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Abstract 

 This presentation provides an overview of emulation, calibration and experiment 
design for computer experiments.  Emulation refers to building a statistical surrogate 
from a carefully selected and limited set of model runs to predict unsampled outputs.  
The standard kriging approach to emulation of complex computer models is 
presented.  Calibration refers to the process of probabilistically constraining uncertain 
physics/engineering model inputs to be consistent with observed experimental data.  
An initial probability distribution for these parameters is updated using the 
experimental information.  Markov chain Monte Carlo (MCMC) algorithms are often 
used to sample the calibrated parameter distribution.  Several MCMC algorithms 
commonly employed in practice are presented, along with a popular diagnostic for 
evaluating chain behavior.  Space-filling approaches to experiment design for 
selecting model runs to build effective emulators are discussed, including Latin 
Hypercube Design and extensions based on orthogonal array skeleton designs and 
imposed symmetry requirements.  Optimization criteria that further enforce space-
filling, possibly in projections of the input space, are mentioned.  Designs to screen for 
important input variations are summarized and used for variable selection in a nuclear 
fuels performance application.  This is followed by illustration of sequential experiment 
design strategies for optimization, global prediction, and rare event inference.   
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Emulation of Code Output 
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β = 0.3; ρ = 0.93 

β = 3; ρ = 0.47 

β = 30; ρ = 0 

Semiparametric regression 
model for emulating code η(x) 

 Joint distribution of surrogate 
 outputs is multivariate Gaussian 
 Mean zero, precision λ 

 Correlation function: 
 
 
 

 Define correlation length: 
 ρj = exp(− βj / 4) 
 Notation:  GP( 0; λ, ρ ) 

Correlation lengths ρj determine 
complexity of process 
realizations 
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Surrogate:  Gaussian Process (GP) 
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Emulator 

•  Use training runs to develop a statistical surrogate model 
for the complex code (i.e., the emulator) 
–  Deterministic code is interpolated with zero uncertainty 

•  Kriging Predictor 

•  Kriging Variance 

–  Maximum likelihood or full Bayes inference for β	



€ 

ˆ η x;β( ) = rT x;β( )R−1 β( )η
correlations between 
prediction site x and 
training runs x1,..., xm 

pairwise correlations 
between training 

runs x1,..., xm 

outputs evaluated 
at training 

runs x1,..., xm 

€ 

Var η x;β( )[ ] =σ 2 1− rT x;β( )R−1 β( )r x;β( )( )
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Model Calibration 
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•  Uncertainty quantification results in distribution of QoI 
predictions 

•  Uncertainty reduction in QoI predictions via code 
calibration results in larger “Safety Margin” 

 

Figure of Merit (FOM)
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The Ultimate Objective 
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•  Computer model η(x, t) 
•  x:  design inputs (controlled by experimenter) 
•  t:  physics inputs (controlled in model runs) 
•  t = θ:  “best”, unknown setting, [θ] ~ π (prior PDF) 
•  Observational data y(x1),…,y(xn) 
–  Given θ: 
•  y(xi) = η(xi,θ) + ε(xi), [ε] ~ f (observational error PDF) 
•  y(xi) = η(xi,θ) + δ(xi) + ε(xi), [δ] ~ GP 
•  Calibration results in a posterior PDF for θ 
•  Bayesian approach that integrates information from prior 

constraints and observational data 

Meaning of Calibration 
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•  Assume linear approximation to η(θ): 

•  Gaussian prior distribution for θ: 
• θ ~ N(θ0, Σ0) 

•  Experimental data: 
•  Given θ:  y = η(θ) + ε, [ε] ~ N(0, Σd) 

•  Gaussian posterior distribution for θ: 

�(⇥) = �(⇥0) + C(⇥ � ⇥0) , where Cij =
⇤�i

⇤⇥j
(⇥0)

[⇥|y] ⇥ N
�
⇥0 + PCT ��1

d (y � �(⇥0)),P
⇥

,

P = (��1
0 + CT ��1

d C)�1

Example:  Linear Model 
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•  θ = (θ1,…,θ30) represents 30-group 
fission cross section (XS) values 

•  Calibration to differential data 
provides Gaussian prior 
distribution of θ for calibration to 
Jezebel keff 

•  keff(θ) is linearized around θ0 
based on PARTISN calculations of 
unperturbed and 1% perturbed 
group XS values 

•  Correlation structure 
(compensating errors) in Gaussian 
θ posterior introduced by keff 
calibration 

Cross Section Calibration to Jezebel 
Critical Assembly Data  

Example:  Kawano et al., 
Nuclear Science and 
Engineering 153, 1-7 (2006) 
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•  Prior distribution for θ:  θ ~ π(θ) 
•  May be Gaussian 
•  Often uniform on ranges provided by SMEs 

•  Computational model η(x, θ) nonlinear on high 
prior probability region of parameter space 

•  Experimental data:  y(x) = η(x,θ) + ε(x) 
•  Posterior distribution for θ: 

•  Sampled via Markov chain Monte Carlo (MCMC) 
•  Metropolis within Gibbs and Adaptive Metropolis 

Example:  Nonlinear Model 
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•  Dittus-Boelter is an empirical 
model for single phase heat 
transfer involving forced 
convection and turbulent flow 

•  Nusselt number (Nu):  Ratio of 
convective to conductive heat transfer 
across a boundary 

•  Reynolds number (Re):  Ratio of 
inertial to viscous forces 

•  Prandtl number (Pr):  Ratio of 
momentum to thermal diffusivity 

•  Prior for θ:  Uniform on SME 
provided ranges 

•  Posterior for θ:  Sampled with 
Delayed Rejection Adaptive 
Metropolis 

Bivariate projections of the 
joint posterior distribution of 

θ = (θ1, θ2, θ3) 

Nu = ✓1Re✓2Pr✓3

Calibration of the Dittus-Boelter 
Correlation 
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•  Objective:  Generate a sample from the target probability 
distribution described by density function proportional to 
π(x) 

•  Divide parameter x into b blocks:  x = (x1, x2, …, xb) 
•  x-j = (x1, …, xj-1, xj+1, …, xb) 
•  Any block may consist of a single parameter 

•  Assume all conditional distributions π( xj | x-j ) available 
•  Algorithm: 

•  Repeat for i = 1, 2, …, M 
•  Given i, repeat for j = 1, 2, …, b 
•  Suppose the first (j – 1) blocks of x have already been 

updated.  The j-th block is updated as follows: 
–  Let xi = ( xi,1, xi,2, …, xi,j-1, xi-1,j, …, xi-1,b ) 
–  Sample y ~ π( xj | x-j )  
–  Set xi = ( xi,1, xi,2, …, xi,j-1, y, xi-1,j+1, …, xi-1,b ) 

