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Abstract

This presentation provides an overview of data assimilation (model
calibration) for complex computer experiments. Calibration refers to the
process of probabilistically constraining uncertain physics/engineering
model inputs to be consistent with observed experimental data. An initial
probability distribution for these parameters is updated using the
experimental information. Utilization of surrogate models and empirical
adjustment for model form error in code calibration form the basis for the
statistical methodology considered. The role of probabilistic code
calibration in supporting code validation is discussed. Incorporation of
model form uncertainty in rigorous uncertainty quantification (UQ)
analyses is also addressed. Design criteria used within a batch
sequential design algorithm are introduced for efficiently achieving
predictive maturity and improved code calibration. Predictive maturity
refers to obtaining stable predictive inference with calibrated computer
codes. These approaches allow for augmentation of initial experiment
designs for collecting new physical data. A standard framework for data
assimilation is presented and techniques for updating the posterior
distribution of the state variables based on particle filtering and the
ensemble Kalman filter are introduced.
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Calibration With Model Form Error

Locations of actual
model runs flight time

computer model
S = position; T = time

n(x, 0) is the root of

d_z‘z =—1- gﬁ the equation s(t) = 0.
dt dt
N
T / initial conditions g
X \ ds
l / S(O) =X, d_ =0
\ T 7=0
/

« Experiment: Drop a solid ball from a specified height
* Output: Measured flight time (y)

« Computer Model: Implements Newton's Law with drag coefficient

» Two parameters: x = height (controlled)
0 = drag coefficient (uncertain physics)

» Output: Calculated flight time (n(x, 0))
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Code Calibration: Statistical Model and

Inference

flight time

Code predictions based on
initial uncertainty in 6

L]
prior

\
6

calibrated

Code predictions
based on calibrated 6

—
)

Inputs
X controllable

t uncertain physics
0 best, unknown value of t

iy observation

field data error

c<>6/.

computer

model dlscrepancy

Basic steps in calibration analysis:
1.  Assume prior probability

distribution for physics
uncertainties 6.

2. Calibrate parameters 0 to field
data and simultaneously infer
model form error.
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Gaussian Process Review and Notation

8=0.3; p=0.93
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Semiparametric regression
model for emulating code n(x)

Joint distribution of surrogate
outputs is multivariate Gaussian

Mean zero, precision A
Correlation function:

R(n(xl),n(xz) | [3) = exp(—i1 [J’j(xl,j _ xz,j)Z)

Define correlation length:

p; = exp(= B/ 4)

Notation: GP(0; A, p)
Correlation lengths p; determine
complexity of process
realizations



Calibration Framework: Scalar Output

 Experiments: xi1,...,X,

*Code Runs: (x7,t1),..., (X ,tm)

™m

en(-) ~ GP (0; A\, py) independent of §(-) ~ GP (0; As, ps)

e Correlation functions R,(x; — x2,t; — t2) and Rs(x; — X2)

e~ N(0,%,)

Centered by Average Code Output
/  Scaled by SD of Code Output N\

* Qutput Vector: D = (y(x1),...,y(Xn),n(X7,t1), - (X5, tm))



Likelihood Function: Scalar Output

Likelihood Function

1
—1/2 =
L (6, Ay, prs Ao, ps, By |D) o [Sp] ™2 exp {—§DT2911>}
Zy + 25 O
Xp = 2ip + ( - O)
Ap2in: Correlation matrix between R As2s: Correlation matrix between R,
(x1,0), ..., (X0, 0), (x{,t1),..., (xS tm) | X1, Xn

Ay 2y = I, In many applications

A\, fixed or random
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Prior Distributions and Posterior
Sampling

* Prior Distributions

— Correlation parameters (1) and 0)
Tp
w(p) o [ JA—p)® M, 0<p <1
j=1

— Control degree of prior smoothness (variable importance)
— Precision parameters (1, 0, and g)

(X)) oc A Yexp(—bA), A >0
— Set a, = Db, (prior mean 1; larger b, smaller prior variance)

— Set by/a; =0, i.e. noninformative with large prior mean
— Settings for a. and b, depend on assumptions for observation error

« Posterior Sampling
» Metropolis within Gibbs MCMC
* Burn-in + logistic regression to estimate step sizes
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Simultaneous Code Calibration for Multi-
Physics Applications

field data computer models field data

-—> Physics Model 1 \

GED
SETI

Physics Model 2

Physics Model 3 >

SET: IET:
Separate Effects Test Integral Effects Test

.—' Physics Model m Y,

Prior » Posterior
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Simultaneous Code Calibration for
Weapon Performance Applications

source parameters

pit material HE  neutronics decreasing  increasing

parameter model
uncertainty  inadequacy
literature

Taylor cylinder

HE cylinder

hydro

criticality

1331)
S
LD D D)

