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Abstract

This presentation provides an overview of emulation, calibration and experiment
design for computer experiments. Emulation refers to building a statistical surrogate
from a carefully selected and limited set of model runs to predict unsampled outputs.
The standard kriging approach to emulation of complex computer models is
presented. Calibration refers to the process of probabilistically constraining uncertain
physics/engineering model inputs to be consistent with observed experimental data.
An initial probability distribution for these parameters is updated using the
experimental information. Markov chain Monte Carlo (MCMC) algorithms are often
used to sample the calibrated parameter distribution. Several MCMC algorithms
commonly employed in practice are presented, along with a popular diagnostic for
evaluating chain behavior. Space-filling approaches to experiment design for
selecting model runs to build effective emulators are discussed, including Latin
Hypercube Design and extensions based on orthogonal array skeleton designs and
imposed symmetry requirements. Optimization criteria that further enforce space-
filling, possibly in projections of the input space, are mentioned. Designs to screen for
important input variations are summarized and used for variable selection in a nuclear
fuels performance application. This is followed by illustration of sequential experiment
design strategies for optimization, global prediction, and rare event inference.
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Emulation of Code Output
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Surrogate: Gaussian Process (GP)

8=0.3; p=0.93
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Semiparametric regression
model for emulating code n(x)

Joint distribution of surrogate
outputs is multivariate Gaussian

Mean zero, precision A
Correlation function:

R(n(xl),n(xz) | [3) = exp(—i1 [J’j(xl,j _ xz,j)Z)

Define correlation length:

p; = exp(= B/ 4)

Notation: GP(0; A, p)
Correlation lengths p; determine
complexity of process
realizations



Emulator

« Use training runs to develop a statistical surrogate model
for the complex code (i.e., the emulator)
— Deterministic code is interpolated with zero uncertainty

» Kriging Predictor

1.5

—— point predictions
N\ — — 95% prediction bounds
\ @data N\

05 = : d—¥

0.0 o}

(6)

correlations between
prediction site x and

training runs x.,..., X

outputs evaluated
at training

pairwise correlations
between training

+ Kriging Variance Var|n(x;B)|= 02(1_"T(X35)R_1(ﬁ)r(x; ))

— Maximum likelihood or full Bayes inference for
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Model Calibration
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The Ultimate Objective
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« Uncertainty quantification results in distribution of Qol
predictions

» Uncertainty reduction in Qol predictions via code
calibration results in larger “Safety Margin”
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Meaning of Calibration

« Computer model n(x, t)

e Xx:. design inputs (controlled by experimenter)

« t. physics inputs (controlled in model runs)

« t=0: "best’, unknown setting, [8] ~ 1 (prior PDF)

» Observational data y(x,),...,y(x,)

— Given 6:

* y(x)=n(x,0) + £(x,), [€] ~ f (observational error PDF)
* y(x) = n(x;,0) + 0(x)) + £(x)), [0] ~ GP

» Calibration results in a posterior PDF for 6

« Bayesian approach that integrates information from prior
constraints and observational data
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Example: Linear Model

« Assume linear approximation to n(0):

on;
n(8) = 1(68;) + C(0 — ;) , where Cy; = ag. (65)
J

» Gaussian prior distribution for 6:
¢ 0 ~ N(HO, 20)

* Experimental data:
» Given 0: y=n(0) + €, [e] ~ N(0, X))

» (Gaussian posterior distribution for 6:
0ly] ~ N (6p + PCTZ; 1 (y — n(6y)), P) ,
P=(Z'+CTs;'0)!



Fission Cross Section [b]

12 14
|
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8

Cross Section Calibration to Jezebel
Critical Assembly Data

24 basis functions

0.03 0.1 0.32 1 3.16 10
Energy [MeV]

Example: Kawano et al.,
Nuclear Science and
Engineering 153, 1-7 (2006)

0 = (04,...,05,) represents 30-group
fission cross section (XS) values

Calibration to differential data
provides Gaussian prior
distribution of 0 for calibration to
Jezebel k

k.+0) is linearized around 6,
based on PARTISN calculations of
unperturbed and 1% perturbed
group XS values

Correlation structure
(compensating errors) in Gaussian
0 posterior introduced by k_
calibration
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Example: Nonlinear Model

Prior distribution for 6: 6 ~ r(0)

 May be Gaussian

« Often uniform on ranges provided by SMEs
Computational model n(x, 6) nonlinear on high
prior probability region of parameter space

Experimental data: y(x) = n(x,0) + g(x)

Posterior distribution for 6:
« Sampled via Markov chain Monte Carlo (MCMC)
» Metropolis within Gibbs and Adaptive Metropolis
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Calibration of the Dittus-Boelter

Correlation
« Dittus-Boelter is an empirical
model for single phase heat
_Bivariate projections of the transfer involving forced
joint posterior distribution of convection and turbulent flow

6 = (6,, 6,, 6;)

thetat

*  Nusselt number (Nu): Ratio of
convective to conductive heat transfer
across a boundary

 Reynolds number (Re): Ratio of
inertial to viscous forces

*  Prandtl number (Pr): Ratio of
- momentum to thermal diffusivity

Nu = 0, Re?? Pr%
e Prior for 6: Uniform on SME
provided ranges
o« 1w omwm i w ¢ Posterior for 8: Sampled with
Delayed Rejection Adaptive
Metropolis

0.45

* N
0.42| 3
041} ™
04
0.39
038

theta3
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MCMC: Gibbs Sampler

Objective: Generate a sample from the target probability
distribution described by density function proportional to
7t(X)
Divide parameter x into b blocks: x = (x4, X,, ..., X;)

* X, = (X4, .., X 1y Xigs «eo) Xy)

. Aﬁy block may cojnsist of a single parameter

Assume all conditional distributions st( x; | x; ) available

Algorithm:
* Repeatfori=1,2,....M
 Giveni, repeatforj=1,2,...,b
» Suppose the first (j — 7) blocks of x have already been
updated. The j-th block is updated as follows:

