the di↵erent Voronoi interactions are indicated by di↵erent subsscripts, e.g., s
ll

for Line-Line interaction, slp for Line-Point interaction, etc. Fig. 6b illustrates the separation of
the di↵erent interactions.

1. Line-Line interaction

This interaction is valid if tmin
i and t

min
j fall inside the length of the segments. The conditions

are thus:

t

min

i 2 [�L/2, L/2], t

min

j 2 [�L/2, L/2]. (31)

In this case t

min
i and t

min
j are given by Eqs. (27) and (28). Substituting these expressions into

Eq. (30) yields a quadratic equation for the VB value s = s

ll

:

s

2

ll

r

2

h
(ĉẑ)2 � (ĉˆt)2

i
+ 2

s

ll

r

h
(ĉˆt)(r̂ˆt)� r̂ĉ

i
+ 1� (r̂ˆt)2 = 0. (32)

The correct solution of this equation is the real and positive one. We observe that the solution s

ll

scales with the separation r. The conditions for Eqs. (31) to hold are

� L/2  s

ll

ĉẑ  L/2, and � L/2  (s
ll

ĉ� r)ˆt  L/2. (33)

These two conditions define the separation lines for the Line-Line interaction visualized in Fig. 6b.

2. Line-Point interaction

In this case t

min

j is fixed at one of the end points of rod j and t

min

i is inside the line segment of
rod i. We set the point to the top of tj , indicated by a subscript 1 and obtain:

t

min

i 2 [�L/2, L/2], t

min

j = L/2. (34)
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Substituting the Eq. (27) for tmin
i and t

min

j = L/2 into Eq. (30) yields a quadratic equation for the
VB value s = s

lp1 , where the index p

1

refers to the top point:

s

2

lp1

r

2

(ĉẑ)2 � 2
s

lp1

r

h
(r̂ĉ) +

L

2r
(ĉˆt)

i
+

✓
L

2r

◆
2

+
L

r

(r̂ˆt) + 1 = 0. (35)

The VB generated by the bottom point s
lp2 , which is defined by t

min

j = �L/2, follows straightfor-
wardly by setting L ! �L in Eq. (35). The conditions for the two Line-Point interactions are then
(cf. Fig. 6b)

� L/2  s

lp1 ĉẑ  L/2 and (s
lp1 ĉ� r)ˆt � L/2 (36)

�L/2  s

lp2 ĉẑ  L/2 and (s
lp2 ĉ� r)ˆt  �L/2. (37)

3. Point-Line interaction

We can calculate this interaction in analogy to the Line-Point interaction. The conditions are:

t

min

i = L/2, t

min

j 2 [�L/2, L/2]. (38)

Substituting t

min

i = L/2 for the top point and Eq. (28) into Eq. (30) leads to

s

2

p1l

r

2

(ĉˆt)2 + 2
s

p1l

r

[(r̂ĉ)� (ĉˆt)(r̂ˆt)]

�s

p1l

r

L

r

(ĉẑ) +

✓
L

2r

◆
2

+ (r̂ˆt)2 � 1 = 0. (39)

Likewise for s
p2l. The conditions for the two point-line interactions are then

s

p1lĉẑ � L/2, and �L/2  (s
p1lĉ� r)ˆt  L/2 (40)

s

p2lĉẑ  �L/2, and �L/2  (s
p2lĉ� r)ˆt  L/2. (41)

4. Point-Point interaction

This interaction is obtained by fixing both t

min

i and t

min

j to L/2 or �L/2. We set

t

min

i = Li/2, t

min

j = Lj/2, (42)

where Li = ±L and Lj = ±L for the top and bottom points on each of the rods. The solution of
Eq. (30) with Eqs. (42) is then:

spp = r

1 + Lj

r (r̂ˆt)

2(r̂ĉ) + Lj

r (ĉˆt)� Li
r (ĉẑ)

. (43)

The di↵erent Point-Point interactions are obtained by specifying the Li,j . The VB value s

p1p1 due
to the two top points s

p1p1 , e.g., is obtained by setting Li = Lj = L. Likewise for the other point
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interactions. The conditions for the four di↵erent point-point Voronoi boundaries are

s

p1p1 ĉẑ � L/2, and (s
p1p1 ĉ� r)ˆt � L/2, (44)

s

p1p2 ĉẑ � L/2, and (s
p1p2 ĉ� r)ˆt  �L/2, (45)

s

p2p1 ĉẑ  �L/2, and (s
p2p1 ĉ� r)ˆt � L/2, (46)

s

p2p2 ĉẑ  �L/2, and (s
p2p2 ĉ� r)ˆt  �L/2. (47)

Eq. (43) reduces to the VB between two equal spheres, Eq. (3), in the limit L/r ! 0. Note that
the VBs due to the four point-point interactions are flat surfaces, while interactions involving the
line segment generate curved VBs.

5. Examples

As an example of the algorithm, we apply it to di↵erent situations in 2 dimensions, Fig. 7. We
consider the rod i (with varying orientations) on the left and the rod j on the right. The top-left
panel shows the Voronoi boundary in di↵erent colours corresponding to di↵erent interactions: A
point-point interaction at the top of the boundary in red, then a point-line interaction in green,
then a line-line interaction in blue, then another point-line interaction in green and so on. The
other panels are analogous.

D. The contact radius of two spherocylinders

The contact radius r⇤(r̂,ˆt) is defined as the value of r such that two spherocylinders of relative
orientation ˆ

t and position rr̂ are in contact. By comparison, two spheres are in contact if r⇤ = 2a,
independent of ˆt and r̂. For spherocylinders we have to distinguish the possible contacts of the
spherical endcaps and of the cylindrical segments (see Fig. 8). As before, we denote a point on rod
i by tiẑ and a point on rod j by r+ tjˆt. The squared distance between these two points is

D

2(r,ˆt, ti, tj) = (tiẑ� (r+ tjˆt))
2

= t

2

i + t

2

j + r

2 + 2r(tj(r̂ˆt)� ti(r̂ẑ))� 2titj(ẑˆt).

(48)

Two spherocylinders are in contact when the minimal D2 equals the square of the diameter (2a)2.
We solve @D

2

/@ti = 0 and @D

2

/@tj = 0 in order to obtain the two minimal positions

t

⇤
i = r

(r̂ẑ)� (r̂ˆt)(ẑˆt)

1� (ẑˆt)2
= rAi (49)

t

⇤
j = r

(r̂ẑ)(ẑˆt)� (r̂ˆt)

1� (ẑˆt)2
= rAj , (50)

which define Ai and Aj . Substituting these expressions into Eq. (48) and solving for r under the
condition D

2 = 4a2 yields the contact radius

r

⇤
ll

(r̂,ˆt) =
2aq

1 + (Aiẑ�Ajˆt)2 + 2(Aj(r̂ˆt)�Ai(r̂ẑ))
. (51)
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FIG. 7: Examples of the VB between two rods in 2d with di↵erent configurations. Each colour of the
boundary represents a di↵erent type of interaction. Point-Point interaction: red; Line-Point and Point-
Line: green; Line-Line: blue.