•  Return values x1, …, xM 

MCMC:  Gibbs Sampler 
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•  Objective:  Generate a sample from the target probability 
distribution described by density function proportional to π(x) 

•  Algorithm: 
•  Repeat for j = 1, 2, …, M 
•  Generate y from q(xj, �) and u from Uniform(0, 1) 
•  If 

 
 set xj+1 = y   

•  Else, set xj+1 = xj 
•  Return values x1, …, xM 

•  Implementation: 
•  Discard initial m0 samples as ``burn-in” 
•  Metropolis:  symmetric proposal distribution q(y,x) = q(x,y) 
•  Challenge is choosing q(x, �) for effective “mixing”  

–  23.4% multi-parameter, 44% single parameter, 57.4% Langevin diffusion 

MCMC:  Metropolis-Hastings 

u  ↵(xj ,y) for ↵(x,y) =

(
min

h
⇡(y)q(y,x)
⇡(x)q(x,y) , 1

i
, if ⇡(x)q(x,y) > 0

1 , otherwise

proposal density 

↵(x,y) = min


⇡(y)

⇡(x)
, 1

�
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•  Algorithm: 
•  Repeat for i = 1, 2, …, M 
•  Given i, repeat for j = 1, 2, …, p (number of parameters in x) 
•  Suppose the first (j – 1) parameters in x have already been 

updated.  The j-th parameter is updated as follows: 

–  Let xi = (xi,1,…, xi,j-1, xi-1,j, xi-1,j+1, ..., xi-1,p) 

– Generate yj from qj(xi-1,j, �) and u from Uniform(0, 1) 
–  Set y = (xi,1,…, xi,j-1, yj, xi-1,j+1, ..., xi-1,p) 

–  If 

 set xi = y 
–  Else, set yj = xi-1,j and xi = y  

•  Return values x1, …, xM 

MCMC:  Metropolis Within Gibbs 

u  ↵(xi,y) for ↵(x,y) = min


⇡(y)qj(y,x)

⇡(x)qj(x,y)
, 1

�
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•  Algorithm: 
•  Proposal distribution:  qθ(x, y) is Gaussian(y; x, λΣ) for θ = 

(λ, Σ) 
•  Repeat for i = 1, 2, …, M 

– Generate y from                  and u from Uniform(0, 1) 
–  If 
 

 set xi+1 = y 
–  Else, set xi+1 = xi  

– Update 

•  Return values x1, …, xM 

MCMC:  Adaptive Metropolis 

u  ↵(xi,y) for ↵(x,y) = min


⇡(y)

⇡(x)
, 1

�
q✓i(xi, ·)

mean covariance 

log (�i+1) = log (�i) + �i+1 [↵ (xi,y)� ↵t] ,

µi+1 = µi + �i+1 (xi+1 � µi) ,

⌃i+1 = ⌃i + �i+1

h
(xi+1 � µi) (xi+1 � µi)

T � ⌃i

i

target  
acceptance 
rate 

e.g. �i = i��
for

� 2 (0.5, 1]



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2014 

•  Algorithm is same as Adaptive Metropolis, except for 
delayed rejection of candidates 
•  At i-th step 

– Generate y from q1(xi, �) and u1 from Uniform(0, 1) 
–  If 

 
 set xi+1 = y 

– Else, generate z from q2(xi, �) and u2 from Uniform(0, 1) 
–  If 

 set xi+1 = z 
– Else, set xi+1 = xi 

•  q1(x, y) is set to qθ(x, y) [Gaussian(y; x, λΣ)] from AM algorithm 
•  q2(x, z) is set to qθ(x, z) but with scaled covariance matrix γ (λΣ) 

for γ generally in (0, 1)  

 

MCMC:  Delayed Rejection Adaptive 
Metropolis 

u1  ↵1 (xi,y) for ↵1 (x,y) = min


⇡(y)

⇡(x)
, 1

�

u2  ↵2 (xi,y, z) for ↵2 (x,y, z) = min


⇡(z)q1(z,y)(1� ↵1(z,y))

⇡(x)q1(x,y)(1� ↵1(x,y))
, 1

�

In AM:  Fix λ = 2.382/p 
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•  Independently simulate m ≥ 2 sequences of length 2M 
•  Starting points drawn from overdispersed distribution 
•  Discard first M iterations of each sequence 

•  For each scalar parameter of interest, calculate: 

MCMC:  Diagnostics I 

B/M = the variance between the m sequence

means, x̄i., each based on M values of x,

B/M =

mX

i=1

(x̄i. � x̄..)
2
/(m� 1) ; and

W = the average of the m within-sequence

variances, s

2
i , each based on M � 1

degrees of freedom, W =

mX

i=1

s

2
i /m .
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•  Estimate the target mean µ	


•  Sample mean of the mM simulated values of x: 

•  Estimate the target variance σ2 

•  For finite M, W less than σ2 (have not yet sampled all of target) 
•  Overestimates σ2 assuming starting distribution is overdispersed 
•  Unbiased in limit M      ∞ 

•  Estimate approximate target distribution for x 

MCMC:  Diagnostics II 

µ̂ = x̄..

�̂2 =
M � 1

M
W +

1

M
B

x ⇡ T
⇣
df = 2V̂ 2

/cvar
⇣
V̂

⌘
, µ̂,

p
V̂ =

p
�̂

2 +B/(mM)
⌘
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•  Estimated variances and covariances obtained from m samples 
of  

•  Estimate potential scale reduction factor 
 

 
•  Indicates amount of scale reduction expected as M      ∞ 
•  Rule of thumb:  PSRF < 1.1 desirable; PSRF > 1.2 failure 

MCMC:  Diagnostics III 

cvar
⇣
ˆ

V

⌘
=

✓
M � 1

M

◆2
1

m

cvar
�
s

2
i

�
+

✓
m+ 1

mM

◆2
2

m� 1

B

2

+ 2

(m+ 1)(M � 1)

mM

2

⇥ M

m

⇥
dcov

�
s

2
i , x̄

2
i.

�
� 2x̄..dcov

�
s

2
i , x̄i.