— Let X,- = ( X,-’1, X,-’2, faay X,-’j_1, xi-1,j’ R xi-1,b)
— Sample y ~ n( x; | X))

— SetX; = (X1, Xj20 -y Xjjgs ¥s Xigjags -or Xig )
* Return values x, ..., Xy,



MODELING, EXPERIMENTATION, & VALIDATION — SUMMER 2014

MCMC: Metropolis-Hastings

* Objective: Generate a sample from the target probability
distribution described by density function proportional to m(x)

« Algorithm:

 Repeatforj=1,2,...,M proposal density
 Generate y from.ﬁ u from Uniform(0, 1)
¢ )

min [W(Y)q(y’x) ] , if m(x)q(x,y) >0

U S a(Xj7y) for OZ(X, y) — T‘-(X)q(x7y)’
1, otherwise
set Xis =Y
* Else, set X1 = X;
* Return values x4, ..., X;, )
* Implementation: ) = e L(x) | 1]

* Discard initial my samples as "~ "burn-in”
* Metropolis: symmetric proposal distribution q(y,x) = q(x,y)
« Challenge is choosing q(x, ) for effective “mixing”
— 23.4% multi-parameter, 44% single parameter, 57.4% Langevin diffusion
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MCMC: Metropolis Within Gibbs

 Algorithm:
« Repeatfori=1,2,....M
» Given j, repeat forj=1, 2, ..., p (hnumber of parameters in x)
» Suppose the first (j — 7) parameters in x have already been
updated. The j-th parameter is updated as follows:

— Let X, - (Xi,1""’ Xi,j-1’ Xj_1,j, Xi_1,j+11 D00y XI-1,p)

— Generate y; from q(x,,;, *) and u from Uniform(0, 1)
— Sety = (X;4,-.., Xiitr Yo Xitfuts o x,-_1,p)
— If

u < a(x;,y) for a(x,y) = min [

m(y)a;(y, x) 1]
7T(X)C]j (X7 Y) ’
setx,=y
— Else, sety;= x,,;and x; =y
* Return values x, ..., Xy,
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MCMC: Adaptive Metropolis

° Algorlthm mean covariance
* Proposal distribution: q,(x, y) is Gaus&an?@@()?orﬁ —
(A, )

 Repeatfori=1,2,...,M
— Generate y from gy, (X;, -) and u from Uniform(0, 1)

— If
7
< ,y) | = —= 1
u < a(x;,y) for a(x,y) = min [W(X) : ]
setx,, =y o,
e.g. v, =1 * for

— Else, set x;,, = X; t
+ 51 arget
— Update ve it e
log (Aiy1) = log (A\;) +(Xia y) _v
Pit1 = s + Vi1 (Xip1 — Ms)

Z1:+1 = + Yi+1 [(Xi—|—1 — Mi) (Xi+1 - Mz‘)T — Zi]

* Return values x, ..., X,
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MCMC: Delayed Rejection Adaptive
Metropolis

« Algorithm is same as Adaptive Metropolis, except for

delayed rejection of candidates
« At /-th step

— Generate y from q.(x;, *) and u, from Uniform(0, 1)

— If
| 7(y)
u < oq (x5,y) for o (x,y) = min | —=, 1
< a1 (i) for an () = min | TV 1
setx,, =y
— Else, generate z from q,(x;, *) and u, from Uniform(0, 1)
_If _
. 7.‘-(Z)C,Zl (Z7Y)(1 T al(Z7Y))
us < as (X;,y,2z) for as (X,y,z) = min , 1
¢ < uyoe) or s (oys) = min | MBI EST L
setx,,=z
— EISG, set Xi1 = X; In AM: Fix A =2.38%/p

* q4(x,y)is set to q,(x, y) [Gaussian(y; x, AZ)] from AM algorithm
* q,(X, Z) is set to qy(x, z) but with scaled covariance matrix y (AX)
for y generally in (0, 1)
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MCMC: Diagnostics |

* Independently simulate m = 2 sequences of length 2M
« Starting points drawn from overdispersed distribution
» Discard first M iterations of each sequence

* For each scalar parameter of interest, calculate:
B/M = the variance between the m sequence

means, x; , each based on M values of x,

B/M = Z (%, —.)" /(m—1); and

W = the average of the m within-sequence

variances, s7, each based on M — 1

degrees of freedom, W = Z 53 /m.
i=1
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MCMC: Diagnostics Il

« Estimate the target mean u
« Sample mean of the mM simulated values of x: ,EL =3

« Estimate the target variance o2

M —1 1
A2
0° = W+ —B
M M
 For finite M, W less than o2 (have not yet sampled all of target)
« Overestimates 02 assuming starting distribution is overdispersed

 Unbiased in limit M — oo

« Estimate approximate target distribution for x

x%T(df:ﬂA/Q/\ﬁa\r(f/) u,\/_ V62 + B/( mM))
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MCMC: Diagnostics Il

/e M-1\*1__,, m+1\" 2
Var(V):( = ) Evar(si)_l_(—mM) —m—lB

(m +1)(M — 1)
e mM?
M o~ 2 _92 . —— -
X p, [cov (si,xi‘) — 2T . cov (sz,azz)]

« Estimated variances and covariances obtained from m samples
of T;. and s;

« Estimate potential scale reduction factor

PSRF = V R = \/(V/W) df/(df —2) | 1 as M — o0

 Indicates amount of scale reduction expected as M — oo
 Rule of thumb: PSRF < 1.1 desirable; PSRF > 1.2 failure
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MCMC: Summary

« Many MCMC algorithms implemented in software
« MCMCpack, mcmc, adaptMCMC, AMCMC in R

— http://cran.r-project.org

 OpenBUGS, WinBUGS

— http://www.mrc-bsu.cam.ac.uk/software/bugs/
- DRAM

— http://helios.fmi.fi/~lainema/dram/

 Failure (large PSRF) can happen for two reasons:
* One or more chains have not converged to the target
* One or more chains have not sufficiently explored the target