This contact radius is only valid for t⇤i 2 [�L/2, L/2] and t

⇤
j 2 [�L/2, L/2], since it does not take

into account the finite length of the spherocylinders. Therefore, r⇤
ll

is the contact between the line
segments (indicated by the ll subscript as before). In complete analogy to the Voronoi interactions
we need to distinguish further the Line-Point, Point-Line and Line-Line contacts in addition to the
Line-Line one.
For the Line-Point contact one has to consider tj = ±L/2. In order to find the minimal t⇤lpi one

thus has to solve

@

@ti
D

2

✓
r,

ˆ

t, ti,±
L

2

◆
= 0. (52)

Substituting this value back into D

2 and solving D

2 = 4a2 for r yields the two Line-Point contact
radii. These are valid when t

⇤lp
i 2 [�L/2, L/2]. For the Point-Line contact one has to set ti = ±L/2,

which determines the minimal t⇤plj by the equation

@

@tj
D

2

✓
r,

ˆ

t,±L

2
, tj

◆
= 0. (53)
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FIG. 8: The contact radius r⇤(r̂, t̂) for two spherocylinders. Here, the contact is due to the spherical
endcaps.

Substituting this value back into D

2 and solving D

2 = 4a2 for r yields the two Point-Line contact
radii. These are valid when t

⇤pl
j 2 [�L/2, L/2]. For the Point-Point contact one can solve directly

D

2

✓
r,

ˆ

t,±L

2
,±L

2

◆
= 4a2 (54)

for r, which yields four di↵erent Point-Point contact radii.
Following this procedure, we obtain 9 possible values for the contact radius r⇤(r̂,ˆt), just like the

9 di↵erent VB values. Among these values correct radius is determined as the maximum of all
positive and real ones.

E. Calculation of the excluded volume and surface

For completeness, we summarize here our method to calculate V ⇤ and S

⇤ for a given analytic form
of the VB s(r,ˆt, ĉ). This method has previously been implemented in Ref. [14]. We define excluded
Voronoi volume as V

⇤ = h⌦� ⌦ \ V

ex

it̂, which can be calculated as an orientational average over
a volume integral:

V

⇤(c) =

⌧Z
dr⇥(r � r

⇤(r̂,ˆt))⇥(c� s(r,ˆt, ĉ))⇥(s(r,ˆt, ĉ))

�

t̂

.

(55)

These integrals can be expressed in spherical coordinates. We denote with ✓r and �r the polar
and azimuthal angles, respectively, of the position. The corresponding orientational angles have a
subscript t. Eq. (55) then corresponds to the multi-dimensional integral
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V

⇤(c, ✓
c

) =
1

2⇡

Z ⇡

0

d✓r

Z ⇡

�⇡
d�r

Z ⇡/2

0

d✓t

Z ⇡

�⇡
d�t

Z 1

r⇤(✓r,�r,✓t,�t)

dr r2 sin(✓t) sin(✓r)

⇥⇥[c� s(r, ✓r,�r, ✓t,�t, ✓c)]⇥[s(r, ✓r,�r, ✓t,�t, ✓c)]. (56)

The reduction of the full solid angle ĉ to ✓t and the integration limits of the ✓t integration take
into account the symmetry of the spherocylinders. Clearly, Eq. (56) is a five dimensional integral,
which be calculated numerically using, e.g., a Monte-Carlo scheme for a given c.
We define the excluded Voronoi surface as S

⇤ = h@V
ex

\ ⌦it̂, which can be expressed as an
orientational average over a surface integral:

S

⇤(c) =

*I
dr̂⇥(c� s(r,ˆt, ĉ))⇥(s(r,ˆt, ĉ))

����
r=r⇤(r̂,̂t)

+

t̂

, (57)

Here, the contact radius r⇤(r̂,ˆt) induces the surface element

dr̂ = r

⇤

vuut
 
r

⇤2 +

✓
@r

⇤

@✓r

◆
2

!
sin2(✓r) +

✓
@r

⇤

@�r

◆
2

d✓rd�r, (58)

which recovers the usual surface element dr̂ = r

⇤2 sin(✓r)d✓rd�r for r⇤ = const. Eq. (57) can thus
be written in terms of the four-dimensional integral

S

⇤(c, ✓
c

) =
1

2⇡

Z ⇡

0

d✓r

Z ⇡

�⇡
d�r

Z ⇡/2

0

d✓t

Z ⇡

�⇡
d�t sin(✓t)r

⇤

vuut
 
r

⇤2 +

✓
@r

⇤

@✓r

◆
2

!
sin2(✓r) +

✓
@r

⇤

@�r

◆
2

⇥⇥[c� s(r⇤, ✓r,�r, ✓t,�t, ✓c)]⇥[s(r⇤, ✓r,�r, ✓t,�t, ✓c)], (59)

where r

⇤ = r

⇤(✓r,�r, ✓t,�t). This expression can also be computed numerically.

III. DISCUSSION

The decomposition of a shape into compositions and intersections of spheres can be generalized
to more complicated shapes. In particular, the VB between any shapes that are represented by
a composition or intersection of a finite number of spheres, such as trimers, tetramers, etc. with
varying degree of overlap, can be calculated in a straightforward way following this method. The
main challenge is to develop a concrete and e�cient procedure for a given shape, i.e. a methodic
protocol that is valid for a given number n of overlapping spheres. The algorithm for lenses is already
quite complicated. Indeed, even though the computational complexity to determine a single VB
is not high, many cases have to be computed and kept in memory until the VB is identified that
specifies the correct interaction. There are additional technical di�culties for the separation of the
interactions. For lens-shaped particles, e.g., polynomials of order 6 have to be solved numerically.
Shapes of particular recent interest in theoretical materials science are polyhedra, which can

self-assemble into structures much more complicated than spheres and have thus great potential for
the assembly of new functional materials [20, 21]. In order to apply our framework to polyhedra,
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one can consider a decomposition of the shape into a dense union of spheres with continuously
varying radii. This kind of decomposition (also called filling) can be optimized following certain
design principles [22]. Even though our method to determine the VB is still algorithmically well-
defined for such a dense filling, it is di�cult to implement in practice. A simpler approach would
be to approximate a polyhdra as an intersection of a small finite number of spheres, similar to
the approximation of an ellipsoid by a lens-shaped particle discussed here. A cube, e.g., can be
approximated as the intersection of six spheres [14], such that the VB can be calculated following
our method.
Even if an analytical expression for the VB of a particular shape can be obtained, the calculation

of the excluded volume and surface are still computationally costly due to the high dimensional
integrals. The calculation of the Jacobian provides additional di�culties. A direct numerical
computation of the VB might provide an alternative approach, which can be optimized for speed
using, e.g., graphics hardware [23].
The code used to generate the VB for lens-shaped particles and spherocylinders is available on

www.jamlab.org.
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A zero-temperature critical point has been invoked to control the anomalous behavior of granular matter
as it approaches jamming or mechanical arrest. Criticality manifests itself in an anomalous spectrum of low-
frequency normal modes and scaling behavior near the jamming transition. The critical point may explain the
peculiar mechanical properties of dissimilar systems such as glasses and granular materials. Here, we study the
critical scenario via an experimental measurement of the normal modes frequencies of granular matter under
stress from a pole decomposition analysis of the effective mass. We extract a complex-valued characteristic
frequency which displays scaling |ω∗(σ)| ∼ σΩ′ with vanishing stress σ for a variety of granular systems. The
critical exponent is smaller than that predicted by mean-field theory opening new challenges to explain the
exponent for frictional and dissipative granular matter. Our results shed light on the anomalous behavior of
stress-dependent acoustics and attenuation in granular materials near the jamming transition.