�⇤

x̄i. and s

2
i

PSRF =
p

R̂ =

r⇣
V̂ /W

⌘
df/(df� 2) # 1 as M ! 1
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•  Many MCMC algorithms implemented in software 
•  MCMCpack, mcmc, adaptMCMC, AMCMC in R 

–  http://cran.r-project.org 
•  OpenBUGS, WinBUGS 

–  http://www.mrc-bsu.cam.ac.uk/software/bugs/ 
•  DRAM 

–  http://helios.fmi.fi/~lainema/dram/ 

•  Failure (large PSRF) can happen for two reasons: 
•  One or more chains have not converged to the target 
•  One or more chains have not sufficiently explored the target 

•  Multivariate form of PSRF available 
•  Bounds above univariate PSRF for any linear combination of the 

variables 

•  R package coda provides a suite of MCMC diagnostic tools 
 
 

MCMC:  Summary 
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Sensitivity Analysis and Resource Allocation 
•  Sensitivity analysis 

(SA) summarizes 
input-output 
relationships 

•  SA can be conducted 
assuming any 
distribution for input 
parameters 
 For physics parameters, most 
relevant input distributions 
are pre-calibration (prior) and 
post-calibration (posterior) 

•  Post-calibration SA 
identifies parameters/
models for further 
uncertainty reduction 
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•  Begin with MCMC sample of calibrated parameters {θ1, …, θM} 
•  For the j-th parameter, estimate its main effect 

•  Divide the range of θi,j, i = 1, …, M, into bins 
•  For each bin, average the output predictions η( x, θ ) corresponding 

to samples for which θi,j is contained in the bin 
•  If desired, apply a smoother to the average output predictions across 

all bins to estimate the main effect function for input j 
•  For the j-th parameter, estimate its main effect variance 

•  Compute variance of estimated main effect function with respect to 
the calibrated marginal distribution of input j 

•  Calibrated marginal distributions estimated by histograms of 
parameter values developed for main effect function estimation 

•  Rank parameters in decreasing order of main effect variance 

Post-Calibration Sensitivity Analysis 
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Experiment Design 
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Why Experiment Design? 

•  Originally introduced to detect treatment effects 
in agricultural experiments 
–  Overcome limitations of one-factor-at-a-time 

experiments 
–  Blocking, randomization, replication 

•  How are runs determined? 
–  Design criterion 
–  Parameter estimation, detecting treatment effect(s), 

prediction 
•  How is any of this relevant to deterministic 

computer models? 
–  “Slow” computer models and finite resources 
–  Prediction of model output at unsampled inputs 
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Regression and Design 

•  Consider the traditional linear model framework: 

 
•  Regression predictor and variance 

•  Design Problem:  Choose runs D = {x1, ..., xm} to 
minimize some functional of prediction variance 
–  Maximum variance (G-optimal) 
–  Average variance (I- or L-optimal) 

€ 

y x i( ) = fT x i( ) β + εi , εi ~ N 0,σ 2( )
regression 

model 
regression 
parameters 

€ 

ˆ y x( ) = fT x( ) ˆ β , ˆ β = FTF( )
−1
FTy ,Var y x( )[ ] =σ 2 1+ fT x( ) FTF( )

−1
f x( )( )

matrix of regression 
functions for 

proposed runs x1,..., xm 
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•  Kriging Predictor 

•  Kriging Variance 

–  Function of unknown parameters β	



•  Design Problem:  Select runs D = {x1, ..., xm}, but 
how? 
–  Heuristics, Bayesian design 

Kriging and Design 

€ 

ˆ η x;β( ) = rT x;β( )R−1 β( )η

correlations between 
prediction site x and 

proposed runs x1,..., xm 

pairwise correlations 
between proposed 

runs x1,..., xm 

outputs evaluated 
at proposed 

runs x1,..., xm 

€ 

Var η x;β( )[ ] =σ 2 1− rT x;β( )R−1 β( )r x;β( )( )
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Choice of Design Affects Prediction Quality 

•  Uncertainty in PCT as 
function of initial ambient 
conditions and system 
degradation 
–  Fong et al. 2009, RESS 

Variable Distribution 20% 80% Rate 

P_Tubes Exponential - 0.15 10.7 

P_Temp Truncated Normal 7 47 - 

R_Emis Truncated Normal 0.65 0.85 - 

R_Block Exponential - 0.15 10.7 

RVACS_T Truncated Normal 7 47 - 
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Latin Hypercube Designs (LHDs) 
•  Each column is a permutation of the numbers from 1 to m 
•  For any number of factors p and runs m, there are many LHDs 

[(m!)p-1] 
•  Therefore, we specify another criterion to select one: 

–  Maximize minimum distance between points 
–  Minimize column correlations 

•  Random LHDs are potentially problematic 
Unfortunate random LHD Maximin Distance LHD 
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Minimum Average Distance Criteria 
•  Optimize over projections of design 
•  Criterion function 

•  Criterion value for projected design 

Experimental Design for GASP Modeling
• Latin Hypercube (LH) designs (McKay, et al., 1979)

→ Construction of m × p LH design (LHD):

− Random permutation of 1, . . . ,m in each of p columns

− Scale to unit hypercube

• Minimum average distance LH designs (Welch, ACED)

→ Criterion function:

av(ρ,")(X) =





1
∑

j∈J C(p, j)

∑

j∈J

C(p,j)
∑

k=1

[

m(ρ,")(Xjk)
]"





1/"

− J = set of projection dimensions; C(p, j) = p!/[j!(p − j)!]

− X is candidate LHD; Xjk = k-th projection into j dimensions

→ Criterion value for projected LHD:

m(ρ,")(Xjk) =





1

C(m, 2)

∑

1≤h<i≤m

[

j1/ρ

dρ(x
jk
h ,xjk

i )

]"




1/"

− dρ(·, ·) = Lρ distance

− ! → ∞ maximizes minimum distance

• Scale optimal average distance LHD to desired region

Experimental Design for GASP Modeling
• Latin Hypercube (LH) designs (McKay, et al., 1979)

→ Construction of m × p LH design (LHD):

− Random permutation of 1, . . . ,m in each of p columns

− Scale to unit hypercube

• Minimum average distance LH designs (Welch, ACED)

→ Criterion function:

av(ρ,")(X) =





1
∑

j∈J C(p, j)

∑

j∈J

C(p,j)
∑

k=1

[

m(ρ,")(Xjk)
]"





1/"

− J = set of projection dimensions; C(p, j) = p!/[j!(p − j)!]

