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Abstract 
 This presentation provides an overview of data assimilation (model 
calibration) for complex computer experiments.  Calibration refers to the 
process of probabilistically constraining uncertain physics/engineering 
model inputs to be consistent with observed experimental data.  An initial 
probability distribution for these parameters is updated using the 
experimental information.  Utilization of surrogate models and empirical 
adjustment for model form error in code calibration form the basis for the 
statistical methodology considered.  The role of probabilistic code 
calibration in supporting code validation is discussed.  Incorporation of 
model form uncertainty in rigorous uncertainty quantification (UQ) 
analyses is also addressed.  Design criteria used within a batch 
sequential design algorithm are introduced for efficiently achieving 
predictive maturity and improved code calibration.  Predictive maturity 
refers to obtaining stable predictive inference with calibrated computer 
codes.  These approaches allow for augmentation of initial experiment 
designs for collecting new physical data.  A standard framework for data 
assimilation is presented and techniques for updating the posterior 
distribution of the state variables based on particle filtering and the 
ensemble Kalman filter are introduced. 
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•  Experiment:  Drop a solid ball from a specified height 
•  Output:  Measured flight time (y) 

•  Computer Model:  Implements Newton’s Law with drag coefficient 
•  Two parameters:  x = height (controlled) 
   θ = drag coefficient (uncertain physics) 

•  Output:  Calculated flight time (η(x, θ)) 
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η(x, θ) is the root of 
the equation s(τ) = 0.  

initial conditions 

€ 

s 0( ) = x,  ds
dτ τ= 0

= 0€ 

d2s
dτ 2

= −1−θ ds
dτ

computer model 
s = position; τ = time 

Field data with 
2σ uncertainties 

Locations of actual 
model runs 

Calibration With Model Form Error 
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Code predictions based on 
initial uncertainty in θ	



prior calibrated 

Code predictions 
based on calibrated θ	



Predictions of discrepancy Predictions of reality 

Inputs 
x controllable 

t uncertain physics 
θ best, unknown value of t 

 
 

y(x) = ζ(x) + ε(x) 
 
 

ζ(x) = η(x, θ) + δ(x) 

field data 
reality observation 

error 

computer 
model discrepancy 

Basic steps in calibration analysis: 
1.  Assume prior probability 

distribution for physics 
uncertainties θ. 

2.  Calibrate parameters θ to field 
data and simultaneously infer 
model form error.  

Code Calibration:  Statistical Model and 
Inference 
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β = 0.3; ρ = 0.93 

β = 3; ρ = 0.47 

β = 30; ρ = 0 

Semiparametric regression 
model for emulating code η(x) 

 Joint distribution of surrogate 
 outputs is multivariate Gaussian 
 Mean zero, precision λ 

 Correlation function: 
 
 
 

 Define correlation length: 
 ρj = exp(− βj / 4) 
 Notation:  GP( 0; λ, ρ ) 

Correlation lengths ρj determine 
complexity of process 
realizations 

€ 

R η x1( ),η x2( ) |β( ) = exp − β j x1, j − x2, j( )2
j=1
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Gaussian Process Review and Notation 
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Experiments: x1, . . . ,xn� 

Code Runs: (x

c
1, t1), . . . , (x

c
m, tm)

� 

⌘(·) ⇠ GP (0;�⌘, ⇢⌘) independent of �(·) ⇠ GP (0;��, ⇢�)� 

Correlation functions R⌘(x1 � x2, t1 � t2) and R�(x1 � x2)� 

✏ ⇠ N (0,⌃y)� 

Output Vector: D = (y(x1), . . . , y(xn), ⌘(x
c
1, t1), . . . , ⌘(x

c
m, tm))

Centered by Average Code Output 
Scaled by SD of Code Output 

� 

Calibration Framework:  Scalar Output  
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Likelihood Function 
L (✓,�⌘, ⇢⌘,��, ⇢�,⌃y|D) / |⌃D|�1/2

exp

⇢
�1

2

DT
⌃

�1
D D

�

Rη	



�⌘⌃⌘: Correlation matrix between

(x1, ✓), . . . , (xn, ✓), (x
c
1, t1), . . . , (x

c
m, tm)