I. INTRODUCTION

In granular media, a jammed system results if the particles
pack together at high enough density such that all the particles
are touching their neighbors [1]. As a result, the material un-
dergoes a jamming transition above which the system remains
arrested in a jammed state and is able to withstand a suffi-
ciently small applied stress. The jamming transition occurs at
a particularly subtle point where the particles have no redun-
dant mechanical constraints, i.e. they are isostatic [2–5]. The
system is a fragile solid that is highly susceptible to external
perturbations. For instance, cutting a set of particle contacts
creates floppy modes which necessitate global rearrangement
to rebalance the system [2, 3, 6–8].
This critical point has important consequences for the me-

chanical properties of granular matter. In particular, there ex-
ists an excess of low-frequency modes above that expected
from the Debye scaling of phonons in elastic solids [9, 10].
When the system is jammed, a band of excess modes exists
for ω > ω∗D, ω∗D is a characteristic frequency that vanishes as
the jamming transition is approached [10] [the subscript in-
dicates that this frequency determines the limit of validity of
Debye scaling in the density of states]. For ω < ω∗D one has
the usual Debye density of states. The system is argued to be
critical with a diverging correlation length #∗ [6] scaling as the
inverse of the characteristic frequency. The excess modes dis-
tinguish an isostatic critical state at scales below #∗ from an
elastic solid at scales larger than #∗ [6, 7]. The characteristic
frequency follows scaling law [6–12]:

ω∗D ∼ (φ − φc)Ω ∼ σΩ
′
, (1)

with external stress, σ, or volume fraction, φ, measured with
respect to the jamming point ∆φ = φ − φc (eg random close
packing or point J [4, 5, 9]).
The static properties of jammed systems are also character-

ized by scaling laws. In particular, the average coordination
number scales as

Z − Zc ∼ (φ − φc)1/2, (2)

with scaling exponent approximately independent of friction
[4, 5, 7–9, 11, 13]. Here, ∆Z = Z − Zc measures the excess
contacts from the minimal isostatic coordination number for
frictionless grains Zc = 6, or a critical value 4 ≤ Zc ≤ 6
for frictional grains in 3D [11, 13, 14]. The constitutive law
between stress and volume fraction is

σ ∼ (φ − φc)α, (3)

where α = 3/2 for Hertzian spheres and α = 1 for linear
springs. Thus, Ω = Ω′α.
To compare across systems with different constitutive laws,

we separate the trivial stress dependence of α from the non-
trivial structural dependence characterized by exponent δ:

ω∗D ∼ ∆φ
(α−1)/2∆φδ, (4)

with δ = Ω + (1 − α)/2. Theory [6, 7] has found using a
variational argument of boundary contact removal process for
a system of particles with linear constitutive law (α = 1)

ω∗D(∆Z) ∼ ∆Z, (α = 1, mean-field scaling), (5)

yielding a prediction δth = 1/2, using Eq. (2), which agrees
with simulations of frictionless particles [10].
So far, the scaling behavior of Eq. (1) has not been tested by

direct experimental measurements on zero-temperature gran-
ular matter. Indeed, experiments cannot calculate the density
of states by directly measuring the interparticle potential as
done in simulations [9, 10]. Here, we employ a novel dynam-
ical measurement to measure the normal modes.
Previous experiments focused on thermally agitated col-

loidal glasses and supercooled liquid systems [15–17]. In con-
trast, granular materials are athermal (the energy necessary to
displace a grain is much larger than the thermal energy ∼ 1014
times) and friction dominated. Moreover, Eq. (1) was derived
for non-frictional non-dissipative systems [6, 7]. In the case of
real granular media, dissipation plays a key role in governing
the dynamics [20]. In this work, we develop an experimen-
tal study of the stress-dependent normal modes frequencies
for the case of granular matter. We demonstrate that the nor-
mal mode spectrum of a finite sized granular system can be
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determined through a pole decomposition of the frequency-
dependent effective mass [18–20]. The results of this analysis
supports the scaling hypothesis Eq. (1) in a realistic athermal
and dissipative medium. However, the exponents characteriz-
ing this granular medium are smaller than those predicted by
theory Eq. (5) [6, 7].

II. EXPERIMENTS

We employ a dynamical effective mass measurement to ob-
tain the normal modes which complements other measures
of the normal modes obtained from the Fourier transform of
the velocity autocorrelation function and the eigenvalues of
the displacement correlation matrix [8–12]. Specifically, we
measure the frequency dependent effective mass, M̃(ω), intro-
duced previously in [18–20], of a granular medium held in a
cup under varying stress.
The full experimental program has been developed in [18–

20] and it is described in detail in Appendix X. Here we refer
to the most important aspects of the experiments and the cor-
responding set of predictions. The stress-dependent scaling
behavior of the normal mode spectrum of the granular sys-
tem can be determined through a pole decomposition of the
frequency-dependent effective mass [18–20]. We use a va-
riety of granular systems consisting of particles of different
sizes (ranging from ∼150 microns to millimeters), different
shapes (irregular and spherical), different materials (tungsten,
steel and glass), and different damping conditions (particles
coated with silicone oil and uncoated).
An important factor in the dynamics of this system is the

existence of dissipative modes. Accordingly, our initial ex-
periments follow the procedure described in reference [20]
to lightly coat the tungsten particles (nominal size ∼150 µm)
with silicone oil (PDMS), which yields a system with known
dissipative properties— later, we will show results for un-
coated particles. The weakly wet powder is poured into a cup,
and the cup is tapped to encourage the powder to settle and
yield a flat free surface, Fig. 1. Finally, a standard mechan-
ical compaction protocol is followed [21–24] to prepare the
system in a reversible state which yields a reproducible M̃(ω).
Once loaded, the cup is subjected to a vertical sinusoidal vi-

bration at angular frequency ω. The force, F̃(ω), is measured
by a force gaugemounted between the cup and the shaker, and
the acceleration, ã(ω), is taken as the average of that measured
at two points on the opposite end of a single diameter. The ef-
fective mass of the granular medium is the causal response
function [18–20]:

M̃(ω) =
F̃(ω)
ã(ω)

− Mc, (6)

where Mc is the mass of the empty cup. Here, M̃(ω) =
M1(ω) + iM2(ω) is complex-valued and reflects the partially
in-phase and out-of-phase motion of the individual grains rel-
ative to the cup motion. M1 is indicative of the elastic, and
M2 of the dissipative characteristics of the powder. Figures
2a and b show M1(ω) and M2(ω) for tungsten systems ex-
posed to an incrementally increasing uniaxial confining stress,

σ. In all cases, the lowest characteristic frequencymode man-
ifests itself as the sharpest resonance peak in M2(ω). This
peak and the other, lower amplitude, modes in the system are
characterized by a complex-valued normal mode frequency,
ωn. Roughly speaking, Re[ωn] is given by the position of the
frequency mode, and Im[ωn] is half of the full width at half
max of the frequency mode.
To accurately infer ωn from the data in Fig. 2 we analyze

M̃(ω) within the context of a theory of damped and frictional
contact forces [20], which generalizes the results of previous
analyses [6, 7]. While previous theories have considered cen-
tral force systems [6, 7], interpreting the dynamic response
of our experiments necessitates a formalism that accounts for
translational and rotational degree of freedom and damped
modes. We develop such a formalism next.