− X is candidate LHD; Xjk = k-th projection into j dimensions

→ Criterion value for projected LHD:

m(ρ,")(Xjk) =





1

C(m, 2)

∑

1≤h<i≤m

[

j1/ρ

dρ(x
jk
h ,xjk

i )

]"




1/"

− dρ(·, ·) = Lρ distance

− ! → ∞ maximizes minimum distance

• Scale optimal average distance LHD to desired region
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Example:  Minimum Average Distance LHD 

m = 10 
p = 3 
ρ  = 1 
ℓ= 1 

J = {2,3} 
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OA-based LHDs 
•  Begin with a balanced orthogonal array OA(m, p, s, t) 

–  m x p design, each column has s levels, strength t 
–  All st level combinations for any t columns occur equally 

often 
–  If possible, t ≥ 3, often s = 2 

•  Convert to LHD via Tang (1993) 
–  Example:  Convert OA(8,3,2,3) to LHD 

 
 

•  Combine with distance-based criteria 

Orthogonal Array LH Designs
• Begin with a balanced orthogonal array OA(m, p, s, t)

→ m × p design; each column has s levels; strength t

→ All st level combinations for any t columns occur equally often

→ If possible, t ≥ 3; often s = 2

• Convert to LHD via Tang (1993)

→ Random permutations replace levels of OA in each column

0 ← σ1({0, . . . ,m/s − 1}), . . . , s − 1 ← σs({(s − 1)(m/s), . . . ,m − 1})

→ Example: Convert OA(8,3,2,3) to LHD

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

→

0 3 2
2 1 5
1 6 0
3 4 6
4 2 3
6 0 7
7 5 1
5 7 4

OA level Design column Random permutation
1 {0, 2, 1, 3}

0 2 {3, 1, 2, 0}
3 {2, 0, 3, 1}

1 {4, 6, 7, 5}
1 2 {6, 4, 5, 7}

3 {5, 6, 7, 4}

• Minimum average distance OA-based LHD
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OA-based LHDs 

•  OA designs good for estimating low order effects 
•  OA-based LHD good for GP response surface modeling 
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Symmetric LHDs 

•  Symmetry with respect to midpoint of input domain 
•  Optimize with respect to a distance criterion 

–  maximin distance, average projected distance  
–  columnwise-pairwise or simulated annealing algorithms 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2014 

Columnwise-pairwise (CP) Algorithm 
•  Columnwise algorithms make exchanges on the columns in a 

design 
–  Useful for designs with structure requirements on the 

columns 
•  Modification is necessary to accommodate symmetry 

–  Two simultaneous pair exchanges 
•  Algorithm: 

1. Start with a random m x p symmetric LH design 
2. Each iteration has p steps.  At the i-th step, the best two 

simultaneous exchanges within column i are found.  The 
design matrix is updated accordingly. 

3. If the resulting design is better w.r.t. the criterion, repeat 
Step 2.  Otherwise the search is terminated at the current 
design. 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2014 

Simulated Annealing (SA) Algorithm 

•  Let φ(D) denote the criterion value for design D 
•  Algorithm: 

1.  Initialization.  Define t0, Imax, FACt, and tmin.  Randomly select an initial 
symmetric LH design D.  Set Dbest = D, t = t0. 

2.  Temperature loop:  Set FLAG = 0, I = 1. 
3.  Perturbation loop:  Set Dtry to D.  Randomly select a column of Dtry, then 

randomly select two elements within this column.  Simultaneously 
exchange these two elements and their symmetric pairs. 

4.  If φ(Dtry) < φ(D), or with probability exp[-(φ(Dtry) - φ(D))/t], set D to Dtry and 
FLAG to 1. 

5.  If φ(Dtry) < φ(Dbest), set Dbest to Dtry and I to 1.  Otherwise increment I by 
1. 

6.  If I < Imax, branch to Step 3. 
7.  If FLAG = 1 and t > tmin, multiply t by FACt and branch to Step 2. 
8.  Stop and report Dbest. 
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Quasi-Monte Carlo (MC) Sequences 
•  Better error properties than MC for approximating integrals 

–  “low-discrepancy” sequences, e.g. Sobol’ or Niederreiter Sobol’ Sequences

#include <stdio.h>

#include <gsl/gsl_qrng.h>

int main( void )

{

int i, j;

int m=50, p=2;

gsl_qrng *q;

q = gsl_qrng_alloc( gsl_qrng_sobol, p );

for( i=0; i<m; i++ ) {

double v[p];

gsl_qrng_get( q, v );

for( j=0; j<p-1; j++ ) {

printf( "%.5f ", v[j] );

}

printf( "%.5f\n", v[p-1] );

}

gsl_qrng_free( q );

return 0;

}
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Sobol’ sequence

Random sample

• 50 runs, 2 parameters
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Performance of Space-Filling Designs 
•  Substantial empirical evidence supporting use of space-

filling designs for GP modeling 
•  Example:  F-Quantile Function 

–  Given (ν1, ν2, δ, p), compute x ν1=ν2=20 

ν1=ν2=5 

δ=10	



x
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Results 
•  Two 35-run designs 

–  Maximin Distance 
LHD 

–  D-optimal 
•  Two surrogates 

–  GP 
–  full cubic polynomial 

•  Prediction quality 
–  Measured by % 

error 
–  160,000 test 

samples 
Example:  Rachel Johnson and Brad Jones 
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Conclusions 

•  Experiment design strategy must be tailored to 
inference objectives 
–  (fractional) factorial, alphabet optimal designs work 

well with regression, ANOVA 
–  space-filling designs work well with GP models 

typically used in computer model emulation 
•  Space-filling experiment designs can be 

optimized 
–  Obtain desirable projection properties 
–  Restricted permutations 
–  Optimization algorithms tailored to design column 

structure 
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Screening Experiments 
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Why Screening? 
•  Often effect sparsity pertains, in which most of the 

output variation (~80-90%) is explained by relatively 
few inputs (~10-20%) 

•  Emulation of complex computer models often 
becomes substantially more difficult as input 
dimension increases 
–  Minimum inter-point distance increases, potentially 

having a negative impact on covariance estimation 
•  Resources often used more efficiently with the two-

stage procedure of screening followed by production 
analysis 
–  Removal of inactive inputs results in (perhaps 

substantially) fewer computer model runs required for 
production analysis 
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R7:  Screening and the “20-80 Rule” 
Variable Main Effect % Total Effect %

PrzPreEnd 0.02% 0.21%

PrzDnTime 0.00% 0.01%

PumpTripPre 0.00% 0.01%

PumpStopTime 0.65% 2.76%

PumpPow 54.39% 59.15%

SCRAMtemp 0.12% 1.67%

CRinject 0.00% 0.01%

CRtime 0.00% 0.02%

HRadCore 0.11% 0.17%

HRadHX 0.12% 0.15%

TwallHX 26.64% 27.19%

Qcore 1.04% 1.08%

PheadNom 0.33% 0.37%

UncFric 0.00% 0.19%

UncNu 11.59% 11.81%

sph 0.00% 0.00%

vis 0.02% 0.12%

dPREdDEN 0.01% 0.53%

dPREdTEM 0.00% 0.01%

alphaLLF 0.02% 0.12%

Output:  Peak Coolant Temperature 

Two Stage Screening Algorithm 
1.  100 runs in stage 1 
2.  30 runs in stage 2 

Three parameters selected: 
PumpPow, TwallHX, and UncNu 

Results are consistent with 
global sensitivity analysis 
based on 300 runs (sensitivity 
indices presented in table) 
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Method of Morris 