« Multivariate form of PSRF available
* Bounds above univariate PSRF for any linear combination of the
variables

R package coda provides a suite of MCMC diagnostic tools



Sensitivity Analysis and Resource Allocation

Output 1 Output 2
Variation |%Contribution| Variation [%Contribution
age 1.27% age 7.68%
Stockpile 1 0.18% Stockpile 1 0.05%
Stockpile 2 0.01% Stockpile 2 0.01%
Stockpile 3 0.01% Stockpile 3 0.02%
Stockpile 4 0.01% Stockpile 4 0.65%
Stockpile 5 6.63% Stockpile 5 B8.76%
Stockpile 6 0.00% Stockpile 6 0.00%
Physics 1 17.35% Physics 1 23.60%
Physics 2 4.81% Physics 2 4.10%
Physics 3 53.19% Physics 3 19.87%
Physics 4 0.00% Physics 4 14.94%
Physics 5 15.41% Physics 5 18.06%

pre—calibration

post—calibration

APerformance

APerformance

T
> op SoyeSiy,

Parameter

Parameter

e Sensitivity analysis

(SA) summarizes
iInput-output
relationships

SA can be conducted
assuming any
distribution for input
parameters

For physics parameters, most
relevant input distributions
are pre-calibration (prior) and
post-calibration (posterior)

Post-calibration SA
identifies parameters/
models for further
uncertainty reduction
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Post-Calibration Sensitivity Analysis

Begin with MCMC sample of calibrated parameters {0, ..., 0,,}

For the j-th parameter, estimate its main effect

* Divide the range of 6,,, i =1, ..., M, into bins

* For each bin, average the output predictions n( x, 6 ) corresponding
to samples for which 6, ;is contained in the bin

- If desired, apply a smoother to the average output predictions across
all bins to estimate the main effect function for input j

For the j-th parameter, estimate its main effect variance
« Compute variance of estimated main effect function with respect to
the calibrated marginal distribution of input j
« Calibrated marginal distributions estimated by histograms of
parameter values developed for main effect function estimation

Rank parameters in decreasing order of main effect variance



References

Andrieu, C. and Thoms, J. (2008). “A tutorial on adaptive MCMC,” Statistics and Computing, 18,
343-373.

Casella, G. and George, E. (1992). “Explaining the Gibbs sampler,” The American Statistician,
46, 167-174.

Chib, S. and Greenberg, E. (1995). “Understanding the Metropolis-Hastings algorithm,” The
American Statistician, 49, 327-335.

Gelman, A. and Rubin, D.B. (1992). “Inference from iterative simulation using multiple
sequences,” Statistical Science, 7, 457-472.

Haario, H., Laine, M., and Mira, A. (2006). “DRAM: Efficient adaptive MCMC,” Statistics and
Computing, 16, 339-354.

Kawano, T., Hanson, K.M., Frankle, S., Talou, P., Chadwick, M.B., and Little, R.C. (2006).

“Evaluation and propagation of the 23°Pu fission cross-section uncertainties using a Monte Carlo
technique,” Nuclear Science and Engineering, 153, 1-7.

Unal, C., Stull, C.J., and Williams, B.J. (2013). “Parametric uncertainty in a thermal conductivity
model of uranium oxide light water nuclear reactor fuel,” Review of Applied Physics, 2, 39-48.

Unal, C., Williams, B.J., Yacout, A., and Higdon, D.M. (2013). “Application of advanced
validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON
thermal-reactor fuel performance codes,” Nuclear Engineering and Design, 263, 102-128.



MODELING, EXPERIMENTATION, & VALIDATION — SUMMER 2014

Experiment Design



Why Experiment Design?

 Originally introduced to detect treatment effects
In agricultural experiments

— Overcome limitations of one-factor-at-a-time
experiments

— Blocking, randomization, replication
* How are runs determined?
— Design criterion

— Parameter estimation, detecting treatment effect(s),
prediction

* How is any of this relevant to deterministic
computer models?

— “Slow” computer models and finite resources
— Prediction of model output at unsampled inputs



Regression and Design

 Consider the traditional linear model framework:

y(x;,)=t'(x,)B+e, €~ N(O,Gz)

regression \ regression
model parameters

» Regression predictor and variance
$(x) =17 (x) B.B = (F'F) 'F'y, Vary(x)] = o* (1 + fT(x)(FTF)_If(X))

» Design Problem: Choose runs 2= {x,, ..., X} tO
minimize some functional of prediction variance
— Maximum variance (G-optimal)
— Average variance (I- or L-optimal)

matrix of regression
functions for
proposed runs Xq,..., X,



Kriging and Design
o Krlglng Predlctor

1.5 =

outputs evaluated
at proposed

) -1 (xR B)

1.0

> 0.5

0.0 /
correlations between pairwise correlations
os prediction site x and between proposed
proposed runs Xq,..., X, runs Xq,..., X,

* Kriging Variance

Var[n(x;B)]= o*(1-r" (x:p)R”'(B)r(x:B))

— Function of unknown parameters 3

* Design Problem: Select runs 2 = {x,, ..., X}, but
how?
— Heuristics, Bayesian design



Choice of Design Affects Prediction Quality

* Uncertainty in PCT as
function of initial ambient
conditions and system
degradation

— Fong et al. 2009, RESS

Variable Distribution 20% | 80% | Rate
P_Tubes Exponential 0.15 | 10.7
P_Temp Truncated Normal 7 47
R_Emis Truncated Normal | 0.65 | 0.85
R_Block Exponential 0.15 | 10.7
RVACS T | Truncated Normal 7 47

density

0.005 0.010 0.015 0.020 0.025

0.000

Sources of
Uncertainty:
1. Parameter
2. Emulation

No emulator

Emulator based on
“optimal” desig

Emulator based on
inferior design

650 700

PCT

750




Latin Hypercube Designs (LHDs)