III. THEORY

A. Interparticle force-law

In general the granular medium is modeled as a set of grains
held in a rigid cup. The theory is valid for any linearized set
of contact forces. Without loss of generality, below we define
it for the specific case of Hertz-Mindlin contact forces. The
normal force between any two contacting particles with radius
R is [25, 26]:

Fn =
2
3
knR1/2x3/2i j , (7)

where the normal deformation (1/2 the overlap between the
spheres) between the neighboring grains is xi j = 1

2 [2R − |xi −
x j|], xi, j are the position vectors, and kn is the normal spring
constant. The latter is defined in terms of the corresponding
material properties. The normal elastic constant is

kn = 4Gg/(1 − νg), (8)

whereGg is the shear modulus, and νg is the Poisson’s ratio of
the material from which the grains are made.
The tangential force between neighboring grains in contact

is [26]:

∆Ft = kt(Rxi j)1/2∆s, (9)

where

kt = 8Gg/(2 − νg), (10)

is the tangential spring constant, and the variable s is de-
fined such that the relative shear displacement between the
two grain centers is 2s. Finally, Coulomb friction with in-
terparticle friction coefficient µ imposes Ft ≤ µFn at every
contact.
From the definition of particle interactions, the elastic

spring constant tensor is written in terms of the normal (N)
and transverse (T ) stiffnesses as:

Ki j = kN (xi j)d̂i jd̂i j + kT (xi j)[I − d̂i jd̂i j], (11)
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where d̂i j denotes the direction of the normal displacement
and we use the dyadic notation. Since we are interested in
infinitesimal displacements, without loss of generality we use
a linearized version of the Hertz-Mindlin force law Eqs. (7)
and (9) and define the elastic stiffnesses as:

kN(xi j) = knR1/2x1/2i j , (12)

and

kT (xi j) = ktR1/2x1/2i j , (13)

where kn is the normal spring constant defined in terms of the
corresponding material properties above. That is, we use the
Hertz-Mindlin force law linearized about the static value of
the normal compression of contacts. The resulting elastic stiff-
ness is simply the slope evaluated at xi j. The tangential force
between neighboring grains in contact is defined in terms of
the tangential spring constant kt above.
The dissipative properties of the particles are defined as fol-

lows. The definition of the damping tensor Bi j involves a nor-
mal damping and a tangential damping in analogy to the def-
inition of the elastic matrix Eq. (11). A representation of the
damping matrix in terms of the first order Taylor expansion
gives the following form which is an extension of the original
Hertz approach assuming the material to be viscoelastic in-
stead of elastic. The form of the damping tensor Bi j has been
calculated by Kuwabara and Kono [27] and Brilliantov et al.
[25] (see also [26] for a review):

Bi j = γN(xi j)d̂i jd̂i j + γT (xi j)[I − d̂i jd̂i j]. (14)

If the particles, i and j, are not in contact (|x j − xi| > 2R), we
set bothKi j = 0 Bi j = 0.
Both damping constants, normal γN(xi j) and tangential
γT (xi j), are proportional to the respective elastic constants in
the elastic counterparts kN(xi j) and kT (xi j). This is seen by
following the calculations of Brilliantov [25] for the dissipa-
tive force between two contacting particles. The total force
acting between viscoelastic particles can be derived from the
total stress tensor taking into account the elastic and dissipa-
tive parts (see Landau for details [28]):

σ̂ = σ̂(el) + σ̂(dis). (15)

The calculations are simplified since the elastic and dissipative
parts of the stress tensor are related in the quasi-static limit
[25, 28]:

σ̂(dis) = ẋi j
∂

∂xi j
σ̂(el). (16)

This leads to a dissipative force of the form:

FNdis = ξknR
1/2x1/2i j ẋi j, (17)

where ξ is the damping parameter with unit of time and related
to the elastic and viscoelastic constant of the material from
which the particles are made. From [28] we have:

ξ =
1
2
(3η2 − η1)2

(3η2 + 2η1)
[ (1 + νg)(1 − 2νg)

2Gg

]

, (18)

where η1 and η2 are the viscous constants of the material of the
particles (see Eq. (23) in [25]). Comparing with the Hertzian
counterpart Eq. (7) we have the formal relation for the total
force in the normal direction:

FNtot = const
(

x3/2i j + ξx
1/2
i j ẋi j

)

. (19)

A similar derivation holds for the tangential components, for
which we have [25]:

FTdis = ξktR
1/2x1/2i j ṡ. (20)

These considerations leads to Eq. (14) with

γN(xi j) = ξkN(xi j), (21)

and

γT (xi j) = ξkT (xi j). (22)

Combining these equations we arrive at:

Bi j = ξKi j, (23)

which is used later to understand the trajectories of the normal
mode frequencies in the complex plane, considered as func-
tions of ξ: ωn = ωn(ξ).
The constitutive contact laws expressed by the Hertz-

Mindlin theory imply the trivial scaling between the stress and
strain (or volume fraction) under compression [29]:

σ ∼ εα, (24)

with α = 3/2 for Hertz contact force law, Eq. (7), σ is the
uniaxial stress and ε is the strain. When the constitutive par-
ticles follow other force law, the exponent α is modified ac-
cordingly. In fact, α = 3/2 is expected for a collection of
monodisperse spherical Hertzian grains, which is not an ac-
curate description for the system we study here. Therefore,
we use a mechanical testing machine to measure the stress-
strain relationship exhibited by the tungsten powder and the
system of glass and steel beads confined in the cup. To per-
form this characterization, we sit a solid stainless steel plunger
on top of the powder. As demonstrated in Fig. 3a, we find a
weakly non-linear stress-strain response of the tungsten pow-
der. For the powder we use in this study, the power law ex-
ponent always falls significantly below that predicted by Eq.
(24), α = 1.15 ± 0.01. We also test the constitutive laws for
the systems of glass beads and steel beads (Fig. 3b) obtaining
the α exponent summarized in Table I.

B. Theory of normal modes in a dissipative medium

In what follows, xi, and ui denote the equilibrium position,
and displacement from equilibrium, respectively, of the i-th
particle. The variables θi represent the librational angles of
the i-th particle. In addition, W = W ẑ represents the dis-
placement of the cup wall in the z-direction. In the associated
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experiment,W = W ẑ is 1 micron, at least three orders of mag-
nitude smaller than R, therefore, all ui are infinitesimal and the
linear equation of motion for the i-th particle with mass m is:

− mω2ui = K′iω[ui + θi × d̂iw −W]+
∑

j
K′i j[u j − ui + θ j × d̂ ji − θi × d̂i j], (25)

where, di j = (1/2)(xi − x j) for the case when neighboring
particles are identical spheres, and the subscript, w indicates a
particle interacting with the cup wall. The equations of motion
for the angular variables are:

− ω2Iiθ̇i = −diw ×K′iω[ui + θi × d̂iw −W]+
∑

j
di j ×K′i j[u j − ui + θ j × d̂ ji − θi × d̂i j]. (26)

The stiffness matrix K′i j modulates the elastic and viscous
interactions between neighboring particles and is defined in
terms of the elastic matrix Ki j and the damping matrix Bi j as
defined above:

K′i j = Ki j − iωBi j. (27)

Similarly, K′iw describes the elastic and viscous interaction
between a particle and the wall of the cup; it is zero for par-
ticles not in contact with the wall. Next we write a compact
form of these equations of motion, Eqs. (25) and (26).
The linearized equation of motion for the i−th particle in the

system of N particles with mass m can be succinctly written
as:

Hi j(ω)u j = KiωW, i, j = 1 : 6N, (28)

where the dynamical matrix is:

Hi j(ω) = −mδi jω2 − iωBi j + Ki j. (29)

Each term in Hi j accounts for the inertial, dissipative and elas-
tic interactions at the contact between particles i and j, re-
spectively. The vector {u j} represents the set of 3N particle
displacements and 3N particle rotations, and Kiω is the gener-
alized spring constant connecting a particle to the walls of the
cup which moves oscillatory in the z direction with amplitude
W. The effective mass is obtained by inverting the matrix H
[20]:

M̃(ω) = m[H−1(ω)]i jK jω. (30)

This result formalizes the relation between the resonance
peaks in the effective mass and the normal mode frequency
spectrum. The peaks observed in M̃(ω) (Fig. 2) are due to the
set of normal modes, enj , that are a solution to Eq. (28) when
there is no forcing by the cup,W = 0, i.e.,

Hi j(ωn)enj = 0. (31)

The normal modes are those eigenvectors of H for which
the corresponding eigenvalue is zero, and they occur at the
complex-valued frequencies, ωn.