��⌃�: Correlation matrix between

x1, . . . ,xn
Rδ	



�y⌃y = In in many applications

�y fixed or random

⌃D = ⌃⌘ +

✓
⌃y + ⌃� 0

0 0

◆

Likelihood Function:  Scalar Output  
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•  Prior Distributions 

•  Posterior Sampling 
•  Metropolis within Gibbs MCMC 
•  Burn-in + logistic regression to estimate step sizes 

(η and δ)	



(η, δ, and ε)	



aη = bη (prior mean 1; larger bη smaller prior variance)	



bδ/aδ ≈ 0, i.e. noninformative with large prior mean	



Prior Distributions and Posterior 
Sampling 
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Physics Model 1	



Physics Model 2	



Physics Model 3	



Physics Model m	



SET 1	



SET 2	


SET 3	



SET s	



IET 1	



IET 2	



Full Scale	



field data	

 computer models	

 field data	



Prior	

 Posterior	



SET:	


Separate Effects Test	



IET:	


Integral Effects Test	



Simultaneous Code Calibration for Multi-
Physics Applications 
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Simultaneous Code Calibration for 
Weapon Performance Applications 
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•  SET:  Stress-strain experiments are conducted to infer material 
strength 
•  Physics model:  PTW (Preston-Tonks-Wallace) 

•  IET:  Flyer plate experiments are conducted to infer material 
equation of state (EOS), strength and damage simultaneously 
•  Physics models:  tabular EOS, PTW, tension limit 

Flyer Plate Experiments 

1σ uncertainties 

Stress-Strain Experiments 

Code Calibration:  Multiple Datasets and 
Functional Output   
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 θ = (θ0, p, κ, γ, y0, y∞, s0, s∞) calibration 
parameters 

strain 

saturation stress 

atomic vibration time T = temperature 
Tm(ρ) = melting temp. 

T/ Tm(ρ)  

yield stress 

strain rate activation energy 

PTW Plastic Deformation Model 
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strain 

dataset-specific 
parameters 

(temp., strain rate) 

uncertain model parameters 

dataset-specific 
estimated uncertainty 

stress 

prior mean prior covariance 
(depends on analysis) 

adjustment to 
uncertainty 

 θ = (θ0, p, κ, -ln(γ), y0, y∞, s0, s∞) 
PTW 

θ

θ

Uncertain parameters θ “common” to all datasets 

Calibration of PTW Model 
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θ0       κ        γ       y0     yinf      s0      sinf 

s i
nf

   
  s

0 
   

 y
in

f  
   

 y
0 

   
   
γ 

   
   
κ  

   
   
θ 0

 

Prior constraint on PTW parameters for 
calibration of all parameters to integral data 

Phase I:  Calibration to Small-Scale Data 
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Input Description Domain 

Min Max 

ε	

 Perturbation of EOS table from nominal -5% 5% 

θ0 Initial strain hardening rate 2.78 × 10-5 0.0336 

κ	

 Material constant in thermal activation energy 
term – relates to the temperature dependence 

0.438 1.11 

γ	

 Material constant in thermal activation energy  
term – relates to the strain rate dependence 

6.96 × 10-8 6.76 × 10-4 

y0 Maximum yield stress (at 0 K) 0.00686 0.0126 

y∞ Minimum yield stress (~ melting) 7.17 × 10-4 0.00192 

s0 Maximum saturation stress (at 0 K) 0.0126 0.0564 

s∞ Minimum saturation stress (~ melting) 0.00192 0.00616 

Pmin Spall strength -0.055 -0.045 

vs Flyer plate impact velocity 329.5 338.5 

Calibrate all parameters to integral (flyer plate) data 
128 flyer plate runs defined by an OA-based LH design 

Physics Models and Parameters 
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                  Total dispersion in the mean-centered simulations 
                 80.56%                                      9.58%                                       5.71% 

     

Initial loading, 
unloading, pull-back 

 
Driver - sound  
speed (EOS) 

Free surface velocity 
in release phase  

 
Driver - damage  

Ve
lo

ci
ty

 (c
m

/s
) 

Time (µs) Time (µs) Time (µs) 

Free surface velocity 
Hugoniot elastic limit 

 
Driver - material  

strength 

Modeling Functional Computer Model 
Output 
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Modeling Functional Experimental Data 
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v = vec
⇣
[v(x1); · · · ;v(xn)]