« Each column is a permutation of the numbers from 1 to m
« For any number of factors p and runs m, there are many LHDs
[(m!)P]
« Therefore, we specify another criterion to select one:
— Maximize minimum distance between points
— Minimize column correlations

« Random LHDs are potentially problematic

Unfortunate random LHD Maximin Distance LHD



Minimum Average Distance Criteria

« Optimize over projections of design
e Criterion function

1 C(p.) e
ool k) = (Zjejmp,j) > 2 (Mo ()] )

jeJ k=1

— J = set of projection dimensions; C'(p,j) = p!/|7!(p — j)!]
— X is candidate LHD; X ;. = k-th projection into 7 dimensions

 Criterion value for projected design

1/¢
! 1/p :
Mp.0)(Xjk) = (C(m, 2) Z [dp(;%kijkj )

1<h<i<m )
— d,(+,-) = L, distance
— ¢ — oo maximizes minimum distance
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Example: Minimum Average Distance LHD

m;»=3.1134 Mo = 3.1220

3
S

non
- W

Il s O

(S
~ ll
‘.NA
w
—

Mi23= 2.8991

av =3.0758

my3= 3.1688



OA-based LHDs

« Begin with a balanced orthogonal array OA(m, p, s, f)
— m X p design, each column has s levels, strength ¢

— All st level combinations for any t columns occur equally
often

— If possible, t = 3, often s = 2
« Convert to LHD via Tang (1993)
— Example: Convert OA(8,3,2,3) to LHD

000 032 rgATevel Design column | Random permutation
001 215
1 {0,2,1,3}
010 160 0 5 (3,1,2,0)
ULl 540 3 {2,0,3,1}
100 423
1 {4,6,7,5}
101 607
1 2 {6,4,5,7}
110 751 3 N
111 574 15,6,7,4}
« Combine with distance-based criteria
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OA-based LHDs

OA(16, 3, 4, 2)
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« OA designs good for estimating low order effects
* OA-based LHD good for GP response surface modeling
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Symmetric LHDs

« Symmetry with respect to midpoint of input domain
* Optimize with respect to a distance criterion
— maximin distance, average projected distance
— columnwise-pairwise or simulated annealing algorithms




Columnwise-pairwise (CP) Algorithm

« Columnwise algorithms make exchanges on the columns in a
design

— Useful for designs with structure requirements on the
columns

* Modification is necessary to accommodate symmetry
— Two simultaneous pair exchanges

» Algorithm:
1. Start with a random m x p symmetric LH design

2. Each iteration has p steps. At the /-th step, the best two
simultaneous exchanges within column j are found. The
design matrix is updated accordingly.

3. If the resulting design is better w.r.t. the criterion, repeat
Step 2. Otherwise the search is terminated at the current
design.



Simulated Annealing (SA) Algorithm

* Let ¢(D) denote the criterion value for design D
« Algorithm:

1. Initialization. Define ty, I...,, FAC, and t_,.. Randomly select an initial

symmetric LH design D. Set D, ;= D, t={,.

2. Temperature loop: Set FLAG =0, [=1.

3. Perturbation loop: Set D, to D. Randomly select a column of D,
randomly select two elements within this column. Simultaneously
exchange these two elements and their symmetric pairs.

4. If &(Dyy,) < &(D), or with probability exp[-(¢(Dy,) - ¢(D))/1], set D to D
FLAG to 1.

5. If q)(Dtry) < q)(Dbest)’ set Dbest toD
1

then

try @nd

iy and ['to 1. Otherwise increment / by

6. If/I<I/_,,, branch to Step 3.
If FLAG=1andt>t_, multiply t by FAC, and branch to Step 2.

8. Stop and report D,

~



Quasi-Monte Carlo (MC) Sequences

» Better error properties than MC for approximating integrals
— “low-discrepancy” sequences, e.g. Sobol’ or Niederreiter

#include <stdio.h>
#include <gsl/gsl grng.h>

= ) = =
int main( void ) n 4
{ v n .00 o e o
int i, jJ; ) o - L] w )
int m=50, p=2; = e - © u .
gsl_grng *qg; s ) . - -
- [
o s m
g = gsl grng_alloc( gsl grng sobol, p ); L e Y /4 °
< o n
u
for( i=0; i<m; i++ ) { "o ;
u u
double v[p]; g4 " = ® U i
gsl_qgrng get( q, v ); L, °m . .
(] o
for( j=0; j<p-1; Jj++ ) { : - o .
printf( "%.5f ", v[j] ); g ;

} 0.0 0.2 0.4 0.6 0.8 1.0
printf( "%.5f\n", v[p-1]1 );
}

Sobol’ sequence
gsl grng free( gq );
return 0; Random sample

e 50 runs, 2 parameters



Performance of Space-Filling Designs

« Substantial empirical evidence supporting use of space-
filling designs for GP modeling

« Example: F-Quantile Function

The noncentral F cdf is:

]
(%b) ‘g Vi'X Vi V2
F(.-\"l\"l.\’z. b) . z T’P ](\’2_\"1 X 7'{"‘/7]

Jj=0

where I(x/a,b) is the incomplete beta function with parameters a and b.

v,=v,=20
1 \

s /_‘ i
08

06} /§V1=V2=5
(@

04t ! /

02/ | | §=1O 1

0

— Given (v4, V5, 0, p), compute x
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Results