The normal mode frequencies, ωn, are the non-trivial solu-
tions of Eq. (31), in which the eigenvalue is 0. Regardless
the properties of the matrices K,B it is a rigorous result that
for values of ξ below a critical and finite value, ξm, all the
modes are underdamped [30], meaning$(ωn) ! 0 ∀ n . Sim-
ilarly, there is another finite, critical value, ξM , such that when
ξ ≥ ξM all the modes are overdamped [31]: $(ωn) ≡ 0 ∀ n.
As ξ is increased from ξm to ξM each branch becomes criti-
cally damped at the values ξc viz: ωn(ξc) = iλn n = 1, 2, ....
All normal modes have the same functional dependence on
ξ in the vicinity of such a critical point. Let D(λ, ξ) =
det{Hi j(ω = iλ, ξ)}. In the vicinity of the critical damping
point λ = λnc, ξ = ξnc we may expand D in a Taylors series:

D(λ, ξ) = an(λ − λnc) + bn(ξ − ξnc) + dn(λ − λnc)2+

en(λ − λnc)(ξ − ξnc) + fn(ξ − ξnc)2 + . . .
, (32)

where
an = ∂D∂λ |(λnc,ξnc) bn = ∂D∂ξ |(λnc,ξnc)

dn = (1/2) ∂
2D
∂λ2
|(λnc,ξnc) en = ∂2D

∂λ∂ξ
|(λnc,ξnc)

fn = (1/2) ∂
2D
∂ξ2
|(λnc,ξnc)

(33)

The coefficients an, bn, . . . , fn are all real-valued because
{a ji }, λnc and ξnc are all real-valued. λnc is a double root of D
because it represents the coalescence of two distinct complex-
conjugate roots in the limit ξ → ξ−nc. Accordingly, an ≡ 0.
One may solve for the roots of Eq. (32):

ωn = iλn = iλnc ± ign(ξ − ξnc)1/2 + O(ξ − ξnc)+1 , (34)

where gn =
√
−bn/dn is real-valued because λn is real-valued

when ξ > ξnc.
Since H is a 6N × 6N matrix, there are 12N normal modes

in this model. In practice, the effective mass can be under-
stood in terms of a subset of these normal modes, which cor-
respond to the modes located in the complex region of interest
[−ωM ≤ Re[ωn] ≤ +ωM : −ωM ≤ Im[ωn],≤ 0], whereωM is
the maximal frequency measured in the experiment. The fre-
quency dependence of M̃(ω) can be expressed in terms of this
subset of normal modes through a pole decomposition [20] as
described in the next section.
Thus, this set of equations allow for an experimental mea-

surement of the normal mode frequencies directly from the
effective mass.

IV. POLE DECOMPOSITION

The matrix H is complex-valued, frequency-dependent and
symmetric. A non-Hermitian matrix like H may lack, in gen-
eral, the property that its eigenvectors form a complete or-
thonormal basis [32]. However, according to a recent theorem
by Tzeng and Wu [33], there still exists 6N orthonormal vec-
tors which satisfy the following modified eigenvector prob-
lem:

Hi jenj = λ
nen∗i , (35)
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where the eigenvalues λn are complex valued and the aster-
isk denotes conjugation. A normal mode of the system is a
solution to the set of Eqs. (25) and (26) in which there is
no forcing by the cup: W = 0. The corresponding displace-
ments or rotations are the eigenvectors of H whose eigenval-
ues are zero, i.e., λn(ωn) = 0. If we expand to first order:
λn(ω) = αn(ω − ωn) + O(ω − ωn)2, and introduce this expan-
sion into Eq. (30), we obtain the pole expansion:

M̃(ω) =
∑

n

An
ω − ωn

, (36)

with the residues given by

An =
meni (ωn)e

n
j(ωn)Kjw(ωn)
αn

. (37)

In reference [20] it was demonstrated that the sum Eq. (36),
is an exact expression for the effective mass. This allows us
to use the rational function approximation, M̃RF discussed in
the following section to extract the normal mode frequencies
from the effective mass. The matrix An are the residues of the
poles representing the strength of each resonance ωn. Using
this expansion, which can be proved to be exact [20], the set of
normal modes and residues {ωm, Am} can be determined from
the experimental data of Fig. 2 via a search of all zeros of the
rational function M−1 analytically continued to the complex
plane. We describe this procedure in the next Section V.

V. RATIONAL FUNCTION DECOMPOSITION TO
EXTRACT NORMALMODES

We use the measured effective mass to extract the normal
modes via the pole decomposition described by Eq. (36).
Here, we describe the numerical procedure for generating the
rational function interpolation of our data M̃RF , which we use
to determine the poles and the residues in our system.
In the experiments, we measure the effective mass M̃(ωei )

at a series of discrete frequencies e = 1 : 1490 from 100 Hz to
a maximum frequency of 15 kHz. Using the reflection prop-
erty, M̃(−ωe∗i ) = M̃

∗(ωei ), we extend the experimental data to
negative real-valued frequencies, and we set M̃(0) = M0, the
static mass of the powder. So we are working with 2981 data
points on the real frequency axis.
To search for the normal mode frequencies we require

a complex valued function that passes through all the data
points on the real axis. To this end we employ the Bulirsch-
Stoer algorithm [34] to determine a rational interpolation
Ri(i+1)...(i+m)(x) of our data (xi, yi), . . . , (xi+m, yi+m).. Typically
[35]:

Ri(i+1)...(i+m)(x) =
p0 + p1(x) + . . . + pµxµ

q0 + q1(x) + . . . + qνxν
, (38)

where the coefficients of the numerator and denominator can
be complex numbers. We choose to use the rational function
in the recurring form:

Ri(i+1)...(i+m)(x) =
R(i+1)...(i+m)(x) − Ri...(i+m−1)(x)

( x−xi
x−xi+m )(1 −

R(i+1)...(i+m)(x)−Ri...(i+m−1)(x)
R(i+1)...(i+m)(x)−R(i+1)...(i+m−1)(x) )

, (39)

where, the starting points are Ri(x) = yi, Ri−1(x) = 0.
The poles ωn correspond to MRF(ωn) = ∞. Therefore, we

identify the poles using the condition outlined by Eq. (41),
1

MRF (ω1) = 0. We employ Muller’s method [35] to identify the
poles in the complex plane. Once a normal mode frequency is
identified, ω1, we use Eq. (36), to determine the correspond-
ing residue A1, A1 = limω→ω1 (ω − ω1)MRF(ω). Using the re-
flection property, we obtain the corresponding symmetric pole
and residue which are −ω∗1 and −A

∗
1.

