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Turbulent Instabilities
Motivation
Problem Description

Rayleigh-Taylor (RT) Instability

Two fluids of different densities
separated by an interface

Light fluid pushing on the heavy fluid

Characterized by bubbles and spikes

Leads to chaotic mixing of the fluids

∇p · ∇ρ < 0 Figure: Evolution of the RT
instability

Source: Wikipedia.org
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Richtmyer-Meshkov (RM) Instability

Similar setup to RT Instability

Impulsive acceleration (shock wave)

Bubbles and Spikes

Leads to chaotic mixing of the fluids

∇p · ∇ρ 6= 0

Figure: RM instability
early stages
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Motivation

Inertial Confinement Fusion

Multiple layers of different fluids
Many shocks and stages of
acceleration
Validation of Simulations by
Experiments

Astrophysical Phenomena, Climate,
Supersonic Combustion, etc. Figure: Simplified ICF Capsule

Source: J. Hager. Rayleigh-Taylor Experiements in Materials
and Conditions Relevant to Inertial Confinement Fusion.
PhD Thesis. University of Rochester (2011).
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Problem Description

Single mode perturbation

Pass a shock wave across it

At some point turn on a constant
gravity

Figure: Initialization of
Simulations
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Compressible Euler Equations

∂ρ

∂t
+
∂ρvi

∂xi
= 0 Continuity

∂ρvj

∂t
+
∂(ρvivj + pδij)

∂xi
= 0 Momentum

∂E

∂t
+
∂(E + p)vi

∂xi
= 0 Energy
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FronTier

All simulations use Stony Brook FronTier code

Figure: 1D tracked curve
representing interface in 2D grid

Courtesy: Dr. D. H. Sharp

2D Eulerian Hydro

Lagrangian tracked
interfaces

Front Propagation via
Riemann solver

Interior Update using like
component data
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Mixing Front Theoretical Model

B. Cheng et al. Phys. Rev. E 66, 036312 (2002)

Based on buoyancy drag considerations

(ρ+ kρ′)
d |V |
dt

= (ρ− ρ′)g(t)−Cρ′V 2

|Z |
(1)

ρ = density of penetrating fluid ρ′ = density of ambient fluid

g(t) = gravity C = drag coefficient

Z = height of mixing zone edge k = added mass coefficient
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Mixing Front Theoretical Model

Set k = 1, Let A =

∣∣∣∣ρ− ρ′

ρ+ ρ′

∣∣∣∣ be the atwood number

Let |V ′| =

|V |/
√

Ag |Z | for RT

|V |/
√

A|Z | for RM

Let dt ′ =

dt
√

Ag/|Z | for RT

dt
√

A/|Z | for RM

Substitute scaled variables into (1) and solve the resulting
ODEs

Gives you |Z | = Z (|Z0|, |V0|, t0, t)

Jeremy Melvin Evolution of RT growth after an initial RM instability



Introduction
Numerical Methods

Results
Conclusion

Simulation Parameters
Results

Simulation Parameters

Single mode sinusoidal perturbation Amplitude = 0.1λ

Vary the initial (preshock) Atwood number Aps

1 Aps ≈ 0.2
2 Aps ≈ 0.5
3 Aps ≈ 0.8

Vary the Mach number of the shock Ms

1 Ms = 1.2
2 Ms = 1.5
3 Ms = 2.0
4 Ms = 5.0
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Variation in shock Mach number

Aps = 0.8, RM only simulations

Figure: Growth vs. Time for a variation of Mach Numbers
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Variation in pre-shock Atwood Number

Ms = 1.5, RM only simulations
Theory: V0 = Ms ,Z0 = 5, t0 = .15, αb = 0.06

Figure: Growth vs. Time for a variation of Atwood Numbers, Left:
Bubble, Right: Spike
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RM and RT combined growth

Aps = 0.5,Ms = 1.5
RM Theory: V0 = Ms ,Z0 = 5, t0 = .13, αb = 0.06
RT Theory: V0 = 1,Z0 = 5, t0 = .13, αb = 0.06

Figure: Growth rates for RM and RT combined, Left: Theory, Right:
Simulations
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Conclusions

RT vs RM then RT has a significant growth discrepancy at
early time

Theory may not be ideal for ICF regime

Asymptotic RT growth is insensitive to the initial RM
conditions

ICF RT growth rates have the potential to have a dependency
on the RM seeding
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Future Work

Investigate in a more ICF like regime

Spherical Geometry
Multiple shocks of varying strengths
Stronger acceleration
Radiation effects

Simulations with and without front tracking

Impact of numerical diffusion
Change in growth rates
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Thank you

THANK YOU!

QUESTIONS?
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