UGT

e conditioning on more experiments = less parametric uncertainty
e prediction uncertainty becomes more affected by model inadequacies




Code Calibration: Multiple Datasets and

True Stress (MPa)

Functional Output

Tantalum
1200 -
| Stress-Strain Experiments
1000 - |III|”|
!
800
600 - w
400 T
s e
it gt
t
|'|"'" 298 0.1
o _ _ . 676 2600
Prior Variance: Across Material (-log(y) variance 0.75%) 1075 3900
Fixed Parameters: Yy Yo B 1 G u nce rtai nties 77 0.001
1 1 1 1 1 1 1 1 1
00 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

True Strain

|
1

Flyer Plate Experiments

Visar Velocity Profile

Hugoniot State

High-Pressure
Elasticity

Phase » .
Tronsition Cyclic Loading,
Dissipation
Plastic
Modulus
Hugoniot LA .
Elostic pg?' Yield
Limit ow Spall
Elostic Strength
Modulus
TIME —»

strength

« SET. Stress-strain experiments are conducted to infer material

* Physics model: PTW (Preston-Tonks-Wallace)

« |ET: Flyer plate experiments are conducted to infer material
equation of state (EOS), strength and damage simultaneously
« Physics models: tabular EOS, PTW, tension limit




PTW Plastic Deformation Model

T

T

T = temperature

activation energy

T/ Tin(p)

y=Yo~ ()’0 — y%)erf

T

strain rate

=5, — (s, — 5., Jerf

S

T..(p) = melting temp.

A

T

.1,

|

i

A

’r‘\.) In

P

atomic vibration time

1- exp(—

i)

yield stress

saturation stress

= (GOs p’ K, Y’ yO’ yoo’ SOa Soo)

strain
T —T. -| 6 ()
PRLISIR | . PO >
SO - Ty A TS - T\.
(so -~ T\,) exp| p — -1
' So—T,
calibration

parameters




Calibration of PTW Model

dataset-specific dataset-specific

(terrﬁ)sras?rzﬁﬁrfate) estimated uncertainty

stress strain
pm/\'@.\JrgU, C~ N| 0,241 |
uncertain model parameters @%
0 ~ ' Q)i ~Gamma (a,D )~ adjustmentto

uncertainty

prior mean prior covariance
(depends on analysis)

PTW
H = (60’ p’ K, _In(Y)’ yO! yoo’ SOa Soo)

Uncertain parameters 6 ‘common” to all datasets
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Phase |: Calibration to Small-Scale Data

6o

V) @) ® .

K

So Yi

@» |

sinf

Prior constraint on PTW parameters for
calibration of all parameters to integral data
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Physics Models and Parameters

Input Description Domain
Min Max
€ Perturbation of EOS table from nominal -5% 5%
0, Initial strain hardening rate 2.78 x 10°° 0.0336
K Material constant in thermal activation energy 0.438 1.11
term — relates to the temperature dependence
Y Material constant in thermal activation energy 6.96 x 10| 6.76 x 10
term — relates to the strain rate dependence
Yo Maximum yield stress (at 0 K) 0.00686 0.0126
Y., Minimum yield stress (~ melting) 7.17 x 104 0.00192
S Maximum saturation stress (at 0 K) 0.0126 0.0564
S., Minimum saturation stress (~ melting) 0.00192 0.00616
P... | Spall strength -0.055 -0.045
s Flyer plate impact velocity 329.5 338.5

Calibrate all parameters to integral (flyer plate) data

128 flyer plate runs defined by an OA-based LH design
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Modeling Functional Computer Model
Output

Total dispersion in the mean-centered simulations
80.56% 9.58% 5.71%

3 3 ﬁ \ 3

S 7 S 7 S 7]

o o o
—~~
w i ] i )
E o Fo Fo

N =N | H = g
G Initial loading 53 Free surface velocity| £ Free surface velocity
— ; ’ = Hugoniot elastic limit| >
> unloading, pull-back| 3§ 7 g 7 in release phase
= o [3] ) . ©
8 S . >Z Driver - material >3 - .
Q- Driver - sound = ° Driver - damage
) strength
- speed (EOS) 7] .