T
⌘

u(✓) = vec
⇣
[w(x1, ✓); · · · ;w(xn, ✓)]

T
⌘

w = vec
⇣
[w(x1, t1); · · · ;w(xm, tm)]T

⌘
Define 

For z =

�
vT ,uT

(✓),wT
�T

,

z ⇠ N

0

@0 , ⌃z =

0

@
⌃v 0 0
0 ⌃u ⌃u,w

0 ⌃T
u,w ⌃w

1

A

1

A

Joint Prior Distribution of Coefficients 
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Define 
y =

�
y

T (x1), . . . ,y
T (xn)

�T

⌘ =
�
⌘T (xc

1, t1), . . . , ⌘
T (xc

m, tm)
�T

✓
y
⌘

◆
=

✓
B 0
0 K

◆
z+

✓
✏
"

◆
Then 

✓
✏
"

◆
⇠ N

✓
0 ,

✓
(�yWy)

�1 0
0 ��1

⌘ I

◆◆
where 

Wy = diag (W1, . . . ,Wn)

Representation of Data and Error Model 
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Likelihood Function 
L(✓,�⌘,�w, ⇢w,�y,�v, ⇢v|y, ⌘) /

|⌃bz|�1/2
exp

⇢
�1

2

bzT⌃�1
bz bz

�

bz = vec
⇣h�

BTWyB
��1

BTWyy;
�
KTK

��1
KT ⌘

i⌘

⌃bz = ⌃z +

0

@
�
�yBTWyB

��1 0
0

0 0
�
�⌘KTK

��1

1

A

Likelihood Function:  Functional Output 
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Parameter Prior Distributions 

a0⌘ = a⌘ +
m(n⌘ � p⌘)

2

a0y = ay +
ny � rank(B)

2

b0⌘ = b⌘ +
1

2
⌘T

⇣
I�K

�
KTK

��1
KT

⌘
⌘

b0y = by +
1

2
yT

⇣
Wy �WyB

�
BTWyB

��1
BTWy

⌘
y

Extension of scalar case, with modified Gamma 
parameters for λη and λy    

Prior Distributions:  Functional Output 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2014 

ε          θ0       κ       γ       y0     yinf     s0     sinf     Pmin      vs   ε          θ0      κ       γ      y0    yinf     s0     sinf     Pmin      vs 

v s
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Uniform prior for all parameters 

Small scale posterior is prior for 
material strength parameters 

 

Uniform prior for other parameters 

Small-scale data often helps reduce compensating 
errors 

Phase II:  Calibration to Integral Data 
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θ0                     κ                 -log(γ)               y0 

      yinf                 s0                    sinf 

SET 
Posterior 

SET Prior – 
IET 

Posterior 

Uniform  
Prior – 

IET 
Posterior 

• Sensitivity to 
priors 

• Same prior 
and posterior 
indicates no 
value for IET 

Flyer plate data refines knowledge about 
activation energy and yield stress parameters 

Marginal Effects of Parameter Prior 
Assumptions 
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5%-95% bounds on calibrated code  
predictions adjusted for discrepancy 

5%-95% bounds on calibrated code  
predictions (no discrepancy) 

Calibrated Prediction 
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•  Check sensitivity analysis on prior ranges 
•  Parameter screening may be important 

•  Observational error model 

•  Discrepancy model (if included) 
•  Multiple scalars different than functional 

•  Prior distribution for calibration parameters and statistical 
model parameters 

•  Check emulator performance (if code surrogate is 
required) 
•  Cross-validation, out-of-sample validation 

•  Check posteriors and predictions carefully 

Implementation Considerations 
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Drive conditions specified by temperature profiles 
•  Continuous family of functions indexed by 7 parameters 

 

t1	



Tm1	



exponential decay	


rate m31	



sinusoid offset	


amplitude aM	



period pD	



t2	



Tm2	



lin
ea

r	

 qu
ad

ra
tic
	



192 profiles for this	


UQ study	



Simulation Input 

Calibration:  A Cautionary Tale 
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Quantity of Interest is transmission along a selected 
lineout as a function of distance from centerline   

Data and Simulations are Radiographic 
Images 
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No Discrepancy	