  

€ 

di x( ) = y x1,x2,…,xi−1,xi + Δ,xi+1,…,x f( ) − y x( )[ ] Δ

€ 

xi ≤1−Δ

•  Factorial Sampling Plans for Preliminary Computational 
Experiments 

•  f inputs scaled to unit interval, restricted to a p-level grid: 

 
•  Inference based on elementary effects: 

 
–  Output y(x),  
–  Δ is a pre-specified multiple of 1/(p-1) 

•  Goal:  Important effects identified with a design having 
number of runs proportional to f 
–  Estimate finite distribution Fi of pf-1(p – Δ(p-1)) elementary effects 

  

€ 

xi ∈ 0,1 p −1( ), 2 p −1( ),…,1{ }
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Method of Morris:  Interpretation 
•  Large measure of (absolute) central tendency for Fi 

indicates input xi has an important overall influence 
on y 
–  Linear effects 

•  Large measure of spread indicates xi is highly 
dependent on the values of the inputs x 
–  Nonlinear or interaction effects 

•  Use estimates of the mean and standard deviation 
(SD) of each Fi to screen for important effects 
–  K-means clustering can be used to separate the absolute 

means and SDs of each Fi into two clusters:  active and 
inactive inputs 

•  Sampling plans provide random samples from each 
Fi on which these estimates are based 
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Method of Morris:  Examples 

y1(x1, . . . , xf ) = a0 +
f�

j=1

ajxj
Prob[di = ai] = 1

µi = ai and �i = 0
Prob[di = ai(4j + p)�/p] = 2/p

for j ⇥ {0, 1, 2, . . . , (p� 2)/2}

µi = ai and �i = |ai|

�
(p� 2)(p + 2)

12(p� 1)2

y2(x1, . . . , xf ) = a0 +
f�

j=1

ajx
2
j

y3(x1, . . . , xf ) = a0 +
f⇧

j=1

ajxj +

�

⇤
f⇧

j=1

bjxj

⇥

⌅
2

di(x) = ai + b2
i � +2 bi

f⇥

j=1

bjxj

µi = ai + bi

f⇥

j=1

bj and

�i = |bi|

⇤
4(p2 � 1)

�f
j=1 b2

j � 3p2b2
i

12(p� 1)2

•  Elementary effect distributions Fi for 3 canonical functions 
µi = mean of Fi and σi = standard deviation of Fi; Δ = p/[2(p – 1)] 
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Example:  A Quadratic Function 
•  Function:  y3(x1,x2), xi ∈ [0,1] 

–  a = (-4, 8, 4) 
–  b = (5, -1) 

 
•  Summary statistics 

–  Grid size p = 100 
–  Δ = p/[2(p – 1)]  
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Mean Standard Deviation
F1 28 7.85
F2 0 2.93
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GSinCE 

•  Group Screening in Computer Experiments 
•  Two-stage procedure 

–  Stage 1:  Identify groups of active parameters 
–  Stage 2:  Identify active inputs within active groups 

•  In Stage 1, group total effects are compared with 
total effects of “low-impact” inputs for selection of 
active groups 

•  In Stage 2, total effects of the individual inputs in 
selected groups are compared with total effects of 
“low-impact” inputs for selection of active inputs 

•  Selected active inputs are used in follow-on 
studies 
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Example:  Halden Rod 1  
•  IFA-432 Test 

–  6-rod assembly irradiated in the Halden heavy boiling water 
reactor in Norway from 1975 to 1984 

–  Test long-term steady-state performance of BWR-6 type fuel 
rods, operated at upper bound power levels for full-length 
commercial fuel rods 

–  Centerline thermocouple in top and bottom end of fuel column 
•  FRAPCON Calculations 

–  61 parameters (17 design, 44 physics) 
–  4 outputs 

•  Average of total fuel radius change (microns) for axial regions 
1-4 at time steps 38 (y1) and 44 (y2) 

•  Centerline temperature (Kelvin) for axial region 4 at time step 38 
(y3) 

•  Fission gas release at time step 44 (y4) 
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FRAPCON:  Method of Morris Results 

Number Variable Model Outputs
1 rp_qc_coeff Rod surface heat flux at elevation z on the rod axis 1,2,3,4

14 rp_ec_coeff Clad emissivity 2

17 rp_rphonon_coeff Expression in fthcon.f used in computing conductivity 1,2,3,4

19 rp_fm_coeff Multiplier effect of porosity 1,2,3,4

20 rp_con_coeff Fuel thermal conductivity 1,2,3,4

26 rp_celmod_coeff Elasticity modulus 2

27 rp_cshear_coeff Shear modulus 2

31 rp_delta_coeff As fabricated fuel-cladding gap size 1,2,3

36 rp_fit_coeff Multiplier in grain boundary accumulation model 4

37 rp_rns_coeff Saturation area density gas 1,3

38 rp_dmultiplier_coeff Burnup-enhancement factor of 14 applied to diffusion constant 1,2,3,4

39 rp_dconstant_coeff Diffusion constant 2 1381<T<1650 1,2,4

50 dspg Spring diameter 2

Selection of 13 active effects based on K-means 
clustering (K = 2) applied to (a) absolute means, 

and (b) standard deviations of samples from 
elementary effect distributions 
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FRAPCON:  GSinCE Results 

Morris GSinCE

Number Variable Model Outputs Outputs
1 rp_qc_coeff Rod surface heat flux at elevation z on the rod axis 1,2,3,4 1,2,3,4

14 rp_ec_coeff Clad emissivity 2

17 rp_rphonon_coeff Expression in fthcon.f used in computing conductivity 1,2,3,4 1,3,4

19 rp_fm_coeff Multiplier effect of porosity 1,2,3,4 1,3,4

20 rp_con_coeff Fuel thermal conductivity 1,2,3,4 1,3,4

26 rp_celmod_coeff Elasticity modulus 2

27 rp_cshear_coeff Shear modulus 2

31 rp_delta_coeff As fabricated fuel-cladding gap size 1,2,3 2

36 rp_fit_coeff Multiplier in grain boundary accumulation model 4 4

37 rp_rns_coeff Saturation area density gas 1,3

38 rp_dmultiplier_coeff Burnup-enhancement factor of 14 applied to diffusion constant 1,2,3,4 1,4

39 rp_dconstant_coeff Diffusion constant 2 1381<T<1650 1,2,4 1,4

50 dspg Spring diameter 2

Selection of 8 active effects based on groups defined by 
(a) exploratory data analysis (EDA), 
(b) subject matter expert (SME), and 

(c) EDA within SME groups 
EDA uses Fisher transformed Pearson correlation coefficients between 

columns of design and computer model output 
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FRAPCON:  GSinCE — EDA Groups 

1.1 Screening based on Grouping by EDA

This approach makes groups based on the EDA technique using the 336 data obtained

from the computer experiments. Since there are 4 outputs, we make groups for each output

separately. Given an output, we make initial groups using the automatic grouping procedure

with the maximum group size M = 5 and then finalize the groups by checking with eyes

so that the group sizes are similar and each group consists of the inputs having similar

correlations. The groups made for each output are given in Tables 1 and 2; 15 groups for

y1, 16 groups for y2, 18 groups for y3, and 17 groups for y4 are made from the distribution

of the 61 Fisher transformed correlation coefficients.