(=] o o

S - 8 =

o T T T T T T T o T T T T T T T o T T T T T T T

10 12 14 16 18 20 22 10 12 14 16 18 20 22 10 12 14 16 18 20 22
Time (us) Time (us) Time (us)

e 1, X m matrix of simulator output (“time” by “space”)
—s each row mean centered; entire matrix scaled so output has variance 1

e Statistical model:
P
i—1

— k1,...,ky,, are n, X 1 orthogonal basis vectors (e.g. principal components)
— w;(x, t): basis coefficients; modeled as GP(p,,;,Awi); independent
— €: model error; modeled as GP(0,),); independent of basis coefficients
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Modeling Functional Experimental Data

oe T

0.7

-

I A A

o N'07h 4" N A
0.8 1 1.2 14 16
time

18

2

2.2

velocity

0.015

0.01

0.005 | Lt 5

-0.005

-0.01

-0.015

1.2

1.4 1.6
time

1.8

2

22

e y(x;) is n,, X 1 vector of centered /scaled experimental data, i = 1,...,n
e Statistical model:

y(z;) = Kw(z;,0) + D;v(x;) + €
— K is ny, X p, matrix of simulator basis vectors interpolated onto data grid
— w(x;,0): simulator basis coefficients evaluated at best, unknown @
— D), is ny, X ps matrix of discrepancy basis vectors
— v(x;): discrepancy basis coefficients; modeled as GP(p,,\,); independent
— €;: model error; modeled as GP(0,2,); independent of basis coefficients




Joint Prior Distribution of Coefficients

V = Vvec (:V(X1); T ;V(Xn)]T)
Define u(f) = vec (:W(Xh 0);- - ;s W(Xn, ‘9)]T)

W = Vvec ([W(X1,t1); " SW(vatm)]T)
For z = (VTa uT(‘g)?WT)T ’
5, 0 0
z ~ N 0,2, = 0 2y Eu,w
0 %.., Zu



Representation of Data and Error Model

vy (x1),... T(Xn))T

77T Xlatl "777T(Xocn?tm))

(z> (0 x)7* @
were () - < (7o ;’11))

W, =diag(Wq,..., W

Define E =




Likelihood Function: Functional Output

Likelihood Function

L(6, A\, Ay Pws Ays Avy PolY, M) X

1

‘Z/Z\’_l/Q exp {_iATE/ZTl/Z\}

2= vec (|(BTW,B) ' BTW,y; (K'K) ' Ky )

T —1 0
5% (()\yB W,B) . )

0 0 (AKTK) ™
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Prior Distributions: Functional Output

Parameter Prior Distributions

Extension of scalar case, with modified Gamma
parameters for A, and A,

CL;7 = Gy =+ m(nnz_ pn)
. n, — rank(B)
A, = Ay + 5

1 i
by = by + 51" (I-K (K'K) K" )y

1 _
b, = by + 53" (W, - W,B (B"W,B) 'B"W,)y
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Phase ll: Calibration to Integral Data

Small scale posterior is prior for
material strength parameters

Uniform prior for all parameters Uniform prior for other parameters

e B «x Y Yo VYint So Sint Pmin Vs e 6 K Y Yo VYint So Sint Pmin Vs
i "L > =p @
y “Q . @) @
- ‘0 @) |
- = -
. =0 @ @)
k: 20 @ @)
" " @ @ @ A
ot QI_E ¥ K l : s
d Aastas @ v h @@ @@ & @
Small-scale data often helps reduce compensating

errors
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Marginal Effects of Parameter Prior

Assumptions

*Sensitivity to
priors

T

Uniform
Prior —
IET
Posterior

*Same prior

and posterior
Indicates no
value for IET

g X
” 3
T T T T
0. oo\y 0.010 0.012
0

SET
Posterior

SET Prior —
IET
Posterior

Flyer plate data refines knowledge about
activation energy and yield stress parameters
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Calibrated Prediction

5%-95% bounds on calibrated code 5%-95% bounds on calibrated code
predictions (no discrepancy) predictions adjusted for discrepancy

calibrated simulatg\r discrepa ncy—adjusted/ discrepancy w1073
6

T T T T T T

0.035

0.03

0.025

0.02

0.015

velocity

0.01

0.005

L 1 1 1 L 1 1 1 1 1 1 1 _8
1 125 15 175 2 2251 125 15 175 2 2251 125 15 175 2 225
time

—0.005 —
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Implementation Considerations

« Check sensitivity analysis on prior ranges
« Parameter screening may be important

 Observational error model

* Discrepancy model (if included)
» Multiple scalars different than functional

 Prior distribution for calibration parameters and statistical
model parameters

« Check emulator performance (if code surrogate is
required)
» Cross-validation, out-of-sample validation

« Check posteriors and predictions carefully
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Calibration: A Cautionary Tale