 Discrepancy	



Substantial difference in the calibrated Tm2 marginal distributions	



Would like “data - best code”, χ(θ) = y - η(θ), small (absolute sense) 
To first order, accomplished for small values of quadratic error: 
 

Q(θ, δ) = (χ(θ) - δ)T Wy(χ(θ) - δ) + δTWδδ	



 

discrepancy	



field data precision	

 discrepancy precision	



Statistical Model Permits Tradeoff 
Between Model Fit and Model Form Error 
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No Discrepancy	

 Discrepancy	
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       5% (lower) / 95% (upper) prediction bounds	



Undesirable Tradeoff Between Model Fit 
and Model Form Error  
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Crud Source 
in Loop Loop Chemistry 3D Rod Power 

3D Subcooled Boiling Crud Mass Balance 

Crud Concentration Crud Thickness 

 Boron Uptake in Crud 

Measured Axial Offset 

Predicted CIPS 

Following case 
study addresses 
this part of the 

hierarchy 
The “Generic” Validation Hierarchy 

Calibration Supports Validation of 
Computational Models 
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Crud deposits 

Westinghouse VIPRE-W 
Thermal-Hydraulics 

Simulator quarter-core 
geometry and  

axial channel layout  

15
30
45
60
75
90
105

118
131
144
157

168
179

186
193

Parameter Range 
Lead coefficient of Dittus-
Boelter Correlation (DBCoeff) 

0.019 – 
0.033 

Lead Coefficient of Grid Heat 
Transfer Model (GHTCoeff) 

2 - 6 

Axial Friction Correlation 
Coefficient (AFCCoeff) 

0.1 - 0.25 

Lateral Resistance Correlation 
Coefficient (LRCCoeff) 

1.5 - 4 

Exponent of Partial Boiling 
Model (ExpPBM) 

1 - 4 

Assess predicted mass evaporation 
(boiling) rate and compare to Plant B 
Crud index data 
•  Calibration to assemblies F71, F22, and F88 
•  Validation to assembly F09 

Validation is a Key Component of 
Predictive Capability Assessment 
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7B

7A

6B

6A

5B

5A

4B

4A

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Δ boiling index

Discrepancy

! F71! F22! F88! F09!
Parameter! ME!

(%)!
TE!
(%)!

ME!
(%)!

TE!
(%)!

ME!
(%)!

TE!
(%)!

ME!
(%)!

TE!
(%)!

DBCoeff! 94.8! 98.1! 93.6! 98.1! 93.1! 96.8! 96.6! 98.4!
GHTCoeff! 1.7! 4.8! 0.4! 3.3! 2.5! 5.6! 1.2! 2.8!
AFCCoeff! 0! 0.4! 0.2! 3.2! 0.4! 1.6! 0.3! 0.7!
LRCCoeff! 0! 0.4! 0.1! 2.8! 0! 0.6! 0! 0.2!
ExpPBM! 0! 0.3! 0.1! 2.8! 0! 0.4! 0! 0.2!

!

Sensitivity Analysis 

D
BC

oe
ff

GHTCoeffDBCoeff

G
H
TC

oe
ff

DBCoeff 

GHTCoeff 

Crud Index = VIPRE-W Boiling Index (calibration parameters) + Discrepancy + Error 

Calibration Methodology Implemented 
Treating Boiling/Crud Index as Functional 
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Calibration includes 
data from higher 
power assembly 

Calibration with 
data from lower 

power assemblies 

7B

7A

6B

6A

5B

5A

4B

4A
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●

●

●

●

●

●

●
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●

●

●

data

nominal

F71+F22

F71+F22+F88

F22 Calibrated Predictions

7B

7A

6B

6A

5B

5A
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0.0 0.3 0.6 0.9

boiling index

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

F88 Calibrated Predictions

Calibration 
Results 
Lower 
Power 

Assemblies 
Incorporate 

higher 
power 

assembly 
F88 
 

Calibration Results Strongly Dependent 
on Reference Experimental Data  
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Improved calibration 
includes data from 

higher power 
assembly 

Calibration with 
data from lower 

power assemblies 

Uncertainties have been reduced (blue vs. red), but 
predictability not uniformly attained at all locations 

Validation Establishes Domain of 
Applicability 
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•  Let p( yV | yC ) refer to the predictive distribution of 
validation data yV, given calibration data yC 