The main resonance peak in M̃(ω) is often very large com-
pared to the rest of the peaks, which makes it simple to find
the first pole, but increasingly difficult to find the remaining
poles by Muller’s method. Thus, to find the next pole we use
the difference between the original effective mass and the ef-
fective mass given by Eq. (36). That is, we define a new set
of data points {ωei ,M

2
i } by

M2
i (ω

e
i ) = Mi(ωei ) −

A1
ωei − ω1

−
−A∗1

ωei − (−ω∗1)
. (40)

This iterative process is repeated to identify all of the poles
that make a notable contribution to the measured effective
mass. As a test of the accuracy of this approach, we compare
the real data to that from Eq. (36) utilizing all of poles and
residues as shown in Fig. 4. The difference between the data
and the fitting is negligible indicating that the relevant poles
in the frequency range of measurement have been identified.
The other systems at different stress behave similarly.
As explained above, there are 12N normal modes. The

modes that we observe in the effective mass are those with
the largest residues in the pole decomposition as expressed by
Eq. (36). While it is visually apparent that only a few modes
appear in the experimental effective mass, like in Fig. 2, when
we subtract the pole contribution of the principal mode, then
a finer structure appears, as seen in Fig. 4. The curve called
Remainder in Fig. 4 appears with many (small) peaks sig-
naling the existence of many more modes in the system. The
fact that these modes are visible only after subtracting the first
modes, is because their residues are very small and therefore
do not contribute much to the effective mass. Thus, the effec-
tive mass is sensitive to the most important extended modes
in the system as given by the visible resonance peaks. These
modes are extended and define the correlation length of the
system. The remaining modes are still part of the effective
mass but their contribution is small.
To locate the remaining modes, we repeat the process of

subtracting the pole contribution from Eq. (36) after we lo-
cate the largest pole in the remainder signal. In this way,
we keep locating all the modes in the system. We estimate
that we have approximately 1 million particles in the tung-
sten system. While it is not realistic to expect to find all the
6 million modes by this method, the pole decomposition pro-
vides a large number of the most important modes that define
the effective mass in the region of observation. Indeed, there
could be other modes that are outside the frequency domain of
measurement and cannot be measured. Beyond this, the only
limitation to locate the modes is the resolution of the signal
obtained as a remainder after subtracting each pole from Eq.
(36).
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VI. INTERPRETATION OF EXPERIMENTAL DATA

In practice, we fit a complex valued rational function to our
experimental data, M̃RF (ω) to determine the set of perceiv-
able normal modes and residues {ωn, An} (Fig. 2). Utilizing
M̃RF(ω) the normal modes are identified by the criteria of Sec-
tion V:

1
M̃RF(ωn)

= 0. (41)

The locations of the complex-valued normal modes in the
ω-plane (Re[ωn], Im[ωn]) are plotted in Fig. 5 for the tung-
sten system at σ = 44.8 kPa. The poles are located rela-
tively close to the real axis, indicating that the system is un-
derdamped, Im[ωn] ! Re[ωn], which is consistent with our
previous experience [20]. Furthermore, the data of Fig. 5 of
the identified normal modes frequencies follow, in average,
a parabolic curve in the complex plane. We have confirmed
that this parabolic shape also holds for the other stress levels,
however the data is more noisy. This parabolic shape is also
confirmed in numerical simulations done in [36].
This result provides the basis for interpreting the experi-

mental data. Indeed, the parabolic curve can be shown to
be the result of a weakly damped system with a commuta-
tive property of the dynamical matrices: if the damping and
stiffness matrices commute,KB = BK, the trajectories can be
approximated by parabolas for small damping. As an illustra-
tive example of this, let us investigate a consequence of the
approximation Eq. (23) between the elastic and the damping
matrices.
An important implication of Eq. (23) is that the matrices

K and B commute: KB = BK, and the set {enj} are the com-
plete eigenvectors for both matrices. The normal modes in
the damped system are exactly the same as in the undamped
case except that they now have complex-valued frequencies,
due to the attenuation. In the presence of damping, each mode
exactly decouples.
Expanding Eq. (31) we have,

[

− mδi jω2n − iωnBi j + Ki j
]

enj = 0. (42)

When ξ > 0 the normal mode frequencies are complex. If we
substitute the approximation Eq. (23) into Eq. (42), we have:

[

− mδi jω2n − iωnξKi j + Ki j
]

enj = 0. (43)

The approximation Eq. (23) implies that enj is also an eigen-
vector of B, which permits us to simplify Eq. (43):

−ω2n − iξω2n0ωn + ω
2
n0 = 0, (44)

where ωn0 are the normal modes of the system without damp-
ing, ξ = 0. Equation (44) is a quadratic equation with roots:

ωn = −i
ξ

2ω
2
n0 ± ωn0

√

1 −
(ξωn0

2
)2
. (45)

For large enough damping, ξ > ξc = 2/ωn0, these normal
modes are overdamped, and the corresponding frequencies are

purely imaginary. For weak damping, ξ < ξc, the modal fre-
quencies are damped oscillators. In this case:

ξ < ξc : |ωn(ξ)| = ωn0. (46)

Thus, when Eq. (23), the underdamped modes have the
property that, for a fixed ξ ! ξc, the modes lie approximately
on a parabola given by:

Im[ωn] ≈ −
ξ

2
Re[ωn]2. (47)

As seen in Fig. 5, the modes exhibit a parabolic shape in the
ωn-plane, which suggests the validity of Eq. (47) in average.
We fit Eq. (47) to the modal frequencies obtained experimen-
tally in Fig. 5, and find ξ = (2.2 ± 0.2) × 10−5s! ξc = 2/ωn0,
confirming that the system is weakly damped. We conclude
that the scaling of the undamped normal modes can be ex-
tracted via Eq. (46), i.e. by plotting the absolute value, |ωn|
against applied stress.

VII. LOCATION OF THEMISSINGMODES

At this point we would like to show how the results of
our analysis can give an indication of where, in the com-
plex plane, the remaining normal mode frequencies are lo-
cated. These missing normal mode frequencies correspond to
residues which are negligibly small in the measured effective
mass and are not visible in the effective mass decomposition.
Consider Eq. (45) which may be re-written as

[%(ωn)]2 + [&(ωn) + ξ−1]2 = ξ−2 (48)

Thus, if the matrices B and K commute all the normal mode
frequencies, for a fixed value of the damping parameter, ξ,
lie on a circle of radius 1/ξ centered on the point −i/ξ, as
discussed above. In a separate effort of ours [36] we have
investigated the extent to which these results may hold true
with computer simulations. We have performedmolecular dy-
namic simulations of ensembles of spherical grains in which
we take the spring constants, K, to be given by the Hertz-
Mindlin theory and we have taken the damping constants, B,
to be the same for every non-zero contact. Although B and K
do not commute in this case, the computed normal mode fre-
quencies are reasonably well described by the predictions of
Eq. (45) as we show in Fig. 6 which is reproduced from [36].
Specifically, for each value of the damping parameter, ξ, the
set {ωn} approximately lies on a circle whose radius decreases
as ξ is increased, Eq. (48). The matrices B and K are mostly
zero-valued, except for grains which are actually in contact
with each other. In this sense we may say that they approxi-
mately commute; hence Eqs. (46) and (48) are approximately
true.
We suppose these features also apply to real data on real

granular media as we have already seen in Fig. 5. In order to
draw some quantitative conclusions from our data we replot,
in Fig. 7, some of our previously published results [20] which
were deduced from the measured effective mass of tungsten
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granules lightly coated with viscous PDMS fluid. The differ-
ence between the system of coated tungsten particles used in
Fig. 5 and Fig. 7 is that in the later we use larger amount of
silicone oil to coat the particles (80 mg as indicated). Thus,
the damping in the system is increased as shown in [20]. We
have fit the data to Eq. (48) using the cost function