Two 35-run designs

— Maximin Distance
LHD

— D-optimal
Two surrogates

- GP

— full cubic polynomial
Prediction quality

— Measured by %
error

— 160,000 test
samples

" = Distributions

¥~ Percent LHC Error

|'¥ ™ Percent RSM Error

¥~ Percent RSM/GASP Error | ¥| ™ Percent LHC/Cubic Model Error |

400+
3004
200

100+

. -

400
300

200+

100
o-l:l;l

4004
300

200+

04

100—é

¥ Quantiles

¥| Quantiles

¥ Quantiles

100.0% maximum  54.544 100.0% maximum 17010 100.0% maximum 12597
99.5% 35674 99.5% 121.39 99.5% 103.85
97.5% 22435 97.5% §2.04 97.5% 91.47
90.0% 11.270 90.0% 37.30 90.0% 8216
750%  quadile 6283 750%  quartie 2457 750%  quartile 7585
50.0% median 3.303 50.0% median 13.97 50.0% median 70.03
250%  guartile 1.520 250%  quartile 655 250%  quartile 64.41
10.0% 0.591 10.0% 259 10.0% 59.88
25% 0145 25% 065 25% 51.71
05% 0.031 0.5% 013 0.5% 46.00
0.0% minimum  6.37e-5 0.0% minimum  2.83e-5 0.0% minimum 3999
¥| Moments | ¥ Moments ¥| Moments
Mean 5.10806 Mean 19122757 Mean 70521971
St Dev 59470825 Std Dey 20.014986 Std Dev 96100812
Std Err Mean 0.0148677 St Err Mean 0.0500375 St Err Mean 0.0240252
upper 95% Mean 51372004 upper 95% Mean  19.220829 upper 95% Mean  70.56906
lower 85% Mean  5.0789196 lower 85% Mean  19.024685 lowver 95% Mean 704745852
M 160000 M 160000 N 160000

400
3004
200+

100

0

¥ Quantiles

100.0% maximum  775.01
99.5% 37288
97 5% 22837
90.0% 129.22
750%  quartile 9038
50.0% median 68.52
250%  quartile 471
10.0% 2329
25% 613
0.5% 125
0.0% minimum  0.00212
¥ Moments
Mean 77.026365
Std Dev 56.606814
St Err Mean 0141517
upper 95% Mean 77.303735
lower 95% Mean 76.745995
N 160000

Example: Rachel Johnson and Brad Jones



Conclusions

* Experiment design strategy must be tailored to
inference objectives

— (fractional) factorial, alphabet optimal designs work
well with regression, ANOVA

— space-filling designs work well with GP models
typically used in computer model emulation
« Space-filling experiment designs can be
optimized
— Obtain desirable projection properties
— Restricted permutations

— Optimization algorithms tailored to design column
structure
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Screening Experiments



Why Screening?

« Often effect sparsity pertains, in which most of the
output variation (~80-90%) is explained by relatively
few inputs (~10-20%)

« Emulation of complex computer models often

becomes substantially more difficult as input
dimension increases

— Minimum inter-point distance increases, potentially
having a negative impact on covariance estimation

« Resources often used more efficiently with the two-
stage procedure of screening followed by production
analysis

— Removal of inactive inputs results in (perhaps

substantially) fewer computer model runs required for
production analysis



R7: Screening and the “20-80 Rule”

Variable Main Effect % |Total Effect %
PrzPreEnd 0.02% 0.21%
PrzDnTime 0.00% 0.01% Two Stage Screening Algorithm
PumpTripPre 0.00% 0.01% 1. 100 runs in Stage 1
PumpStopTime 0.65% 2.76% 2 30 runsin stage 2
SCRAMtemp 0.12% 1.67%
CRinject 0.00% 0.01%
CRtime 0.00% 0.02%
HRadCore 0.11% 0.17% Three parameters selected:
HRadHX 0.12% 0.15% PumpPow, TwallHX, and UncNu
Qcore 1.04% 1.08%
PheadNom 0.33% 0.37%

ncFri .009 .199
ner e 208 URLAL Results are consistent with
sph 0.00% 0.00% global sensitivity analysis
vis 0.02% 0.12% based on 300 runs (sensitivity
dPREJDEN 0.01% 0.53% indices presented in table)
dPREdJTEM 0.00% 0.01%
alphalLF 0.02% 0.12%

Output: Peak Coolant Temperature



Method of Morris

Factorial Sampling Plans for Preliminary Computational
Experiments

f inputs scaled to unit interval, restricted to a p-level grid:

x, €4{0,1/(p-1),2/(p-1)....1}

Inference based on elementary effects:

di(X) = [y(xl,xz,. c XX AL ..,xf) — y(x)]/A

— Output y(x), x,<1-A

— A'is a pre-specified multiple of 1/(p-1)
Goal: Important effects identified with a design having
number of runs proportional to f

— Estimate finite distribution F; of p™'(p — A(p-1)) elementary effects



Method of Morris: Interpretation

* Large measure of (absolute) central tendency for F,
indicates input x; has an important overall influence
ony
— Linear effects

e Large measure of spread indicates x; is highly
dependent on the values of the inputs x
— Nonlinear or interaction effects

e Use estimates of the mean and standard deviation
(SD) of each F,; to screen for important effects

— K-means clustering can be used to separate the absolute
means and SDs of each F; into two clusters: active and
Inactive inputs

e Sampling plans provide random samples from each
F; on which these estimates are based



Method of Morris: Examples

 Elementary effect distributions F; for 3 canonical functions
w; = mean of F; and ¢; = standard deviation of F; A = p/[2(p — 1)]

f
y1($1,...,$f):ao+zajxj :> PrOb[dz‘—ai] =1
g=1

,ui:aiandaz-:()

Probld; = a;(47 + p)A/p] =2/p
for j € {0,1,2,...,(p—2)/2}

p 2 p+2
w; = a; and o; = |a;]|

f
Yo (x1,...,2f) = ap + Zaj:c?
j=1

di(x) = a; + b?A +2b; be]

j=1

2
f f

yg(m,...,azf)ao+Zajxj+(ijxj> |:> [l = @y - 0 Zb and
j=1 j=1

NG —12;11); 0



Example:
ple: A Quadratic Function

F ion:
unction: ys(x4,X,), x; € [0,1]