Output r∗j range Individual Inputs Groups Selection
y1 -0.467 to -0.398 19 17 20 g1

√

-0.149 to -0.109 36 10 9 g2
-0.093 to -0.069 6 37 45 25 g3
-0.056 to -0.042 41 60 59 56 g4
-0.038 to -0.031 31 51 4 28 g5
-0.025 to -0.021 21 13 34 54 11 g6
-0.018 to -0.012 47 53 42 49 40 g7
-0.009 to 0.000 18 30 43 12 29 5 g8
0.005 to 0.013 24 2 55 61 g9
0.022 to 0.029 35 33 50 g10
0.030 to 0.050 22 14 26 48 7 g11
0.050 to 0.058 27 23 3 57 g12
0.062 to 0.081 58 46 8 15 g13
0.091 to 0.108 44 52 32 16 g14
0.164 to 0.304 38 39 1 g15

√

y2 -1.942 31 g1
√

-0.060 to -0.054 43 54 6 g2
-0.045 to -0.033 36 30 27 g3
-0.029 to -0.023 3 4 9 g4
-0.019 to -0.011 25 14 41 50 23 g5
-0.010 to -0.006 12 56 5 58 g6
-0.003 to -0.001 26 42 37 40 49 g7
0.000 to 0.003 29 19 34 61 55 22 g8
0.004 to 0.006 24 7 13 g9
0.010 to 0.017 15 2 18 17 16 g10
0.020 to 0.029 59 11 52 35 21 39 g11
0.032 to 0.034 46 48 60 g12
0.035 to 0.039 10 8 45 38 g13
0.040 to 0.048 57 28 51 g14
0.056 to 0.073 32 53 47 33 20 g15

0.241 1 g16
√

Table 1: Stage 1 Screening Results based on Grouping by EDA : y1 and y2

3

Output r∗j range Individual Inputs Groups Selection
y3 -0.524 to -0.481 17 19 20 g1

√

-0.108 to -0.088 10 9 g2
-0.067 to -0.060 6 51 47 25 45 g3
-0.057 to -0.051 56 37 36 g4
-0.048 to -0.042 41 60 21 g5
-0.037 to -0.033 13 59 11 g6
-0.028 to -0.023 4 42 34 53 g7
-0.017 to -0.014 28 33 49 g8
-0.006 to -0.003 29 24 5 g9

0.000 55 35 40 g10
0.004 to 0.007 18 30 2 g11
0.010 to 0.024 54 43 61 12 g12
0.027 to 0.035 50 22 46 27 48 g13
0.047 to 0.060 14 52 38 8 g14
0.062 to 0.069 26 7 58 3 g15
0.071 to 0.088 44 15 23 57 g16
0.097 to 0.111 32 16 39 g17
0.221 to 0.252 1 31 g18

√

y4 -0.416 to -0.371 19 17 20 g1
√

-0.253 to -0.137 36 37 g2
√

-0.098 to -0.073 10 25 33 g3
-0.062 to -0.052 45 56 6 60 g4
-0.049 to -0.042 59 41 47 28 g5
-0.030 to -0.020 21 9 53 12 51 g6
-0.020 to -0.014 11 13 2 g7
-0.009 to -0.004 4 30 54 42 35 55 g8
0.000 to 0.010 49 40 46 5 g9
0.012 to 0.019 61 24 34 18 29 g10
0.024 to 0.027 14 48 8 g11
0.033 to 0.040 44 27 58 3 g12
0.041 to 0.044 22 7 43 50 g13
0.053 to 0.058 57 26 52 g14
0.072 to 0.095 23 15 16 g15
0.105 to 0.143 32 31 g16
0.224 to 0.417 1 38 39 g17

√

Table 2: Stage 1 Screening Results based on Grouping by EDA : y3 and y4

4

Stage 1 

Output Stage 1 Selection Stage 2 Selection
y1 1 17 19 20 38 39 1 17 19 20
y2 1 31 1 31
y3 1 17 19 20 31 1 17 19 20
y4 1 17 19 20 36 37 38 39 1 17 19 20 36 38 39

Union 1 17 19 20 31 36 37 38 39 1 17 19 20 31 36 38 39

Table 3: Summary of Screening for All Outputs based on Grouping by EDA

The Stage 1 analysis is separately done for each output and important groups are chosen;

g1 and g15 for y1, g1 and g16 for y2, g1 and g18 for y3, and g1, g2, and g17 for y4. The inputs

from the selected groups at Stage 1 for each output are summarized in Table 3. Since the

4 outputs show different features, we take a union of the selected inputs for the final inputs

to proceed the Stage 2. Then p = 9 inputs (1, 17, 19, 20, 31, 36, 37, 38 39) are selected in

the Stage 1 analysis phase.

Now we construct a Stage 2 design with 5p = 45 rows. The p = 9 columns for the

potentially active inputs and δ = min(50, 4p−1) = 35 columns for the low-impact benchmark

inputs are newly constructed. The f − p = 52 columns for the potentially non-active inputs

are set equal to the median value of the corresponding column of Stage 1 design matrix

X(1). The columns of the 45× 61 Stage 2 design matrix X(2) are converted to the original

ranges and then are sent to run the computer codes. After running the computer code at

the desired 45 input sites, 38 available data are obtained.

The Stage 2 analysis is done using the combined 335 + 38 = 373 data and the combined

design matrix Xc for the p = 9 inputs and δ = 35 low-impact benchmark inputs. As a

result, the 4 inputs (1, 17, 19, 20) are selected for y1 and y3, the 2 inputs (1, 31) are selected

for y2, and the 7 inputs (1, 17, 19, 20, 36, 38, 39) are selected for y4. Thus the 8 inputs (1,

17, 19, 20, 31, 36, 38, 39) among p = 9 are declared to be active for at least one output.