Simulation Input

g Tm2 &7
"""""" | exponential decay
) - : rate m31
g Tml *
— ﬁ\ ______ 2 I:
3 < g
s e O N
g 8 g 8+ g
g = [ < |
2 g = 1
: 5
: 3 :
. Q ! i id off:
192 profiles for this = | S;rr;li)sl?tfdz aM
; UQ study i period pD
o T T ) ‘ ; :

Time (ns)

tl 2 Time (ns)

Drive conditions specified by temperature profiles
« Continuous family of functions indexed by 7 parameters



Data and Simulations are Radiographic
Images

time = 6 ns
T Backlighter
dlang axis

transmissian {Ti)

Quantity of Interest is transmission along a selected
lineout as a function of distance from centerline
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Statistical Model Permits Tradeoff
Between Model Fit and Model Form Error

No Discrepancy Discrepancy
— i
/!1 d’s (
-

Substantial difference in the calibrated Tm2 marginal distributions

Would like “data - best code”, x(0) =y - n(0), small (absolute sense)
To first order, accomplished for small values of quadratic error:

discrepancy

Q(6,8) = (x(6) - )T W, (x(6) < 8) + 5TW,

field data precision discrepancy precision



Undesirable Tradeoff Between Model Fit
and Model Form Error

No Discrepancy Discrepancy

0.6

0.5

0.3
0.3

0.0
0.0

Distance (cm) Distance (cm)

—— 5% (lower) / 95% (upper) prediction bounds
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Calibration Supports Validation of
Computational Models

-~ ‘7 Prediction of Full-System
/\ Response Quantity of Interest
Scaling Arguments /
for Use with Full Size / \ Full System
Validation
Systems / Full System

UPrOpag-ate Scaled Prototypes
ncertainties
Fewer IETs Coupled
Calibration/
Component Validation
Idennzcanon/ Multiphysics Components
Ranking and Subsystems
Fewer Integral Effects Tests

Predicted CIPS

Measured Axial Offset Following case

Componem StUdy a ddresses
- hierarchy

The “Generic” Validation Hierarchy

Crud Concentration Crud Thickness

Crud Mass Balance 3D Subcooled Boiling

Crud Source

in Loop 3D Rod Power

Loop Chemistry
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Validation is a Key Component of
Predictive Capability Assessment

Assess predicted mass evaporation
(boiling) rate and compare to Plant B
Crud index data

« Calibration to assemblies F71, F22, and F88

« Validation to assembly FO9

.

Crud deposits Parameter Range
Lead coefficient of Dittus- 0.019 -
_ Boelter Correlation (DBCoeff) 0.033
.= | Lead Coefficient of Grid Heat 2-6
Westinghouse VIPRE-W sg Transfer Model (GHT Coeff)
Si Thlelt’maI-Hyr:Iraullcs ws | Axial Friction Correlation 0.1-0.25
JERRAROIG UQItELSEORe Coefficient (AFCCoeff)
geometry and ot
axial channel layout 157 Lateral Resistance Correlation 1.5-4
e Coefficient (LRCCoeff)
e Exponent of Partial Boiling 1-4
Model (ExpPBM)




Calibration Methodology Implemented
Treating Boiling/Crud Index as Functional

Crud Index = VIPRE-W Boiling Index (calibration parameters) + Discrepancy + Error

DBCoeff Discrepancy
I 74‘“% C -8 :
GHTCoeff .
]
5 7A 1 -
S |
z cC |
[®) 6B \
— C
]
DBCoeff GHTCoeff 8 6A :
14 A A ]
Sensitivity Analysis o .
— 5B |
F71 F22 F88 F09 .Q :
Parameter ~ ME TE ME TE ME TE ME TE é 5A \
(%) (%) (%) (%) (%) (%) (%) (%) :
DBCoeff 94.8 98.1 93.6 98.1 93.1 96.8 96.6 98.4 4B _.—'
]
GHTCoeff 1.7 4.8 0.4 3.3 2.5 5.6 1.2 2.8 1
4A ! .
AFCCoeff 0 0.4 0.2 3.2 0.4 1.6 0.3 0.7 ! S
A boiling index
LRCCOfo 0 0.4 0.1 2.8 0 0.6 0 0.2 [ T T T T T ]

ExpPBM 0 0.3 0.1 2.8 0 0.4 0 0.2 02 01 00 O gl 03 04




Calibration Results Strongly Dependent
on Reference Experimental Data

F22 Calibrated Predictions F88 Calibrated Predictions
. 7B| > Bl —e—
nominal — data
o —— prior nominal
8 F71+F22 F71+F22
— F71+F22+F88 TA| & | — F71+F22+F88 7A S
S /\ 6B| ——o— 6B L=
8 C . .
O Calibration
© leA| == Results 6A —
LL§ a (@)
S . C O
Calibration includes = || = 5B e
g - data from higher |- Incorporate
power assembly | ©|sa| e higher 5A| e
power
8 el e assembly |5 ==
F88
aN
o - __/u\ 4A[ > 4A| ce—
T | T T T T T boiling index boiling index