—a= -4,

8, 4

g—r
|
i

i
)
7

1.0

7
77

F
0.0 0.2 0A—106 0.8

Summary statistics

— Grid siz
- A=pl[2

ep=100
—1

Elem
entary Effect Distributions

10 20 30 40

=
o
- -
S
©
No_
L
<
5 4
o
=
=
2

-6 -4
2 0
2 4

dy °

Mean

Standard Deviation

28

7.85

2.93




GSIinCE

* Group Screening in Computer Experiments

* Two-stage procedure
— Stage 1: Identify groups of active parameters
— Stage 2: ldentify active inputs within active groups

* |n Stage 1, group total effects are compared with
total effects of “low-impact” inputs for selection of
active groups

* |In Stage 2, total effects of the individual inputs Iin
selected groups are compared with total effects of
“low-impact” inputs for selection of active inputs

» Selected active inputs are used in follow-on
studies



Example: Halden Rod 1

 |FA-432 Test

— 6-rod assembly irradiated in the Halden heavy boiling water
reactor in Norway from 1975 to 1984

— Test long-term steady-state performance of BWR-6 type fuel
rods, operated at upper bound power levels for full-length
commercial fuel rods

— Centerline thermocouple in top and bottom end of fuel column
« FRAPCON Calculations

— 61 parameters (17 design, 44 physics)

— 4 outputs

« Average of total fuel radius change (microns) for axial regions
1-4 at time steps 38 (y,) and 44 (y,)

« Centerline temperature (Kelvin) for axial region 4 at time step 38

(¥s)
 Fission gas release at time step 44 (y,)



FRAPCON: Method of Morris Results

Number Variable Model Outputs
1 rp_qc_coeff Rod surface heat flux at elevation z on the rod axis 1,2,3,4
14 rp_ec_coeff Clad emissivity 2
17 rp_rphonon_coeff Expression in fthcon.f used in computing conductivity 1,2,3,4
19 rp_fm_coeff Multiplier effect of porosity 1,2,3,4
20 rp_con_coeff Fuel thermal conductivity 1,2,3,4
26 rp_celmod_ coeff Elasticity modulus 2
27 rp_cshear_coeff Shear modulus 2
31 rp_delta_coeff As fabricated fuel-cladding gap size 1,2,3
36 rp_fit_coeff Multiplier in grain boundary accumulation model 4
37 rp_rns_coeff Saturation area density gas 1,3
38 rp_dmultiplier_coeff [Burnup-enhancement factor of 14 applied to diffusion constant |(1,2,3,4
39 rp_dconstant_coeff [Diffusion constant 2 1381<T<1650 1,2,4
50 dspg Spring diameter 2

Selection of 13 active effects based on K-means
clustering (K = 2) applied to (a) absolute means,
and (b) standard deviations of samples from
elementary effect distributions
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FRAPCON: GSIinCE Results

Morris | GSInCE
Number Variable Model Outputs | Outputs
rp_qc_coeff Rod surface heat flux at elevation z on the rod axis 1,2,3,4 1,2,3,4

rp_rphonon_ coeff

Expression in fthcon.f used in computing conductivity

1,2,3,4

1,3,4

19

rp_fm_coeff

Multiplier effect of porosity

1,2,3,4

1,3,4

rp_con_coeff

rp_delta_coeff

Fuel thermal conductivity

As fabricated fuel-cladding gap size

1,2,3,4

1,3,4

2

rp_fit_coeff

rp_dmultiplier_coeff

Multiplier in grain boundary accumulation model

Burnup-enhancement factor of 14 applied to diffusion constant

4

1,4

39

rp_dconstant_coeff

Diffusion constant 2 1381<T<1650

1,4

Selection of 8 active effects based on groups defined by
(a) exploratory data analysis (EDA),
(b) subject matter expert (SME), and

(c) EDA within SME groups

EDA uses Fisher transformed Pearson correlation coefficients between
columns of design and computer model output



FRAPCON: GSInCE — EDA Groups

Stage 1

Output 77 range Individual Inputs Groups | Selection Output _ ’7‘; fanes Individual Inputs Groups | Selection
m 0467 to -0.398 | 19 17 20 gl \/ Y3 -0.524 to -0.481 | 17 19 20 gl v
0149 to -0.109 |36 10 9 2 “0.108 “to 008810 9 g2
e : D g -0.067 to -0.060 | 6 51 47 25 45 3
-0.093 to -0.069 6 37 45 25 g3 -0.057 to -0.051 | 56 37 36 g4
-0.056 to -0.042 | 41 60 59 56 g4 _0.048 to -0.042 | 41 60 21 g5
-0.038 to -0.031 |31 51 4 28 g5 -0.037 to -0.033 |13 59 11 6
-0.025 to -0.021 |21 13 34 54 11 g6 0028 to -0.023| 4 42 34 53 7
-0.018 to -0.012 | 47 53 42 49 40 g7 -0.017 to -0.014 | 28 33 49 g8
-0.009 to 0.000 |18 30 43 12 29 5| g8 OIS )l g9
0.005 to 0.013|24 2 55 61 9 000k 1o 888(7) ‘;’g gg 43 ;ﬁ?
0.022 o 0.029) 35 33 50 810 0.010 to 0.024 | 54 43 61 12 gl2
OO0 o QO8O | 22 1d d8 &8 i 0.027 to 0.035 |50 22 46 27 48 £13
0.050 to 0.058 | 27 23 3 57 gl2 0.047 to 0.060 | 14 52 38 8 gld
0.062 to 0.081 |58 46 8 15 gl3 0062 to 0069 |26 7 58 3 gl5
0.091 to 0.108 | 44 52 32 16 gld 0071 to 0088 |44 15 23 57 16
0.164 to 0.304 |38 39 1 gl5 N/ 0097 to 0.111 |32 16 39 gl7
U 1.942 | 31 gl \/ 0.221 to 0.252 1 31 gl8 v
0.060 to -0.054 | 43 54 6 02 va | 0416 to -0.371 | 19 17 20 ol v
-0.045 to -0.033 | 36 30 27 g3 pRgos to -0.137 JgRapgr g2 v
S e i -0.098 to -0.073 |10 25 33 3
: : ) g -0.062 to -0.052 | 45 56 6 60 gd
-0.019 to -0.011 25 14 41 50 23 g5 -0.049 to -0.042 | 59 41 47 28 g5
-0.010 to -0.006 | 12 56 5 58 g6 -0.030 to -0.020|21 9 53 12 51 g6
-0.003 to -0.001 | 26 42 37 40 49 g7 0.020 to -0.014 |11 13 2 o7
0.000 to 0.003 |29 19 34 61 55 22| g8 -0.009 to -0.004 | 4 30 54 42 35 55 | g8
0.004 to 0.006 | 24 7 13 g9 0.000 to 0.010 | 49 40 46 5 g9
0.010 to 0.017 | 15 2 18 17 16 g10 0.012 to 0.019 | 61 24 34 18 29 210
0020 to 0029 [59 11 52 35 21 39 | gll Sﬁii :2 ggig ﬁ ‘2"; 52 s i;
0'032 flop 0034 cGlds 69 gl2 0.041 to 0044 [22 7 43 50 gl3
0.035 to 0.039 | 10 8 45 38 gl3 0.053 to 0058 | 57 26 52 gld
0.040 to 0.048 | 57 28 51 gld 0.072 to 0.095 | 23 15 16 gl5
0.056 to 0.073 | 32 53 47 33 20 gl5 0.105 to 0.143 | 32 31 gl6
0.241 | 1 gl6 v 0224 to 0417 | 1 38 39 gl7 v
Output Stage 1 Selection Stage 2 Selection AnaIyS|S: H. Moon
Y1 1 17 19 20 38 39| 1 17 19 20
s 1 31 1 31
Y3 1 17 19 20 31 1 17 19 20 Stage 2
Y4 1 17 19 20 36 37 38 391 17 19 20 36 38 39
Union |1 17 19 20 31 36 37 38 39| 1 17 19 20 31 36 38 39