1.2 Screening based on Grouping by Expert

The subject expert proposed 11 groups in Table 4 based on physics considerations for all

outputs. We perform the GSinCE procedure for each output using the same 11 groups. As

a result, g1 and g4 are commonly selected for all outputs, while g7 and g8 are additionally

5

Stage 2 

Analysis:  H. Moon 
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FRAPCON:  GSinCE — SME Groups 

selected for y2 and y4, respectively. We take the union of the inputs in these groups to

determine the inputs to proceed to Stage 2, so p = 22 inputs (1-3, 16-21, 31, 32-43) are

reconsidered at Stage 2.

The Stage 2 design for the 5p = 110 computer code runs is constructed as before and

95 data are obtained from the second computer experiments. The number of low-impact

benchmark inputs is δ = min(50, 4p− 1) = 50. Using the combined 336+95 = 431 data and

the combined design matrix Xc for the p = 22 inputs and the δ = 50 low-impact benchmark

inputs, the Stage 2 analysis is done. Table 4 shows the 6 inputs (1, 17, 19, 20, 38, 39) are

selected for y1, the 2 inputs (1, 31) are selected for y2, the 4 inputs (1, 17, 19, 20) are selected

for y3, and the 7 inputs (1, 17, 19, 20, 36, 38, 39) are selected for y4. Thus the 8 inputs (1,

17, 19, 20, 31, 36, 38, 39) are declared to be active for at least one output.

Individual inputs Groups Stage 1 Selection Stage 2 Selection
y1 y2 y3 y4 y1 y2 y3 y4

1 2 3 g1
√ √ √ √

1 1 1 1
4 5 6 7 8 9 g2
10 11 12 13 14 15 g3
16 17 18 19 20 21 g4

√ √ √ √
17 19 20 17 19 20 17 19 20

22 23 24 25 g5
26 27 28 29 30 g6
31 g7

√
31

32 33 34 35 36 37 38 39 40 41 42 43 g8
√

38 39 36 38 39
44 g9
45 46 48 50 51 53 56 57 59 60 61 g10
47 49 52 54 55 58 g11

Table 4: Summary of Screening for All Outputs based on Grouping by Expert

1.3 Screening based on Grouping by Expert and EDA

The grouping given by the subject expert has a big variability in the group size; the size

of the groups varies a lot from 1 to 12. Thus we divide the inputs within a group into

subgroups, but not merge the inputs from different groups. To form the subgroups within

each subject matter expert, we used the Fisher transformed correlation coefficients for the

outputs y1 and y3. Inputs having the same sign and similar magnitude of the transformed

correlations for both y1 and y3 are placed in the same subgroup. Now we group the inputs

6

SME groups have potential disadvantages: 
(1) Reduction of Stage 1 selection efficiency due to the 

existence of large groups 
(2) Mitigation of group effect through cancellation 

involving inputs having opposing functional 
relationships with output 

Analysis:  H. Moon 
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FRAPCON:  GSinCE — EDA Within SME 
Groups 

within a group so that they have the same direction and the similar magnitude of correlation

for y1 and y3 simultaneously. Table 5 shows how the 11 initial groups are divided into 21

groups. This empirical grouping tool helps to set the individual inputs apart with different

directions or different magnitude of effects. So it is helpful to reduce the cancellation of

effects by grouping and the number of potentially non-active inputs which are unnecessarily

selected at Stage 1.

input expert Trans Corr sub new input expert Trans Corr sub new
group y1 y3 group group group y1 y3 group group

1 1 0.3042 0.2210 1-1 g1 32 8 0.1073 0.0965 8-1 g14
2 1 0.0073 0.0069 1-2 g2 33 8 0.0256 -0.0164 8-2 g15
3 1 0.0562 0.0692 1-2 g2 34 8 -0.0215 -0.0257 8-2 g15
4 2 -0.0344 -0.0280 2-1 g3 35 8 0.0219 -0.0001 8-2 g15
5 2 -0.0004 -0.0032 2-1 g3 36 8 -0.1486 -0.0507 8-3 g16
6 2 -0.0932 -0.0665 2-1 g3 37 8 -0.0919 -0.0564 8-3 g16
7 2 0.0495 0.0636 2-2 g4 38 8 0.1635 0.0553 8-1 g14
8 2 0.0710 0.0599 2-2 g4 39 8 0.2157 0.1112 8-1 g14
9 2 -0.1085 -0.0878 2-1 g3 40 8 -0.0122 0.0000 8-2 g15
10 3 -0.1099 -0.1077 3-1 g5 41 8 -0.0556 -0.0480 8-3 g16
11 3 -0.0205 -0.0325 3-1 g5 42 8 -0.0155 -0.0276 8-2 g15
12 3 -0.0039 0.0241 3-2 g6 43 8 -0.0044 0.0169 8-2 g15
13 3 -0.0219 -0.0365 3-1 g5 44 9 0.0906 0.0705 9 g17
14 3 0.0335 0.0473 3-2 g6 45 10 -0.0725 -0.0602 10-1 g18
15 3 0.0811 0.0763 3-2 g6 46 10 0.0642 0.0294 10-2 g19
16 4 0.1075 0.0974 4-1 g7 48 10 0.0437 0.0352 10-2 g19
17 4 -0.4604 -0.5240 4-2 g8 50 10 0.0291 0.0266 10-2 g19
18 4 -0.0087 0.0036 4-1 g7 51 10 -0.0345 -0.0646 10-1 g18
19 4 -0.4668 -0.4853 4-2 g8 53 10 -0.0178 -0.0233 10-1 g18
20 4 -0.3977 -0.4813 4-2 g8 56 10 -0.0422 -0.0565 10-1 g18
21 4 -0.0245 -0.0422 4-1 g7 57 10 0.0584 0.0882 10-2 g19
22 5 0.0301 0.0284 5-1 g9 59 10 -0.0487 -0.0350 10-1 g18
23 5 0.0523 0.0779 5-1 g9 60 10 -0.0538 -0.0472 10-1 g18
24 5 0.0052 -0.0052 5-2 g10 61 10 0.0126 0.0223 10-2 g19
25 5 -0.0687 -0.0615 5-2 g10 47 11 -0.0180 -0.0627 11-1 g20
26 6 0.0346 0.0616 6-1 g11 49 11 -0.0149 -0.0143 11-1 g20
27 6 0.0503 0.0342 6-1 g11 52 11 0.0990 0.0536 11-2 g21
28 6 -0.0311 -0.0170 6-2 g12 54 11 -0.0210 0.0102 11-1 g20
29 6 -0.0015 -0.0062 6-2 g12 55 11 0.0121 -0.0003 11-2 g21
30 6 -0.0085 0.0052 6-2 g12 58 11 0.0622 0.0688 11-2 g21
31 7 -0.0382 0.2523 7 g13

Table 5: Construction of Subgroups within A Group Made by Expert

The GSinCE procedure is preformed for each output based on the same grouping with

the 21 groups. As a result, g1, g7, and g8 are chosen for all outputs, g13 is chosen for only

7

output y2, and g14 and g16 are chosen for outputs y1 and y4. We take the union of the

inputs in these groups to determine the inputs to proceed to Stage 2, as done in Section 1.1.