0.020 0.022 0.024 0.026 0.028 0.030 0.032
DBCoeff FTTTTTTTTT1 FTTTTTTTTTI

00 03 06 09 00 03 06 09
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Validation Establishes Domain of
Applicability

PDF

F09 Validation
nqminal 7B — e
g P2
ﬂ —— F71+F22+F88 7A —
8 _ Calibration with | e8 - T
|| data from lower ke,
. power assemblies ©| e —
e | O
Improved calibration =| = —— —— il
g - includes data from | %
higher power D = )
- data
assembly nominal
8 - 4B —_—— — prior
—— F71+F22
\ P — F71+F22+F88
{ I\ \ 4A
e | boiling index
0020 0022 0024 002 0028 0030 0.032 '
DBCoeff 0.2 04 0.6 0.8 1.0
Uncertainties have been reduced (blue vs. red), but

predictability not uniformly attained at all locations
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Quantitative Validation Metric

* Let p(yy | Yc ) refer to the predictive distribution of
validation data y,,, given calibration data y.

* Let q( y ) denote a specified reference distribution

* Let Y, denote the observed validation data and

define 3 p(ylye) - p(Yv|yc)
S_{y. q(y) = q9(Yv) }

s Complite W(Yv)zl—/sp(y yc ) dy

* Ify(Yy)<T, validation data are implausible
 Threshold T set to, e.g., 0.05 or 0.01

Courtesy: Bob Moser
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Code Calibration in Mixed Effect Settings

0.02 0.03 004 0.05

0.01

.
Reality:
]

xp. 1 # Exp.2 ¢ Exp.3 A Exp.4 ¥ Exp.5

| |

X nominal model
2y ‘/
. LY
a vy v %,
| A A - v qu v v v vV vv
I I I I I I
0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

Reynolds number
Calibration process:
Prior distributions on 6 and A

Prior distribution on group model
parameter perturbations (d;) and
covariance matrix parameters (¢)

di|p ~ N (0,2(9)) , ¢ ~ m(9)
Statistical model for experimental data

yi(zj) = n(z;,0 + d;) + €;
Posterior distributions on 6, A, d;, ¢

Statistical model has special case of
common 6 (d; = 0)

0.015 0.020 0.025  0.030

Desirable situation:

|0 Exp. 1 Exp.2 ¢ Exp.3 A Exp.4 ¥ Exp.5|

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Reynolds number

Calibration process:

Prior distributions on model parameters
(6) and error precisions (\)

Statistical model to explain variation in
experimental data

yi(z;) = 1(z;,0) + €
e; ~ N (0,711,

Posterior distributions on model
parameters (6) and error precisions ()
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Calibration of the McAdams Correlation

0.015 0.025

0.005

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Reynolds number

0.00

0.015 0.025

0.005

005 010 0.5 020 025 0.30 000 005 010 0.5 020 025 0.30
6 61

— Common Mixed Effect
[ ] Common Fixed Effect
= Nominal

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Reynolds number

McAdams is an empirical model for
friction due to the boundary layer in
forced convection and turbulent flow

Friction factor (f): Proportionality constant in pressure loss
correlation

Reynolds number (Re): Ratio of inertial to viscous forces
0
f = 91 Re™?

Prior for 8: Uniform on SME provided
ranges

In some cases, residual correlation
persists after random effects
adjustment

Modify error model:
€ij = 05(x;) + €4

Code calibration accounts for
differences among relevant
experiments while also accounting for
model form error
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Software for Code Calibration

« Software for Code Calibration
« Gaussian Process Models for Simulation Analysis
— Gaussian process-based surrogate models

http://www.stat.lanl.gov/source/orgs/ccs/ccs6/gpmsa/gpmsa.html

« Bayesian Analysis of Computer Code Output (BACCO)

— R package implementation of Kennedy-O’Hagan

http://cran.r-project.org/web/packages/BACCO

 Dakota

— Sandia National Laboratories optimization and UQ
http://dakota.sandia.gov

* QUESO

— UT Austin calibration and UQ
https://red.ices.utexas.edu/projects/software/wiki/QUESO