FRAPCON: GSInCE — SME Groups

Individual inputs Groups | Stage 1 Selection Stage 2 Selection
Yi | Y2 | Y3 | Y4 Y1 Y2 Y3 Y4
123 gl Vivivi]yV 1 1 1 1
456789 g2
10 11 12 13 14 15 g3
16 17 18 19 20 21 g4 VIiVvIiVvIV| 171920 171920 | 1719 20
22 23 24 25 gb
26 27 28 29 30 g6
31 g7 vV 31
32 33 34 35 36 37 38 39 40 41 42 43 | g8 vV 38 39 36 38 39
44 g9
45 46 48 50 51 53 56 57 59 60 61 gl0
47 49 52 54 55 58 gll

Analysis: H. Moon

SME groups have potential disadvantages:
(1) Reduction of Stage 1 selection efficiency due to the
existence of large groups
(2) Mitigation of group effect through cancellation
involving inputs having opposing functional
relationships with output




FRAPCON: GSinCE — EDA Within SME
Groups

input | expert Trans Corr sub new input | expert Trans Corr sub new
group Y ‘ Y3 | group | group group Y1 ys | group | group

1 1 0.3042 | 0.2210 1-1 gl 32 8 0.1073 | 0.0965 8-1 gl4
2 1 0.0073 | 0.0069 1-2 22 33 8 0.0256 | -0.0164 8-2 glb
3 1 0.0562 | 0.0692 1-2 g2 34 8 -0.0215 | -0.0257 8-2 glh
4 2 -0.0344 | -0.0280 2-1 g3 35 8 0.0219 | -0.0001 8-2 glb
5 2 -0.0004 | -0.0032 2-1 23 36 8 -0.1486 | -0.0507 8-3 gl6
6 2 -0.0932 | -0.0665 2-1 23 37 8 -0.0919 | -0.0564 8-3 gl6
7 2 0.0495 | 0.0636 2-2 g4 38 8 0.1635 | 0.0553 8-1 gld
8 2 0.0710 | 0.0599 2-2 g4 39 8 0.2157 | 0.1112 8-1 gld
9 2 -0.1085 | -0.0878 2-1 23 40 8 -0.0122 | 0.0000 8-2 glh
10 3 -0.1099 | -0.1077 3-1 g5 41 8 -0.0556 | -0.0480 8-3 gl6
11 3 -0.0205 | -0.0325 3-1 g5 42 8 -0.0155 | -0.0276 8-2 glh
12 3 -0.0039 | 0.0241 3-2 26 43 8 -0.0044 | 0.0169 8-2 glb
13 3 -0.0219 | -0.0365 3-1 25 44 9 0.0906 | 0.0705 9 gl7
14 3 0.0335 | 0.0473 3-2 26 45 10 -0.0725 | -0.0602 | 10-1 gl8
15 3 0.0811 | 0.0763 3-2 26 46 10 0.0642 | 0.0294 | 10-2 g19
16 4 0.1075 | 0.0974 4-1 g7 48 10 0.0437 | 0.0352 | 10-2 g19
17 4 -0.4604 | -0.5240 4-2 28 50 10 0.0291 | 0.0266 | 10-2 gl9
18 4 -0.0087 | 0.0036 4-1 g7 51 10 -0.0345 | -0.0646 | 10-1 gl8
19 4 -0.4668 | -0.4853 4-2 28 53 10 -0.0178 | -0.0233 | 10-1 gl8
20 4 -0.3977 | -0.4813 4-2 g8 56 10 -0.0422 | -0.0565 | 10-1 gl8
21 4 -0.0245 | -0.0422 4-1 g7 57 10 0.0584 | 0.0882 | 10-2 g19
22 5 0.0301 | 0.0284 5-1 29 59 10 -0.0487 | -0.0350 | 10-1 gl8
23 5 0.0523 | 0.0779 5-1 29 60 10 -0.0538 | -0.0472 | 10-1 gl8
24 5 0.0052 | -0.0052 5-2 210 61 10 0.0126 | 0.0223 | 10-2 g19
25 5 -0.0687 | -0.0615 5-2 g10 47 11 -0.0180 | -0.0627 | 11-1 220
26 6 0.0346 | 0.0616 6-1 gll 49 11 -0.0149 | -0.0143 | 11-1 220
27 6 0.0503 | 0.0342 6-1 gll 52 11 0.0990 | 0.0536 | 11-2 g21
28 6 -0.0311 | -0.0170 6-2 212 54 11 -0.0210 | 0.0102 | 11-1 220
29 6 -0.0015 | -0.0062 6-2 212 55 11 0.0121 | -0.0003 | 11-2 g21
30 6 -0.0085 | 0.0052 6-2 212 58 11 0.0622 | 0.0688 | 11-2 g21
31 7 -0.0382 | 0.2523 7 213