χ(R) =
∑

n
| An | r2n [θn − θ(rn;R)]2 . (49)

Here, R = 1/ξ is the radius of the circle and the resonant
frequencies are written in polar coordinates: ωn = rn exp (iθn).
An are the residues of the poles in the decomposition of the
effective mass data, Eq. (36); their magnitudes are indicated
by the sizes of the symbols in Fig. 7. θ(r;R) = − arcsin(r/2R)
is the representation of Eq. (48) in polar coordinates. The
results are shown in Fig. 7(a).
Although the existing data cover only a small arc of the

circle, we feel that based on the results of our numerical sim-
ulations, and the fact that the existing data do trend along the
curve, Eq. (48), we may conclude that the underdamped res-
onance frequencies which we are not able to directly locate
with our effective mass measurements lie roughly between the
bounds of the two dashed curves in Fig. 7. The overdamped
resonance frequencies will lie on the negative imaginary axis,
of course.

VIII. STRESS-DEPENDENCEOF THE
CHARACTERISTIC FREQUENCY

The pole with the largest residue contributing to the reso-
nance frequency at the main peak of the effective mass defines
the characteristic frequency |ω∗(σ)|. By the absolute value we
indicate that this is the characteristic frequency of the damped
modes obtained via the effective mass to distinguish it from
the undamped ω∗D obtained from the Debye departure in the
density of states in Eq. (1). Figure 8 shows |ω∗(σ)| indicat-
ing a power-law dependence on σ consistent with Eq. (1)
for the tungsten powder. Using an OLS estimator, we find
Ω′ = 0.15 ± 0.02 (R2 = 0.9949). More specifically, the fitting
yields:

|ω∗(σ)| = (3.27 ± 0.03)σΩ′ , (50)

with σ measured in kPa and the frequency in kHz.
Using the stress vs strain curve in Fig. 3a with α = 1.15 ±

0.01, we find Ω = 0.17 ± 0.02 and δ = 0.10 ± 0.02 for the
tungsten powder.
We test further the results with packings constituted by dif-

ferent particle types. We use spherical particles made of glass
beads (1mm diameter) and steel balls (2mm diameter) with-
out coating. Figure 8 shows the scaling of |ω∗| with stress for
these systems and the exponents (Ω′,Ω, δ,α) are indicated in
Table I (see Fig. 3b for constitutive law). We find for glass
beads δ = 0.14 ± 0.02 and for steel balls δ = 0.13 ± 0.02.
The exponent of the tungsten particles is smaller than the

rest. We hypothesize that irregularities in particle shape may
add some complexity in the modes not seen in spherical par-
ticles. These particles were obtained by fusing two or three

irregular (approximately cubic) particles with facets and an-
gularities that may introduce modes not seen in spherical par-
ticles coupling the rotational and translational modes in an un-
controlled way.
We also test the scaling of the other modes obtained from

the effective mass by looking at the modes with smaller
residue than the main characteristic frequency. We find that
the other modes scale with similar exponent as the character-
istic mode |ω∗| (Fig. 9). The lack of data in the second peak
for large stress is due to the fact that they fall outside of our
experimental range of observation for high enough pressures.
This is also corroborated by the data collapse shown in Fig. 2c
and 2d. The result of the characteristic frequency following a
decreasing path in stress is plotted in Fig. 10 showing that
the scaling of the characteristic frequency with stress yields
similar exponent as the upward path in stress shown in Fig. 8.

IX. CONCLUSIONS

Our results suggest that granular materials near jamming
behave critically with a characteristic frequency defined by a
critical exponent δ. The experimental exponents δ are con-
sistently smaller than δth = 1/2 predicted by theory [6, 7].
Such an anomalous exponent δ < 1/2 poses new theoretical
challenges to explain frictional systems with translational and
rotational degrees of freedom. It might be possible that the
path followed in stress space may change the value of the ex-
ponents. The usual path followed in previous works is along
the line of zero shear stress, as a function of packing fraction.
The present experiments follow a line of changing uniaxial
stress, which would place it along a path that excites bulk and
shear modes. Thus, it is plausible that the exponents might
be affected by the path taken to approach the jamming transi-
tion. Another interpretation is that the lowest of our frequen-
cies may not be a proxy for the cutoff frequency ω∗D, which
separates the region of excess density of states from the De-
bye region. However, if some universality could be claimed at
the jamming transition, both characteristic frequencies should
scale with stress with the same universal exponent. In the
same line, it is interested to note that the lowest frequency es-
timated from the effective mass is directly obtained from the
dynamical matrix as done in ω∗D as well.
In general, other mechanical properties such as elastic con-

stants (shear and bulk moduli), sound speeds, and attenuation
can be obtained from the effective mass measurement [18, 20].
Furthermore, the theory can be extended to non-spherical par-
ticles as well [37].Thus, the effective mass technique facili-
tates a systematic test of the scaling laws of the anomalous
mechanical and acoustic properties of athermal and dissipa-
tive granular systems near the jamming transition. We hope
that this technique may open new experimental tests of gran-
ular matter near the jamming point.
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Material Size Shape Damping Ω′ α Ω = αΩ′ δ

Tungsten powder ∼ 150µm irregular coating 0.15 1.15 0.17 0.10
Glass beads 1 mm sphere no coating 0.21 1.25 0.26 0.14
Steel balls 2 mm sphere no coating 0.195 1.21 0.24 0.13

Theory linear spring [6] – sphere – 1/2 1 1/2 1/2
Theory Hertz [6] – sphere – 1/2 3/2 3/4 1/2

TABLE I: Summary of the measured exponents and predicted by theory.
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X. APPENDIX. EXPERIMENTAL SET UP

We characterize the normal mode spectrum of the granular
medium by measuring the effective mass. The main results in
the text are for a granular medium made of tungsten powder
that is lightly coated with silicone oil (PDMS) of viscosity 894
cP. We also present results for spherical glass beads of 1 mm
diameter and spherical steel balls of 2mm. Both systems are
uncoated. The preparation protocol is the same for all cases.
Below, we explain the experimental procedure for tungsten
particles.
The tungsten powder [19] and coating procedure [20] are

discussed elsewhere. In the latter reference we found that the
light PDMS coating significantly dampened or eliminated the
low amplitude modes in the system. This is advantageous for
the purposes of this study because it permits us to unambigu-
ously monitor the effect of pressure on the trajectory of the
dominant large amplitude modes in the system. The purpose
of using tungsten as a material for the particles is to achieve a
largemass of the granular system in comparisonwith the mass
of the cup, to maximize the difference between both quantities
and obtain a reliable effective mass.
After coating, ∼100 g of the weakly wet powder is poured

into a cylindrical cup (Fig. 1). The cup has internal diame-
ter=2.54 cm, and height=3.08 cm. The sides of the cup are
tapped to encourage the powder to settle, and yield a flat free
surface. Finally, the system is compacted using a cyclical
stress imposed with an Inkstrom press of sequentially increas-
ing then decreasing amplitude as we have previously devel-
oped [21]. The maximum stress amplitude is 118.5 kPa. It
was previously shown [19] that this handling procedure suit-
ably produces a finite sized granular medium with a repro-
ducible effective mass which is independent on the amplitude
of oscillation. The mechanical compaction protocol is dis-
cussed in detail in reference [19].
The effective mass measurement is discussed in reference