Role of Model Form Uncertainty in UQ

15

truth
— linear

quadratic
—— cubic

10

—— BMA
linear
quadratic

0.30
I
|

density
0.20

0.10

/

I P[L|data] = 0.81
‘A, P[Q|data] = 0.17

I I I I I
0 2 4 6 8

0.00

« Model form uncertainty should be incorporated in formal UQ
— Model form and parametric uncertainties should be simultaneously calibrated

to experimental data

— Principled methodologies such as Bayesian model averaging

p(Y, 1data) = > p(M, 1data) [ p(Y, 16,.M,.data) p(8, | M, .data) d6,

predictive performance posterior model  predictive performance distribution given
model M, with parameters 6,

distribution probability



Example: Calibration and Multi-Model
Inference

« HCN/O,/Ar kinetics
6 Reactions

R1: HCN+Ar — H + Cn + Ar
R2: O,+H—>0H+0O

R3: O,+ CN—>NCO + O
R4: HCN + O — NCO + H
R5: NCO +Ar—>CO + N + Ar
R6: O, + N—>NO + O

« Mass reaction rate of m-th species (N, =6, N, = 11)

d X, o . , Vi, ’ , v,
A s v v T T v o T T

stoichiometric coefficient

 Reaction rate of r-th reactions

e k
k, =10 T™ exp| -—=|,k,, =L~ r=1....N
f.r p( T) f.b Kc’r r

» State equation: p = pRT

Courtesy: Bob Moser
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Experimental Data

[N] x 10" mol cm-?

T [Ar] x 108 [HCNJ/[0,] 100 200 300 400 600 800 j T j T j T j
(K) (mol cm~?) (ppm/ppm) s us [s Hs us S 50 @ Exp. T=2233 K, HCN/O2=200/200 (ppm) _
— Numerical result
2233 10.30 200/200 - - 0.71 1.28 3.30 5.83 - ® E"P'szzl’gz KI"HCN’m:mDmO tppm) .
e umerical résu
b i Su A Sh e 40l ® Exp.T=2600 K. HON/O2=100/1000 (ppm) ]
. ' . : ' : o =] — Numerical result
2447 9.13 100/100 — 0.82 1.73 2.83 6.50 11.70 o | @  Exp. T=3169 K. HON/O2=50/250 (ppm)
2551 8.63 - 1.67 4.08 750  13.80  19.00 = — Numetocal result
2690 8.17 1.78 7.00 1330 2000  31.60 - g 30
2595 8.37 50/50 - 0.85 1.58 2.76 5.42 8.33 .
2600 3.36 - 0.70 1.50 2.63 5.67 8.50 =
2888 7.15 1.55 517 1030 1580  24.10  25.80 —
2998 6.80 2.75 9.67 15.80  23.30 - — ¥ 20
2512 8.67 50/250 — 0.83 1.37 1.92 3.08 4.33 Z
2594 8.28 0.67 1.58 2.83 3.83 5.58 7.75 =
2760 7.55 2.00 5.00 7.50 917 1170 1270
3028 6.65 850 1630  20.80  20.00  14.50 9.17 10
3169 6.12 16.67 2500 2500  20.00  10.00 2.75
3391 5.42 23.00 3330 2500 1420 2.42 —
2655 8.08 100/1000 2.50 4.50 6.50 7.83 9.50 8.33 0 L
2690 7.93 1.92 4.67 7.83 1030 10.00 5.33 0 200 400 600 800
2718 7.97 3.16 6.17 9.17 1150 11.30 5.83 ) 6
2720 7.70 2.42 5.33 834 1030 1170 8.67 Time (x10 " s)
2894 7.15 834 1330 1580  14.17 5.50 1.00
2962 6.83 934 1620 17.30  12.80 4.40 0.67
2989 6.85 1200 1670 1750  11.70 3.00 1.17
3013 6.62 1420 1830  15.00 9.67 1.17 —
3110 6.23 19.00 1920  13.30 5.83 — — ' . 1 H
251100 e v v Figure: Comparison experimental
3009 6.83 2.50 2.92 2.83 2.47 1.67 0.83

a1 597 567 48 333 167 — - data and model reSUIt

« Experimental data available ([O], [N], and [H]) for different
initial conditions
Nex, = 79 data sets, each set has time history data at N = 6 time points
Courtesy: Bob Moser



Stochastic Models

» General form of stochastic models
1) = x(0:00)
x(t) =f (t, x(2),u(7), y(2), B) e R [stochastic dynamic model]
y(t) = h(t, x(),u(z), &(2), 6) e R [observation equation]