Individual inputs Groups | Stage 1 Selection Stage 2 Selection

Yi | Y2 | Y3 | Ya % Y2 Y3 Ya

1 gl NARVARVARY 1 1 1 1

2 3 )

4 5 6 9 3

7 8 g4

10 11 13 25

12 14 15 g6

16 17 18 g7 JAY | | LI 17 17

19 20 21 g8 VIivIv]v] 192 1920 | 19 20

22 23 )

24 25 g10

26 27 gll

28 29 30 gl2

31 gl3 4 31

32 38 39 gl4 4 4 38 38 39

33 34 35 40 42 43| gl5

36 37 41 216 v i 36

44 gl7

45 51 53 56 59 60 | gl8

46 48 50 57 61 ¢l19

47 49 54 220

52 55 58 g21

Analysis: H. Moon

In this example, all 3 grouping methods result in

the same Stage 2 selection of active inputs: 1,

17,19, 20, 31, 36, 38, and 39
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Sequential Experiment Design



Introduction

« Sequential experiment design is utilized to more
efficiently pursue an objective
— Optimization
— Global prediction
— Calibration/discrepancy inference
— Contour estimation
— Quantile estimation

 How does it work?
— Analyze runs from initial design

— Propose additional runs, perhaps in batches, using results
from the initial design and a design criterion tailored to the
objective

— Continue until the budget of runs is expended

» Generally at least 30% of budget is spent on the initial design



Optimization

« Sequentially collect additional runs to minimize computer model
output
— Based on an expected improvement criterion
— Balances prediction uncertainty (global) and local optimization

» Facilitates baselining of complex computer models

— Can be embedded in other algorithms that guarantee convergence (e.g.
pattern search)

e Can be applied when some inputs are environmental (have pdfs)

global search
search

Expected
Improvement
For Global
Optimization
(Baselining)

Iteration
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Global Prediction

« Sequentially collect additional runs to efficiently improve global
prediction capability
— Based on an expected improvement criterion
— Balances prediction uncertainty and bias

* Facilitates control of absolute or relative prediction error

Prodicted Suface, INSEO 014103
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Rare Event Estimation

* Interested in rare event estimation
— QOutputs obtained from computational model
— Uncertainties in operating conditions and physics variables
— Physics variables calibrated wrt reference experimental data

 |n particular, quantile or percentile estimation
P”’[U(wag) > Q(x] —
— One of g, or a is specified and the other is to be inferred
— q, may be random when inferring o

« Sequential importance sampling for improved inference

— Oversample region of parameter space producing rare
events of interest

— Sequentially refine importance distributions for improved
inference



Targeted Sequential Design

« Choose design augmentation that minimizes integrated
mean square error with respect to the currently estimated
importance distributions for sensitive parameters

— A version of “targeted” IMSE (tIMSE)

IMSE(Dy) = 1—trace <[/r{ r{DO Dy} (2 Hdz] R{é Db}(ﬂ)>

For sensitive input i, select w(z))

Estimate correlation parameters
to be its importance distribution

based on current design D,
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Example: VR2plus Model

 Scenario: S
Pressurizer failure, Pipe3, Sm-long .
followed by pump Elbow

trip and initiation of
SCRAM (insertion
of control rods)

 Goal: Understand Heater
behavior of peak
coolant temperature
(PCT) in the reactor

 Interested in
probability that PCT v €
exceeds 700° K | x\

Pipe§5, 2m-long

Pipe2, 2m-long

HX

Pipe6, 2m-long

Elbow3

Pipe7, 5m-long
Pump, im-long

PRI L.




VR2plus Details

Single thermal-hydraulics loop with 21 components

Working coolant is water at 16MPa and 600° K, single-phase flow
Nominal power output of this reactor is 15SMW

Calculations performed with reactor safety analysis code R7 (INL)

Input Parameter Min Max Description
PumpTripPre 15.6 MPa | 15.7 MPa | Min. pump pressure causing trip
PumpStopTime 10 s 100 s Relaxation time of pump phase-out
PumpPow 0.0 0.4 Pump end power

SCRAMtemp 625° K 635° K Max. temp. causing SCRAM
CRinject 0.025 0.24 Position of CR at end of SCRAM
CRtime 10 s 50 s Relaxation time of CR system

Input parameters assigned independent
Uniform distributions on their ranges




VR2plus Analysis

e Quantile inference
— Target 0.0001 quantile of PCT distribution

* Percentile inference
— PCT > 700° K
* Importance distribution

— Independent Beta distributions for sensitive
parameters

— Independent Uniform distributions for
Insensitive parameters

 PumpPow and CRinject are sensitive
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Pressurizer Failure: Quantile Inference

Importance Distributions
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Pressurizer Failure: Percentile Inference

10,000 sample Monte Carlo
estimate and upper confidence limit
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Conclusions

e Space-filling designs work well with the GP
models typically used in computer model
emulation

* |If given a budget of code runs/experiments,
single-stage space-filling design generally results
In prediction performance no worse than

sequential design
— exceptions can occur with non-stationary output
behavior

e Sequential design is particularly efficient for
optimization and rare event inference problems
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