[18–20]. The cylindrical cup is subjected to a vertical, sinu-
soidal displacement where the vibrational frequency is varied
in the range 0.1 - 15 kHz. We take frequency steps of 10 Hz,
and at each frequency we measure the force on the bottom of
the cup, and the acceleration at two points on opposite ends of
a single diameter. The mass is determined by the difference
between the ratio of the force to the average acceleration, and
the static mass of the cup. The effective mass is a frequency
dependent complex value, owing to the partial in phase partial
out of phase motion of the individual grains.
The objective of this work is to observe the effect of a uni-

axial confining pressure on the dominant normal modes in our
granular system. To impose a sequentially increasing stress
on the granular medium, we place a thin ∼ 5 - 8 mm ure-
thane plug on the free surface of the powder, and screw a cap
on top of the cup. After determining the orientation of the
cap corresponding to initial contact with the top of the ure-
thane, we further tighten the cap to impose a uniaxial com-
pressive stress. Each rotation of the cap corresponds to an ax-
ial displacement that is governed by the characteristics of the
threads which support the cap. To convert this displacement
to a stress, we use a mechanical testing machine to charac-

terize the stress-displacement relationship of the coupled ure-
thane/tungsten powder system in the cup.
The results of the effective mass are shown in Fig. 2. It

is visually apparent from Fig. 2 that only a few modes ap-
pear in the effective mass while 12N modes are expected. The
effective mass is sensitive to the extended modes in the sys-
tem corresponding to collective motion of the grains. For
instance, the main mode from where we obtain the charac-
teristic frequency, is an extended mode spanning the system
size. The remaining modes are more localized, correspond
to modes with smaller residues, or are heavily damped and
are difficult to observe them in the shape of the effective mass.
However, all the 12Nmodes appear in the effective mass mea-
surement. The remaining modes, being more damped, do not
show easily in the shape of the effective mass. Thus, the effec-
tive mass is most effective in finding the main extendedmodes
in the system.
Thus, modes with small residues are difficult to see in the

effective mass since they are overshadowed by the extended
modes with larger residues appearing as large peaks in Im(ω).
This picture is corroborated in the pole analysis of Fig. 4.
When we subtract the main pole contribution of the character-
istic frequency |ω∗|, a finer structure with many small peaks
(called Remainder in Fig. 4) appears. This finer structure cor-
responds to the remainder modes with smaller residues. By
subtracting one by one the contribution of these modes from
the effective mass, in principle, we could obtain the entire sub-
set of the 12N modes that appear in the window of observa-
tion. In practice, we do it for only the few largest modes since
we are interested in the extended modes that test the critical-
ity of the system. However, the procedure can be extended
to find more modes until a given resolution preset by the ex-
perimental measurement of the effective mass. That is, one
can continue extracting modes from the pole decomposition
as long as the mass measurement can resolve the peaks in the
Reminder of the effective mass.
Thus, while nonlinearities are inherent in the system, still

the 12N modes are part of the effective mass, at least those
that are within the experimental window of observation. As
long as the sought-after poles lie within the rectangle [±15
kHz, ±i15 kHz], our procedure will determine their properties
with a reasonable accuracy.
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FIG. 1: (Color online) Schematic of cup used in effective mass ex-
periments. A compliant plug is sandwiched between the tungsten
powder and the cap. The uniaxial confining stress is increased by
tightening the cap.
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FIG. 2: (Color online) Effective mass of tungsten particles in a cup as
a function of driving frequency: (a) Real part M1(ω), and (b) Imag-
inary part, M2(ω), plotted for the indicated external stresses. We
calculate M̃ for 13 stresses between σ = 44.8 kPa and 6.39 MPa
and show six curves as indicated for clarity. All datasets are avail-
able at http://jamlab.org. (c)-(d) Data collapse of M1(ω) and M2(ω)
according to the scaling scenario Eq. (1).
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(a)

(b)

FIG. 3: (Color online) Force constitutive law. We measure the axial
stress vs. strain response of (a) the tungsten powder confined in the
cup and find an approximate power-law with exponent 1.15 ± 0.01,
averaged over load and unload, (b) the packing of glass beads and
steel balls with exponents α given in Table I.
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FIG. 4: (Color online) Pole decomposition. Comparison of pole de-
composition using Eq. (36) and the obtained poles and experimental
data at 44.8 kPa for the tungsten particles. We also plot the difference
showing that many more nodes with small residues are still present
in the effective mass.
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FIG. 5: (Color online) Location of the normal mode frequencies
in the complex-value plane (Re[ωn], Im[ωn]) which contribute to
the pole decomposition Eq. (36) of the data plotted in Fig. 2 for
σ =44.8 kPa. Solid line represents a fit according to the parabolic
Eq. (47). This equation neglects the fluctuations in the force distri-
bution, which explains the scattering of the data around the parabolic
fit. Other stresses behave similarly.
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FIG. 6: (Color online) Computed complex-valued normal mode fre-
quencies of a simulated system of 400 particles interacting via con-
tact springs and dampers for 5 different values of the damping pa-
rameter. From Ref. [36]. Although the matrices K and B do not
commute in this case, the normal mode frequencies approximately
follow the predictions of Eq. (48), which is shown as a solid curve
for different values of ξ.
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FIG. 7: (Color online) (a) Complex-valued normal mode frequencies
determined from experimental data of loose granular tungsten parti-
cles, lightly coated with 80 mg of PDMS of viscosity 894 cP. From
Ref [20]. This system is identical to the system of Fig. 5 except for
larger amount of PDMS which increases the dissipation. The size of
each symbol is proportional to the magnitude of the residue, An, in
the decomposition of the effective mass data. The solid curve is a
best fit of the data to Eq. (48). The dashed curves are for radius val-
ues corresponding to the full width at double the minimum of the cost
function, Eq. (49). (b) Same as (a) but with an expanded scale. We
expect the missing normal mode frequencies - those whose residues
are negligibly small in the measured effective mass - to lie within
these bands or on the negative imaginary axis.
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FIG. 8: (Color online) Absolute value of the characteristic frequency,
|ω∗(σ)|, corresponding to the main resonance peak of the effective
mass as a function of stress σ rescaled by the shear modulus (Gg)
of the material from which the particles are made. We plot results
for experimental systems composed of tungsten irregular particles
of ∼ 150µm coated with PDMS, uncoated spherical glass beads of
1mm, uncoated steel balls of 2mm. Solid lines are power-law fits
with OLS estimator. Exponents are reported in Table I.
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FIG. 9: (Color online) Scaling of the modes obtained from the first
and second peak of the tungsten system showing similar scaling with
pressure.
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FIG. 10: Test of reversibility in the glass beads experimental system.
We follow a decreasing path in pressure and obtain similar exponent
Ω′ = 0.20 ± 0.02 as the one obtained with the upward pressure path
reported in Table I.
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