•  Let q( y ) denote a specified reference distribution 

•  Let YV denote the observed validation data and 
define 

•  Compute 

•  If γ( YV ) < T, validation data are implausible 
•  Threshold T set to, e.g., 0.05 or 0.01 

Quantitative Validation Metric 

S =

⇢
y :

p (y |yC )

q(y)
� p (YV |yC )

q(YV )

�

� (YV ) = 1�
Z

S
p (y |yC ) dy

Courtesy:  Bob Moser 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2014 

●

●

●

●

●

●
●●

●

●

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
01

0.
02

0.
03

0.
04

0.
05

Reynolds number

F

● Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Reality: 

nominal model 

●

●

●

●

●

●

●●

●

●

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
01

5
0.

02
0

0.
02

5
0.

03
0

Reynolds number

F

● Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Desirable situation: 

 

 
 

•  Calibration process: 
•  Prior distributions on model parameters 

(θ) and error precisions (λ) 
•  Statistical model to explain variation in 

experimental data 

•  Posterior distributions on model 
parameters (θ) and error precisions (λ) 

yi(xj) = ⌘(xj , ✓) + ✏ij

✏i ⇠ N
�
0,��1

i Ini

�

•  Calibration process: 
•  Prior distributions on θ and λ 

•  Prior distribution on group model 
parameter perturbations (di) and 
covariance matrix parameters (φ) 

•  Statistical model for experimental data 

•  Posterior distributions on θ, λ, di, φ 
•  Statistical model has special case of 

common θ (di = 0) 

di|� ⇠ N (0,�(�)) , � ⇠ ⇡(�)

yi(xj) = ⌘(xj , ✓ + di) + ✏ij

Code Calibration in Mixed Effect Settings 
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•  McAdams is an empirical model for 
friction due to the boundary layer in 
forced convection and turbulent flow 
•  Friction factor (f):  Proportionality constant in pressure loss 

correlation 
•  Reynolds number (Re):  Ratio of inertial to viscous forces 

•  Prior for θ:  Uniform on SME provided 
ranges 

•  In some cases, residual correlation 
persists after random effects 
adjustment 
•  Modify error model: 

•  Code calibration accounts for 
differences among relevant 
experiments while also accounting for 
model form error 
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•  Software for Code Calibration 
•  Gaussian Process Models for Simulation Analysis 

– Gaussian process-based surrogate models 

 http://www.stat.lanl.gov/source/orgs/ccs/ccs6/gpmsa/gpmsa.html!
•  Bayesian Analysis of Computer Code Output (BACCO) 

–  R package implementation of Kennedy-O’Hagan 

 http://cran.r-project.org/web/packages/BACCO!
•  Dakota 

–  Sandia National Laboratories optimization and UQ 
http://dakota.sandia.gov  

•  QUESO 
–  UT Austin calibration and UQ 

!https://red.ices.utexas.edu/projects/software/wiki/QUESO!

Software for Code Calibration 
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Role of Model Form Uncertainty in UQ 

 
•  Model form uncertainty should be incorporated in formal UQ 

–  Model form and parametric uncertainties should be simultaneously calibrated 
to experimental data 

–  Principled methodologies such as Bayesian model averaging 
 

 

€ 

p YP | data( ) = p Mk | data( ) p YP |θk,Mk, data( )p θk |Mk, data( ) dθk∫k=1

K
∑
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Example:  Calibration and Multi-Model 
Inference 
•  HCN/O2/Ar kinetics 

 
•  Mass reaction rate of m-th species (Nr = 6, Ns = 11) 

 

•  Reaction rate of r-th reactions 

•  State equation:  p = ρRT 

HCN /O2/Ar Kinetics [TR87]

• 11 species (O, N , H , Ar, O2, OH ,
CN , CO, NO, HCN , and NCO )
and 6 reactions [TR87]:
�
⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⇥

R1 : HCN + Ar � H + CN + Ar
R2 : O2 + H � OH + O
R3 : O2 + CN � NCO + O
R4 : HCN + O � NCO + H
R5 : NCO + Ar � CO + N + Ar
R6 : O2 + N � NO + O

(1)