Thus p = 14 inputs (1, 16, 17, 18, 19, 20, 21, 31, 32, 36, 37, 38, 39, 41) are considered at

Stage 2 again.

The Stage 2 design for the 5p = 70 computer code runs is constructed as before and

59 data are obtained from the second computer experiments. The number of low-impact

benchmark inputs is δ = min(50, 4p− 1) = 50. Using the combined 336+59 = 395 data and

the combined design matrix Xc for the p = 14 inputs and the δ = 50 low-impact benchmark

inputs, the Stage 2 analysis is done. Table 6 shows the 5 inputs (1, 17, 19, 20, 38) are selected

for y1, the 2 inputs (1, 31) are selected for y2, the 4 inputs (1, 17, 19, 20) are selected for y3,

and the 7 inputs (1, 17, 19, 20, 36, 38, 39) are selected for y4. Thus the 8 inputs (1, 17, 19,

20, 31, 36, 38, 39) are declared to be active for at least one output.

Individual inputs Groups Stage 1 Selection Stage 2 Selection
y1 y2 y3 y4 y1 y2 y3 y4

1 g1
√ √ √ √

1 1 1 1
2 3 g2
4 5 6 9 g3
7 8 g4
10 11 13 g5
12 14 15 g6
16 17 18 g7

√ √ √ √
17 17 17

19 20 21 g8
√ √ √ √

19 20 19 20 19 20
22 23 g9
24 25 g10
26 27 g11
28 29 30 g12
31 g13

√
31

32 38 39 g14
√ √

38 38 39
33 34 35 40 42 43 g15
36 37 41 g16

√ √
36

44 g17
45 51 53 56 59 60 g18
46 48 50 57 61 g19
47 49 54 g20
52 55 58 g21

Table 6: Summary of Screening for All Outputs based on Grouping by Expert and EDA

8In this example, all 3 grouping methods result in 
the same Stage 2 selection of active inputs:  1, 

17, 19, 20, 31, 36, 38, and 39 

Analysis:  H. Moon 
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Sequential Experiment Design 
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Introduction 

•  Sequential experiment design is utilized to more 
efficiently pursue an objective 
–  Optimization 
–  Global prediction 
–  Calibration/discrepancy inference 
–  Contour estimation 
–  Quantile estimation 

•  How does it work? 
–  Analyze runs from initial design 
–  Propose additional runs, perhaps in batches, using results 

from the initial design and a design criterion tailored to the 
objective 

–  Continue until the budget of runs is expended 
•  Generally at least 30% of budget is spent on the initial design  
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Optimization 
•  Sequentially collect additional runs to minimize computer model 

output 
–  Based on an expected improvement criterion 
–  Balances prediction uncertainty (global) and local optimization 

•  Facilitates baselining of complex computer models 
–  Can be embedded in other algorithms that guarantee convergence (e.g. 

pattern search) 

•  Can be applied when some inputs are environmental (have pdfs) 

Expected 
Improvement 

For Global 
Optimization 
(Baselining) 

global search 
local search 
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Global Prediction 
•  Sequentially collect additional runs to efficiently improve global 

prediction capability  
–  Based on an expected improvement criterion 
–  Balances prediction uncertainty and bias 

•  Facilitates control of absolute or relative prediction error 

Example:  Eric Lam and Bill Notz 
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Rare Event Estimation 
•  Interested in rare event estimation 

–  Outputs obtained from computational model 
–  Uncertainties in operating conditions and physics variables 
–  Physics variables calibrated wrt reference experimental data 

•  In particular, quantile or percentile estimation 

–  One of qα or α is specified and the other is to be inferred 
–  qα may be random when inferring α	



•  Sequential importance sampling for improved inference 
–  Oversample region of parameter space producing rare 

events of interest 
–  Sequentially refine importance distributions for improved 

inference 

Pr[ ⇥(x,�) > q� ] = �
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Targeted Sequential Design 
•  Choose design augmentation that minimizes integrated 

mean square error with respect to the currently estimated 
importance distributions for sensitive parameters 
–  A version of “targeted” IMSE (tIMSE) 

IMSE(Db) = 1�trace

 "Z
r{D0,Db}(z;�) r

T
{D0,Db}(z;�)

nzY

i=1

wi(zi) dz

#
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Example:  VR2plus Model 

•  Scenario:  
Pressurizer failure, 
followed by pump 
trip and initiation of 
SCRAM (insertion 
of control rods) 

•  Goal:  Understand 
behavior of peak 
coolant temperature 
(PCT) in the reactor 

•  Interested in 
probability that PCT 
exceeds 700o K 
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VR2plus Details 
•  Single thermal-hydraulics loop with 21 components 
•  Working coolant is water at 16MPa and 600o K, single-phase flow 
•  Nominal power output of this reactor is 15MW  
•  Calculations performed with reactor safety analysis code R7 (INL) 

Input Parameter Min Max Description 
PumpTripPre 15.6 MPa 15.7 MPa Min. pump pressure causing trip 
PumpStopTime 10 s 100 s Relaxation time of pump phase-out 
PumpPow 0.0 0.4 Pump end power 
SCRAMtemp 625o K 635o K Max. temp. causing SCRAM 
CRinject 0.025 0.24 Position of CR at end of SCRAM 
CRtime 10 s 50 s Relaxation time of CR system 

Input parameters assigned independent 
Uniform distributions on their ranges 
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VR2plus Analysis 
•  Quantile inference 

– Target 0.0001 quantile of PCT distribution 
•  Percentile inference 

– PCT > 700o K 
•  Importance distribution 

–  Independent Beta distributions for sensitive 
parameters 

–  Independent Uniform distributions for 
insensitive parameters 

•  PumpPow and CRinject are sensitive 
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Pressurizer Failure:  Quantile Inference 
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Again, convergence benefits seen 
with higher frequency updates 
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Pressurizer Failure:  Percentile Inference 

Additional runs required to reduce 
IMSE in greater volume of input space 
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quantile inference 
cut-offs 

VRF = 42 
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Conclusions 

•  Space-filling designs work well with the GP 
models typically used in computer model 
emulation 

•  If given a budget of code runs/experiments, 
single-stage space-filling design generally results 
in prediction performance no worse than 
sequential design 
–  exceptions can occur with non-stationary output 

behavior 

•  Sequential design is particularly efficient for 
optimization and rare event inference problems 
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