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Introduction

Turbulent Instabilities
Motivation
Problem Description

Rayleigh-Taylor (RT) Instability

@ Two fluids of different densities
separated by an interface
o Light fluid pushing on the heavy fluid
@ Characterized by bubbles and spikes
@ Leads to chaotic mixing of the fluids — - -
Vp-Vp<0 Figure_:_Evqution of the RT
instability

Source: Wikipedia.org
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Introduction

Turbulent Instabilities
Motivation
Problem Description

Richtmyer-Meshkov (RM) Instability

Similar setup to RT Instability
Impulsive acceleration (shock wave)
Bubbles and Spikes

Leads to chaotic mixing of the fluids

Vp-Vp#0

Figure: RM instability
early stages
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Introduction Turbulent Instabilities
Motivation
Problem Description

Motivation

CH Ablator

@ Inertial Confinement Fusion
o Multiple layers of different fluids
e Many shocks and stages of
acceleration
e Validation of Simulations by
Experiments
@ Astrophysical Phenomena, Climate,
Supersonic Combustion, etc.

Cryo DT

DT Gas

Figure: Simplified ICF Capsule

Source: J. Hager. Rayleigh-Taylor Experiements in Materials
and Conditions Relevant to Inertial Confinement Fusion
PhD Thesis. University of Rochester (2011)
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Introduction

Turbulent Instabilities
Motivation
Problem Description

Problem Description

@ Single mode perturbation
@ Pass a shock wave across it

@ At some point turn on a constant
gravity

Figure: Initialization of
Simulations
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Numerical Methods

Compressible Euler Equations

@ apv,' —0 o
at axi — Continuity
Opvj  O(pvivj + pdy)
— 0 lomentum
or T ox i
Oj 8(E + p)v; —0
ot Ox; N rere
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Numerical Methods

FronTier

@ All simulations use Stony Brook FronTier code

@ 2D Eulerian Hydro

o Lagrangian tracked
e interfaces

@ Front Propagation via
Riemann solver

@ Interior Update using like
component data

Figure: 1D tracked curve
representing interface in 2D grid

Courtesy: Dr. D. H. Sharp
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Numerical Methods

Mixing Front Theoretical Model

@ B. Cheng et al. Phys. Rev. E 66, 036312 (2002)

@ Based on buoyancy drag considerations

/\/2
(4 k)G = (o= NeO-T5- )
p = density of penetrating fluid p' = density of ambient fluid
g(t) = gravity C = drag coefficient
Z = height of mixing zone edge k = added mass coefficient
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Numerical Methods

Mixing Front Theoretical Model

/
be the atwood number

o Set k=1, LetA_‘p_p
0

o

o Let |V| =
o |V|/\/Ag|Z] for RT
o |V|/\/A]Z| for RM
o Let dt/ =

o dt\/Ag/|Z| for RT
o dt\/A/|Z| for RM

@ Substitute scaled variables into (1) and solve the resulting
ODEs

o Gives you |Z| = Z(| %), |Vol, to, t)
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Simulation Parameters
Results Results

Simulation Parameters

@ Single mode sinusoidal perturbation Amplitude = 0.1\
e Vary the initial (preshock) Atwood number Aps

Q A ~02

Q A, ~05

Q A, ~038
@ Vary the Mach number of the shock M,

QO M. =12

Q@ M,=15

QO M;=20

QO M;=50
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Simulation Parameters
Results Results

Variation in shock Mach number

Aps = 0.8, RM only simulations

.
200 M,=5.0

100] —— M,=2.0
E 50f T M,=15
£ —_M,=12
£ 20
=
=z 10
(5]
E =
N
80
= 2
k=
= 1

.50

01 .02 05 1 ) 5 1 2 5 10

Time (ms)

Figure: Growth vs. Time for a variation of Mach Numbers
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Simulation Parameters
Results Results

Variation in pre-shock Atwood Number

Mg = 1.5, RM only simulations
Theory: Vo = M, Zy =5, tg = .15, = 0.06
———A=0.8 ~— Cheng 2002 Exact ———A=0.8 ~— Cheng 2002 Exact

Cheng 2002 Asymptotic 200 ——A=0.5 Cheng 2002 Asymptotic
= 100f —™— A=0.2

Bubble Height (mm)
Spike Height (mm)
1)

1 2 5 1 2 5 10 20 A 2 5 i 2 5 10 20

Time (ms) Time (ms)

Figure: Growth vs. Time for a variation of Atwood Numbers, Left:
Bubble, Right: Spike
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Simulation Parameters
Results Results

RM and RT combined growth

Aps = 0.5, Ms =15
RM Theory: Vo = M, Zy = 5,tg = .13, = 0.06
RT Theory: Vo =1,2Z5 =5,t = .13, a, = 0.06

200} ——RT only RM, RT @ 0.44ms 200f ——RT only RM, RT @ 0.44ms
100f =——RMonly ——RM,RT @4.00ms 100f ——RMonly ——RM,RT @ 4.00ms
50 aAg, a;=0.089 50 aAgt?, @,=0.089
£ 20 E 20
£ 10 £ 10
g ]
T 5 T 5
o o
] =
& 2 & 2
1 1
50 50
1 2 5 1 2 5 10 20 1 B 5 1 2 5 10 20
Time (ms)

Time (ms)

Figure: Growth rates for RM and RT combined, Left: Theory, Right:
Simulations

Jeremy Melvin
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Conclusions
Future Work
Conclusion

Conclusions

@ RT vs RM then RT has a significant growth discrepancy at
early time

@ Theory may not be ideal for ICF regime

@ Asymptotic RT growth is insensitive to the initial RM
conditions

o ICF RT growth rates have the potential to have a dependency
on the RM seeding
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Conclusions
Future Work
Conclusion

Future Work

@ Investigate in a more ICF like regime

Spherical Geometry

Multiple shocks of varying strengths
Stronger acceleration

Radiation effects

@ Simulations with and without front tracking

e Impact of numerical diffusion
o Change in growth rates

Jeremy Melvin Evolution of RT growth after an initial RM instability
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Future Work

Conclusion

THANK YOU!
QUESTIONS?
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