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Overview 

 Introduction 

 

 Methodologies 
¤ FE Predictor-Corrector Split Projection Method 

¤ Adaptation Technology  

 

 Simulation Results 
¤ Subsonic flow, transonic flow and supersonic flow over 

2-D NACA0012 airfoil 

¤ Supersonic flow over 3-D NACA0012 airfoil 

 

 Conclusions 
 

 Acknowledgement 
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Introduction 

 The Petrov-Galerkin (P-G) weighting is adopted 
for advection stabilization in the PCS 
algorithm. In addition, pressure stabilization is 
produced by the creation of projection system 
 

 The PCS method employs a partially implicit 
system of equations, if desired, using the θ-
method to switch from fully explicit to semi-
implicit. 

 

 The method is well suited for parallel 
computing on clusters using multi-core 
processors – this work is currently underway. 
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Introduction – cont. 

 hp-adaptation is a powerful numerical technique 
and has been proven to produce optimal 
numerical solutions with minimal computational 
cost.  

     

 An a-posteriori error estimator based on the L2 
norm is employed to guide the adaptation 
procedure. 

 

 Benchmark results are presented by employing 
the hp PCS FEM turbulent model in solving 
subsonic, transonic and supersonic flow 
problems.  

 



Predictor-Corrector Split  FEM 

Velocity predictor 

 

Velocity corrector 

 

A corrector - preserving mass 

¤From continuity 
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A corrector - preserving mass 
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 FEM matrix form 



Velocity Corrector 
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Adaptation Methodology 



hp-adaptation 



 Various error estimators exist in the 

literature: 
¤ The element residual method, interpolation methods, 

subdomain-residual methods, and projection method.  

¤ The stress error measure based on L2 norm 

 

 

   where the total element error and error index 

Error Estimator  

 is the error index, in error percentage form 

* is the continuous solution obtained by a projection or averaging process 
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 Both global and local error conditions 

have to be met 
¤ Global percentage error should not be greater 

than an maximum specified percentage error  

¤ Local relative percentage error of any single 

element should not be greater than the averaged 

error among all the elements in the domain 

Error Estimator – cont. 

      Local element refinement indicator is defined to decide if a local refinement for 
an element is needed. 
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Adaptation Rule 

(a) Initial h-adaptive mesh    (b) Correct h-adaptive mesh    (c) Incorrect h-adaptive mesh 

 1-irregular mesh adaptation rule in   

    h- adaptation 
¤ An element can be refined only if its neighbors 

are at the same or higher adaptation level 
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Minimum rule in p-adaptation 

(a) Initial mesh         (b) Correct p-adaptive mesh    (c) Incorrect p-adaptive mesh 

Adaptation Rule 
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 If a local element refinement indicator            , 

mesh need to be refined or enriched. 

 In an h-adaptive process, the new element 

size is calculated using 

 

 

 In a p-adaptive process, the new shape 

function order is calculated using: 

1/

old

new p

i

h
h




1/p

new old ip p 

i 1 

Adaptation Strategies 
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 Three steps are followed in hp-adaptation: 

¤ Step 1: Construct initial coarse mesh, preset 

target value for error 

¤ Step 2: Construct the intermediate h-adaptive 

mesh 

 

   

¤ Step 3: Apply p-adaptive enrichments on the 

intermediate mesh to obtain the final hp- adaptive 

mesh. 
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Adaptation Strategies 



Subsonic flow over 2-D NACA0012 

airfoil 

PCS hp-FEM Benchmark Results 

Mach = 0.502, attack angle α = 2.06o 



Subsonic Flow Simulation 

hp-adaptive mesh 



Subsonic Flow Simulation 

Pressure and Velocity Contours 



Subsonic Flow Simulation 

Comparison with experimental data 



KIVA-hp Benchmark Results 

Transonic flow over 2-D NACA0012 

airfoil 
Mach = 0.775, attack angle α = 2.05o 



Transonic Flow Simulation 

Pressure and Velocity Contours 



Transonic Flow Simulation 

Comparison with experimental data 



KIVA-hp Benchmark Results 

Supersonic flow over 2-D 

NACA0012 airfoil 
Mach = 0.829, attack angle α = 0.05o 



Supersonic Flow Simulation 

Pressure and Velocity Contours 



Supersonic Flow Simulation 

Comparison with experimental data 



Supersonic flow over 3-D NACA0012 

airfoil 

3-D Simulation Results 

 Mach = 0.008, attack angle α = 4.00o 



3-D Supersonic Flow Simulation 

Pressure and Velocity Contours 



Conclusion 

 An hp-adaptive PCS FEM method is used to 
simulate both subsonic, transonic and 
supersonic flow regimes over a set of NACA 
airfoils. 

 

 The algorithm shows promise in its efficiency, 
accuracy and robust. 

 

 Combined with KIVA spray and chemistry 
models and a moving mesh capability, the 
algorithm is being implemented into a new 
generation of KIVA software – parallel KIVA-
hpFE.  
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