• Interested in the reaction rates of
R1and R3

Joseph, Miki, Prudencio UQ on chemical system April 27-28, 2010 2 / 14

6 Reactions 
 

R1:  HCN + Ar       H + Cn + Ar 
R2:  O2 + H      OH + O 
R3:  O2 + CN      NCO + O  
R4:  HCN + O      NCO + H  
R5:  NCO + Ar      CO + N + Ar 
R6:  O2 + N      NO + O 

 
 

€ 

d Xm[ ]
dt

= νm,r
'' −νm,r

'( )k f ,r Xm[ ]ν m,r
'

m=1

Ns∏ + νm,r
' −νm,r

''( )kb,r Xm[ ]ν m,r
''

m=1

Ns∏{ }r=1

Nr∑
stoichiometric coefficient 

  

€ 

k f ,r =10Ar Tmr exp −Θr

T
$ 

% 
& 

' 

( 
) , k f ,b =

k f ,r
KC ,r

r =1,…,Nr

Courtesy:  Bob Moser 
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Experimental Data 

 

 
•  Experimental data available ([O], [N], and [H]) for different 

initial conditions 
–  Nexp = 79 data sets, each set has time history data at NT = 6 time points 

Experimental data [TR87]

Figure: Comparison experimental
data and model result

Comments
• Experimental data available ([O],[N ] and [H]) for different initial

conditions (Nexp=79 data sets, each set has time-history data at
NT =6 time points)

Joseph, Miki, Prudencio UQ on chemical system April 27-28, 2010 4 / 14

Courtesy:  Bob Moser 
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Stochastic Models 
•  General form of stochastic models 

 

•  Definitions 
–  t = time 
–  x(t) = model state vector at time t 
–  y(t) = measured output vector at time t 
–  u(t) = system input vector (eg. temperature, pressure, etc.) at time t 
–  θ = uncertain model parameters (calibration) 
–  γ(t)∈ℜNs = model equation error function/noise at time t 
–  ε(t)∈ℜNo = output equation error function/noise at time t 

€ 

x 0( ) = x 0;u 0( )( )
x t( ) = f t, x t( ),u t( ), γ t( ), θ( )∈ ℜNs          [stochastic dynamic model]

y t( ) = h t, x t( ),u t( ),ε t( ), θ( )∈ ℜNo          [observation equation]

Courtesy:  Bob Moser 
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Model Class 
•  M1-M4 

–  Multiplicative error function in output equations 
–  11 uncertain parameters (including the physical parameters Ai, mi, and 

Θi (i = 1, 3, 4) and the error function variances      and    ) 

•  M5 
–  Same as M3 except different error structure 

•  M6 
–  Same as M3 except obs. errors have a covariance structure in time 

•  M7  

–  Same as M6 with modified state equation 
–  γk(t) modeled as a Gaussian process 

–  Cross-correlation structure 

 

€ 

y t( ) = x t( ) γ t( ) ε t( )

€ 

σ s
2

€ 

σ o
2

€ 

y t( ) = x t( ) 1+ γ t( )( ) + ε t( )

€ 

cov ε tm( ),ε tn( )( ) =σ o
2 exp −

tm − tn
lo

% 

& 
' 

( 

) 
* 

r0+ 

, 
- 
- 

. 

/ 
0 
0 
;      σ o

2, lo, r0 uncertain

€ 

xk t( ) = fk t, x t( ),u t( ), θ( ) exp γ k t( )( )

€ 

cov γ k tm( ),γ l tn( )( ) =σ s
2 exp −

tm − tn
ls

% 

& 
' 

( 

) 
* 

rs+ 

, 
- 
- 

. 

/ 
0 
0 

;      σ s
2, ls, rs uncertain

Courtesy:  Bob Moser 
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Model Plausibility 
•  Reaction rates are sensitive to choice of hypotheses 

–  Uncertainties quantified:  parametric, model and observational errors, 
and model form 

Figure: Posterior mean, 2.5 percentile and 97.5 percentile for the log reaction rate
(k1) against 104(K)/T for (a) M1 and (b) M4