« Definitions
— t=time
— x(t) = model state vector at time ¢
— y(t) = measured output vector at time ¢
— u(t) = system input vector (eg. temperature, pressure, etc.) at time t
— 0 = uncertain model parameters (calibration)
- Ht)ERNs = model equation error function/noise at time ¢
- ¢g(t)eRrNe = output equation error function/noise at time ¢

Courtesy: Bob Moser



Model Class

i M1'M4
— Multiplicative error function in output equations  y(z) = x(¢) y(z) &(¢)

— 11 uncertain parameters (including the physical parameters A;, m;, and
O, (i= 1, 3, 4) and the error function variances o; and o)

. M,
— Same as M, except different error structure y() = x(z) (1+ ¥(r)) + &(¢)
. M,

— Same as M, except obs. errors have a covariance structure in time

(I, =t
l ’

— Same as Mg with modified state equation x,() = £,(1,x(¢),u(r),8) exp(y, (7))
- v«(f) modeled as a Gaussian process
_ ‘tm _tn ’ .
e

M, cov(e(t,,).(t,)) = 0% exp o’,1 ,r, uncertain

— Cross-correlation structure

cov(y,(t,).7:(t,)) =0l exp o’,l,r uncertain

Courtesy: Bob Moser
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Model Plausibility

Reaction rates are sensitive to choice of hypotheses

— Uncertainties quantified: parametric, model and observational errors,
and model form

IVI1 M2 M3 IVI4 M5 MG M7
log(L(M; | data) | -264.0 | -264.6 | -256.9 | -269.2 | -313.5 | -260.6 | -249.0
P(M, | data) 3.1e-7 | 1.7e-7 | 3.7e-4 | 1.7e-9 0 9e-6 | 0.9996
5000 2500 1000 (K) 5000 2500 1000 (K)
| T T T | | T -
10 — Posterior 2.5 percentile 1 10 — Posterior 2.5 percentile M 1
— Posterior 97.5 percentile M1 — Posterior 97.5 percentile 4
— Posterior mean 7 i — Posterior mean 7]
s #—e Nominal (Thiclen and et al. 1987) 5 o Nominal (Thielen and et al. 1987)
L - = N -
g Exp. data available g—' Exp. data available
g @ | 5000 4000
S or =
-5 -5F
2 10 2 4 G 3 10
10" (K)/T 10" (K)/ T

Courtesy: Bob Moser
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Predictive Maturity

 Efficiently achieve accuracy in global predictions of
discrepancy, calibrated code, or physical reality

y(x;) = n(x;;8) + 8(x;) + g(x;) for i=1... Ny

> |

5 £l

g + Calibration with

st

& .‘ 1%t dataset

8 ‘.‘ Stabilization in predictive

c *, Calibration with capability is observed here.

- ‘., 27 dataset

t )

2 Extrapolated

s [ el uncertainty

> Calibration with " "=~ @:-..Y................. X

2 . 3rd dataset : :

a Calibration with Bias used in

E 4" Dataset certification
I I I | — Extrapolation regime
1

|
2 3 4 5 where testing is not possible
Number of Tests paisasre - possible) ~

Figure: F. Hemez




Experiment Design Strategies

« Several options exist if given a fixed experimental
budget
— single-stage design

« space-filling LHD, Sobol’ sequence, scrambled Sobol’
sequence

— sequential design

« Initial space-filling design followed by sequential
augmentation

* Sequential design required for augmenting existing
data
— Design criteria used for augmentation
« distance-based criteria
- IMSE, MMSE
e Minimum information gain, Maximum entropy
« Lam and Notz (2008) EIGF criterion

— Batches of runs desired



A Batch Sequential Algorithm

« Estimate model parameters using runs from initial
design Xo

+ Set X; = (X{, X})! and obtain X by optimizing a
design criterion with respect to the proposed b
additional runs

* Collect runs from X» and re-estimate model
parameters using the entire set of runs from the
augmented design X7

« Set Xo to the augmented design X7 and repeat steps
(2)-(3) until termination

— stopping criteria: experiment budget expended,
insignificant improvement in design criterion value
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Optimization: Modified Federov Exchange

Initialize x?, ..., x.

While (ACriterion > Stopping Value & Count < MaxCount)
For:=1,...,b

Optimize Criterion w.r.t. xJ,
holding all other input vectors fixed.

End

Compute ACriterion.
End

Return optimized x7,...,x; and Criterion.