Joseph, Miki, Prudencio UQ on chemical system April 27-28, 2010 12 / 14

M1 M4 

M1 M2 M3 M4 M5 M6 M7 

log(L(Mj | data) -264.0 -264.6 -256.9 -269.2 -313.5 -260.6 -249.0 

P(Mj | data) 3.1e-7 1.7e-7 3.7e-4 1.7e-9 0 9e-6 0.9996 

Courtesy:  Bob Moser 
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Predictive Maturity 
•  Efficiently achieve accuracy in global predictions of 

discrepancy, calibrated code, or physical reality 

Figure:  F. Hemez 
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Experiment Design Strategies 

•  Several options exist if given a fixed experimental 
budget 
–  single-stage design 

•  space-filling LHD, Sobol’ sequence, scrambled Sobol’ 
sequence 

–  sequential design 
•  Initial space-filling design followed by sequential 

augmentation 
•  Sequential design required for augmenting existing 

data 
–  Design criteria used for augmentation  

•  distance-based criteria 
•  IMSE, MMSE 
•  Minimum information gain, Maximum entropy 
•  Lam and Notz (2008) EIGF criterion 

–  Batches of runs desired 
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A Batch Sequential Algorithm 

•  Estimate model parameters using runs from initial 
design X0 

•  Set                              and obtain Xb by optimizing a 
design criterion with respect to the proposed b 
additional runs 

•  Collect runs from Xb and re-estimate model 
parameters using the entire set of runs from the 
augmented design X1 

•  Set X0 to the augmented design X1 and repeat steps 
(2)-(3) until termination 
–  stopping criteria:  experiment budget expended, 

insignificant improvement in design criterion value 
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Optimization:  Modified Federov Exchange 
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Batch Sequential Expected Improvement 
Criteria 

•  Expected improvement criteria are typically 
formulated as one-step iterations 

•  Straightforward extension allows for batch updates 

Improvement 
Function Current Data 
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Bayesian Design 

•  Consider impact of a new batch of data on prediction 
at arbitrary input x in design region 

•  Improvement function: 

y1:  output predicted at input x 
y2:  current data 

y3:  hypothetical data from  
 new batch  New Batch 

“Maximize the minimum 
information gain” 
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Example:  Bayesian Design 

•  2 x, 1 θ 
•  16 initial experiments 
•  3 new experiments 
•  Use IG criterion 
•  Minimum IG:  0.044 

Contours of predicted discrepancy 
function based on 16 initial experiments 

Main Effect Functions 
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Sequential Design for Optimal Calibration 

•  Utility function defined as entropy loss due to new data y3 

•  Compute expected utility with respect to unknown future 
observations 

–  Mutual information between model parameters θ and new data y3 
given available data y2 

–  Smaller expected utility implies new data y3 does not inform as 
well about model parameters θ given available data y2 

U (y3 ) =

Z

⇥
⇡ ( ✓ |y2,y3 ) log ⇡ ( ✓ |y2,y3 ) d✓ �

Z

⇥
⇡ ( ✓ |y2 ) log ⇡ ( ✓ |y2 ) d✓

E [U (y3 ) |y2 ] =

Z Z

⇥
⇡ ( ✓,y3 |y2 ) log

⇡ ( ✓,y3 |y2 )

⇡ ( ✓ |y2 ) ⇡ (y3 |y2 )
d✓ dy3

Choose batch x

⇤
1, . . . ,x

⇤
b to maximize E [U (y3 ) |y2 ]
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Data Assimilation Framework 

•  Time steps t = 1,2, … 
–  State vector {θ1, θ2, …} and observations {y1, y2, …} 

•  Prior model for state process 
–  π(θ1) and π(θt | θt-1) 

•  Observational data model 
–  yt = η(θt) + et ; et iid N(0, Σy) 

•  Goal:  At each time t, produce draws from      
π( θt | y1:t ) 
–  y1:t  denotes all data up to time t 
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Data Assimilation Algorithm 

1. At time t� 1, the ensemble of state vectors

n

✓(1)t�1,1, . . . , ✓
(1)
t�1,M

o

are treated as draws

from ⇡ ( ✓t�1 |y1:t�1 )

2. Propagate each ✓(1)t�1,k according to ⇡ ( ✓t | ✓t�1 ),

producing an ensemble of draws

�

✓�t,1, . . . , ✓
�
t,M

 

,

from ⇡ ( ✓t |y1:t�1 )

3. Given observations yt, update each ✓�t,k, producing

an ensemble

n

✓(1)t,1 , . . . , ✓
(1)
t,M

o

from ⇡ ( ✓t |y1:t )
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Filtering Methods 