Batch Sequential Expected Improvement
Criteria

« Expected improvement criteria are typically
formulated as one-step iterations

Choose next design site & to mazimize F | @

Improvement
Function /
Current Data

« Straightforward extension allows for batch updates

Choose next design sites x7,...,x, to minimize

the maximum E [I(x|x7],...,x;)|ys]



Bayesian Design

« Consider impact of a new batch of data on prediction
at arbitrary input x in design region

* Improvement function:

New Batch

-0.1

“Maximize the minimum
information gain”

I = —log (W(Y1|Y2a}’3))

T(y1ly2)

y1. output predicted at input x
y2: current data
y3:. hypothetical data from
new batch

Choose batch z7,...,z; to

minimize maxg, E(I|ys2)
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Example: Bayesian Design

‘ D te 2Xx,16
0.9 . “ 3 C .
os e . . | M. < 16 initial experiments
4— . 0 .
07 i . 1t * 3 new experiments
Qe | | . .
N : . 1| ¢ UseIG criterion
xN 0-5. L 0 - | --1 n [
o ’ x| | |, » Minimum IG: 0.044
03| © z e & - Main Effect Functions
0.2 e 5] -4 ,
01} -5
- formiati / 2 2
Or”,’gmm orma ong.iﬂn .

0

01 02 03 04 05 06 07 08 09

X4

1

delta

Contours of predicted discrepancy
function based on 16 initial experiments

-6 -6
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x X,



Sequential Design for Optimal Calibration

« Utility function defined as entropy loss due to new data y,
U(ys)= /(9”(9’}’27}’3) logm (0|y2,y3) d@—/@w(9|y2) logm (0 |y2) do

« Compute expected utility with respect to unknown future
observations
™ ( 97 Y3 | Y2 )
E[U — 0, 1 do d
U(ya) 1yal = [ [ 7(0.y31y2) tog — SV dp iy,

— Mutual information between model parameters 6 and new data y,
given available data y,

— Smaller expected utility implies new data y,; does not inform as
well about model parameters 0 given available data y,

Choose batch x7,...,x} to maximize E[U (y3) |y2]
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Data Assimilation Framework

 Time stepst=1,2, ...

— State vector {0,, 0,, ...} and observations {y,, y,, ..

* Prior model for state process
- n(6,) and 7(6; | 8, ,)

* Observational data model
— ¥, =1(8) + e,; e iid N(0, 2

* Goal: At each time t, produce draws from
(0| Y1)

— Y., denotes all data up to time ¢

.}



Data Assimilation Algorithm

1. At time t — 1, the ensemble of state vectors
{91&)1,17 o 79751—)1,1\4} are treated as draws
from 7w (0;_1|y1.6-1)

2. Propagate each 6’7&)17 .. according to m (0: | 0:—1 ),
producing an ensemble of draws {«9;’,1, o A M},
from 7w (0; | y1.0-1)

3. Given observations y;, update each 9;’7 .., producing

an ensemble {9;11), .. ,951]24} from 7 (0; | y1.¢)



Filtering Methods

 Particle Filter

Sample from {9;’71, soaglEy M} according to
importance weights {w1,...,wy} given by

[ 1
e xexp |4 (v (02)" 55 (v (02

 Ensemble Kalman Filter (EnKF)
1. From {(n (‘gggl)) (77 (Hétf‘L )>} construct

oo gn
z3?79 Enn

2. Draw perturbed data vector yp ~ N (y, 3,) , k=1,..., M
3. Set 0) = 05 + Zgy (S + ) (yr =1 (65)) L k=1,..., M (*)

the sample covariance >, = <



ensemble Kalman filter track and sensor data

particle filter

Data Assimilation Example

location

location

location

-1

=1

=]

-2
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ApeiggigRagyl .lI..,..I...-. by

sensor locations

.,.-..1.u.|-r.."...r.-- FroaniE,

O L T T L L L L T LT MU BT L RS Tt LI S et N EAST R BT LN | O TS SRTN R I BT

R ST [N O JASL T | 1

e
|L||.:I|.u|.,.-|.t..| iUl

sensor locations

T
1

T
20

sensor locations

An object moves vertically over time in the
presence of 11 sensors whose locations are
shown in the right, vertical axis. Its path is
given by the solid black line. The sensor signals
are given by the 11 horizontal time series. As
the object nears a sensor, the signal becomes
elevated.

Every 20 seconds, the object’s path is
predicted 20 seconds into the future using the
EnKF (middle) and the particle filter (bottom).

Prior paths 8, (light lines) are extended from
the previous time period’s posterior paths 8, ,
(dark lines) according to a stochastic model for
the object’s path. Given the sensor reading
for the current time period y,, these prior
paths are updated.

A model n(8,) produces an expected signal
given a path B, that is comparable to the
sensor signals y, for the current time period.

The EnKF perturbs each prior path to produce
a posterior path according to the formula in
(*). The particle filter samples posterior paths
using likelihood weighted draws over the prior
paths.
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