•  Particle Filter 

 

•  Ensemble Kalman Filter (EnKF) 

Sample from

�
✓�t,1, . . . , ✓

�
t,M

 
according to

importance weights {w1, . . . , wM} given by

wk / exp


�1

2

�
yt � ⌘

�
✓�t,k

��T
⌃�1

y

�
yt � ⌘

�
✓�t,k

���

1. From

⇢✓
✓�t,1

⌘
�
✓�t,1

�
◆
, . . . ,

✓
✓�t,M

⌘
�
✓�t,M

�
◆�

construct

the sample covariance ⌃pr =

✓
⌃✓✓ ⌃✓⌘

⌃⌘✓ ⌃⌘⌘

◆

2. Draw perturbed data vector yk ⇠ N (yt , ⌃y) , k = 1, . . . ,M

3. Set ✓(1)t,k = ✓�t,k +⌃✓⌘ (⌃⌘⌘ +⌃y)
�1 �yk � ⌘

�
✓�t,k

��
, k = 1, . . . ,M (*)
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Data Assimilation Example COMPUTER MODEL CALIBRATION USING THE ENSEMBLE KALMAN FILTER 491

Figure 3. A comparison of the EnKF and the particle filter in a simple tracking example. Each time step is 20 sec. π (θ1) and π (θt |θt−1) are
defined by a normal AR process. yt is a 11 · 20 collection of sensor values. The nonlinear observation model η(θt ) produces an expected signal
given the path segment θt .

1. From {( θ◦
t,1

η(θ◦
t,1) ), . . . , ( θ◦

t,m

η(θ◦
t,m) )} construct the sample covari-

ance $pr = ( $θθ $θη

$ηθ $ηη
).

2. Draw perturbed data vector yk ∼ N (yt ,$y), k =
1, . . . , m.

3. Set θ
(1)
t,k = θ◦

t,k + $θη($ηη + $y)−1(yk − η(θ◦
t,k)), k =

1, . . . , m. (*)

In cases when the θ0 is normal and η(·) is linear, the resulting
posteriors are normal, and the EnKF gives exact draws from the
posterior. The sample is an approximation to π (θt |y1:t ), when
η(·) is nonlinear. The middle frame of Figure 3 shows the EnKF
in the simple, one-dimensional tracking problem.

3.1 Computer Model Calibration With the EnKF

For model calibration problems, the previously discussed
temporal dynamics of standard filtering problems are not
present. The state vector θ plays the role of the model param-
eters to be calibrated, and the observation model η(·) plays the
role of the computer model. Hence, the problem is determined
by the prior parameter distribution π (θ ), the computer model
η(·) and the normal observation model defined in Equation (1).
The goal is to produce approximate draws (θ, η(θ )) from the
posterior π (θ, η|y).

Before detailing the EnKF for computer model calibration, it
is helpful to consider purely normal approximation. From the
joint ensemble

{(
θ◦

1

η(θ◦
1 )

)

, . . . ,

(
θ◦
m

η(θ◦
m)

)}

the sample mean and covariance

µpr =
(

µθ

µη

)

and $pr =
(

$θθ $θη

$ηθ $ηη

)

can be estimated, suggesting a normal “prior” model for the
joint vector (θ, η(θ )) ∼ N (µpr,$pr). Note, this “prior” cannot
truly describe the joint distribution unless θ is normal and η(·) is
linear, since η(θ ) is completely determined by θ .

From Equation (1) we have a normal likelihood, or sampling
model, for the n-vector of observations y given the joint vec-
tor (θ, η(θ )). We use the incidence matrix H, to denote which
elements of (θ, η(θ )) correspond to observations, giving the
likelihood

L(y|η(θ ))

∝ exp

{

−1
2

(

y − H

(
θ

η(θ )

))′

$−1
y

(

y − H

(
θ

η(θ )

))}

.

(3)

Combining this normal prior with the normal likelihood re-
sults in a normal posterior for (θ, η)

(
θ

η

)
|y ∼ N (µpost,$post), (4)

where

$−1
post = $−1

pr + H ′$−1
y H (5)

and

µpost = $post
(
$−1

pr µpr + H ′$−1
y y

)
. (6)
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